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Abstract

Regenerative medicine and cell therapies hold great potential to treat a variety of medical

conditions. Product characterisation of these therapies is particularly difficult as they pose

regulatory challenges due to donor heterogeneity and the lack of standardised lot release

tests that can reliably predict in vivo function. Human mesenchymal stem cells (hMSCs),

also called multipotent stem cells or mesenchymal stromal cells, are a viable option in cell

therapies due to their immunosuppressive and pro-angiogenic functions. Currently there

are no standardised methods or potency assays to quantify these properties.

To address this, five individual hMSCs lines from different donors were created and char-

acterised based upon growth rate, differentiation capability and extracellular surface pro-

tein expression. A novel multiparameter flow cytometry method to characterise the cells

based upon extracellular surface markers was developed that supports high-throughput

and high-content analyses.

Three candidate lines were taken forward and assessed in multiple in vitro bioassays that

examined the hMSC immunosuppressive response to a defined inflammatory environment,

effect on T-cell proliferation, and effect on a mixed lymphocyte population.

Next, the angiogenic properties were assessed using human umbilical vein endothelial cells

(HUVECs) tube formation as a model for cardiac regeneration. This involved utilising

automated time lapse microscopy techniques coupled with image analysis software to

quantify endothelial to tube formation. Further analysis of the hMSC secretome revealed

differences in the levels of pro-angiogenic cytokines such as vascular endothelial growth

factor, hepatocyte growth factor and IL-8. Significant differences in angiogenic potency

were found between the hMSC lines.

This thesis highlights the need to develop specific assays that reflect the intended clinical

action. Taken together, these quantitative approaches provide valuable tools to measure

hMSC quality and potency, and supports continued efforts to improve characterisation

strategies for cellular therapies.

Keywords: Regenerative medicine, human mesenchymal stem cell, characterisation, po-

tency assay, multiparameter flow cytometry, immune suppression, angiogenesis
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Chapter 1

Literature Review

Regenerative medicine aims to restore or regenerate the human cells, tissue, or organs

back to normal function. This includes the use of cell therapy, tissue engineering and

gene therapy. This growing industry of scientific improvement can lead the way to treat

currently unmet clinical need and, in future, form part of standardised healthcare treat-

ments.

To pass regulations in the U.S (Food and Drug Administration, FDA) and E.U (European

Medicines Agency, EMA) there is a need to fully characterise the cells in terms of identity,

purity, safety, and biological activity. Evaluation through potency assays plays a key role

in defining the overall quality and efficacy of a cell therapy. Potency assays are designed

to produce a quantitative measure of the biological activity and ideally should reflect

clinical efficacy. The complexity increases as new discoveries reveal different mechanism

of action all of which may be linked to the outcome.

Human mesenchymal stem cells (hMSCs) are a rare population of adult stem cells typically

found within the bone marrow niche, they can be readily isolated and expanded in vitro

to gain a therapeutically relevant dose. Originally hMSCs were utilised in orthopaedic

tissue engineering areas as they are able to differentiate into bone and cartilage lineages.

1
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More recently, researchers have discovered they can suppress and modulate the patients’

immune system, and secrete bioactive molecules in response to the local environment.

These properties have made them an exciting candidate to treat auto-immune disorders;

nervous system diseases; and heart and circulatory damage.

However, as hMSCs are a biological entity derived from individual donors there will

be inherit variation to how they perform in vivo. Therefore there is a requirement to

develop tests that can accurately measure their relevant mechanism of action and can be

performed in line with the manufacturing process. Potency tests for hMSCs should reflect

the intended biological activity and form part of the characterisation/quality panel from

isolation, expansion, preservation to patient delivery.

Hence the question, how do we measure quality and determine if the cell product passes

an acceptance/rejection criteria?

Addressing these challenges will be key to the overall success of a regenerative medicine

product. The aim of this thesis will discuss and present a number of solutions to these

challenges.

1.1 Regenerative Medicine & Cell Therapies

Regenerative medicine refers to the methods of repairing and replacing damaged cells,

tissue or organs to normal function by the means of cell therapies, tissue engineering or

gene therapy. Until recently the healthcare field has relied on three main areas: pharma-

ceuticals, medical devices, and biologics. Regenerative medicine and cell therapy is set

to become the fourth main healthcare area in the upcoming years. The field has been

expanding rapidly within the last decade from research laboratories to first in-man trials

to late stage clinical trials. By 2008 global sales reached $410 million and was expected

to reach $2.7 billion in 2012 and $5.1 billion in 2014 (Mason et al. 2011). More recent
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transactions have also demonstrated the growith of the field such as an alliance between

Mesoblast and Cephalon, worth $1.7 billion; and Genzyme and Orisis, worth $1.25 billion

(Vertès 2016).

Regenerative medicine can be further subdivided into tissue engineering and cell therapies.

Typical tissue engineering strategies involves the combination of a scaffold and adequate

cells. The scaffold, either a natural or synthetic polymer, provides support and structure

to the implanted area and can guide cell proliferation and function in a three-dimensional

environment (Mota et al. 2012). Such cell-scaffold constructs have been used successfully

for skin and wound healing (Groeber et al. 2011), bladder replacement (Atala 2011),

airway reconstruction (Fishman et al. 2014) and cartilage repair (Kuo et al. 2006) to

name a few. On the other hand, cell therapies are those without the use of a physical

support and are usually just the cells alone. The cells are either delivered locally to the

site of injury or delivered systemically. Examples of this include intravenous injection of

CAR-T cells (Adusumilli et al. 2014) and expanded adipose-derived mesenchymal stem

cells (Ra et al. 2011).

Maintaining cells ex vivo requires detailed characterisation methods, most simply these

can be cell morphology and/or growth rate. As biochemistry and molecular biology re-

search develops new methods, characterisation becomes more sophisticated from cell mor-

phology, gene analysis to protein production. This allows for more quantitative measures

of cell characterisation which are crucial for the development of future cell therapies.

Characterisation of a biological product allows specifications to be established, this en-

ables the development of an acceptance criteria to determine if the cell product is accepted

or rejected for release. Ensuring the critical quality attributes (CQA) are maintained

throughout the expansion and processing of these cells is essential for a functional deliv-

erable cell therapy product.

Cell therapies require specifications from:
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• Identity: Confirms the cell is the correct type

• Purity: Confirms there are no contaminations from other cell types or reagents

• Viability: Current FDA guidelines suggest a minimum viability specification of

70%

• Potency: Ensures the product has the intended function for the intended clinical

effect

• Safety: Ensures the cell preparation does not contain harmful material and there

is no tumorigenic potential (Carmen et al. 2012)

This literature review chapter will focus on identity and potency for cell therapies and

later more specifically for human mesenchymal stem cells.

1.1.1 Identity & Purity

Identity assays verifies the cells’ phenotype from isolation, expansion, storage, to final

deliverable product to ensure the product does not adversely change. This is essential to

ensure the cells are not changed through manufacturing i.e. phenotypic drift which may

affect the function (Freedman 2015).

Identity assays can also measure the purity as the harvested cells from the donor may

contain other cell types that are a different lineage or at a different stage of differentiation

from the intended cell type. For example, in hematopoietic stem cell (HSC) transplants

there will be a mixed population of T-cell, B-cells and other mononuclear cells. The

amount of wanted to unwanted cells should be set and an acceptance criterion main-

tained. In embryonic or induced pluripotent stem cell transplantation, the cells are first

differentiated before delivery, the amount of undifferentiated cells should be minimised to

avoid tumour formation.

The simplest measure of identity is examining the cell morphology, this method is used in
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the release testing of Carticel r (Genzyme r) an autologous chondrocyte implantation

therapy (Carmen et al. 2012). This method is extremely subjective and results will vary

depending on the operator. However, advances in automated high-content image analysis

techniques have overcome this problem by quantifying morphology without the need for

operator input (Zanella, Lorens, and Link 2010).

Flow Cytometry

A more specific way to identify cell is via the use of flow cytometry, this technique can

analyse thousands of events (cells) per second and allows for sorting of cell populations. It

is well established in the research community and has translated to good manufacturing

process (GMP). In addition, standardised documentation guidelines such as the Minimum

Information about a Flow Cytometry Experiment (MIFlowCyt), has increased compara-

bility between researchers (Lee et al. 2008). To further accommodate GMP transfer,

automated gating strategies can be applied to improve comparability. Suni et al. (2003)

has shown this can be utilised to quantify multiple antigen specific T-cells and reduce

operator-induced variability.

In flow cytometry, the cells are suspended in a moving liquid and passed through a wider

sheath fluid at a different rate, the two streams of liquid do not mix and form a linear

flow termed hydrodynamic focusing. The stream passes over an excitation source, usually

a laser, and the cells/particles suspended within the stream causes diffraction and light

scatter. Forward scatter is a measure of diffracted light off the axis giving indication to

the size, side scatter is a measure of refracted light giving an indication to the granularity

of the cell.

For identity analysis the cells are usually labelled with fluorescently bound antibodies,

when they are passed over the laser the fluorophores are excited and light is emitted and

captured by a set of filters or photomultiplier tubes (PMT). Intracellular proteins can also
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be measured by fixing and permeabilising the cells before staining. The antibodies can

be specific to a protein or marker which identifies the phenotype of the cell, e.g. when

identifying sub-populations of hematopoietic cells researchers will first label either the

CD4 or CD8 extracellular surface maker.

More commonly it is now possible to measure multiple markers simultaneously. This is

achieved by binding multiple specific fluorescently-bound antibodies that emit light at dif-

ferent wavelengths and using corresponding detection filters that can distinguish between

the wavelengths. This method, called multicolour or multiparameter flow cytometry can

be used to distinguish distinct cell phenotypes down to rare-population analysis, such

as hematopoietic stem cells (HSCs) from the bone marrow niche (Autissier et al. 2010;

Nilsson, Bryder, and Pronk 2013).

Cells can be stained and measured within hours, coupled with high-throughput sample

analysis, flow cytometry has been widely adopted in the cell therapy field for identity

assays. In chimeric antigen receptor T cells (CAR-T cell) therapy flow cytometry is used

to ensure expression of the CAR domain following transduction and in vitro expansion

(Kochenderfer et al. 2014).

Another report by Basford, Forraz, and McGuckin (2010) describes the development of a

multiparameter immunophenotyping method for umbilical cord blood cells, the authors

demonstrate that using this method the cells could be collected, processed, cryopreserved

and immunophenotyped within 5 hours.

The development and use of multiparameter analysis for the characterisation of hMSCs

is detailed in Chapter 4.
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Gene Expression

Microarray gene expression profiling can also be used to characterise cells. In these types of

studies the cells are sacrificed and the RNA is isolated. The RNA are reverse-transcribed

into cDNA nucleotides with different fluorescent dyes. Next, the samples are hybridised

onto a glass slide with specific spots containing its complementary sequence. The amount

of cDNA (and fluorescence) will be proportional to the initial amount of starting RNA

(Tan 2003). Microarrays allows the examination of thousands of genes within a small

sample and can be used to identify specific biomarkers and gene upregulation (Tarca,

Romero, and Draghici 2006). In terms of hMSCs, previous reports have identified multiple

adhesion proteins, growth factor receptors and cell motility markers that discriminate

them from CD34+ blood cells in the same sample (Silva 2003). Jeong et al. (2007)

compared the gene expression of bone marrow hMSCs to peripheral blood mononuclear

cells and to umbilical cord hMSCs. They found clear differences between the BM-hMSCs

and PBMC, such as collagens, extracellular matrix proteins and growth factors; but when

compared to the umbilical cord hMSCs there were over 13,000 common genes.

1.2 Potency Assays for Cell Therapies

Allogeneic therapies, such as hMSC delivery, would require culture expansion ex vivo to

provide sufficient numbers for multiple doses and patients. Therefore, they are classed as

a ‘more-than-minimally-manipulated cell and gene therapy’ and under rules from the US

Food and Drug Administration (FDA) such products require an Investigational New Drug

(IND) application. Part of this includes the development of tests to measure potency as

part of the final release criteria (Galipeau et al. 2016). This section will focus on the

considerations for developing in vitro potency assays for cell therapies.

Potency testing is the quantitative measure of biological activity which leads to an ef-
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fect. The evaluation of potency plays a key role in defining the critical quality attributes

(CQA) of a cell therapy, this allows researchers and clinicians to determine if the product

is suitable for delivery to a patient. From these assays a product specification can be

developed (e.g. amount of protein produced or expression of marker) that can be used in

comparability and stability analysis (Bravery et al. 2013).

1.2.1 Defining Potency and Regulations

In the pharmaceutical and cellular therapy industry, potency is a measure of the strength

or effect of a drug or product where the ultimate aim is to identify and measure the key

parameters that lead to clinical efficacy. Potency measurement is critical for cell therapies

where it forms an essential aspect for quality control and comparability studies.

The European Medicine Agency (EMA) defines potency for a biotechnology/biological

product as :

‘The quantitative measure of biological activity based on the attribute of

the product which is linked to the relevant biological properties’ - ICH 6B

Specifications

The ICH 6B Specifications were published in 1999 and are now superseded by Committee

for Medicinal Products for Human Use (CHMP)/410869/06 specifications effective of

2008, with regards to a potency assay states:

‘In principle the results of a potency assay should provide assurance that

the amount of the active ingredient is sufficient to induce a meaningful response

and that the amount is consistent from batch to batch. As such, the potency

assay should be able to detect clinically meaningful changes in the amount of

active ingredient in a human dose of a product.’ - CHMP/410869/06
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The US Food and Drug Administration (FDA) defines potency as:

‘The specific ability or capacity of the product, as indicated by appropriate

laboratory tests or by adequately controlled clinical data obtained through the

administration of the product in the manner intended, to effect a given result.’

- 21 CFR 600.3(s)

As each biologic will differ, the FDA allows for flexibility in determining what is the

most appropriate test and is evaluated on a case-by-case basis. In the early stages of

development it states that for some products in pre-clinical, Phase I, and early Phase

II, limited quantitative bioactivity information may be sufficient. Later stages, Phase III

and beyond, requires an acceptance criteria that can assure a consistently manufactured

product.

Potency assays for a regenerative medicine/cell therapy product should therefore quantify

the biological activity of the mechanism of action (MoA). From this a pass/fail criterion

can be applied to determine the quality of the cells.

It is not uncommon for a single cell therapy product to be used for multiple clinical

indications (see Section 1.7), so multiple assays can be developed for a single cell type

depending on the treatment.

1.2.2 Considerations and Challenges for Potency Assay Devel-

opment

Cell therapies, by virtue of their mode of action, are inherently more complex than other

pharmaceuticals, and therefore further considerations must be taken into account. This

section will summarise the current challenges of potency assay development for cell ther-

apies.
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Mechanism of Action and Assay Matrix

The previous section (Section 1.1.1) described characterisation in terms of identity - what

the cell is; whereas potency characterisation details what the cell does. The most impor-

tant aspect of a potency assay is that it must reflect the biological activity of the product

and measure the mechanism of action (MoA) for example, immunosuppressive activity,

protein secretion or target cell cytotoxicity. Unlike traditional pharmaceuticals where

there is a single known MoA, cell therapy is further complicated by possible multiple

pathways, many of which may be unknown or not fully understood, therefore a single as-

say may not provide a full accurate measure of potency. Multiple assays (referred to as an

assay matrix), measuring different relevant MoAs can be used together to give a holistic

measurement of potency (Galipeau et al. 2016). An assay matrix may consist of various

analytical techniques such as flow cytometry, quantitative imaging and protein/cytokine

analysis.

Length of Assay

Since there is usually a limited amount of time between the cell process/manufacture and

the final delivery, the overall duration of a potency assay can determine its usefulness

and implementation. For example, in hematopoietic stem cell (HSC) transplant the goal

is to repopulate the patient’s hematopoietic niche to produce erythrocytes and immune

cells. To examine this in vitro a colony forming unit (CFU) assay is used where the HSCs

are plated into a semi-solid culture medium and allowed to differentiate over 7-14 days.

The colonies are then manually scored. The main drawback for this assay is the length

of time, potency assays could be used to determine a pass/fail criteria before transfusion,

therefore a delay of several days is not appropriate. Additionally, as the colonies are

manually counted there is inherent variation between operators, however image analysis

software packages have overcome this to provide quantitative results (Guzman et al. 2014).



Chapter 1. Literature Review 11

Reference Material and Standards

In drug development there is a stringent definition of a drug that can be easily tested.

The new drug or iteration can be compared to the reference material for compatibility

testing. In an ideal case, this would be similar for cell therapies where there could be

central resource to which every new preparation can be compared.

As allogeneic cell therapies will be classed under investigational new drug (IND) prepa-

rations, such as hMSCs, for therapy would require the use of a centralised standard or

reference material. Basu and Ludlow (2014) suggests that for a cell therapy the reference

standard should be the same cell type as the product and ideally be proven in the selected

potency assays. For hMSCs it has been suggested the reference material will have details

from its optimal culture conditions (ones that are universally accepted), gene expression

profile of over 100 genes, a known secretome profile, various in vitro assays and perfor-

mance (including colony forming and differentiation), and finally information regarding

genomic stability during passaging and expansion (Tanavde et al. 2015).

The idea of a ‘hMSC cell ruler’ has been suggested that would serve as a common calibra-

tion tool and provide a central data point (Deans 2015). This would require a mixed pool

of cells from multiple donors to provide adequate master and working cell banks, adher-

ence to the minimal criteria as suggested by the ISCT and standardised culture conditions.

Further functional characterisation assays may include ability to modulate immune func-

tion, promote engraftment, clonal assays and key secretome profiling (Viswanathan et al.

2014).

Implementation in a Manufacturing Process

Potency assays can also be utilised in informing process development and manufacturing

of cell therapies where the final deliverable product is markedly different from the starting
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material. Perhaps the most important role for potency assays within bioprocess is to be

able to detect changes in the manufacturing process. As cell therapies develops over time

from small-scale Phase I and II trials into large-scale and Phase III trials there will be

changes in the manufacturing and processing of the cells. These may include scale-up

methods, medium formulation, harvesting, final fill/finish, and even facility changes, such

as change in manufacturing centre; as such the cells should be tested throughout the

process (in-process testing) and at the end of production (lot release testing) (Stroncek

et al. 2007). Due to nature of cell therapies most institutions have built specialised good

manufacturing practice (GMP) facilities to produce the cells. These are to ensure that the

products are made in a consistent environment, each dose meets a required specification

and lot-to-lot variation is minimised.

When these changes do occur, potency assays should be able to reflect if the changes are

detrimental to the MoA. As such, potency assays must be reliable and robust enough to

ensure the final product is within the specifications of the reference sample.

1.3 Clinically Relevant Cells for Therapy

Cell therapy and regenerative medicine encompasses a variety of cell types that each have

different actions and clinical applications. This section shall briefly outline other common

cell therapies and their potency assays, following this, mesenchymal stem cells shall be

discussed in greater detail.

1.3.1 Hematopoietic Stem Cells

Haematopoietic stem cells (HSCs) are a rare subset of cells found within bone marrow

or umbilical cord blood and are responsible for producing all other blood types. They

are defined functionally by their extensive proliferation, self-renewal, and differentiation
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capability (Pineault and Abu-Khader 2015). HSCs transplants are used to re-establish

haematopoietic function in patients where the bone marrow is damaged. They have been

used successfully to treat autoimmune diseases such as multiple and systemic sclerosis

(Karussis et al. 2013). A successful transplant is dependent on the cells being able to

establish in the bone marrow niche, proliferate and differentiate into mature neutrophils,

platelets and erythrocytes.

Current accepted potency assays examine the proliferation rate via adenosine triphosphate

(ATP) changes or via aldehyde hydrogenase (ALDH) (Sylvester 2011; Veeraputhiran et al.

2011). For greater assessment of functionality the colony forming unit (CFU) assay can

determine the ability of the progenitor cells to produce differentiated daughter cells of the

blood lineage and number of clonogenic cells. However, due to the qualitative nature of

this assay, there is considerable variability in quantification and analysis (Nawrot et al.

2011).

1.3.2 Embryonic Stem Cells & Induced Pluripotent Stem Cells

Human embryonic stem cells (hESCs) are pluripotent cells derived from the inner cell mass

(ICM) of an early stage pre-implantation embryo (Thomson 1998). They are able to self

renew, show high alkaline phosphatase activity, and differentiate into all cell types of the

endoderm, ectoderm and mesoderm lineage, thus making them an ideal cell source for

tissue engineering and regenerative medicine. The first patient trial was to be conducted

in 2010 by Geron Corporation to treat patients suffering from spinal cord injuries using

GRNOPC1 - a oligodendrocyte cell derived from hESCs (Alper 2009). However, after only

enrolling four patients the trial was officially ended following safety concerns due to cyst

formation. In another case, Advanced Cell Therapy (ACT) initiated Phase I/II clinical

trials for the treatment of Stargardt’s Macular Dystrophy and Dry Age-Related Macular

Degeneration using retinal pigment epithelial cells derived from hESCs (Schwartz et al.

2012).
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Several approaches have been used to characterise hESCs including flow cytometry to

analyse surface markers, gene microarray studies and multi-lineage differentiation. In

2007, the International Stem Cell Initiative sought to compare 59 different hESCs from

17 different laboratories to examine common markers (Adewumi et al. 2007). The authors

found common expression of surface glycolipids SSEA3 and SSEA4, TRA-1-81 along with

the pluripotent genes NANOG, OCT4, and SOX2.

It is important to note that hESCs are not implanted in an undifferentiated state as this

could lead to teratoma formation (Hentze et al. 2009). This can be avoided by ensuring

that all the cells have differentiated and any undifferentiated ones are removed. Therefore,

‘potency’ of hESCs is generally defined as the ability to differentiate into the required cell

type (Hu et al. 2010).

In 2006, Takahashi and Yamanaka (2006) published protocols for the development of

induced pluripotent stem cells (iPSCs). These pluripotent cells are derived from fully

differentiated adult tissue via the addition of four key transcription factors, Oct4, Sox2,

cMyc and Klf4. As they can be derived from the patient’s own cells this removes the

donor-patient mis-match as seen in other tissue transplants and will remove the need for

immunosuppressive medication. Similarly to hESCs, iPSC potency is usually measured

by their differentiation capability.

1.3.3 CAR T-Cells

Moving away from stem cells, there has been a tremendous amount of investment into the

development of T-cell therapy for cancer treatment. T-cells - so called as they mature in

the thymus, are one of two primary lymphocytes, the other type being B-cells. Together

they make up the main components of the adaptive immune system, which act to target

specific pathogens.
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The development of chimeric antigen receptor T-cells (CAR T-cell) has allowed for even

more specific targeting of cells. In this process, T-cells are isolated from the patient and

modified ex vivo to include a targeting domain specific for tumour antigens such as CD19

- an antigen expressed on B-cell cancers. Current second and third generation CAR-T

incorporate co-stimulatory domains such as CD28 and OX40 to enhance specification

(Sadelain, Brentjens, and Riviere 2013).

To date CAR T-cell therapy has been shown to be effective in patients with B and T-cell

malignancies. CD19 is a B-cell surface protein expressed in development and in nearly all

B-cell malignancies including chronic lymphocyte leukaemia and non-Hodgkin lymphomas

(Scheuermann and Racila 1995). This near-universal expression has made it an attractive

target for CAR T-cell therapies. In a recent meta-analysis of 14 recent clinical trials

Ghorashian, Pule, and Amrolia (2015) reported that the overall response rate can range

from 50-90% in patients with acute lymphoblastic leukemia (ALL). For solid tumours,

clinical efficacy is proving to be more challenging as there is no single tumour-specific

antigen thus removing the selectivity seen with CD19 leukemias. It has been suggested

that CAR T-cells can be modified to recognise multiple antigens that may allow specificity

to unique expression found only on tumour cells, for example, Wilkie et al. (2012) reported

the generation of a ‘split signal CAR’ where full activation of the T-cell would be limited

to tumours co-expressing ErbB2 and MUC1 in breast cancers.

Characterisation of these cells is relatively simple, typically by flow cytometry analysis of

the CD19 targeting domain, CD4 and granulation markers such as CD107a (Kochenderfer

et al. 2011). Due to the specific engineered action of the CAR-T, potency assays are

based around cytokine production (e.g. IL-2 production) and cytotoxic/lytic activity

when incubated with target cells (Lamers et al. 2010).
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1.4 Human Mesenchymal Stem Cells

1.4.1 Discovery and Nomenclature

In the late 60’s and early 70’s Friedenstein and colleagues first described a rare population

of non-hematopoietic cells derived from the bone marrow aspirates of mice femurs. In

vitro these adherent cells were able to form distinct colonies initiated by single cells

and were termed colony forming unit fibroblasts (CFU-Fs). These cells could also make

bone and reconstitute a hematopoietic microenvironment in subcutaneous transplants.

(Friedenstein et al. 1968; Friedenstein, Chailakhjan, and Lalykina 1970).

In vivo transplantation led to the formation of various mesenchyme derived cells such

as adipocytes (fat), chondrocytes (cartilage) and osteoblasts (bone) and were termed

‘bone marrow stromal cells’ (Friedenstein, Chailakhyan, and Gerasimov 1987; Owen and

Friedenstein 1988). The term ‘mesenchymal stem cell’ (MSC) was coined by Arnold Ca-

plan to describe the potential of these cells to give rise to a multitude of mesenchymal

tissue along distinct pathways (Caplan 1991). This was rapidly adopted and still is the

name of choice. The terms ‘mesenchymal stem cell’, ‘marrow stromal cell’ and ‘mesenchy-

mal stromal cell’ are often used interchangeably.

Pioneering work by Pittenger (1999) (as part of Osiris Therapeutics Inc) demonstrated

true multilineage potential and flow cytometry characterisation of hMSCs, this led the

way for their use in tissue engineering and regenerative medicine. Due to this rooting in

the biomedical field and its potential for regenerative medicine hMSCs are still the most

widely published stem cell type when compared to embryonic and induced pluripotent

stem cells (Figure 1.1).
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Figure 1.1: Timeline for number of publications per year from 1970 to 2012 of mes-

enchymal stem cells (solid line, blue fill), induced pluripotent stem cell (dotted line) and

embryonic stem cells (dashed line). Data collected from http://www.ncbi.nlm.nih.gov/

1.4.2 Sources of hMSCs

Since the discovery of bone-marrow derived hMSCs, there has since been a number of

other tissue from where hMSCs have been isolated. These include both adult tissue such

as dental pulp and peripheral blood, and foetal tissue, such as the placenta and umbilical

cord blood, other sources are listed in Table 1.1.

Whilst being phenotypically similar and adhering to the International Society for Cell

Therapy (ISCT) minimal criteria for an hMSC (see section 1.4.3) there notable differ-

ences between the sources. For example in a comparative analysis between bone marrow,

adipose and umbilical cord hMSCs, Jin et al. (2013) found all cells exhibited the same

extracellular marker profile and showed tri-lineage differentiation. The differences arose

from growth rate where UC-hMSCs had the highest rate of proliferation and lower expres-

sion of senescence markers such as p53 and p16. In addition, these cells showed greater

immuno-suppressive ability by higher secretion of an anti-inflammatory protein, Ang-1,

whilst in co-culture with activated macrophages. This is supported by an earlier study
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Table 1.1: Sources of human mesenchymal stem cells from adult and foetal tissue

Source Abbreviation Reference

Adult sources of hMSCs

Bone marrow BM Friedenstein et al. (1968)

Articular Cartilage AC Alsalameh et al. (2004)

Adipose Tissue AT Bunnell et al. (2008)

Peripheral Blood PB Tondreau et al. (2005)

Skeletal Muscle M Young et al. (2001)

Dental Pulp DP Gronthos et al. (2002)

Foetal sources of hMSCs

Umbilical Cord UC Lee (2004)

Placenta P inAnker et al. (2004)

Wharton’s Jelly WJ Wang et al. (2004)

by Kern et al. (2006) who also showed that UC-hMSCs had the highest growth rate.

However, these authors were unable to demonstrate adipocyte differentiation from the

UC-hMSCs.

Even though there are multiple sources of isolation for hMSCs it is now widely agreed

that they all reside with the perivascular niche i.e. surrounding or within blood vessels

(Crisan et al. 2008; Silva, Caplan, and Nardi 2008). The pericytes described by Crisan

et al. (2008) exhibited all properties of an an hMSC such as tri-lineage differentiation,

expression of markers, in vitro expansion. This has led to suggestions that all hMSCs are

pericytes or a specialised subset of pericyte (Caplan 2008; Caplan and Correa 2011) .

Because they are the most widely studied type, bone marrow derived hMSCs will be the

focus of this thesis.
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1.4.3 Characterisation

As hMSCs can be obtained from multiple sites one of the major challenges is the presence

of a single definitive marker or characteristic which defines a true hMSC. Cell types are

commonly characterised by their expression of certain extracellular glycoprotein markers.

These cluster of differentiation (CD) molecules are often proteins such as ligand receptors

or adhesion proteins that are key for its function. A combination of markers have been

suggested by the ISCT to unify characterisation profiles used by different researchers

(Dominici et al. 2006). They state that hMSCs must be positive for CD73, CD90 and

CD105 and must also lack CD11b or CD14, CD19 or CD79a, CD34, CD45, and HLA-DR

as these are representative of haematopoetic cells that may be present due to the initial

isolation from the bone marrow. The ISCT minimal guidelines also state that hMSCs

must be tissue culture plastic-adherent cells and have the potential to differentiate towards

adipocyte, chondroblasts and osteoblasts lineages.

Recently other researchers have suggested a single positive marker for hMSCs. Jones et al.

(2010) published a report that described the isolation of hMSCs based upon CD45low/CD271+

expression from trabecular bone. These cells possessed the minimal characteristics as

suggested by the ISCT but were found to be more immuosuppressive and had strong ex-

pression of Wnt-associated genes that are linked to oesteoblast-mediated bone formation

when compared to CD271−/low cells (Kuçi et al. 2010; Churchman et al. 2012). However,

CD271 may only be a suitable marker for bone marrow derived hMSCs as other studies

have used this marker to isolate cells from umbilical cord blood and found them to have

poor proliferative potential and differentiation capabilities (Attar et al. 2013; Watson et

al. 2013).
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1.4.4 Potency Assays for hMSCs

Currently there are no standardised potency assays to measure the quality of human

mesenchymal stem cells. As potency measurements are designed specifically for a product

and its intended use the FDA does not make recommendations for potency assays or

propose an acceptance criteria (Galipeau et al. 2016). The vast majority of clinical trials

using hMSCs exploit their trophic/paracrine ability, which does not require their tri-

lineage differentiation into the adipocyte, chondroblast and osteoblast lineages; however

this ability is still included as a preclinical release test for many ongoing trials (Kebriaei

et al. 2009; Vaes et al. 2012; Gupta et al. 2013). Characterisation and purity testing can

only provide information on the phenotype of the cell population, however this does not

reflect their mechanism of action (MoA) for therapeutic action.

As previously discussed in Section 1.2, cell therapies will have a specific test or multiple

tests to examine their potency for a given therapy and not a ‘one size fits all’ approach.

Due to the existence of many therapeutic areas for hMSCs (see Section 1.5 and 1.6) there

is a need to develop specific, targeted potency assays that reflect the intended MoA on

a case by case basis. The next sections will discuss their clinical potential and current

assays with focus on their immunomodulatory and angiogenic potential.

1.5 Immunomodulatory Properties of Mesenchymal

Stem Cells

The adaptive immune system, which comprises of T- and B-cells, generates specific im-

munity against pathogens through memory cells; whereas the innate immune system

comprises of leukocytes (dendritic cells, eosinophils and macrophages) that act in a non-

specific manner. There is a growing interest in the use of hMSCs in treating immunological

diseases due to their immunomodulatory properties.
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One of the most studied application for hMSC therapy is for the treatment of graft versus

host disease (GvHD). GvHD is a rare complication that may occur following allogeneic

bone marrow transplant in patients after chemotherapy in which immune cells from the

graft (donated tissue) will recognise the host as ‘foreign’. This can lead to liver damage,

skin rash and inflammation of the gastrointestinal tract (Ferrara et al. 2009).

hMSCs are also being used to treat autoimmune disorders such as Crohn’s disease and

ulcerative colitis, the two main causes of inflammatory bowl disease (Figueroa et al. 2012).

In these conditions chronic inflammation is caused by a weakened mucosal layer and the

inability to clear bacteria from the intestinal wall (Baumgart and Sandborn 2012).

This section will outline the immunomodulatory effects hMSCs have on the cells of the

immune system followed by potency assays published for hMSC manufacturing.

1.5.1 Immunomodulatory Capacity of hMSCs and Mechanism

of Action

T-cells

T-cells or T lymphocytes, (so called as they mature in the thymus) are the primary

cellular effector in the adaptive immune system; they are activated following stimulation

by antigen presenting cells (APCs) such as dendritic cells or macrophages. They fall

into three main categories: CD8+ cytotoxic T-lymphocytes (CTLs) that secrete perforin

to induce apoptosis; CD4+ T-lymphocytes that secrete cytokines to assist or influence

other immune cells; and CD4+/CD25+/FoxP3+ regulatory T-cells (T-regs) which have

suppressive functions and are responsible for the resolution of inflammation. An over-

stimulated pro-inflammatory T-cell response can lead to diseases such as graft-versus-

host disease (GvHD), multiple sclerosis and allotransplant rejection. It is now known

that hMSCs are able to suppress or modulate the immune system to resolve the disease
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(Duffy et al. 2011).

MSC mediated T-cell proliferation suppression and modulation has been identified across

a number of species including in humans, mice (Keyser, Beagles, and Kiem 2007) and

baboons (Bartholomew et al. 2002). This effect is independent of major histocompatibility

complex (MHC) as it has been observed in both allogeneic and autologous reactions

(LeBlanc et al. 2003; Klyushnenkova et al. 2005). The inhibition of proliferation is due

to the lymphocytes being held in the G0/G1 phase of the cell-cycle (Glennie et al. 2005;

Benvenuto et al. 2007).

Studies have shown that the suppressive effects is due to both soluble factors and cell-

cell contact, although these are only activated once stimulated within an inflammatory

environment and not in a resting state. Several soluble factors have been implemented in

T-cell suppression including transforming growth factor-β1 (TGF-β1), hepatocyte growth

factor (HGF) and prostaglandin E2 (PGE-2). In mice, Ren et al. (2008) demonstrated

inducible nitric oxide synthase (iNOS) is responsible for suppressing T-cell proliferation,

whilst in humans Meisel et al. (2004) found indoleamine 2,3-dioxygenase (IDO) has anal-

ogous functions. IDO catalyses the conversion of the essential amino acid tryptophan to

kynurenine which is a known T-cell suppressor molecule (Terness et al. 2002). While in a

resting or unactivated state hMSCs do not produce IDO, when treated with IFN-γ alone

or with other pro-inflammatory cytokines IDO gene expression is up-regulated (Krampera

et al. 2006). In vivo studies have shown that pre-treating the MSCs to first activate them

leads to resolution of a GvHD model as mice deficient in the IFN-γ receptor do not show

any immunosuppressive function (Polchert et al. 2008).

PGE-2 is a product of arachidonic acid metabolism by the cyclo-oxygenase (COX) family

of enzymes. It is another mediator of inflammation that can limit the cytotoxic function

of natural killer cells and phagocytosis of macrophages (Kalinski 2011). A study by

Najar et al. (2010) has shown that hMSCs derived from bone marrow, adipose tissue and

Wharton’s Jelly constitutively expressed COX1 and COX2 mRNA and the secretion of
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the protein was increased during MSC/T-cell co-culture. The authors also inhibited the

synthesis of PGE-2 which allowed the proliferation of T-cells. Mechanistically, PGE-2 is

known to induce a FoxP3 T-reg phenotype (see below), induce anergy and prevent cell

activation making it powerful indicator for immunosuppression (Sreeramkumar, Fresno,

and Cuesta 2011).

In addition to soluble factors, studies have now shown cell-cell contact interactions occur

in hMSC-mediated suppression. The first evidence of this was reported by Nicola (2002)

in which T-cells were cultured in transwell plates to avoid cell-cell contact with hMSCs

and compared to those in direct co-culture. Whist both systems were able to significantly

reduce T-cell proliferation, those in direct co-culture had an even greater effect. Further

experiments by Ren et al. (2010) suggests the adhesion molecules ICAM-1 and VCAM-1

were essential for this effect as antibody blocking of the molecules resulted in normal

T-cell expansion. Due to the multiple pathways of immunosuppression it is likely that

hMSCs exert their effect through both direct cell-cell contact and secretion of soluble

factors.

Another way in which hMSCs regulate immune function is through the induction of

regulatory T-cells (T-regs). T-regs are a subpopulation of T-cells which modulate the

immune system by suppressing induction and proliferation of effector T-cells, therefore

negatively regulating the immune response (Josefowicz, Lu, and Rudensky 2012). In

mouse and human mixed lymphocyte reaction cultures (MLR) Maccario et al. (2005) and

Luz-Crawford et al. (2013), both found that MSCs can induce a CD4/CD25/FoxP3 T-reg

population from naive T-cells. Further functionality of these cells by English et al. (2009)

showed these performed in a similar manner to conventionally derived T-regs.
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B-cells

B-cells (B lymphocytes, so called as they were first identified in the bursa of Fabricius in

birds) are cells of the adaptive immune system that act by secreting specific antibodies

when activated by antigen presenting cells (Cooper 2015). In murine studies, Asari et

al. (2009) co-cultured mMSCs with B-cells and found B-cell proliferation was suppressed

and the maturation mRNA expression of Blimp-1 was downregulated. Similar effects were

seen in human cells where Corcione (2006) reported that hMSCs are able to reduce B-

cell proliferation without affecting viability which was mediated through soluble factors.

Tabera et al. (2008) showed hMSCs caused the B-cells to arrest in the G0/G1 cell cycle

phase through phosphorylation of ERK 1/2 MAPK and inhibiting phosphorylation of

p-p38, both of which are involved in the regulation of the cell cycle. Taken together these

studies suggest MSCs are able not only able to reduce B-cell proliferation but also prevent

their maturation into fully functional cells.

Natural Killer Cells

Natural killer (NK) cells are a type of cytotoxic lymphocyte of the innate immune system

that play a role in antiviral and anticancer function (Mandal and Viswanathan 2015). In

a resting state they recognise self-MHC class I molecule and this prevents their activation.

Virally infected and tumour cells often downregulate MHC class I to prevent recognition

by T-cells, however this results in vulnerability towards NK cells. When co-cultured

with hMSCs, stimulated NK cells do not express the activation marker NKp44. Others

have also shown NK proliferation and cytokine release can be inhibited in both direct

co-cultures and when separated by transwells suggesting soluble factors play a large role

in regulation (Sotiropoulou et al. 2006).

PGE-2 and IDO have both been shown to play crucial roles in hMSC mediated inhibition.

Spaggiari et al. (2007) added anti-PGE2 and anti-IDO compounds into hMSC and NK
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cell co-cultures and found when added together could fully restore NK cell proliferation.

Dendritic Cells

Immature dendritic cells (DC) reside in tissue and when exposed to stimuli such as

pathogens, bacterial DNA or cytokines (such as TNF-α) they undergo maturity into

functional antigen presenting cells to activate T-cells (Banchereau and Steinman 1998).

In mouse MSC and DC co-cultures English, Barry, and Mahon (2008) demonstrated that

mMSCs were able to prevent the migration, maturation and antigen presenting functions

of immature DCs. Similar results with human cells have also been previously reported

by Nauta et al. (2006) who, by using transwell experiments, also showed these inhibitory

effects are mediated by soluble factors.

In addition to IDO and PGE-2 as anti-inflammatory cytokines, interleukin 6 (IL-6) has

been shown to modulate DC function. Djouad et al. (2007) showed IL-6 produced by

hMSCs in response to co-cultures with monocytes prevented their maturation and dif-

ferentiation into DCs. Further work by Melief et al. (2013) went on to show IL-6 could

induce an anti-inflammatory monocyte phenotype.

1.5.2 Immunogenicity of hMSCs

To first be able to provide therapeutic effects hMSCs must be able to reside within the

body whilst not being recognised as a foreign particle that will lead to its removal. There-

fore, avoiding recipient recognition and subsequent destruction is the first key to a suc-

cessful allogeneic cell therapy. hMSCs have long been described as hypoimmunogenic or

‘immunoprivileged’ as they express a relatively small fraction of the molecules needed to

activate T-cells in vivo (Potian et al. 2003). For example, they express low levels of human

leukocyte antigen (HLA) or major histocompatibility (MHC) class I antigens which are
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required for immune recognition. However, this is only true for ‘resting’ or unactivated

hMSCs. When stimulated with pro-inflammatory cytokines such as interferon gamma

(IFN-γ) they upregulate expression of HLA-DR (MHC class II).

When infused MSCs are gradually allo-immunised and cleared from the recipient. Nauta

(2006) showed repeated transfusion of allogeneic mMSCs into naive mice was sufficient to

induce a T-cell response as seen by decreased engraftment. Moreover, Isakova et al. (2010)

injected varying doses of allogeneic MSCs intra-cranially into rhesus macaques. Even in

this immunoprivileged site there was an allo-graft response that was dose dependent, and

this correlated to an increased CD8+/CD16+ lymphocyte subpopulation.

Therefore, although hMSCs are not as immunogenic as other unmatched cells such as

fibroblasts and hematopoietic stem cells, repeated transfusion of unmatched hMSCs may

lead to acquired alloimmunisation. To overcome this future hMSC treatments should look

to optimise their survival and potency to prevent patient desensitisation (Ankrum, Ong,

and Karp 2014).

1.5.3 Current hMSC Immunomodulatory Potency Assays

From the literature it is clear that hMSCs can modulate the immune system in a variety

of ways that include secreting soluble factors and by cell-cell contact mechanisms. As such

there are many variations of immunomodulatory potency assays, for example, addition

of pro-inflammatory cytokines or co-cultures with purified effector cells and MLRs. Due

to the many different formats to measure immune suppression there is a large disparity

in the claims made by researchers. There have been some attempts for creating a stan-

dardised assay to measure the immunomodulatory potential of hMSCs in a clinical or

manufacturing setting.

To enhance hMSC response to inflammation Ankrum et al. (2014) first treated hMSCs
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with glucocorticoid steroids before addition of IFN-γ to measure IDO response. Here,

budesonide was able to induce IDO expression across multiple donors hMSC lines and

in late-passage cells. Co-culture with PBMCs also found greater immunosuppression in

steroid and IFN-γ treated hMSCs.

As previously discussed in Section 1.4.2, hMSCs can be isolated from multiple areas of

adult tissue, previous reports have described the contrast in growth rate and differentiation

potential however, there have been very few studies into the differences of immunosup-

pression. To address this Yoo et al. (2009) isolated bone marrow adipose tissue, umbilical

cord blood and Wharton’s Jelly hMSCs. To ensure consistency between the different cell

lines, the authors maintained the same hMSC seeding density and the same number of

purified T-cells. However, there were no differences in the immune suppression potency

between the types of hMSCs.

Immunosuppressive potency assays are starting to be implemented as quality control

tests for manufacturing of hMSCs. In a multi-centre comparison test Bloom et al. (2015)

describes the development of a possible standardised immunopotency assay. Here 11

hMSCs products that were manufactured across three separate sites were assessed using

a hMSC/T-cell co-culture proliferation assay. The authors were able to demonstrate a

reproducible assay between sites and production runs due to the defined seeding densities

and T-cell population. Interestingly, there were varying degrees of immunosuppression

ranging from 27% to 88% inhibition of proliferation which may be due to the differences

in isolation, culture conditions/medium and cyropreservation formulation.

A report by Luetzkendorf et al. (2015) examined the potency following xeno-free GMP

expansion and cryopreservation. Co-cultures of five different hMSCs donors with mis-

matched PBMCs resulted in an average of 50% proliferation suppression. The degree of

suppression varied amongst the donors, however there was no difference between fresh or

cryopreserved hMSCs.
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The above studies have all used a suppression assay with varying types of immune cells

to measure potency. However, there is a lack of cytokine/soluble factor analysis that may

give further insights to the immunosuppressive potential of these hMSCs.

The ISCT published a perspective paper on immune functional assays for hMSCs where

they suggest ‘licensing’ or activation via the addition of IFN-γ to prime the cells, IDO

response and the use of purified immune cells as a model of immunosuppression. These

suggestions stress standardised and common protocols to achieve comparable results for

hMSC immunological characterisation (Krampera et al. 2013).

1.6 Angiogenic Properties of Mesenchymal Stem Cells

Within the body the cardiovascular system, a network of blood vessels, provides all cells

and tissue with nutrients and oxygen as well as waste removal, this network ranges from

large arteries and veins down to smaller capillaries and venules. In embryonic development

the cardiovascular system is the first to develop in a process termed ‘angiogenesis’ or ‘neo-

vascularilsation’. In this process, endothelial progenitor cells (angioblasts) differentiate

into the mesoderm and then into an early vascular network which undergoes remodelling

and sprouting (Breier 2000).

Angiogenesis will also occur in adult life following injury. Wound healing involves four

phases: haemostasis, inflammation, tissue formation and tissue remodelling. After in-

jury, different subsets of leukocytes release angiogenic factors into the surrounding site

which recruit endothelial cells to the area. Together with fibroblasts, these then undergo

remodelling and differentiation to form the new blood vessels (Eming et al. 2007).

Cardiovascular disease (CVD) is still the leading cause of death worldwide, and in the

United States of America was estimated to cost $314.5 billion in direct and indirect

expenses (Go et al. 2013). After an acute myocardial infarction (MI), the heart has a
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limited capacity to repair and will undergo tissue remodelling. This process involves

neutrophil invasion, myocyte hypertrophy and eventually fibrosis due to accumulation

of collagen. Ventricular remodelling may persist for a number of weeks or even months

depending on the size and severity of the attack (Sutton and Sharpe 2000). As a result

there is decreased contractility and further tissue necrosis leading to hypotension.

The main goals in the treatment of CVD, such as ischaemic heart disease, is to stimulate

vascular repair in order to improve blood flow and perfusion. Pharmacological intervention

such as angiotensin-converting enzyme inhibitors (ACE inhibitors) act to cause relaxation

of blood vessels and thus reduce blood pressure, it can improve left ventricular dysfunc-

tion after 1 week following MI (Sharpe et al. 1991). Other types of medication include

thrombolytic drugs that act by activating plasminogen, which forms plasmin. Plasmin

then cleaves the cross links between fibrin to reduce the size of blood clots. In the UK,

streptokinase is the main thrombolytic agent administered to patients (Gray 2006).

From a regenerative medicine perspective, stem cell therapy for MI and other ischaemic

diseases have shown to have potential clinical effects by promoting formation of new

vasculature in the damaged area. Authors have described local repair and improved

function following hMSC transplantation into affected areas (Hashemi et al. 2007; Jiang

et al. 2008; Williams et al. 2012).

1.6.1 Paracrine Mechanisms for hMSC angiogenic effect

It is well documented that hMSCs and other stem cells are able to secrete numerous

bioactive and trophic mediators (Haynesworth, Baber, and Caplan 1996; Caplan and

Dennis 2006). Although not fully detailed, the therapeutic effect of these cells can be

attributed to growth factors and cytokines in the secretome.

It has been demonstrated that conditioned medium from mMSCs is able to improve blood
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flow and improve limb function in a mouse model of lower limb ischaemia (Kinnaird et

al. 2004). Furthermore, another study reported by Timmers et al. (2011) has shown

hMSC-conditioned medium can improve cardiac function in porcine models of MI. This

is due to the plethora of pro-angiogenic cytokines produced by the hMSCs and released

into the medium. Through high-throughput screening some key factors have been iden-

tified as vascular endothelial growth factor (VEGF), fibroblast growth factor-2 (FGF-2),

angiopoietin-1 and a number of tissue inhibitor of metalloproteinases (TIMPs) (Park et al.

2009; Bara et al. 2015). Due to the multiple secreted factors it is not clear which ones are

the most critical however studies using neutralising antibodies have shown that remov-

ing VEGF, IL-6 and CXCL5 can reduce the angiogenic potential of hMSC conditioned

medium (Lehman et al. 2012; Kwon et al. 2014).

Given that their therapeutic effect is due to the paracrine mechanism of action, researchers

are investigating methods to enhance the hMSC secretome (Ranganath et al. 2012). Kin-

naird et al. (2004) showed hypoxic culture at 1% atmospheric O2 increased secretion of

FGF, placental growth factor and VEGF when compared to hMSCs cultured under 20%

O2.

Another approach is to use pharmacological agents or small molecules, these allow for

controlled treatment and specific actions. Treating hMSCs with lipopolysaccharide has

been shown to not only promote expression of VEGF but also increase post-implantation

survival in mouse acute MI models (Yao et al. 2009).

The physiological and pharmacological pre-conditioning strategies allow for simple and

controllable modifications to the hMSC secretome. However, as these effects are transient

it is likely that these approaches will have limited duration in vivo. More permanent

enhancements include gene modifications to over express cytokines such as VEGF (Yang

et al. 2010).
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1.6.2 Differentiation & Engraftment for hMSC angiogenic effect

In addition to the secretion of a large amount of bioactive trophic factors for cardiac repair,

there is some evidence that hMSCs are able to differentiate into capillary-like structures

to restore blood flow or fuse directly onto the myocardium to improve function. In vitro

studies by Oswald et al. (2004) and Janeczek Portalska et al. (2012) have both shown that

hMSCs are able to differentiate into endothelial cells and form functional capillary-like

structures.

In a murine model, Nagaya et al. (2004) found that MSCs would preferentially incorporate

into the areas of infarct over non-infarcted areas and improve overall cardiac function.

Gene expression analysis of the engrafted MSCs demonstrated upregulation of troponin

T and connexin 43, key cardiac genes, suggesting differentiation into cardiomyocytes.

Further studies by Quevedo et al. (2009) also reported cardiac commitment by GATA-4

and Nkx2 gene expression but also reduced infarct size and recovery of ejection fraction.

More recently, Freeman, Kouris, and Ogle (2015) engineered a Cre/LoxP-based luciferase

reporter system so that transplanted hMSCs could be tracked in living mice. The authors

show direct fusion of hMSCs to cardiomyocytes for at least 8 days.

Currently there is little evidence to show that hMSCs can differentiate into functional

blood vessel structures in vivo as most studies demonstrate hMSC engraft to the my-

ocardium rather than undergo cardiac-differentiation. Therefore, it is likely that hMSCs

exert their therapeutic properties by a combination of trophic factors and supporting car-

diac tissue. This two-way angiogenic approach may make hMSCs a real option for cell

therapy following myocardial infarction and ischemia.



Chapter 1. Literature Review 32

1.6.3 Current hMSC Angiogenic Potency Assays

Currently there is no standardised method to determine the angiogenic potency of hMSCs

and reported studies use a combination of in vitro and in vivo assays. The most commonly

employed in vivo assay is the Matrigel plug assay. Here Matrigel is embedded or infused

with the test cells or substance and then injected subcutaneously in to the animal model.

After a number of days, typically from 14-21 days, the plug is removed and histologically

examined to determine the extent of blood vessel formation. However, this method is

low-throughput and time consuming (Auerbach et al. 2003).

An ex vivo approach is the aortic ring assay where an explant of a developing chick embryo

is plated and supplements are added to the medium. Due to the explant nature it is not

possible to determine the starting number of endothelial cells and therefore difficult to

have a reproducible and consistent assay (Bahramsoltani et al. 2009).

It is clear from the literature that the main therapeutic effect of hMSCs is via the secre-

tion of relevant pro-angiogenic cytokines, therefore a possible potency assay would be to

measure the amount of these factors.

The first true angiogenic hMSC potency assay was published by Lehman et al. (2012)

for Athersys’s MultiStem multipotent progenitor cell population (MAPC) product. In

this study the authors used serum-free conditioned medium to induce endothelial tube

formation which reflects the intended MoA. Tube formation mimics the vascularisation

process of newly formed capillaries and venules. Proteomic analysis suggested that three

key cytokines were related to the angiogenic activity, chemokine (C-X-C motif) ligand

5 (CXCL5), interleukin 8 (IL-8) and VEGF. By selectively depleting these factors the

authors were able to determine a necessary lower-limit threshold for endothelial tube

formation and therefore a pass/fail criteria.

Overall, this demonstrates a good example of a potency assay as it addresses the points



Chapter 1. Literature Review 33

discussed in section 1.2.2. The endothelial to tube formation reflects the intended MoA

and could be attributed to three cytokines. This allowed ELISA to be implemented

as a surrogate assay to test the critical quality attributes of the cells during clinical

manufacturing.

In a similar assay Hoch et al. (2012) examined the production of VEGF, FGF2 and TGF-

β during hMSC to osteoblast differentiation. The authors found under the differentiation

conditions there was decreased production of these proteins and increase of osteogenic gene

expression such as SP7 and IBSP. Conditioned medium from these samples correlated to

a reduced number of branch points and tubule length in endothelial cell tube formation

assays.

Although these studies have described angiogenesis assays, there is currently no stan-

dardised protocol. There is still a need to develop an assay with defined basement

membranes/substrates, quantitative measure of vascularisation and screen for more pro-

angiogenic factors. These challenges, and solutions, will be addressed in Chapter 6.

1.7 hMSCs in Clinical Trials

Due to the growing evidence in the therapeutic values of hMSCs the number of clinical

trials has grown exponentially in the last decade. As their immune and angiogeneic

properties are being revealed trials are moving away from the classical tissue engineering

approach of first differentiating hMSCs into bone or cartilage followed by implanting to

using the cells as a protein/bioactive delivery vehicle.

ClinicalTrials.gov, a US based database maintained by the National Library of Medicine

(NLM) at the National Institutes of Health (NIH) includes information about medical

studies conducted in the USA and 187 other countries. The data presented in Figure

1.2 shows only trials which use bone marrow-derived hMSCs. Full figures are presented
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Figure 1.2: Break down of clinical trials involving hMSCs in February 2012 and March

2015 grouped into pathology areas. The main expanded areas show percent in group.

Data acquired from www.ClinicalTrials.gov

in Appendix Table A.1. Data acquired from 2012 show treatment for muscle, bone and

cartilage disease are the most prevalent accounting for 36.4% of the total number, however,

data from 2015 this figure decreases to only 15.7% as other treatment areas such as immune

system (17.7%) and heart and vascular diseases (11.8%) account for a greater proportion.

In 2012 only 4 of 44 of trials were for the treatment of immune system diseases, such

as GvHD and Crohn’s, however, in 2015 this number more than doubled to 9 of 49.

Conversely, there has been an overall decrease of muscle and cartilage repair trials for

tissue engineering halving from 16 trials in 2012 to 8 in 2015. This change in focus is

likely due to the emerging therapeutic properties as previously discussed in Section 1.5

and Section 1.6.

1.7.1 Immune Disorders

The first landmark paper to show hMSCs could be a potent therapeutic was published

by Le Blanc et al. (2004) of the Karolinska Institutet at the University of Sweden. In

this case report a paediatric patient was treated for severe, acute GvHD using allogeneic
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hMSC transplant. Following the first dose of hMSCs there was a clinical response, after

the second dose the patient achieved complete remission. Over the next few years, this

was followed by a number of cases and Phase II clinical trials which also showed good

clinical efficacy in approximately 70% of all patients (Ringden et al. 2006; Le Blanc et al.

2008; Bonin et al. 2008).

Osiris Therapeutics Inc

Osiris Therapeutics Inc is a regenerative medicine company with four main products:

ProchymalTM, a pre-manufactured allogenic bone marrow-derived hMSC line; Grafix, a

cryopreserved placental membrane; OvationOS, a bone matrix; and Cartiform, a cartilage

mesh. Prochymal is being used to target multiple areas of aliments including GvHD,

Crohn’s disease, acute myocardial infarction and type 1 diabetes.

From the promising academic studies by Le Blanc et al. (2008) Osiris planned to develop

Prochymal for the treatment of GvHD. From a single donor they planned to scale-up and

expand the number of cells for 10,000 doses, cryopreserve the cells, then thaw and infuse

into the patient.

In 2009, they published a press release for the outcome of a Phase III trial, however, in

contrast to the earlier reports there was no statistical difference between the treatment

group or placebo, thus failing to meet their clinical end-point.

Later in 2011, Osiris published the results of a compassionate use study that looked at

the safety and efficacy in children that had developed GvHD (Prasad et al. 2011). All

patients in this study had developed grade III-IV acute GvHD and were refractory to

standard first-line treatment with corticosteroids and at least one second-line therapy.

Two patients received 8×106 hMSCs/kg per infusion, the cell dose for the subsequent 10

patients was decreased to 2×106 hMSCs/kg. Prochymal was well tolerated as no toxicity

was observed. Seven of the patients achieved complete response, two had partial response
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and three had mixed responses.

Another larger trial involving 75 paediatric patients was conducted from across seven

countries (Kurtzberg et al. 2014). All had acute grade II-IV GvHD and were unresponsive

to current immunosuppressive steroids and treatments. Following treatment 43 (63%)

patients showed clinical response with a significant chance of survival past 100 days when

compared to treated but non-responders.

In October of 2013, Mesoblast Ltd announced the take over of the stem cell division of

Osiris and thus acquiring the Prochymal cell line (Waltz 2013).

Mesoblast

Since the 2013 acquisition of Prochymal Mesoblast is expecting to accelerate product

approvals in the United States for the treatment of steroid-refractory acute GvHD as an

Orphan Drug and Fast Track product. They also expect to complete the current Phase

III trial in adult patients with Crohn’s Disease in December 2018.

All hMSC clinical trials within Mesoblast are currently ongoing so no further data is

available.

Athersys

Similar to Osiris and Mesoblast, Athersys is a biopharmaceutical company aiming to de-

velop an off-the-shelf biological product for a number of different clinical areas. The main

focus is proving the utility of MultiStemTM, a proprietary Multipotent Adult Progenitor

Cell (MAPC) line. These cells, originally described by Catherine Verfaillie, are a rare pop-

ulation of cells from within bone marrow MSC cultures that are able to undergo prolonged

populations doublings but also differentiate into cells of all three germ layers (Jiang et al.
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2002). These more embryonic-like cells expressed the classical hMSCs markers (CD73,

CD90 and CD105) but did not have MHC Class I or CD140b expression suggesting that

they are indeed a distinct cell population.

Athersys are using MultiStem to target several areas such as ischemic injury (myocardial

infarction, stroke, and other indications) and conditions involving the immune system

(autoimmune disease).

Phase I clinical studies to evaluate safety of single or repeat dose to patients receiving

allogeneic hematopoietic stem cell transplantation (HSCT) found that the therapy was

well tolerated, and all patients experienced successful platelet engraftment (Maziarz et al.

2012).

Multistem has also been used in clinical trials for the treatment of ulcerative colitis (UC), a

form of inflammatory bowl disease (IBD). Recently, in early 2014 a Phase II double-blind,

placebo controlled trial the therapy was well tolerated after 8 weeks of administration.

However in chronic advanced UC a single dose did not show any improvement. Primary

endpoints of safety and tolerance were all met, secondary endpoints for clinical evaluation

are expected after long term 16 week post-therapy.

1.7.2 Cardiovascular Disease

Allogeneic hMSCs for the treatment of cardiovascular disease is a growing area that is

showing good clinical efficacy. Mesoblast has conducted trials using their allogeneic mes-

enchymal precursor cell (MPC) to explore if delivery of these cells during left ventricular

assist device implantation may assist in myocardial recovery (Ascheim et al. 2014). There

was a slight increase in left ventricular ejection fraction (LVEF) in patients who received

the cells when compared to controls. In this study there was limited release testing/criteria

which was based upon cell viability, karyotyping and surface antigen expression of STRO-
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1, CC-9 and HLA class I and II.

Hare et al. (2009) performed the first major trial using allogeneic Prochymal for pa-

tients after acute myocardial infarction. This was a randomised, double-blind, placebo-

controlled study involving 53 patients receiving 0.5 - 5 million cells/kg through a single

intravenous infusion. Similar to the Mesoblast study, release testing only involved cell

surface profiling of CD105, CD166, and negativity for CD45, however, there was no docu-

mentation of potency or quality measurements. Nonetheless, this study found the treated

group demonstrated improved LVEF and experienced fewer arrhythmic events. This re-

sulted in a further phase I/II study involving 30 patients with ischemic cardiomyopathy

(The POSEIDON-Pilot Study) (Hare et al. 2012). Here patients were treated with either

autologous or allogeneic hMSCs and the cells were delivered directly into the infarcted

area through a procedure called transendocardial stem cell injection (TESI). The release

criteria for this trial involved cell viability, surface expression of CD105 and CD45, growth

assay using CFU-F and sterility testing.

The patients in the POSEIDON and another ongoing study to compare the effects of

allogeneic versus autologous hMSCs for treatment of nonischemic dilated cardiomyopathy

were retrospectively enrolled for further functional tests (Mushtaq et al. 2014; Premer et

al. 2015). In an in vitro examination, conditioned medium from allogeneic hMSCs were

able to induce HUVEC endothelial tube formation to a greater degree than autologous

hMSCs. In addition, flow-mediated vasodilation, a measure of blood vessel response to

physical stimuli, was improved in the allogenic group whereas there was no improvement

found in the autologous-hMSC treated group. This was explained due to the donor age

of the hMSCs, in the allogenic group the donors were typically from a healthy donor aged

between 20 - 35, however, those treated with autologous hMSCs were typically older (45

- 75) and had underlying chronic disease.
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1.7.3 Lessons from Clinical Trials

Over the last few years there has been a great increase of early stage clinical trials demon-

strating the safety and tolerance of hMSCs. The use of cryopreserved, unmatched allo-

genic hMSCs for treatment of GvHD has been successful in early stage European trials

(Le Blanc et al. 2008; Kebriaei et al. 2009). This is in contrast to the disappointing Phase

III results from Osiris that failed to meet its clinical outcome. It has been suggested that

donor variance, culture expansion and senescence, immunogenicity, and cryopreservation

could underlie the discrepancy between the academic and industrial trials (Galipeau 2013)

This failure could be due to a few important causes. Culture expansion of the cells may

play a role in the immuno-suppressive ability. In the successful Kebriaei et al. (2009)

early phase Prochymal trial, the cells were expanded to a total of 5 passages, in contrast,

for the phase III trials the cells were expanded into large lot doses as 163 patients were

treated with 16 million cells over the period of 4 weeks. To get this amount of cells it

would have been necessary to perform large scale in vitro expansion to obtain the require

cell volume. A previous study by Bahr et al. (2007) patients suffering from acute GvHD

were treated with early passage (Passage 1-2) had one year survival rate of 75% compared

with those given cells at later passages (passage 3-4) who had a survival rate of 21%. It

was also noted that this difference was only apparent in vivo and not in vitro. As the full

details on Osiris’s Phase III Prochymal trial has not been published it is not possible to

fully compare it to the more successful trials.

Large scale allogeneic cell therapies would require cyropreservation, storage and transport

of cells to the patient. Upon delivery the cells would be thawed and infused into the

patient. A report by François et al. (2012) shows that cyropreservation could negatively

affect the hMSCs in an in vitro immunosuppression assay due to the upregulation of heat

shock proteins. This was later supported by Moll et al. (2014) who also demonstrated

a reduced IDO expression response to IFN-γ exposure. The authors also retrospectively
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analysed 44 hMSCs infusions. They found patients who received early-passage fresh

hMSCs showed a 100% response rate whereas those who received later-passage thawed

cells showed only 50% response rate.

Some attempts have been made for incorporating potency assays in clinical trials, for

example, Kebriaei et al. (2009) used TNFR1 expression on hMSCs and inhibition of

IL2Rα as surrogate markers for potency and as an acceptance criteria for lot release. In

this study 77% (24/31 patients) had a complete recovery following 28 days of treatment

suggesting these could be possible makers for hMSC to treat GvHD. These few studies

have highlighted the limited release testing and lack of quality criteria for allogeneic hMSC

treatment for various cardiomyopathies and immune diseases.

This highlights the need for appropriate potency assays to serve as a release criteria before

lot release. Aspects such as donor variability and cryopreservation of cell therapies cannot

be avoided and will likely have an impact on the efficacy of the product, therefore, the

extent to which they effect the MoA will need to be determined. Ideally a potency assay

will be linked to a clinical endpoint and the results can be used to determine a product

specification and a pass/fail criteria.

1.8 Aims & Objectives

Cell therapy can potentially provide treatment for currently unmet clinical needs. hMSCs

in particular can be a platform for treatmenting cardiovascular and immune diseases such

as stroke, infarction, ulcerative colitis, and Crohn’s disease. For successful translation from

the research laboratory into the clinic there is a need for development of robust quality

and potency assays that accurately reflects the in vivo mechanism of action. Currently

there are no standards to the ‘quality’ or potency required for hMSCs.

This work seeks to address these problems by developing standardised assays that can be
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employed to characterise multiple donor hMSCs and be used in a manufacturing setting.

This will be achieved by first performing full physiological characterisation of hMSC

followed by developing assays that will analyse their immunomodulatory and angiogeneic

potential.

The aim of this work is to:

• Isolate and characterise multiple hMSC donors in terms of growth rate, nutri-

ent/metabolite consumption, extracellular marker expression, and differentiation

capability.

• Develop an identity assay using markers as described by the ISCT via a multipa-

rameter flow cytometry approach

• Develop an in vitro inflammation assay to examine the immunomodulatory proper-

ties of hMSCs and measure known effectors

• Investigate the pro-angiogenic effect of hMSCs by induced in vitro endothelial vessel

formation and screen for known angiogenic cytokines



Chapter 2

Materials & Methods

2.1 hMSC Cell Culture

2.1.1 Cell Source

Human mesenchymal stem cells were isolated from Lonza (UK) from Bone Marrow Mononu-

clear Cells (BMNCs) for healthy donors after informed consent. The local Ethical Com-

mittee approved the use of samples for research. Five donors are used for the studies,

Table 2.1 denotes the naming convention and background regarding each donor.

Table 2.1: hMSC donor details including age, sex and race

Name Donor Lot Age Gender Ethnicity

M1 20 Male Black

M2 071313B 19 Female Black

M3 071150B 24 Male Caucasian

M4 0000327825 25 Female Hispanic

M5 59 Female

42
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2.1.2 hMSC isolation

Plastic Adherence

The peripheral blood mononuclear cells (PBMCs) were thawed into 10ml of complete

growth medium (see below, Section 2.1.3) and a sample was taken for counting (see Section

2.7 Cell Counting). Cells were centrifuged for 5 minutes at 220xg, the supernatant was

aspirated and cell pellet was re-suspended into 10ml of medium. Cells were seeded at

80,000 cells/cm2 in multiple T-225 flasks and placed into a humidified incubator at 37◦C

with 5% CO2.

After 48 hours the medium and any cells in suspension was aspirated and washed with

phosphate buffered saline (PBS, Lonza, Cat No. 17-516F). Subsequent media changes

were performed every 2-3 days and check regularly for colony formation for the next 3

weeks. Once at 80-90% confluence the cells were passaged as described in Section 2.1.4

Cell Growth and Sub-Culture.

CD271 MACS

Magnetic activated cell sorting (MACS) was performed using a CD271 MicroBead Kit

(Miltenyi Biotec, UK, Cat No. 130-099-023)) according to the manufacturer’s instruc-

tions. Thawed PBMCs were passed through a 30µm mesh to remove clumps of cells and

centrifuged at 300xg for 10 minutes and the supernatant was removed. The cell pellet

was re-suspended in buffer (PBS, 0.5% bovine serum albumin, and 2mM EDTA), FcR

blocking reagent and labelled with CD271 microbeads. The cells were incubated for 15

minutes at 4◦C followed by dilution with buffer and an extra wash step.

The MACS column was prepared by wetting it thoroughly with buffer and placing onto

the MACS stand. The labelled cell suspension was applied to the column and the flow
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through was collected. After the cell suspension had been passed through, the column

was removed from the magnetic stand and buffer was pushed through the column to elute

cells. These cells were then placed into prepared T-Flasks for further culture.

2.1.3 Medium Formulation

hMSCs were cultured in Dulbecco’s Modified Eagles Medium (DMEM, 1g/L glucose;

Lonza, UK, Cat No. BE12-707F) containing 10% foetal bovine serum (FBS, Hyclone,

Belgium) and 2mM UltraGlutamine (Lonza, UK. Cat No. BE17-605E/U1). Once com-

plete the medium was stored at 4◦C and used within one month. Before use the medium

was warmed to 37◦C.

2.1.4 Cell Growth and Sub-Culture

Cells were seeded at 5000 cells/cm2 into pre-warmed growth medium. Cells were then

transferred to a humidified incubator set at 37◦C with 5% CO2. After 72 hours of culture

the growth medium was completely replaced.

Following a further 72 hours the cells were passaged. Existing medium was aspirated

and an equal amount of PBS was used to wash the surface of the cells. The PBS was

then removed and 0.25% trypsin/EDTA (Gibco, UK, Cat No. 25200) was added to the

surface of the T-flask to detach the cells. Volumes for each T-flask size are listed in Table

2.2. The flask was then placed back into the incubator for five minutes. Cells were then

detached by gently tapping the sides of the flask. The trypsin/EDTA was quenched using

the appropriate volume of fresh pre-warmed media. A sample of the cell suspension was

taken for cell count and viability determination (see section 2.7).

The cell suspension was transferred to a centrifuge bottle and centrifuged at 200xg for 5

minutes. The supernatant was aspirated and the remaining pellet resuspended at 1 x 106
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Table 2.2: Tissue culture flask size and reagent volumes

T- Flask Size Medium Volume (ml) Trypsin/EDTA Volume (ml) Quench Volume (ml)

T25 5 1 4

T75 15 3 7

T175 30 7 13

T225 45 12 18

cells/ml before seeding into a new flask.

2.1.5 Cryopreservation and Thawing

Once confluent, cells were trypsinised as in section 2.1.4 and resuspended in 90% v/v FBS

and 10% v/v Dimethyl sulfoxide (DMSO, Sigma, UK, Cat No. 472301). 1 x 106 cells

were aliquoted into a cryopreservation vial in 1ml of freeze mixture. The filled vials were

transferred into a CoolCell (BioScion, USA, Cat No. BCS-405) and placed into a -80◦C

freezer which allows the suspension to cool at a rate of -1◦C/minute. After 24 hours the

vials were transferred into the vapour phase of a liquid nitrogen cyrostore.

For thawing and revival the vial was removed from the cryostore and placed into a water

bath at 37◦C until a trace of ice remained - approximately 3 minutes. The 1ml of cell

suspension was then transferred into 9ml of pre-warmed growth medium and centrifuged

for 5 minutes at 220xg. The supernatant was removed and the cell pellet was reseeded to

tissue culture flasks as required.

2.2 Differentiation and Staining

Differentiation and staining of the hMSCs into the three lineages are described below.



Chapter 2. Materials & Methods 46

2.2.1 Adipocytes

Cells were seeded in a 12 well plate at 1x104 cells/cm2 with Invitrogen StemPro Adipogenic

medium (Invitrogen, UK, Cat No. A1007001). The medium was changed every 3–4 days.

After three weeks in culture, cells were washed and fixed in 2% (v/v) paraformaldehyde

(Sigma, UK, Cat No. F8775) for 30 mins at room temperature. For adipogenic staining,

cells were washed three times with PBS and incubated with 0.3% (v/v) Oil Red O (Sigma,

UK, Cat No. O1391) in 99% 2-propanol for 30 minutes at room temperature. Cells were

washed three times in distilled water and visualised under a light microscope.

2.2.2 Chondroblasts

To induce chondrogenic differentiation, cells were sub-cultured and re-suspended at 1.6

x 102 cells/ml. Micromass cultures were generated by seeding a six well plate with 2µl

droplets of cell suspension and allowed to attach to the tissue flask surface in a humidified

atmosphere for 30 min before adding pre- warmed Invitrogen StemPro Chondrogenesis

medium (Invitrogen, UK, Cat No. A1007101). The medium was changed every 3–4 days.

After 14 days in culture, cells were washed and fixed in 2%(v/v) paraformaldehyde for 30

min at room temperature. Chondrocytes were stained with 1% (v/v) Alcian Blue (Sigma,

UK, Cat No. B8438) in 0.1 M HCl solution for 30 minutes, washed three times with 0.1

M HCl, diluted with distilled water and visualised under a light microscope.

2.2.3 Osteocytes

To induce osteogenic differentiation, cells were seeded into a 12 well plate at 5 x 102

cells/cm2 with Invitrogen StemPro Osteogenesis medium (Invitrogen, UK. Cat No. A1007201).

The medium was changed every 3–4 days. After four weeks in culture, cells were washed

and fixed in 4% (v/v) paraformaldehyde for 5 min at room temperature. For calcium
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staining, 2.5% (w/v) silver nitrate was added and cells were incubated for 30 min at room

temperature under UV light. Counterstaining for alkaline phosphatase (ALP) was carried

out with a solution containing Fast Violet B Salt with 4% (v/v) naphthol AS-MX phos-

phate alkaline solution (Sigma, UK. Cat No. N4875) for 45 min at room temperature in

the dark. Cells were washed three times in distilled water and visualised under a light

microscope.

2.3 Flow Cytometry

2.3.1 Cell Labelling

Detached cells were re-suspended at 0.5 x 106 cells/ml in growth medium and loaded onto a

96 well plate. The plate was centrifuged for 5 minutes at 220xg. The aspirate was removed

and the cells re-suspended and washed in flow cytometry staining buffer (BD Biosciences,

UK, Cat No. 554656) and the centrifugation cycle repeated. The cells were stained for

30 min in the dark at room temperature with fluorescent monoclonal antibodies against

CD34 (PE-CY5), CD73 (PE-Cy7), CD90 (APC), CD105 (PE) and HLA-DR (FITC, all

from BD Biosciences, UK) in addition with the corresponding isotype controls. After

incubation, the cells were washed twice with staining buffer as before. Finally, 200µl of

staining buffer was used to re- suspend the samples before analysis.

2.3.2 Data Acquisition

Flow cytometry data was acquired using a Merck Millipore guava easyCyteTMHT or a BD

Biosciences FACs Jazz as indicated in the text. Excitation lasers and band pass filters

are detailed in Table 2.3.
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Table 2.3: Flow cytometer excitation and band pass filters

Flow Cytometer Excitation wavelength Filters

guava easyCyteHT 488nm 525/30 (Green)

583/26 (Yellow)

690/50 (Red1)

785/70 (NiR1)

635nm 690/12 (Red2)

785/70 (NiR2)

BD FACs Jazz 488nm 530/40

585/29

670 LP

640nm 660/20

750 LP

405nm 450/50
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2.3.3 Data Analysis

A minimum of 1000 events was recorded for each sample. Compensation was performed

using BD CompBeads (BD Bioscience, UK. Cat No 552843). Data analysis was performed

using FlowJo version 7.6.5 or version 10 (TreeStar Inc, USA).

2.4 In Vitro Pro-inflammatory Stimulation of hM-

SCs

hMSCs were seeded at 5000 cells/cm2 and cultured for 3 days as described in Section 2.1.4.

On day 3 of culture the media was aspirated and the cells were washed once with PBS.

Media was replaced with standard culture media containing the pro-inflammatory cy-

tokines interferon-γ (IFN-γ) (10ng/ml) and tumour necrosis factor-α (TNF-α) (10ng/ml,

both from Gibco, UK. Cat No. PHC4031 and PHC3015 respectively) for a further 3 days

or as described in the text.

2.5 CD4+ Cell Culture

2.5.1 Cell Source

Peripheral blood CD4+ cells were obtained from Lonza (UK). The donor was 33 year old,

male, Caucasian.
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2.5.2 Medium Formulation

CD4+ T-cells were cultured in RPMI 1640 (Lonza, UK. Cat No. 12-167F ), 2mM Ultra-

Glutamine, 10% FBS and 55mM beta-mercaptoethanol (Gibco, UK. Cat No. 21985023).

Before use the medium was warmed to 37◦C. 30U/ml of recombinant human Interleukin-2

(IL-2, Gibco, UK. Cat No. PHC0021) was added separately.

2.5.3 Cell Growth and Sub-Culture

CD4+ T-cells were stimulated and expanded using CD3/CD28 DynaBeads (Gibco, UK.

Cat No. 111.31D). DynaBeads were transferred with a 1:1 bead:cell ratio to a centrifuge

tube and washed with 1ml of PBS then placed into a magnetic DynaMag holder. The

PBS was removed and resuspended for use in culture medium.

Cells were seeded into a new flask at 0.5 x 106 cells/ml along with prepared DynaBeads.

The cells were then transferred to a humidified incubator at 37◦C with 5% CO2.

Once the cells reached a density of 2.5 x 106 cells/ml the cultures were reduced back down

to 0.5 x 106 cells/ml by the addition of fresh medium.

2.6 hMSC & CD4 Co-Culture

hMSCs were seeded at either 10,000 cells/cm2 or 15,000 cells/cm2 in a 12 well plate and

allowed to attach for 24 hours. hMSC-medium was removed and the surface of the cells

were washed with PBS. CD4 cells, with DynaBeads, were added at 1:2, 1:5, 1:10 or 1:20

hMSC:CD4 ratio in RPMI complete medium for 72 hours.

Following the co-culture the CD4 cells were gently resuspended and sampled for cell

counting. Media samples were taken for kynurenine analysis (see Section 2.13).
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2.7 Cell Counting

All cell counts and viability were performed using either a NC-100 or a NC-3000 Nucelo-

Counter (Chemometec, Denmark), based on propidium iodide (PI) and PI/acridine orange

respectively. For the NC-100, a non-viable cell count was obtained first by drawing cell

suspension into a NucleoCassette and the reading would give a non-viable cell count as

viable cells would exclude the PI stain. Total cell counts was then obtained by mixing an

equal volume of cell suspension to NucleoCounter Buffer A (Chemometec, Denmark) to

permeabilise the cells. NucleoCounter Buffer B was added to stabilise the solution, then

analysed with a NucleoCassette as before. The value would be multiplied by three to take

into account the dilution due to the buffers. Total live cells was calculated by subtracting

the non-viable cells from the total cell count.

On the NC-3000 a cell suspension of approximately 200µl was drawn into a Via-1 Cassette.

This stains the cell with acridine orange and propidium iodide to discriminate between

live and dead cells respectively.

2.8 Cell Vitality

Apoptosis and cell health was determined by the levels of free thiols in the cells using cell

vitality protocol on the NC-3000 NucleoCounter. VitaBright-48, PI, and acridine orange

solution was added to a cell suspension and the samples were imaged on the NC-3000.

VitaBright-48 reacts with thiols becoming a fluorescent product that has peak excitation

at 405 nm and emission at 475/25 nm. PI/acridine orange allow for live/dead staining as

described above.
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2.9 Cell Cycle

Cell cycle was determined by DAPI nuclear staining. Cells were first washed with PBS

then fixed with 70% ethanol for two hours on ice. The ethanol was removed and the cells

were again washed in PBS. Then the cells were resuspended in a solution containing 1µ

g/ml DAPI and 0.1% triton-X100 in PBS (Chemometec, Denmark) for 5 minutes at 37◦C.

The samples were then loaded onto slides for analysis on the NC-3000.

2.10 Nutrient/Metabolite Analysis

Nutrient and metabolite was determined using a BioProfile FLEX (Nova Biomedical,

UK). Medium samples (1ml) were taken from cultures and stored at -80◦C until analysis.

Glucose concentration is based on the level of ammonia (H2O2) produced during enzymatic

reaction between glucose and oxygen is the presence of glucose oxidase enzyme. Similarly

lactate measurement is based on H2O2 production between lactate and oxygen under

lactate oxidase enzyme. Both values are displayed as g/L and were converted to mmol/L.

The yield of lactate from glucose was calculated from the following equation:

YLac/Gluc =
∆Lac

∆Gluc
(2.1)

Where:

• YLac/Gluc = Yield of glucose from lactate

• ∆Lac = Lactate production over time

• ∆Gluc = Glucose consumption over the same time period
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The cell specific glucose consumption rate was calculated from the following equation:

qgluc =
µ

cx0
×
Cgluc(s) − Cgluc(e)

eµt − 1
(2.2)

Where:

• qgluc = Specific glucose consumption

• µ = Specific growth rate

• cx0 = Cell number at the start

• Cgluc(s) = Glucose concentration at the beginning

• Cgluc(e) = Glucose concentration at the end

• t = time in hours

2.11 Protein Quantification

2.11.1 Enzyme-linked Immunosorbent Assay (ELISA)

Supernatant from cell cultures were taken and stored at -80◦C. IL-6 levels were measured

by sandwich ELISA using a BD OptEIATMreagent kit (BD Biosciences, UK. Cat No.

550799). Anti-human IL-6 monoclonal antibody was coated to the surface of a 96-well

Maxisorp plate (NUNC, UK) and left overnight at 4◦C. The plate was then washed 3 times

with wash buffer containing PBS and 0.05% Tween-20. The wells were then blocked with

Assay Diluent containing 10% FBS at room temperature for 1 hour, during this time media

samples and IL-6 standards were prepared. Following further washing the samples and

standards were loaded onto the plate and incubated for 2 hours at room temperature. The

plate was washed 5 times before incubation of Working Detector (Biotinylated Anti-human
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IL-6 monoclonal antibody + Streptavidin-HRP reagent) for 2 hours at room temperature.

This was then aspirated and washed 7 times. Substrate solution (Tetramethylbenzidine

(TMB) and Hydrogen Peroxide) was added for 30 minutes followed by addition of Stop

Solution (1M H3PO4).

Immediately after adding Stop Solution the absorbance was read at 450nm using a FLU-

Ostar Omega plate reader (BMG Labtech, Germany).

2.11.2 Luminex

In order to quantify the angiogenic paracrine growth factors 48 hours conditioned medium

from hMSCs were analysed using multiplex assay Luminex MAGPIX kits (R&D Systems,

UK) according to the manufacturers instructions. Standards were prepared by reconsti-

tuting a premixed cocktail with Calibrator Diluent and preparing a 3-fold dilution series.

Capture microparticle cocktail was added to each well of a 96-well assay plate. Samples

or standards, prepared in duplicates, were added to each well, sealed with foil and incu-

bated for 2 hours at room temperature on an orbital shaker. The plate was washed three

times then incubated with Biotin Antibody Cocktail for 1 hour at room temperature.

Wash steps were repeated and the plate was incubated with Streptavidin-PE for a further

30 minutes. Beads were captured and analysed using a Bio-PlexrMAGPIXTMMultiplex

Reader. Array data was quantified using Bio-Plex Data Pro software.
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2.12 Real-Time Quantitative Polymerase Chain Re-

action (PCR)

2.12.1 RNA Extraction

Total RNA extraction and clean-up was performed using a RNeasy Plus kit (Qiagen,

Germany. Cat No. 74134) as follows according to the manufacturer’s guidelines. Following

cytokine incubation hMSCs were trypsinised as described in section 2.1.4. Buffer RLT

(350µl) was added to the cell pellet and vortexed for 30 seconds. The resulting lysate was

transferred into a QIA shredder spin column and centrifuged for 2 minutes at 8,000xg. A

further 350µl of of 70% ethanol was added to the homogenized lysate. The sample was

transferred to an RNeasy spin column and centrifuged for 15 seconds at 8,000xg. The

column was rinsed by addition of 700µl of Buffer RW1 and centrifugation for 15 seconds

at 8,000xg, the flow through was discarded. Next, 500µl of Buffer RPE was added to

the column and centrifuged for 2 minutes at 8,000xg to wash the spin column membrane.

To fully dry the membrane, the column was placed into a new 2ml collection tube and

centrifuged for 1 minute at 8,000xg. RNA was eluted by adding 30µl of RNase-free water

directly to the spin column membrane and centrifuged for 1 minute.

RNA concentration and ratio of absorbance at 260nm to 280nm (A260/A280 ratio) was

quantified using a NanoDrop 2000c Spectrophotometer (Thermo Scientific). Samples

were frozen at -80◦C.

2.12.2 PCR

RNA samples were subject to reverse transcription using EXPRESS One-Step Superscript

qRT-PCR kit (Invitrogen, UK. Cat No. 11781200) according to the manufacturer’s in-

structions. cDNA products were amplified on an Applied Science StepOne Plus machine
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(Invitrogen, UK) in a 20µl reaction mixture containing 360ng of sample RNA, One-Step

SuperScriptrIII Reverse Transcriptase, ROX dye and PlatinumrTaq DNA Polymerase

with forward and reverse primers (Table 2.4). Each amplification cycle consisted of an

initial holding step at 50◦C (15 minutes), followed by 40 cycles of denaturation at 95◦C

(15 seconds) and annealing at 60◦C (1 minute). Quantification of the levels of gene

expression for each sample was calculated using the comparative CT method (∆∆CT ).

Glyceraldehyde 3-phosphate dehydrogenase (GAPDH) was chosen as a reference gene.

Table 2.4: Primer Sequences for PCR

Gene Forward Primer Assay ID Reporter Dye

IDO TTCTGCAATCAAAGTAATTCCTACT Hs00984148 m1 VIC

GAPDH CAAGAGGAAGAGAGAGACCCTCACT Hs03929097 g1 FAM

2.13 Kynurenine Assay

IDO catalyses the conversion of tryptophan to N-formylkynurenine which is further catabolised

to kynurenine. Kynurenine concentration in the medium is directly proportional to IDO

activity. Media supernatants from inflammatory treated cells were analysed. Cell medium

(150µl) was incubated with 50µl of 30% (vol/vol) Trichloroacetic acid (Sigma-Alridch,

UK. Cat No. T0699) for 10 minutes at 50◦C, vortexed and centrifuged at 10,000g for

5 minutes. Supernatant (75µl) was transferred to a 96 well plate followed by addition

of equal volume of Ehrlich’s reagent (1% w/v p-dimethylbenzaldehyde in glacial acetic

acid) (Sigma-Aldrich, UK. Cat No. 156477) for 10 minutes at room temperature. Optical

absorbance was measured at 492nm. The amount of kynurenine was determined using a

standard curve from 0-100µM.
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2.14 HUVEC Culture

2.14.1 Cell Source

Human umbilical cord endothelial cells (HUVECs) were purchased from Gibco, Life Tech-

nologies (UK). The donor was a newborn male.

2.14.2 Medium Formulation

HUVECs were cultured in Medium 200PRF supplemented with low serum growth sup-

plement (LSGS) (all from Life Technologies, UK. Cat No. M200PRF500).

2.14.3 Cell Growth and Sub-Culture

Cells were seeded at 2.5x103 cells/cm2 T75 culture flasks. The medium was changed every

48 hours until the cells had reached 80% confluency. Once the cells had reached 80%

confluency the medium was removed completely and 0.025% trypsin/EDTA was added

to cover the flask surface and incubated for 1-3 minutes at room temperature. Trypsin

neutraliser solution was added to the cells and pipetted until a single cell suspension was

produced. The suspension was transferred to a centrifuge tube and centrifuged at 180xg

for 7 minutes. The supernatant was removed and the cells resuspended in culture media,

reseeded and placed into a humidified incubator at 37◦C with 5% CO2.

2.14.4 HUVEC Tube Formation

HUVECs were harvested and seeded at 2.3 x 104 cells/cm2 or as stated in text. For

positive controls HUVECs were cultured in supplemented Medium 200PRF.
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To compare coating strategies multiple approaches were taken:

1. GelTrex 100% : 50µl/cm2 of GelTrex (Life Technologies, UK. Cat No. A1413202) (kept

on ice) was added in the centre of a 24-well plate and spread evenly with the back of a

sterile pipette tip. The plate was then placed in a 37◦C incubator for 30 minutes.

2. GelTrex 75% : GelTrex was mixed with cold PBS at a 3:1 ratio and applied to the well

as before.

3. GelTrex 50% : GelTrex was mixed with cold PBS at a 1:1 ratio and applied to the well

as before.

4. Gelatin 2% : 50µl/cm2 of Gelatin solution 2% (Sigma, UK) was added in the centre

of a 24-well plate and spread evenly with the back of a sterile pipette tip and allowed to

coat at 4◦C overnight. Before use the well was washed once with PBS.

5. Gelatin 1% : Gelatin was diluted at 1:1 ratio with PBS and applied to the well as

above.

6. Gelatin 0.5% : Gelatin was diluted at 1:2 ratio with PBS and applied to the well as

before.

7. Matrigel Layer : 50µl/cm2 of reduced-growth factor Matrigel (Corning, US. Cat No.

356231) (kept on ice) was applied in the centre of a 24-well plate and spread evenly with

the back of a sterile pipette tip. The plate was then placed in a 37◦C incubator for 30

minutes. Before use the layer was wash once with serum-free DMEM.

8. Matrigel Coating : Matrigel was diluted to a protein concentration of 3mg/ml with

cold serum-free DMEM and added to each well to cover the surface. The plate was then

placed in a 37◦C incubator for 30 minutes to coat. Before use the solution was removed

and washed once with serum-free DMEM.

HUVEC tube formation was imaged using a Nikon Biostation CT in 20 minute intervals

over 24 hours. This allowed live-image time lapse recordings of the cells undergoing tube

formation. To obtain a representative view of the well a 4 x 4 tiling observation was set

covering a 60.84mm2, or 56% of the well.
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2.14.5 Tube Analysis

Following tube formation, the images were downloaded from the main computer to be

analysed using either ImageJ or CL-Quant software packages. ImageJ is an open-source

image processor that allows the use of external user-created plugins, for tube analysis the

images were scaled-down to 70% of the original size and analysed using the Angiogenesis

Analyzer for ImageJ plugin as developed by Chevalier et al. (2014). CL-Quant is analytical

software designed to be used in conjunction with the Nikon Biostation CT. Similar to

ImageJ, image analysis is performed by applying recipe macros.

2.15 Hypoxic Culture of hMSCs

For the angiogenesis study hMSCs were cultured into flask as described in Section 2.1.

For hypoxic conditioning the cells were thawed and cultured in a Galaxy 170r incubator

(New Brunswick Scientific, UK) set at 5% CO2, 5% O2 O2, and 90% N2 for one passage

before the experimental harvest. After another passage the cells were cultured as before

with a full medium exchange at 72 hours. The cells were cultured further for another

48 hours before the conditioned medium was harvested and the cells passaged. Control

cells were cultured in a standard cell culture incubator containing atmospheric air and

5% CO2.

2.15.1 Generation of hMSC Conditioned Medium

For experimental hMSC-conditioned medium, hMSCs were cultured as described in Sec-

tion 2.1.4. The cells were seeded at 5,000 cells/cm2 and placed into an incubator. After

72 hours the spent medium was removed and fresh hMSC-medium was added. Following

a further 48 hours of conditioning the medium was harvest and stored at -20◦C until
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required. The cells were then passaged into new flasks.

2.16 Equations

The following equations were used to calculate the various parameters:

Cumulative population doubling level (PDL)

PDL = x+ 3.322(logY − logI) (2.3)

Where:

• x = Initial population doubling

• Y = Final cell count

• I = Initial cell number seeded

Population doubling time (PDT)

PDT =
T × ln 2

ln
(
Y
I

) (2.4)

Where:

• T = Time (hours or days)

Specific Growth Rate

µ =
(ln (Y/I))

∆T
(2.5)

Where:

• µ = Specific Growth Rate (h−1)

Fold Increase

FoldIncrease = Y/I (2.6)
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Table 2.5: Level of significance

Symbol Meaning

n.s P > 0.05 (not significant)

* P ≤ 0.05

** P ≤ 0.01

*** P ≤ 0.001

**** P ≤ 0.0001

2.17 Statistical analysis

Statistical analysis was perform using one-way analysis of variance (ANOVA) to determine

significance at P >0.05. GraphPad Prism 6 was used for all statistical analysis. Levels of

significance are indicated in Table 2.5



Chapter 3

Establishment and Characterisation

of Human Mesenchymal Stem Cell

Lines for Cell Therapy Manufacture

3.1 Introduction

The use of hMSCs and other potentially therapeutically cells hold a great potential to

treat a variety of unmet medical conditions. Developing cells for human clinical applica-

tion starts with tissue/cell donation followed by processing, release testing, and finally,

transplantation (BSI PAS 83, 2012).

For autologous therapies, where the cells are isolated, processed and transplanted back into

the same patient, establishing a master cell bank is not required especially for ‘minimally

manipulated’ cases where the cells are enriched and separated before returning to the

patient. Examples of near bedside or point-of-care processing include Celutionr(Cytori

Therapeutics Inc.) or Icellatorr(Tissue Genesis) both of which isolate, enrich and re-

deliver the patients own adipose-derived stem cells; these systems have been used in

62
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wound healing and for critical limb ischemia (Fraser et al. 2014). The main advantage of

autologous therapies is the lack of immune rejection as it is the same patients cells being

used. This avoids the need for HLA-matching or the use of immunosuppressive medica-

tion. However, due to being patient specific cells they require isolation and lengthy in

vitro expansion before administration which leads to longer treatment times and impacts

on cost. Autologous expanded hMSCs have been used for cartilage repair and ischemic

cardiomyopathy (Haleem et al. 2010; Hare et al. 2012).

In contrast, allogeneic therapies are cells that are sourced from one donor and transplanted

into a different recipient. Once the donor cells are isolated they can be expanded in vitro

and cryopreserved until required. For this to be achieved it is vital to start with a well

characterised master cell bank that is amenable for scale-up production to the required

dose. As previously discussed in Chapter 2, hMSCs can be used for multiple therapeutic

areas including treatment of stroke and GvHD due to their innate ability to evade the

immune system by low expression of MHC class I and negative expression of MHC class

II and thus do not require immunosuppressive medication. For these reasons they have

emerged as an ideal ‘off the shelf’ allogeneic cell therapy product (Glennie et al. 2005;

Kwon et al. 2014). Current clinical examples include MultiStem for ischemic stroke and

Prochymal for GvHD (detailed in Table 4.1).

Before manufacturing of an allogeneic cell therapy product it is necessary to characterise

multiple starting donor lines to determine which is amenable for manufacturing. It is

known that donor variation plays a large role in growth potential and osteogenic differ-

entiation capability of hMSCs (Phinney et al. 1999; Siddappa et al. 2007). This work

will detail the variation on multiple hMSC donor lines in terms of growth rate, nutri-

ent/metabolite consumption, extracellular marker expression, and differentiation capac-

ity. Later chapters will look at developing functional assays that relate to their intended

clinical function for immunosuppression (Chapter 5) and angiogenesis (Chapter 6).

Growth and culture of adherent cell lines is traditionally performed in two-dimensional,
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monolayer tissue culture flasks. This system allows for easy observations of the cells dur-

ing culture with simple medium exchange regimes and passaging. Cell culture variables

include medium formulation (basal media, supplements and serum), medium exchange

regimes, culture surface substrate, cell seeding densities and passage length. Standardi-

sations of cell culture techniques and widely accepted protocols have played key roles in

the development of consistent and robust cell lines.

This chapter focuses on the variation of input material in the derivation and establishment

of five individual hMSC lines from separate donors to provide a comprehensive, parallel

characterisation of hMSC lines.

The aims of this chapter were to:

• Isolate hMSCs from bone marrow mononuclear cells taken from multiple donors

• Determine the growth kinetics over several passages

• Measure nutrient consumption and metabolite production

• Analyse extra-cellular surface markers

• Perform differentiation into adipo-, osteo-, and chrondrocyte lineages 1

3.2 Isolation of hMSCs

3.2.1 Plastic Adherence

As previously discussed in Chapter 2, the mesenchymal stem cell population represents a

small fraction (0.01 - 0.001%) of nucleated cells found within adult bone marrow fraction

1Experimental procedures and data collection from this chapter was performed in conjunction with

Thomas Heathman and Qasim Rafiq
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(Pittenger 1999). Traditionally and still widely performed, hMSCs have been isolated from

bone marrow aspirates by their adherence to tissue culture plastic. Other non-adherent

haematopoietic cells are removed by aspiration during the first medium exchange. Five

individual mononuclear cells (MNCs) donor vials were purchased from Lonza (see Chapter

2 Table 2.1) and the cells were plated (p0) into T-225 flasks until the appearance of

adherent cell colonies, typically within 14 days of seeding. Each individual donor cell line

was denoted M1 through to M5. All five donor MNCs gave rise to adhered cell colonies

that readily expanded in culture. Once approximately 80-90% confluency was achieved

the cells were passaged into new flasks for banking and experimentation.

hMSCs are identified in vitro by their ability to adhere to tissue culture plastic and prolif-

erate in culture with a fibroblastic, elongated morphology (Pittenger 1999). Throughout

the culture period the cells exhibited long branching protrusions and as the culture length

progressed the cells packed closely together and aligned next to each other. Figure 3.1

shows the morphology of M2 cells throughout a 6 day passage taken every 24 hours from

seeding. Initially the cells are evenly dispersed across the flask (24 - 72 hours). As they

proliferate the cells align closer together (120 - 144 hours). hMSCs are growth contact

inhibited and were sub-cultured when reaching approximately 90% confluency (Krinner

et al. 2010).

Visual examination of the cells showed slight morphological differences between the cell

lines. Figure 3.2 shows the morphology of each cell line at passage 3, day 3 of culture. M2

and M4 displayed the typical elongated structure with either two or three extensions from

the main body. In contrast, M3 displayed a flattened appearance with a larger central

body and multiple extensions. Morphological characterisation has been used as a quality

assurance test for cell therapy, Regenexxrhave used culture-expanded autologous hMSCs

for various orthopaedic conditions and were graded using a morphology scale published by

Katsube et al. (2008), where it was shown that thicker cells (larger cell body) correlated

to a higher growth rate. As such, it is expected that flatter cells, such as M3, will exhibit
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Figure 3.1: Representative M2 hMSC line morphology from multiple flasks. Images taken

every 24 hours over passage 3. At 144 hours (day 6) the cells were sub-cultured into new

flasks. Scale bar = 200µm
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a slower growth rate.

Figure 3.3 shows the morphological changes seen in M2 hMSC line at p3 (left image) and

at p7 (left image). Early passage cells had an elongated fibroblast morphology with two

to three main protrusions from the cell body as shown by the red arrow. Late passage

hMSCs became much larger, flatter and irregular with a more granulated cytoplasm.

Similar changes were observed across all five hMSC lines suggesting reduced proliferation

and senescence at the later passages. Growth senescence of hMSCs has previously been

widely reported by others. Wagner et al. (2008) reported similar phenotypic abnormalities

at similar passages (7 through to 9), further gene expression studies by Noh et al. (2010)

and Schallmoser et al. (2010) found up-regulation of cell death related genes and down-

regulation of genes related to mitosis and proliferation.

3.2.2 CD271 Isolation

Studies by Jones et al. (2002) and Jones et al. (2010) have suggested a novel mesenchymal

stem cell population isolated from within the intramedullary cavity of long bones. This

hMSC population was found within the CD45−/low/CD271+ fraction of bone marrow

aspirates. CD271+ , also known as low-affinity nerve growth factor (LNGFR), cells have

been isolated from the trabecular bone niche and found to exhibit a more efficient colony

forming unit fibroblast (CFU-F) ability compared to cells isolated from the iliac crest

bone marrow. In addition to this, CD271+ cells also express the classical hMSC markers

such as CD73, CD90 and CD105; with the ability to differentiate into the adipogenic,

osteogenic and chondroblast lineages (Cox et al. 2012).

In terms of functional capability the CD271+ hMSC subset Kuçi et al. (2010) showed these

to secrete more growth factors and significantly inhibit the proliferation of allogeneic T-

lymphocytes when compared to CD271− hMSCs . For these reasons, hMSCs were then

isolated using magnetic activated cell sorting (MACS) based upon CD271 expression as
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Figure 3.2: Representative cell morphology of M1- M5 cell lines at passage 2, day 3 of

culture. Scale bar = 200µm
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Figure 3.3: Morphological changes over passage. Left images shows M2 at passage 3,

red arrow indicates a typical hMSC. Right image shows M2 at passage 7, black arrow

indicates an hMSC with a larger and flatter morphology. Scale bar = 200µm

detailed in Materials & Methods 2.1.2.

After 21 days following the CD271+ MACS procedure there was no evidence of cells

observed in the culture flask from the CD271+ flow through fraction (Fig 3.4a). However,

there were cells in the CD271− flow through fraction (Fig 3.4b). Cells from this fraction

had the classical hMSC morphology with long spindle-like protrusions and alignment when

reaching confluency (Fig 3.4b) suggesting these cells were potentially hMSCs.

To further characterise the cells from the CD271− fraction, flow cytometry was performed

to evaluate the extracellular surface marker expression and were found to be positive for

CD73, CD90 and CD105; and negative for CD34 and HLA-DR suggesting this fraction

of cells were hMSCs (Figure3.4c).

As there was no evidence of a CD271+ sub-population following three weeks after MACS

it was decided to analyse thawed MNCs via flow cytometry using the same staining and

gating strategy as described by Cox et al. (2012). In this method, MNCs were dual stained

for CD271 and CD45 - a hematopoietic marker found on leukocytes. A gate was placed in

the CD271+/CD45− area to examine the frequency of CD271 hMSCs (Fig 3.4d). Similar

to the MACS technique there was little to no expression of CD271+ cells (0.16 ± 0.02%)
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Figure 3.4: hMSC isolation on CD271 a) Image of the T-flask following 21 days after

CD271+ sorting showing lack of cells b) CD271− fraction showing adherent cells c) Flow

cytometry analysis of cells from the CD271− fraction for CD73, CD90, CD105, CD34 and

HLA-DR d) Dual staining of MNCs with CD271 (PE) and CD45 (APC-Cy7) n = 3
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or the presence of a discrete population in the CD271+/ CD45−/low gate.

The lack of CD271+ from these samples may be due to the source or isolation of the MNCs.

The original reports by the Academic Unit of the Musculoskeletal Diseases Group, Leeds,

UK described cell isolation following enzymatic digest of trabecular bone fragments from

the pelvic area whereas the MNCs in this study were isolated from bone marrow aspirates

(Jones et al. 2010).

CD271 expression may be specific to bone marrow hMSCs as also suggested by Attar et al.

(2013) and Alvarez-Viejo (2013) who have both failed to find expression on cells isolated

from umbilical cord and Wharton’s Jelly samples. However, the absence of CD271 did not

relate to the ability to isolate hMSCs from these areas suggesting it is not an adequate

marker for hMSCs sourced from the umbilical cord or the Wharton’s Jelly. Therefore,

it could be argued that the ISCT definition of an hMSC can be used as an ‘umbrella

term’ for all hMSCs. Typically there are site-specific markers to identify cells sourced

from different niche locations i.e. CD271 for bone (Jones and Schäfer 2015). Due to

the negative findings of a CD271+ hMSC sub-population in the MNCs this method was

not considered for future studies. It should also be noted that due to master MNC vial

limitations it was not possible to perform MACS isolation multiple times and further

repeats are necessary.

3.3 Growth Rate

Following plastic adherence isolation and first passage, each cell line was sub-cultured

into four T75 flasks and passaged for a further five consecutive passages. A single pas-

sage consisted of 6 days in continuous culture with a 100% medium exchange on day 3.

The cumulative population doubling and population doubling time for each hMSC line is

presented in Figure 3.5. Previous studies have described the differences in hMSC prepa-
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rations, including seeding density, culture length, media formulations and description of

in vitro age (Schellenberg et al. 2012; Siegel et al. 2013). Therefore, in this study the

culture variables will remain constant.

M2 and M4 showed the highest cumulative population doubling level (PDL) over the

five passages, 12.09 ± 0.34 and 11.42 ± 0.2 respectively (Figure 3.5a). M1 initially

demonstrated comparable growth kinetics until passage 6 where the cumulative popula-

tion doubling significantly decreased when compared to M2 and M4. M3 and M5 showed

the lowest cumulative population doubling over the 30 days with a final value of 7.82 ±

0.32 and 8.35 ± 0.29 respectively. Li et al. (2015) showed similar growth kinetics with

bone marrow derived hMSCs to the M2 and M4 lines, however the authors demonstrated

adipose derived hMSCs had a higher PDL over five passages. Bonab et al. (2006) per-

formed cultures over 150 days, at day 15 the authors showed a PDL between 6-8 and at

day 30 a PDL around 10-12. Compared to results shown here, there was a higher initial

PDL but later time points showed similar results to M2 and M4 hMSC lines.

Population doubling time represents the number of hours required for doubling the cell

number (Figure 3.5b). M2 and M4 both had a consistent doubling time of around 55 - 60

hours over the 30 day culture. M5 also showed a consistent doubling time but was slightly

longer at 89.5 ± 17.8 hours. Up to passage 7, M1 (70.5 ± 17.5 hours) and M3 (79.0 ±

8.09 hours) both had comparable doubling times. However at passage 8 both hMSC lines

significantly increased to 207.69 ± 72.7 and 229.55 ± 97.89 hours respectively.

This is also represented in Figure 3.5c where the specific growth rate for M1 decreased from

8.2x10−3 ± 1.2x10−3 h−1 to 3.7x10−3 ± 1x10−3 h−1 at p8. A similar effect is observed in

M3. This sudden increase in doubling time suggested the cells were undergoing senescence.

The specific growth rate of M2 remained high throughout the passages starting from

1.3x10−2 ± 4x10−4h−1 at p4 to 1.0x10−2 ± 5x10−4h−1 at p8.

M4 had the same specific growth rate at p4 and p5 (1.25x10−2 ± 1x10−4h−1) this then
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dropped to 9.5x10−3 ± 9x10−4h−1 at p6 and remained consistent throughout the remaining

time points. The increased doubling time of M3 and M1 was mirrored by the sudden

decrease of specific growth rate where it decreased to approximately half.

The sudden increase of doubling time and decrease of population doubling at passage

8 (day 30) of M1 and M3 could be linked to cellular senescence as the cells reach the

Hayflick limit. The findings here correlate to published work by Wagner et al. (2008) who

found similar growth patterns after 30 days in culture representing 10-12 cumulative pop-

ulation doublings. Similar changes in hMSC morphology were also described and linked

to upregulation of genes responsible for cell membrane and lysosome integrity. Further

microarray analysis by the authors demonstrated senescence associated gene expression

was not restricted to certain passages, but increased continuously during expansion. A

similar effect could be seen in this study where M1 and M3 cell lines showed a decreasing

specific growth rate over the five passages (Figure 3.5c), therefore genetic analysis of these

cells maybe required.

For a bioprocess examining the growth kinetics is a simple way to determine product

consistency. Having a more consistent but slower growth growth rate may be advantageous

as this limits the variation during the production of cells. By examining different donor

hMSC sources it was possible to identify potential cell lines that are amenable for scale-up

and can be taken further for characterisation and potency testing.
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Figure 3.5: Growth characteristics of each hMSC line, M1 - M5. a) Graph of cumulative population doublings over 5 consecutive passages

b) Doubling time for each MSC line over 5 passages c) Specific growth rate d) Fold increase. Each bar represents a passage, values

presented as mean ± SD (n = 4)
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3.3.1 Implications for Cell Therapies

Current published cell therapy doses of hMSC transfusion remain high, typically over

5x107 cells per treatment and are administered as either a single transfusion or over

multiple times. Table 3.1 shows the number of cells for each dose and the total for each

treatment ranging from 6.4x107 to 1.2 x109 cells. The exemplified treatments were chosen

as they are currently in Phase II or III clinical trials. Extrapolating from the fold change in

each passage from Figure 3.5d, the lower part of Table 3.1 shows the theoretical number of

days needed in continuous culture - to produce enough cells for each treatment, assuming

the starting point is 1x106. As expected the faster growing lines, M2 and M4, would

yield enough cells after 13-14 days in culture for a full treatment of Prochymal (Osiris)

for the treatment of GvHD. This correlates to just over two passages. In contrast, M5,

the slowest growing line would take a minimum of 21 days, or 3 passages, for the same

treatment. Having an extended manufacturing time would impact on the overall cost due

to increased personnel time, media, serum and other reagent usage.

Serum is a crucial component of hMSC culture and current stocks and production rate

is not enough to sustain a growing cell therapy industry (Brindley et al. 2012). To

overcome this challenge manufacturers and researchers are looking at serum-free media

formulations, an early study by Agata et al. (2009) showed hMSC expansion was greater

in serum-free medium (STEMPRO MSC SFM) when compared to FBS-containing media.

In the context of this chapter future work could examine the growth kinetics of these lines

under serum-free conditions. More recently Tan et al. (2015) screened multiple serum-

free media and found there was no single optimal formulation that worked across seven

individual hMSC donor lines suggesting further development or optimisation is required.

The implications of growth rate is clear when considering a treatment such as MultiStem

where a single dose of 1.2x109 cells is required. For M2 and M4 this number of cells is

reached within 25-26 days or approximately 4 passages. However, the other three lines
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have a significantly longer production time of 38-40 days, or approximately 6 passages.
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Table 3.1: hMSC doses for three commercial cell therapy trials showing the total number of cells transfused. Extrapolated culture time

(days) for each cell therapy treatment for each hMSC line assuming an initial starting number of 1x106 cells

Cell Therapy Treatment Dose No. of doses Total no. of cells Reference

MultiStem Ischemic Stroke 1.2 x109 1 1.2 x109 Hess et al. (2014)

Stempeucel AMI 2x106 64 1.28 x108 Chullikana et al. (2014)

Prochymal GvHD 2x106 32 6.4x107 Kurtzberg et al. (2014)

Time in culture (Days)

M1 M2 M3 M4 M5

MultiStem 38.1 25.1 ± 0.11 40.4 26.4 ± 0.06 38.1

Stempeucel 21.3 ± 0.55 16.2 ± 0.32 24.8 ± 0.40 17.0 ± 0.20 25.3 ± 0.31

Prochymal 16.1 ± 0.88 13.5 ± 0.39 19.9 ± 0.70 14.1 ± 0.25 21.4 ± 0.55
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3.4 Nutrient, Metabolite and Electrolyte Analysis

Each day a medium sample was taken for analysis to determine the concentration of

glucose, lactate and ammonia (Figure 3.6). Each passage lasted 6 days (represented by

the vertical dashed line) and a 100% medium exchange (represented by the vertical dotted

line) was performed on day 3. As expected, as the glucose (black line) was taken up the

concentration of lactate (red line) and ammonia (green) increased due to the metabolic

requirements of the proliferating hMSCs.

M2 and M4 lines consumed the most glucose over the 30 day culture. Starting at 5

mmol/L, at day 6 (3 days after the medium exchange) the cells had consumed 1.78 ±

0.19 mmol/L in all cases. Similarly for the M4 line there was a consumption of 1.88 ±

0.19 mmol/L over the same time period.

For the most part M1 and M3 lines showed a comparable consumption of glucose, consum-

ing 1.38 ± 0.16 mmol/L and 1.21 ± 0.10 mmol/L per passage. However, during the last

two passages of M3 there was a larger consumption of glucose and equally an increased

production of lactate indicating a faster metabolic rate.

M5, showed the slowest population doubling time and least cumulative population dou-

bling, consumed the least amount of glucose and produced the least amount of lactate.

During the second passage it consumed a total of 0.96 ± 0.28 mmol/L of glucose, com-

pared to M4 which consumed 2.66 ± 0.34 mmol/L over the same culture period. The

slow division rate could explain the requirement for less energy (Schneider, Marison, and

Von Stockar 1996).

As cells consume glucose and glutamine for energy they produce lactate and ammonia as

waste byproducts, shown by the red and green lines in Figure 3.6. Excessive accumulation

of lactate can lead to changes in the pH and osmolarity of the culture medium whereas

ammonia can lead to reduced growth rate as it crosses the cell membrane and effects
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intracellular enzymatic reactions. All hMSCs show an increase of lactate concentration

as the passage proceeded, towards the end there is a higher concentration of lactate as

the cells proliferate (Figure 3.6 red lines).

As with the glucose, M2 and M4 showed the highest concentration of lactate and remained

consistent throughout. The small utilisation of glucose in M5 is reflected by the production

of lactate. In later passages the concentration does not exceed 2 mmol/L, which is less

than half of that seen in M2 for example.

During the culture of the cells the concentration of glucose was maintained above the

Monod constant (Ks) of 0.1 - 0.4 mmol/L, the lowest value seen here was 2.875 mmol/L

(M3 at 720 hours), suggesting growth was not inhibited by the lack of glucose (Acosta

et al. 2007; Eibes et al. 2010). Additionally, the maximum lactate concentration observed

was 5.67 mmol/L (M4 at 288 hours), lower than the inhibitory values known for hMSCs

(24 mmol/L) (Schop et al. 2009). This is in part due to the regular medium exchange

regime every 3 days and the use of low-glucose (1g/L) medium.

This data, in conjunction with the cell growth kinetics allows for the calculation of spe-

cific glucose consumption (pmol/cell/day) and the yield of lactate from glucose (mol/mol).

The specific glucose consumption was calculated from the specific growth rate and glucose

concentrations (Figure 3.7a). M2 and M4 showed comparable specific glucose consump-

tion at around 19 - 20 pmol/cell/day and was consistent throughout the five passages.

Overall M3 had the highest specific glucose consumption with an average rate of 17.4 ±

9.41 pmol/cell/day across all passages.

The yield of lactate from glucose was calculated over the same time period. The maximum

theoretical yield of lactate from glucose is 2 mmol/mmol. A higher yield will indicate a

more effective metabolism. Figure 3.7b shows yields of lactate from glucose calculated for

the five different hMSC lines. M1 initially had a yield of 1.123 ± 0.08 mmol/mmol at p4

and declined to 0.70 ± 0.03 mmol/mmol at p8. The significant decrease appeared from



Chapter 3. Establishment and Characterisation of Human Mesenchymal Stem Cell
Lines for Cell Therapy Manufacture 80

0 100 200 300 400 500 600 700
0

1

2

3

4

5

6

Hours

C
o

n
ce

n
tr

at
io

n
(m

m
o

l/L
)

M1

0 100 200 300 400 500 600 700
0

1

2

3

4

5

6

M2

Hours

C
o

n
ce

n
tr

at
io

n
(m

m
o

l/L
)

0 100 200 300 400 500 600 700
0

1

2

3

4

5

6

M3

Hours

C
o

n
ce

n
tr

at
io

n
(m

m
o

l/L
)

0 100 200 300 400 500 600 700
0

1

2

3

4

5

6

M4

Hours

C
o

n
ce

n
tr

at
io

n
(m

m
o

l/L
)

0 100 200 300 400 500 600 700
0

1

2

3

4

5

6

M5

Hours

C
o

n
ce

n
tr

at
io

n
(m

m
o

l/L
) Glucose

Lactate

Ammonia

. . . Media Exchange

- - - Passage

Figure 3.6: Nutrient and metabolite data for each hMSC line over 5 consecutive passages.

Dots indicate 100% media exchange on day 3 of culture. Dashed lines indicate passage

on day 6 of culture. Mean ± SD (n = 4)
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p5 to p6 suggesting an in vitro limit for expansion. The faster growth rate of M2 and M4

are mirrored by efficient yield of glucose into lactate.

Of all lines M5 showed the least efficient conversion starting at 0.89 ± 0.27 mmol/mmol

at p4 and steadily dropping to 0.12 ± 0.01 mmol/mmol at p8. This also correlates the

decrease specific glucose consumption and growth rate.

For all cell lines the yield of lactate from glucose did not exceed the theoretical value

of 2 mol/mol indicating the cells utilised the glycolysis metabolic pathway. The yield

of ammonia from glutamine is not reported here as Ultra-glutamine, a stable form of

L-glutamine, was used to supplement the medium and could not be measured with the

Flex analyser.

3.5 Cell Surface Marker Analysis

Identity assays are intended to verify the the product quality in the master cell bank, work-

ing cell bank, and finally of the deliverable product. This ensures the product contains

the cell population of interest and the manufacturing process did not produce unwanted

contaminants. Cells undergoing extended long-term expansion in vitro are more prone

to developing undesirable characteristics such as the gain or loss of a marker that may

relate to an unwanted functional effect (Wang et al. 2013). Changes to the manufacturing

process, such as culture methods or serum removal, may lead to phenotypic drift in the

final product (Carmen et al. 2012). Therefore regular identity testing should be performed

regularly in order to identify any changes and ensure a consistent product at the end of

the manufacturing process.

To confirm the identity of the hMSCs they were assessed using a panel of extracellular

markers as proposed by the ISCT was employed and this states the cells must express

CD73, CD90, and CD105 whilst lacking expression of CD34, CD45, and HLA-DR (Do-
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Figure 3.7: Nutrient and metabolite analysis showing a) Specific glucose consumption for

five hMSC lines at the end of each passage b) Yield of lactate from glucose, dotted line

indicates theoretical maximum glucose to lactate yield. Mean ± SD (n = 4)
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minici et al. 2006). The ISCT guidelines further state that the cells must express ≥ 95%

of the positive markers and ≤ 2 % of the negative markers.

A multiparameter flow cytometry method, detailed in Chapter 4, was used to confirm the

identity of the cells at the start (passage 3) and at the end of the experiment (passage

7). Figure 3.8 shows the representative flow cytometry diagrams of each hMSC line at

passage 3 based upon the serial gating method (Chapter 4) and Table 3.2 details the full

percent of the CD73+/CD90+/ CD105+/CD3−/HLA-DR− expression phenotype. The

first gating shows the co-expression of CD105 and CD90 (red boxed quadrant), followed

by CD90 and CD73. This is then finally gated on the two negative markers CD34 and

HLA-DR to give a full phenotype value.

At passage 3 all hMSC lines expressed the full marker expression greater than 96% except

for M4 (93.60 ± 2.51% ). However at passage 7 it recovered expression to 95.56 ± 0.42%.

On the other hand M1, M2 and M3 lines were able to retain their phenotype expression

throughout the passages whereas the M5 line started at 98.14 ± 0.94% then dropped to

93.17 ± 1.60%. Loss of these markers over long term culture has also been previously

reported by Otte et al. (2013), however, the authors did not find a correlation between

the loss of markers and loss of differentiation capacity over long-term culture.

3.6 Differentiation

The final ISCT minimal criterion to demonstrate hMSCs identity is tri-lineage differentia-

tion into the adipogenic, osteogenic and chondrogenic pathways (Figure 3.9). The ability

of hMSCs to differentiate into these cell types have made them an ideal candidate for

tissue engineering and regenerative medicine strategies and has become a key criterion to

demonstrate the activity of hMSCs.

Cells cultured under adipogenic conditions for 14 days produced large lipid vacuoles
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Figure 3.8: Representative plots for multiparameter analysis of the five hMSC lines using

the serial gating strategy.First column CD105/CD90, second column CD90/CD73, third

column CD34/HLA-DR
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Table 3.2: Percent expression of the CD73+/CD90+/ CD105+/CD3−/HLA-DR− extra-

cellular markers expression of hMSCs using the multicolour flow cytometry serial gating

analysis as described in Chapter 4 for all cells lines at the end of passage 3 and passage

7. Mean value ± SD, 10,000 events were acquired per test, n = 4

hMSC Line Day 0 (p3) Day 30 (p7)

M1 98.97 ± 0.19% 97.78 ± 2.26%

M2 96.21 ± 0.22% 95.97 ± 0.42%

M3 98.19 ± 0.09% 95.13 ± 2.53%

M4 93.60 ± 2.51% 95.56 ± 0.42%

M5 98.14 ± 0.94% 93.17 ± 1.60%

throughout the cell cytoplasm. These lipids also stained positive for Oil Red O, a fat

soluble dye thus showing differentiation into the adipogenic lineage.

Cells cultured under osteogenic conditions for 21 days stained positive for alkaline phos-

phatase (ALP) and silver nitrate. ALP demonstrates the presence of the alkaline phos-

phatase enzyme by reducing 5-bromo-4-chloro-3-indolyl-phosphate/nitro blue tetrazolium

(BCIP/NBT) substrate into a dark blue precipitate. Calcium present in the mineral

deposits generated during bone formation is reduced by light and replaced with silver

deposits when silver nitrate staining is performed.

To demonstrate chondrocyte differentiation the hMSCs were plated in high-density micro-

mass droplets in chondrogenic medium and cultured for 21 days. They were then stained

with Alician Blue a polyvalent basic dye that is used to stain acidic polysaccharides such

as glycosaminoglycans (GAGs). Under these conditions all five cell lines retained their

micromass structure and showed positive staining for chondrogenic differentiation.

Under the differentiation conditions all five hMSC lines were able to differentiate into the

respective types confirming that these all meet the ISCT guidelines to be classified as
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‘multipotent mesenchymal stromal cells’.

3.7 Conclusions

This chapter investigated the differences in growth rate, metabolism, extra-cellular marker

expression, and differentiation of five separate hMSC lines derived from five individual

donors. As there is no standard baseline definition for a ‘good’ hMSC line, each must be

considered separately. By considering all these attributes it is possible to speculate which

hMSC line could be a good candidate for further development into a cell therapy.

Before a cell manufacturing process can begin it is important to fully characterise the

selected cells lines in order to avoid changes to the critical biological parameters. In vitro

batch-to-batch variation comes from a number of sources, including the tissue/location

of isolation, donor age, or isolation technique. Therefore choosing a good starting cell

batch is critical for before further upstream processing can begin. Only then can consid-

erations and control in culturing protocols, media formulation and passage number could

be determined to maintain a consistent product.

By considering the growth rate, M2 and M4 lines showed the highest cumulative pop-

ulation doubling along with the highest specific growth rates. M1 initially showed a

comparable growth rate but this significantly decreased towards later passages. From a

manufacturing perspective it is advantageous to have a consistent cell expansion rate to

be able to accurately predict the final yield. M3 and M5 lines had a consistent expansion

profile similar to that of M2 and M4, however the final cumulative population doubling

was significantly lower and thus limiting their potential for scale-up. These differences

in donor variation will impact on autologous therapies where many cells maybe required

within a limited time period. From the examples described here the slower growing cell

lines such as M3 or M5 may not generate sufficient numbers of cells to be administered.
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Figure 3.9: Phase contrast images of differentiated MSCs into the adipocyte (stained with

Oil Red O), osteoblast (stained with Alkaline phophatase and silver nitrate solution) and

chondrocyte (stained with Alician Blue) lineages. Black scale bar = 1000µm Red scale

bar =100µm
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This problem can be overcome in allogeneic therapies where multiple cell lines can be

characterised, expanded and preserved until administering to the patient.

Differences in the nutrient consumption requires customised medium exchange regimes. In

all cases the glucose consumption and the production of lactate/ammonia did not reach

inhibitory levels. Regular medium exchanges would also remove unwanted byproducts

not measured here. Unlike cell counting, media sampling is a non-destructive and non-

invasive measurement of the culture process and provides valuable information on the cell

environment. Determining a feeding regime that allows proper utilisation of the nutrients

aids the optimising of the culture parameters.

The plastic adherence, expression of extra-cellular phenotype markers and tri-lineage dif-

ferentiation demonstrate all hMSC cell lines meet minimal criteria as outlined by the

ISCT.

In this chapter, the plastic adherence, expression of extra-cellular phenotype markers and

the tri-lineage differentiation demonstrated that all selected hMSC lines meet the minimal

criteria as outlined by the ISCT demonstrating the identity of a mesenchymal stromal

stem cell. However, these assays does not characterise the supposed in vivo therapeutic

effects that is essential for its application as a cell therapy. Chapters 5 and 6 will consider

the hMSC potency in terms of immunosuppression and angiogenic potential.



Chapter 4

hMSC Characterisation via

Multiparameter Flow Cytometry

4.1 Introduction

A robust identity assay ensures the master cell bank, working cell bank, and delivered

product are the intended cells to be delivered to the patient. It verifies the manufac-

turing process was successful in producing the correct cell type and does not cause phe-

notypic drift, which is essential if there are changes in the manufacturing process, such

as technology transfer or changes in medium formulation. Directives from the European

Medical Agency (EMA) list identity testing as the first step in product characterisation

(EMEA/CHMP/410869/2006).

The first hMSCs line was derived from bone marrow but other sources were also identified

including adipose tissue, dental pulp and umbilical cord (Kern et al. 2006). Due to

the varying sources of hMSCs and diversity of the isolation techniques employed, it is

imperative to ensure the isolated cell population is homogeneous and has the correct cell

surface marker phenotype.

89
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Bone marrow derived hMSCs are distinct from the haematopoietic niche in that they

express a very different set of cell surface antigens. hMSCs were shown to lack CD34 and

CD45, markers typically expressed by red bloods cells and leukocytes respectively. As

hMSCs were firstly isolated from the bone marrow stroma there may be a heterogeneous

mixture of cell populations including cell types from the hematopoietic lineage. Therefore,

it is imperative to ensure that the isolated population of cells are truly hMSCs and are

not contaminated with other cell types.

As there is a lack of single definite marker for an hMSC identity, a combination of mark-

ers is needed to describe a population, this often leads to an inability to compare results.

In an effort to develop a standardised criterion for defining a hMSC population, the In-

ternational Society for Cell Therapy (ISCT) published a positional paper outlining the

minimal criteria required (Dominici et al. 2006). This included the expression of cer-

tain cell surface antigens such as CD73, CD90 and CD105, whilst lacking others such

as CD45, CD34, CD14, CD79α and HLA-DR. CD73, also called ecto-5’-nucleotidase, is

an enzyme that converts AMP to adenosine and is a regulatory factor in hMSC osteo-

/chondrogenic differentiation (Ode et al. 2012). CD90 (Thy-1) is a cell surface protein

that mediates adhesion of leukocytes and monocytes to endothelial cells. Downregula-

tion of CD90 has been associated with decreased immunosuppressive function(Campioni

et al. 2009). Finally, CD105, an auxiliary receptor for the TGF-β receptor complex is

associated with improved angiogenesis and vascular remodelling (Duff et al. 2003). As

each marker/protein has a distinct function and is also found on other cell types, the

simultaneous expression is required to identify a hMSC population.

4.1.1 Flow Cytometry

Flow cytometry is a laser-based technology that allows analysis of cells by suspending

them in a stream of liquid and passing them directly over an excitation source. For

cell characterisation, a single cell suspension is usually first incubated with fluorescently
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bound antibodies before analysis. This allows discrimination for cells either having the

antigen/protein of interest to those that do not. Flow cytometry offers the ability to

rapidly examine thousands of cells individually in a short amount of time (seconds) and

due to the high specificity also allows the discrimination of discrete subpopulations based

on morphology and/or marker expression. These advantages make flow cytometry a

valuable method for identity testing within a manufacturing process. However, this is an

offline method which requires lengthy preparation steps and skilled personnel so maybe a

disadvantage if the analysis requires rapid turnover.

In most stem cell literature single colour (or single parameter) flow cytometry has been

used where a single marker was examined at one time. Therefore, to obtain a full expres-

sion phenotype each marker must use a separate sample. For hMSCs, this would require

analysis of the three positive and at least one negative marker. This leads to an increased

preparation time and requires more cells/reagents, and is thus not ideal when handling a

limited numbers of cells. This is particularly important in cell therapies if the cells are to

be transfused into a patient and there are limited quantities available for analysis.

To overcome this limitation, it is necessary to develop a more efficient method of cell

characterisation. Multiparameter flow cytometry could be a viable option as it applies

a cocktail of antibodies, each with their own discrete fluorophore, allowing multiple tar-

gets to be analysed simultaneously. This measurement of multiple parameters allows for

detailed co-expression studies that may be lost during single staining (O’Donnell, Ernst,

and Hingorani 2013). More commonly used in haematology and immune cell therapies to

analyse mixed cell populations of blood samples. To date, multiparameter flow cytometry

has rarely been utilised for stem cell applications.

This technique does require a greater understanding of the technical aspects of flow cy-

tometry as there must be considerations to the excitation sources, band pass filters and

fluorophore emission properties.
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For multi-site manufacturing of cells, identification and comparability are key. In re-

distributed manufacturing there is a shift to smaller-scale local manufacturing sites and

quality assurance must be consistent across the sites. As different sites may have different

flow cytometers the developed protocol was transferred to another machine to test for

comparability and ease of protocol transfer.

The work described in this chapter was aimed at developing a novel flow cytometry anal-

ysis for hMSCs that goes beyond the current widely used techniques. More specifically,

the objectives of this chapter were:

• Confirm marker expression of hMSCs using standard single staining flow cytometry

techniques

• Develop a panel of antibodies that can be used in conjunction with each other

• Develop a post-acquisition analysis strategy that fully defines a hMSC population

• Transfer the method to a different cytometer

4.2 Single Colour Flow Cytometry

The cells were first singly stained for the markers of interest to ensure the panel was valid.

All positive markers CD73, CD90 and CD105 gave 100% positive expression compared

to isotype gating. Additionally, there was little expression of the negative markers with

HLA-DR being 3.24% positive and CD34 being 3.42% positive (Figure 4.1). Due to being

outside of the suggested ISCT range (> 2% expression) the cells were then analysed via

the multiparameter flow cytometry method.
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Figure 4.1: Single colour flow cytometry results for expression of selected markers of

hMSCs (filled). Isotype gating (outline) was set to 95%. Positive markers CD73 (PE-

Cy5), CD90 (APC), CD105 (PE) compared to negative markers CD34 (PE-Cy7) and

HLA-DR (FITC). Graphs are representative of four separate experiments
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4.3 Multiparameter Flow Cytometry

To further analyse the cell population and gain a greater understanding of cell marker

expression, a multiparameter flow cytometry method was developed. In this set of ex-

periments the cells were incubated with a mixture of antibodies conjugated to distinct

fluorophores. This allows the simultaneous analysis of multiple extracellular targets on a

single cell.

The number of markers that can be measured is limited by the number of filters and

excitation sources available with each flow cytometer. With the Millipore Guava 8HT,

it was possible to use all four filters from 488nm excitation and one from the 635nm

excitation (Figure 4.2). Due to the nature of fluorophores and emission spectra, spectral

overlap is most likely present. The fluorophores employed in this study were chosen on

the basis of giving the least amount of spectral overlap which was achieved by selecting

one fluorophore for each bandpass filter and ones that have narrow emission spectra as

to avoid overlaping into the adjacent filters. As spectral overlap is most likely present,

compensation must be applied. Compensation is a procedure that subtracts non-specific

electronic signal from fluorochrome spillover. These values were determined using anti-

body capture beads and applied post-acquisition. The matrix was automatically defined

by FlowJo software based on the emission from the beads. The final compensation matrix

is shown in Table 4.1.

Two-dimensional dual plots of each marker combination confirmed the results of the

previous single staining. The cells showed ≥ 99.9% dual positivity for CD73/CD105,

CD105/CD90, CD90/CD73 combinations and >90% negative for CD34/HLA/DR expres-

sion (Figure 4.3). This pairwise analysis confirmed the validity of the panel combination

and the compensation was effective.
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Figure 4.2: Filters and selected fluorophores for the multiparameter panel for the Millipore

Guava 8HT. a) Excitation and filters for the 488nm laser b) Excitation and filters for the

635nm laser.
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Figure 4.3: Multiparameter flow cytometry analysis of hMSCs using CD37, CD90, CD105,

HLA-DR and CD34 markers. Dot plots show representative analysis of four independent

repeats. Graphs correspond to the percentage of cells in each quadrant.
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Table 4.1: Compensation values for multiparameter flow cytometry. Values were acquired

using CompBeads (BD Biosciences) and applied post-analysis.

GRN-HLog NIR-HLog RED-HLog RED2-HLog YEL-HLog

GRN-HLog 0.094% 0.440% -0.001% 3.22%

NIR-HLog 0.270% 0.160% 0.007% 0.853%

RED-HLog 0.150% 0.100% 2.50% 1.51%

RED2-HLog 0.080% 0.273% 1.30% 0.005%

YEL-HLog 0.900% 1.82% 6.00% -0.001%

4.4 Serial Gating Strategy

By applying serial gating analysis to the population of interest it is possible to fully

determine the full expression phenotype (Figure 4.4). Starting with the forward and

side scatter the population of cells is initially analysed for CD73 and CD105 as before.

Then the CD105+ CD73+ quadrant is further gated for CD90 and HLA-DR. The CD90+

HLA-DR− quadrant was then finally gated for CD34 and HLA-DR expression.

Using this analytical method, essentially multiple steps are sieved down, thus making

it possible to determine the full CD73+/CD90+/ CD105+/CD73−/HLA-DR− expression

phenotype. Table 4.2 displays results from the serial gating experiments; the average

percentage of cells with the full phenotype was 94.49% ± 1.3%. As this is just below the

level suggested by the ISCT this adds greater justification for using the multiparameter

approach over single staining flow cytometry as it does not overestimate the population

purity and provides a much greater depth of data.

The results shown here using the multicolour staining and serial gating analysis gives a

full phenotype expression that is lower than the values given via the single colour method,

94.49% and 100% respectively. As the obtained value is just below the level suggested by

the ISCT, using the multiparameter approach over single staining flow cytometry does
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not overestimate the population purity and provides a much greater depth of data.
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Figure 4.4: Serial gating of hMSCs showing co-expression of the selected surface markers.

The initial analysis region used forward and side scatter to determine the population of

interest. This was then gated for the CD73+ and CD105+ cells. Sequential gating was

used to determine the CD90+/HLA-DR− and finally the HLA-DR−/CD34− population.

From the initial gate 95 percent of cells had the CD73+/CD105+CD90+/HLA-DR−CD34−

cell surface expression phenotype
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Table 4.2: Gating strategy for the multiparameter experiment. The samples were initially gated on the single cell population followed by

expression of CD105/CD73. This was then further gated on HLA-DR/CD90 and HLA-DR/CD34 respectively to assess, from the starting

population, the percent of cells with the CD105+/CD73+/CD90+/HLA-DR−/CD34− phenotype. ± values represent the SE, n≥ 3 in all

cases.

% Expression from Multiparameter Data

Subset 1: CD105 / CD73 → Subset 2: HLA-DR / CD90 → Subset 3: HLA-DR / CD34 % with full phenotype

CD105- / CD73+ 0.24±0.06 HLA-DR-/CD90+ 98.80±0.05 → HLA-DR-/CD34+ 7.06±2.31

CD105+/ CD73+ 99.53±0.03 → HLA-DR+/CD90+ 1.22±0.05 HLA-DR+/CD34+ 0.00±0.00

CD105+/ CD73- 0.06±0.02 HLA-DR+/CD90- 0.00±0.00 HLA-DR+/CD34- 0.05±0.02
Exp 1 (n=3)

CD105-/ CD73- 0.16±0.02 HLA-DR-/CD90- 0.00±0.00 HLA-DR-/CD34- 92.87±2.28

91.32±2.04%

CD105- / CD73+ 0.00±0.00 HLA-DR-/CD90+ 99.37±0.06 → HLA-DR-/CD34+ 1.14±0.03

CD105+/ CD73+ 100.00±0.00 → HLA-DR+/CD90+ 0.61±0.05 HLA-DR+/CD34+ 0.01±0.00

CD105+/ CD73- 0.00±0.00 HLA-DR+/CD90- 0.00±0.00 HLA-DR+/CD34- 0.19±0.03
Exp 2 (n=4)

CD105-/ CD73- 0.02±0.01 HLA-DR-/CD90- 0.00±0.00 HLA-DR-/CD34- 98.63±0.02

98±0.09%

CD105- / CD73+ 0.01±0.00 HLA-DR/CD90+ 97.37±0.12 → HLA-DR-/CD34+ 5.46±2.20

CD105+/ CD73+ 99.80±0.16 → HLA-DR+/CD90+ 2.60±0.13 HLA-DR+/CD34+ 0.00±0.00

CD105+/ CD73- 0.21±0.14 HLA-DR+/CD90- 0.00±0.00 HLA-DR+/CD34- 0.00±0.00
Exp 3 (n=4)

CD105-/ CD73- 0.01±0.01 HLA-DR-/CD90- 0.02±0.01 HLA-DR-/CD34- 94.57±2.20

91.90±2.40%

CD105- / CD73+ 0.05±0.00 HLA-DR/CD90+ 99.10±0.05 → HLA-DR-/CD34+ 0.00±0.00

CD105+/ CD73+ 99.0±0.00 → HLA-DR+/CD90+ 0.91±0.05 HLA-DR+/CD34+ 0.00±0.00

CD105+/ CD73- 0.02±0.00 HLA-DR+/CD90- 0.00±0.00 HLA-DR+/CD34- 0.00±0.00
Exp 4 (n=4)

CD105-/ CD73- 0.04±0.01 HLA-DR-/CD90- 0.00±0.00 HLA-DR-/CD34- 97.7±.065

96.72±0.68%
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4.5 Protocol Transfer to BD FACs Jazz

The process was then repeated using a BD FACs Jazz flow cytometer to examine pro-

tocol transfer capability and fluorophore combination of the assay. Due to the different

combination of filters CD34 (PE-Cy5) was not included due to the lack of filter that was

previously available on the Millipore Guava 8HT. PE-Cy5 has an emission maximum at

670nm and is detected on the Red1 (692/46nm) filter. The measurement of PE-Cy5 on

the BD Jazz is not possible due to having three filters on the 488nm excitation laser

with PE-Cy5 overlapping on the PE-Cy7 670LP filter (Figure 4.5). However, as CD34

is a marker for red blood cells that are usually found and cultured in suspension, it was

assumed that no traces would be left following multiple passages of the adherent hMSCs.

4.5.1 Single Colour Flow Cytometry

As previously, single parameter flow cytometry showed the expected expression of CD73,

CD90 and CD105 (>99.9% in all cases) as shown in the blue-filled peaks in Figure 4.6.

Likewise, there was no expression of HLA-DR. Red filled peaks on the same figure show

the isotype controls used for each extracellular marker.

4.5.2 Compensation

A new compensation matrix was then produced due to the differences in the bandpass

filters and excitation sources between the Millipore Guava 8HT and BD FACs Jazz flow

cytometers. As such, the compensation was performed the same way as in section 4.3

where BD CompBeads were single stained with each antibody and the resulting fluo-

rescence acquired. Figure 4.7 shows the bead plots with the main fluorophore emission

on the left and the spillover into the other channels shown by the smaller plots on the

right. From the FITC fluorophore, a clear spillover into the PE channel can be observed.
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Figure 4.5: Excitation and filter configuration for BD FACs Jazz a) 488nm excitation

source with three bandpass filters b) 640nm excitation with bandpass filters.
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Figure 4.6: Single colour staining of MSCs as analysed by BD FACs Jazz. Red filled

peaks indicate isotype controls, blue filled peaks indicate stained cells. Gating was set to

95% of isotype.

Likewise, PE spills over into the PE-Cy5 channel.

Based on these observation a new compensation matrix was calculated by the BD FACS

Sortware analysis software (Table 4.3) and applied during cell acquisition.

4.5.3 Fluorescent Minus One (FMO)

The same gating strategy was used as previously described in section 4.4, dot plots for

CD73/CD90 and CD105/HLA-DR were plotted and gating boundaries were determined

from the isotype at 95%. Figure 4.8 shows the resulting plots. From these results there
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Figure 4.7: CompBeads plots for each of the fluorophores. Smaller plots show the fluo-

rescent spillover into the other channels.

Table 4.3: Compensation matrix for multiparameter flow cytometry on the BD FACs

Jazz. Values were acquired using CompBeads and applied during analysis.

530/40 :: FITC 585/29 :: PE 670/LP :: PE-Cy5 660/20 :: APC

530/40 :: FITC 22.4% 1.16% 0%

585/29 :: PE 0.94% 8.7% 0%

670/LP :: PE-Cy5 0.24% 1.99% 0%

660/20 :: APC 0% 0% 0.84%
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Figure 4.8: Multicolour plots from BD Jazz following compensation. Stained hMSCs are

shown in the pseudocolor plots, isotypes are overlayed in grey.

was the expected positive expression of CD73, CD90 and CD105. However, HLA-DR was

also shown to be expressed in approximately 50% of the population. This error must arise

from the gating or the compensation as there was no expression of HLA-DR as shown via

single colour staining in Figure 4.6.

To overcome the improper gating, Fluorescent Minus One (FMO) controls were used. In

FMO controls the cells are stained with all the antibodies in the panel, except for the one

that is being measured. This ensures that any fluorescence in this channel is due to the

spectral spillover from the other channels and allows for correct gating.

Figure 4.9a shows the new gating strategy for each channel. For each image the original

95% isotype control (left plot) is shown by the horizontal blue line. The central image

shows the plot for the FMO gate with the red line showing the revised gating level. The

right most plot shows the fully stained hMSC population. Both the HLA-DR (FITC)

and CD105 (PE) gate was increased as the isotype channel underestimated the boundary.

Conversely, the CD90 (APC) gate was reduced as the isotype did show a small amount

of fluorescence.
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Figure 4.9: Fluorescent Minus One (FMO) analysis for improved gating controls. a)

hMSCs are initially stained with the isotype (left panel). The 95% gate is shown by the

horizontal blue line. Middle panel shows FMO boundary with the red line. Right panel is

the fully stained sample. b) Final gating strategy on the BD FACs Jazz with the updated

FMO gating parameters.
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Following the refined gating strategy from the FMO controls the cells were re-plotted onto

the dual dot plot graphs (Figure 4.9b). Dual expression of CD90 and CD105 was over

95% as expected, with CD73 expression over 98.8%. Importantly, there was no HLA-DR

expression, thus removing the error seen previously as shown in Figure 4.8. This demon-

strates that FMO controls results in more accurate gating for hMSCs characterisation.

4.6 Conclusions

Human MSCs are costly to isolate and culture, therefore by taking a multiparameter

approach, the phenotype analysis requires fewer cells and reagents, as well as a decreased

operator time representing a real cost saving for laboratories. For the multicolour assay,

fewer samples of cells than the usual single staining were prepared, one 5-isotype control,

one unstained tube and four multicolour test samples with an additional six wells for the

compensation beads. In contrast, the conventional single staining flow cytometry method

would require at least twice this number to achieve less stringent characterisation. This is

important for autologous cell therapies, especially for older patients, where cell quantity

may be limited and fewer cells are available for analysis. While the multicolour approach

is still not routinely applied in stem cell research, it is becoming increasingly popular

(Zimmerlin et al. 2010; Zimmerlin et al. 2013).

Single-staining flow cytometry provides a simple and robust method to analyse the phe-

notype of cells. For a multicolour analysis, there must be more considerations in the

design and execution of the assay. Fluorochromes must be selected based on the least

spectral overlap as possible in order to later simplify compensation. Detection of the fluo-

rochromes requires the appropriate filters and there must be clear emission into the filter

but as little from other fluorochromes. In practice, the optimal fluorochrome/filter set

will be different depending on the instrument hardware and it requires alterations to the

panel. In this work, a comparison between the Millipore Guava 8HT and BD FACS Jazz
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flow cytometers was performed and it was demonstrated that the same fluorochromes

can be used, but with appropriate controls and compensation optimised for each flow

cytometry instrument.

The use of flow cytometry in stem cell research requires robust technique since the numbers

of cell populations to be analysed is relatively small compared to other fields such as

immunology. As such, it is advantageous to utilise newer techniques and instruments to

obtain maximum possible information from the cells. In this chapter, five extracellular

markers were analysed from one sample of cells, effectively reducing the number of cells

to a fifth, to gain the same information if analysed using single colour flow cytometry.

Reducing the number of sample preparations also reduces the amount of reagents thus

representing a cost-saving method. In a bioprocess or scale-up manufacturing environment

where the cells are to be used in a therapy it is important to retain as many for the patient.

Therefore, each analytical stage throughout the process should use the least number of

cells possible.

Multiparameter flow cytometry is a standard technique used in immunology to decipher

sub-populations within a larger sample. This method has been proven invaluable to

identify B-lymphocytes from peripheral blood (Blimkie et al. 2010) and dendritic cell

from spleen and Peyer’s patches (Duriancik and Hoag 2009). Whist multiparameter flow

cytometry is still not widely performed in the stem cell community some authors have

used this technique to identify multiple populations of stem/progenitor cells from within

an adipose tissue sample (Zimmerlin et al. 2010; Zimmerlin et al. 2013).

For cell therapy characterisation, identity and purity are the first two aspects that must be

satisfied for an ATMP (BSI PAS 93). In this chapter, the work has focused on proving the

identity of hMSCs so that they are within the ISCT minimal criteria guidelines. However,

physical testing alone does not demonstrate the biological activity or the potency. The

following chapters will characterise the cells in terms of the properties that will lead to a

clinically functional cell therapy product.



Chapter 5

Immuno-modulatory properties of

hMSCs

5.1 Introduction

The previous chapters have examined ways to characterise hMSCs based on their physi-

ological characteristics such as growth rate, metabolism, differentiation capability (refer

to Chapter 3) and extracellular surface marker expression (refer to Chapter 4). These

properties are crucial quality control assessments when developing a manufacturing and

expansion process but do not reflect the therapeutic value of the hMSCs. A growing

body of literature shows that hMSCs possess anti-inflammatory and immunosuppressive

capabilities that precede their reparative function in injury models (Uccelli, Moretta, and

Pistoia 2006; Blanc et al. 2007; Jones and McTaggart 2008). High-profile hMSC clinical

studies, such as Prochymalr (Mesoblast) for the treatment of GvHD and Multistemr

(Athersys) for the treatment of ulcerative colitis, are utilising this innate property for

hMSC cell therapy in Phase II and Phase III clinical trials.

Potency assays that predict the therapeutic effect are critical to their success in regener-

109
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ative medicine. Currently, patients are receiving cells with unproven potency which may

result in suboptimal clinical responses (Samsonraj et al. 2015). Therefore, producing a ro-

bust potency assay is vital to ensuring that hMSCs possess and retain their clinical efficacy

through from isolation, expansion and delivery. Many previous reports aimed to develop

an immune potency assay have used a mixed lymphocyte reaction (MLR) to measure

proliferation and gene expression (Prevosto et al. 2007). However, due to MLR requiring

a heterogeneous population of cells it is not possible to retain consistency between runs

and batches. To overcome this problem, this chapter will first examine the hMSCs under

a chemically defined induced inflammatory environment and measure known hMSC re-

sponse such as release of immunomodulatory proteins and upregulation of effector genes

(Section 5.2). Having a defined system will allow direct comparison between the hMSC

lines without the need for other cell types thus maximising the comparability and consis-

tency. Following this, a co-culture assay will be developed using purified CD4 T-cells, and

it will examine the anti-proliferative effects induced by the hMSCs. Also, again known

immunomodulatory aspects will be compared across the selected hMSC lines (Section

5.4). Finally, this chapter will examine the hMSC cultured in a MLR as they are known

to induce a regulatory T-cell phenotype (Section 5.5).

When considering the quality and potency of a cell therapy there must be considerations

into the in vivo mechanism of action. It is unlikely that a biological product, such as a

stem cell, will have a single mode of action, rather it will be a combination of different

factors that lead to the therapeutic effect. Throughout this chapter multiple aspects will

be evaluated. These varied analyse employed here can determine which properties reflect

the potency and which can be taken forward to the development of a holistic assay.

The aims of this chapter were to:

• Culture individual hMSCs in a defined inflammatory environment

• Measure and compare known immuno-modulatory effectors produced by the hMSCs
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• Develop a CD4 T-cell/hMSC co-culture assay

• Measure CD4 T-cell proliferation, cell cycle, and vitality under co-culture conditions

• Co-culture hMSCs with peripheral blood mononuclear cells (PBMCs) to assess T-reg

differentiation capability

5.2 Defined Inflammatory Environment Culture

The initial set of experiments examined the response of M2, M3, and M4 hMSC lines

in a defined inflammatory environment by the addition of pro-inflammatory cytokines.

This allowed for a reproducible and consistent assay that did not require co-cultures with

other cell types. M2 and M4 hMSC cell lines were chosen due to their potential for a cell

therapy as they exhibited fast growth rate and consistent performance into later passages

(refer to Chapter 3). M3 cell line were also examined as an example of a potentially

‘poorer’ cell line due to its slower growth rate and metabolism.

To examine the cells response to an inflammatory environment the selected hMSC lines

were incubated with pro-inflammatory cytokines (10ng/ml IFN-γ and 10ng/ml TNF-α)

for 72 hours as previously described by English et al. (2007) and Prasanna et al. (2010).

5.2.1 Morphological Changes and Upregulation of HLA-DR Ex-

pression

After 72 hours in culture with IFN-γand TNF-α, changes in cell morphology were ob-

served in the hMSCs. The treated cells were larger in size, had high amounts of cytoplasm

granularity and displayed an irregular flattened shape when compared to untreated con-

trol cells (Figure 5.1). The cells were then analysed for changes in phenotype via the
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Figure 5.1: M2 hMSC line cultured within an inflammatory environment a) Untreated

control b) Treated with TNF-α and IFN-γ. Representative plots (n = 5) for multicolour

flow cytometry analysis of: c) untreated control and d) treated cells. Scale bar = 250µm

multiparameter flow cytometry approach as developed in Chapter 4. Positive markers

CD73, CD90 and CD105 remained unchanged and the cells continued to express these

in the same manner as control cells. Similarly, the negative marker, CD34 was not ex-

pressed. However, there was a 44% increased expression of HLA-DR (Figure 5.1 c and

d, lower left quadrant). HLA-DR is a MHC class II cell surface receptor expressed on

the surface of antigen presenting cells. Its usual function is to display peptide antigens to

other immune cells, such as T cells, to elicit an immune response. A previous study has

also reported hMSC expression of HLA-DR following treatment with IFN-γ and have sug-

gested this plays a role in antigen presenting properties of hMSCs within an inflammatory

environment (Chan et al. 2006).
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To further investigate HLA-DR expression M2, M3 and M4 cell lines were cultured under

an increasing severity of inflammation by changing the concentration of TNF-α and IFN-

γ. After three days in culture the cells were harvested and the expression of HLA-DR

protein was measured (Figure 5.2a). The expression is shown by the mean fluorescent

intensity (MFI) - a measure of fluorescent intensity due to marker expression.

Throughout all concentrations of cytokines, M2 and M3 cell lines showed an increase of

HLA-DR expression. In contrast, M4 cell line did not increase expression of HLA-DR

throughout any of the cytokine concentrations tested. This may indicate that M4 has

a weaker response to the inflammatory environment and may not possess any further

immunological properties.

At the highest concentration (10ng/ml), M2 gave the highest MFI at 94.6 ± 0.35 com-

pared to a slightly lower expression by M3 at 82.8 ± 1.46. However, M4 showed the

weakest expression at 10.7 ± 0.81. As the severity of inflammation decreased M2 and M3

lines continued to show high HLA-DR expression (Figure 5.2b) whereas M4 continued to

express low levels throughout.

Inducing HLA-DR expression is a simple way to examine if hMSCs are responsive un-

der inflammatory conditions, but nonetheless as is it a responsive assay it still requires

72 hours to complete. Here it is shown that M2 upregulated the expression proportion-

ally to the severity of inflammation whereas M3 exhibited the same amount throughout.

Surprisingly, M4 a probable candidate for cell therapy due to its high growth rate and

consistent performance, may not be suitable as an immunotherapy therapy due to the

lack of response.
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Figure 5.2: Each selected hMSC line was cultured with varying amounts of pro-

inflammatory cytokines (IFN-γ and TNF-α) for 72 hours. a) Expression of HLA-DR

in M2, M3 and M4 measured by flow cytometry. b) Median florescent intensity (MFI) for

each hMSC line and cytokine concentration. Values presented as mean ± SD (n = 4).
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5.2.2 IL-6 Production

The expression of HLA-DR in response to stimulation indicates the cells are able to

respond to the severity of inflammation. The next investigation would therefore be to

determine the soluble factors that are associated with immunomodulation. Interleukin-6

(IL-6) is an anti-inflammatory protein and mediator for the acute phase of inflammation

(Gabay 2006). Previous reports using IL-6 gene knock-out mice have shown that it is

required to stimulate the production of acute phase proteins and for controlling the levels

of pro-inflammatory cytokines (Fattori et al. 1994; Xing et al. 1998). IL-6 secretion by

hMSCs has previously been confirmed when cultured with allogeneic splenocytes causing

a decreased proliferation (Djouad et al. 2007). For the next set of experiments IL-6 was

chosen as an exemplary protein for immunomodulatory potency. Other possible proteins

might include PGE-2, COX-2, or TGF-β1 (Ryan et al. 2007).

As previously described, the hMSC lines were cultured for three days with varying con-

centrations of the pro-inflammatory cocktail and media samples were harvested at day 3

in culture for IL-6 analysis. The values were normalised per cell (Figure 5.3).

In contrast to the HLA-DR expression results, M4 cells showed the most IL-6 production

at the highest level of severity (0.79 ± 0.078 pg/cell) compared to M2 (0.15 ± 0.014

pg/cell) and M3 (0.19 ± 0.02 pg/cell) lines. As the concentration of pro-inflammatory cy-

tokines were decreased the levels of IL-6 yield also decreased proportionally indicating the

cells were able to respond to the environment and produced anti-inflammatory molecules

accordingly.

On the other hand, M3 production was not significantly different between the 10ng/ml

and 1ng/ml pro-inflammatory cytokine concentrations indicating a maximum response

level and suggesting that an increase in the severity will not result in an increase of the

response.
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Figure 5.3: IL-6 yield per cell from individual hMSC lines within varying severity of

inflammation. Values represented as mean ± SD (n = 6)

The M2 cell line showed the least amount of IL-6 production throughout with 0.15 ±

0.01 pg/cell at the maximum (10ng/ml) concentration and 0.071 ± 0.001 pg/cell at the

minimum (1ng/ml) concentration.

The results here contrast to those seen in section 5.2.1 where M2 and M3 lines exhib-

ited the highest HLA-DR expression and therefore led to the conclusion that these cell

lines may be more responsive to the inflammatory environment. However, the secretion

of cytokines, such as IL-6, have the potential to give a better indication to the cell lines

immunomodulatory potential due to it being directly responsible for hMSC immunomod-

ulatory properties.

5.2.3 Indoleamine 2,3-dioxygenase Function

Indoleamine 2,3-dioxygenase (IDO) is an immunomodulatory enzyme produced by anti-

gen presenting cells (APCs) under stimulation by IFN-γ. It has also been shown to be a

key factor in both human and mouse MSC immunomodulation (Meisel et al. 2004; English
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et al. 2007). IDO is the first rate-limiting step in the catabolism of the essential amino

acid L-tryptophan to N-formylkynurenine, followed by further conversion to kynurenine

via the enzyme kynurenine formamidase (Equation 5.1) (Moffett and Namboodiri 2003).

The depletion of tryptophan causes reduction of T-cell proliferation. Measuring the con-

centration of resulting kynurenine in the media could be an indicator to the upregulation

of IDO and the immuno-inhibitory potency of different hMSC lines.

L− tryptophan IDO−−→ N − formylkynurenine kynurenineformamidase−−−−−−−−−−−−−−→ kynurenine (5.1)

Under normal culture conditions hMSCs do not express IDO or deplete tryptophan. When

TNF-α was added alone there was no significant kynurenine production when compared

to the controls (Figure 5.4). However, kynurenine production could be induced by the

addition of IFN-γ alone, where all cell lines produced an average of 0.007145 ± 0.0016

nM/cell with no significant differences between the hMSC lines. When IFN-γ and TNF-α

were added together there was a synergistic effect and kynurenine production increases

significantly in all three hMSC lines. M2 produced the most kynurenine at 0.015 ± 0.0026

nM/cell, but was not significantly different to M4 at 0.013 ± 0.0038 nM/cell.

Therefore, both IFN-γ and TNF-α were required to effectively induce IDO gene expres-

sion. This is detailed further in section 5.3.2.

5.2.4 Metabolism

Media samples were collected from cells treated with the inflammatory cytokines and

compared to untreated controls. Figure 5.5 shows the glucose consumption and lactate

production for each hMSC line.

Glucose consumption was greater in cells that were being treated with the inflammatory
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Figure 5.4: Induction of IDO activity and subsequent kynurenine production in M2, M3,

and M4 by addition of IFN-γ, TNF-α, or IFN-γ/TNF-α (10ng/ml each) for 72 hours.

Data are presented as mean ± S.D (n = 6)

cytokines as shown by the solid bars. The largest differences was seen in both M2 and M4

cell lines where the final concentration was 0.91± 0.74 mmol/L and 0.61± 0.56 mmol/L

respectively. M3 lines had a higher final glucose concentration of 1.52 ± 0.30 mmol/L

indicating a lower rate of glucose uptake.

As expected, lactate concentration was higher in those cells in the inflammatory environ-

ment. Similarly to the glucose results, M2 and M4 lines both produced similar lactate

concentrations, whereas M3 produced the least.

Under normal culture conditions the untreated cells consume glucose and produce lactate

at different rates, Table 5.1 shows the differences between the treated and untreated

concentrations to account for this effect. The glucose difference was higher in M2 and M3

lines when compared to M4. This can be accounted to the usually high glucose demands

of M4 line as seen in Chapter 3.

The increased metabolism of the selected hMSCs lines when treated indicate a response

to the environment and possible utilisation of the nutrients for the production of anti-
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Figure 5.5: Glucose and lactate analysis from media samples taken from hMSCs in the

inflammatory environment (treated, solid bar) or control (untreated, patterned). Values

presented as mean ± SD (n = 3)

Table 5.1: Difference of glucose consumption and lactate production in treated and un-

treated hMSCs. Values presented as mean ± SD (n = 3)

hMSC Glucose (mmol/L) Lactate (mmol/L)

M2 1.48 ± 0.32 2.70 ± 0.60

M3 1.59 ± 0.11 2.26 ± 0.74

M4 1.04 ± 0.40 2.52 ± 0.62

inflammatory proteins and other functions. Currently, there are no other reports of the

metabolism of hMSCs in similar conditions.

5.3 Inflammatory Response Over Multiple Passages

Next, the cell lines were compared over extended passage when treated with the 10ng/ml

TNF-α and IFN-γ concentration. As mentioned previously in Chapter 3, scale-up is

required to generate a sufficient number cells for a complete treatment, as continuous

passaging and expansion is required. Here the cells were tested from passage 3 to 7 to
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determine if long-term culture affects the immunomodulation potential of selected hMSC

lines. Therefore, the cells were analysed at p3, p5 and p7; with sacrifice at 24 hours, 48

hours and 72 hours following treatment.

5.3.1 IL-6 Production

Each hMSC line was able to produce IL-6 in response to the inflammatory environment

(Figure 5.6). Over the three days there was a steady increase in the production, for

example in passage 5, M4 produced 24.6 ± 2.0 ng/ml at Day 1, 49.7 ± 9.0 ng/ml at Day

2, and 80.8 ± 15.6 ng/ml at Day 3 in culture.

When the individual cells lines were compared, M2 and M3 lines showed consistent IL-

6 production throughout all the passages with no significant changes. This behaviour

suggested that these two cell lines could be expanded in vitro for up to passage 7 without

any loss of potency. However, M4 line showed a higher production of IL-6 compared to M2

and M3. This may be important for cell dosing as the patient will require fewer cells than

M2 and M3 for the same therapeutic benefit. However the production was less consistent

as an increase was recorded during passage 5, followed by a decrease at passage 7. The

decrease at later passages might be an in vitro culture limit as it is believed that older

cells might exhibit a reduced potency.

5.3.2 IDO Gene Expression and Function

The expression of IDO was measured via PCR with untreated samples serving as baseline

controls (Figure 5.7). M2 and M4 cell lines showed a significantly greater increase of gene

expression when compared to M3, this higher gene expression was observed throughout

all passages and tested time points. M2 showed a maximum fold change of 1.4x105 at p3

day 3, and only decreased at passage 7. M4 showed a slightly higher fold expression of
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Figure 5.6: IL-6 production over three passages (p) and three days (D) following culture

in the presence of 10 ng/ml IFN-γ and TNF-α. Individual hMSC lines are shown in blue

(M2), red (M3), and green (M4). Values presented as mean ± SD (n = 6)
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Figure 5.7: hMSC lines after treatment with 10ng/ml TNF-α and 10 ng/ml IFN-γ. Sam-

ples were taken over passages 3 to 7 at days 1, 2 and 3 after culture with cytokines. Bars

indicate fold change (RQ) from untreated controls, error bars show maximum and mini-

mum RQ values. The housekeeping gene was Glyceraldehyde-3-Phosphate Dehydrogenase

(GAPDH) n = 3

1.8x105.

For M3, gene expression was lower, at p3 day 1 being 442 ± 38, while at day 2 and day 3 it

reached the maximum level of 760 ± 82. In contrast, M2 and M4 both reached maximum

gene expressions within the first day.

Along with the gene expression, the enzyme activity of IDO was measured by the pro-

duction of kynurenine. In the first 24 hours of treatment there was little metabolism of

tryptophan (5.96 ± 1.56µM) despite the gene expression suggesting a lag phase between

gene expression and protein function. After 48 hours of treatment, kynurenine was de-

tected indicating enzyme function, with only slightly higher concentration at 72 hours .

Throughout all passages the final concentration of kynurenine was the same showing that

all tryptophan was metabolised.

Next, all the cell lines were assayed for tryptophan to kynurenine metabolism over three
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Figure 5.8: Kynurenine production by three individual hMSC lines over three days (d1-3)

within five passages (p3-7) cultured under defined inflammatory conditions with 10ng/ml

TNF-α and 10 ng/ml IFN-γ. Points represent mean ± SD, n = 3

days throughout the 7 passages (Figure 5.8). Similar patterns were observed in all three

cell lines as there was little to no metabolism of tryptophan over the first 24 hours but

increased over the next 48 hours. M4 cell line showed the fasted response as determined

by the highest initial amount of conversion, but this dropped in the later passages. Similar

patterns in loss of potency were observed with the M2 and M4 cell lines, where at p7 the

rate of conversion was significantly lower, although total kynurenine concentration was

the same after 72 hours. Over the 7 passages, M3 cell line converted less tryptophan than

M2 and M4, but showed a more consistent pattern.
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These results suggested that M2 and M4 cell lines possess a higher inhibitor potential

of T-cell proliferation, as a result of the faster conversion of tryptophan to kynurenine

observed during culture and also due to the final higher amounts of kynurenine produced,

suggesting more efficient depletion of tryptophan. Tryptophan conversion to kynurenine

closely follows that of IDO gene expression with the maximal expression at day 2 that is

retained until day 3. As there was little conversion in the final day, this might indicate

that gene expression does not always give a true representation to function.

5.4 hMSC and CD4+ T-cell Co-Culture

5.4.1 Culture and Expansion of CD4 Cells

The lymphocyte population is comprised of thymus-derived lymphocytes (T-cells), bone-

marrow-derived lymphocytes (B-cells), and natural-killer cells (NK cells). CD4+ and

CD8+ cells make up the majority of the T-cell population. The main purpose of the CD4+

T-cells is to secrete cytokines that activate the adaptive immune system and mediate

its function (Luckheeram et al. 2012). However, in autoimmune cases such as multiple

sclerosis (MS) these cells are thought to promote inflammation by recognising nerve myelin

as ‘foreign’. In other cases such as GvHD following allogeneic tissue transplant, the graft

recognises the host as foreign and targets the host’s cells.

A seminal study by Nicola (2002) showed that hMSCs are able to suppress both CD4 and

CD8 T-cell proliferation and activation in a dose-dependent manner, therefore making

them a potential cell therapy treatment for autoimmune and inflammatory diseases. The

next set of experiments will detail the development of an hMSC:CD4 T-cell co-culture

assay to examine the immunosuppressive function of different hMSCs lines.

To create a working bank of CD4+ T-cells, it was first necessary to expand the number of
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Figure 5.9: Population doubling of suspension CD4 T-cells cultured under static (blue)

or shaker (red) conditions for 12 days. Points represent mean ± SD, n = 8

cells in vitro. Unlike hMSCs, T-cells are grown in suspension and therefore can be cultured

under static, shaker, or spinner flask conditions. In this initial study T-cell expansion was

performed on an orbital shaker in flat bottomed culture plates and compared to standard

static culture. Cell counts were taken every two days over a 12 day culture period.

After 12 days in culture, cells under static conditions reached a population doubling level

of 7.93 ± 0.27 whereas in the shaker conditions reached only 6.23 ± 0.33 population

doublings (Figure 5.9). The circular motion of the orbital shaker caused the cells to

aggregate in the middle of the well, resulting in reduced nutrient/waste transfer and gas

exchange to cells in the centre therefore reducing proliferation.

For the remaining study T-cells were expanded in standard tissue culture flasks.

5.4.2 hMSC Growth Comparison in CD4 and hMSC Medium

For the co-culture experiments both cell types, hMSCs and T-cells cells had to be cultured

in the same complete medium. For this set of experiments T-cell complete medium was
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chosen (see Chapter 2, Materials & Methods, Section 2.5). As hMSCs are not routinely

cultured in RPMI it was necessary to ensure that they can survive, at minimum, over

three days. RPMI was developed specifically for hematopoietic cells and supports growth

of suspension cultured cells, whereas DMEM is a standard basal media for adherent cells

with high concentrations of amino acids and vitamins. In these experiments both were

supplemented with 10% FBS.

hMSCs were cultured in T-cell complete medium for three passages from p3 to p6 (Figure

5.10a). Those in standard complete DMEM (blue) exhibited over double the population

doubling (3.55 ± 0.29) compared to hMSCs cultured in complete RPMI (red) (1.72 ±

0.13). Images taken on the last experimental days showed no obvious morphological

change (Figure 5.10b).

Multicolour flow cytometry revealed cells cultured in T-cell medium showed a significant

increase of both HLA-DR and CD34. expression. HLA-DR expression can be a marker for

a ‘stimulated’ hMSC or one that is primed (Dominici et al. 2006). CD34 expression was

also highly expressed, from 20.3 ± 6.13% to 50.0 ± 6.86%. Although CD34 is a negative

marker for hMSCs previous research has suggested this is due to culture on tissue culture

plastic and the cells may originally express CD34 due to proximity to the vascular niche

(Lin et al. 2012).

5.4.3 Optimising Co-Culture Conditions

Cell Culture Ratios and Length

To investigate the immunosuppressive effects of the selected hMSC lines the ratio of

hMSCs to CD4 T-cells the initial seeding density and time in culture were first examined.

hMSCs were seeded at normal seeding densities (5,000 cells/cm2) and allowed to adhere
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Figure 5.10: hMSC cultured in standard hMSC medium or CD4 medium a) Population

doubling over 3 consecutive passages b) Morphology at day 3; hMSC medium (top image),

CD4 medium (bottom image) c) Multicolour flow cytometry plots; hMSC (top), CD4

(bottom). Graph of percent expression for each marker. Scale bar = 250 µm. Points

represent mean ± SD, n = 6
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overnight. T-cells were added at 1:2, 1:5, 1:10 and 1:20 ratios (hMSCs:CD4 T-cells) and

cultured together for either 3 or 5 days as previously described by Nold et al. (2013),

Glennie et al. (2005), and Ryan et al. (2007)

At the 1:2 ratio the T-cell number was below the accurate limit of detection therefore

any cell count may be erroneous. In the higher co-culture ratios (1:10 and 1:20) the CD4

T-cells proliferated rapidly and caused hMSC death where very few hMSCs could be seen

(Figure 5.11 c and d, black arrows), therefore these ratios were not included in future

experiments.

At the 1:5 ratio, the CD4 T-cells could be accurately counted, the hMSCs remained

viable and there was no significant difference in cell counts between day 3 and day 5.

Ideally when developing a potency assay reducing the overall time would beneficial as

rapid readouts can inform the manufacturing and processing. As there was no difference

between the two culture times, 3 days will be used for the remaining experiments.

hMSC Priming and Pre-treatment

Previous studies by Ryan et al. (2007) and Cuerquis et al. (2014) have shown that pre-

treatment or priming of hMSCs with IFN-γ can increase the immunosuppressive effect by

stimulating the release of other cytokines such as HGF and TGF-β1. As shown in Section

5.2.3, IDO expression can be induced by treating hMSCs with IFN-γ. This priming may

enhance the immunosuppressive function of the hMSCs. Therefore, the cells were primed

with 10ng/ml IFN-γ for 48 hours before the co-culture.

The impact of cyropreservation is widely debated in the current literature. Some reports

have argued that it does not alter the function, whereas others have shown impaired im-

munomodulatory potential following cryopreservation and thawing (François et al. 2012;

Luetzkendorf et al. 2015). To address this, hMSCs were thawed and left in a 37◦C water

bath for 60 minutes to determine if thawing and DMSO toxicity, due to the prolonged
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Figure 5.11: Co-culture of hMSCs with CD4 T-cells a) CD4 T-cell counts when varying the

hMSC:CD4 T-cell co-culture ratios and time lengths (3 days or 5 days). Representative

images at day 3 for b) 1:2 c) 1:5 d) 1:10 and e) 1:20 ratios. Black arrows indicate hMSCs.

Values presented as mean ± SD, n = 6
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exposure, impacted the immunosuppression properties of the selected hMSC lines. In

addition, a human osteosarcoma cell line (HOST85) was also included as an adherent

non-functional control.

Images of the cells in each co-culture condition are shown below in Figure 5.12. Regardless

of the conditions tested, hMSCs exhibited a typical long spindle-like morphology, whereas

the HOST cells exhibited a shorter and denser cell body. CD4 T-cells could be observed

in suspension around the hMSCs, as smaller, rounded clusters.

Figure 5.13 shows the cell counts and kynurenine concentration after 72 hours of co-

culture. hMSCs under either normal conditions, pretreated with IFN-γ or following

DMSO exposure showed the same level of proliferation inhibition (Figure 5.13a). Cell

counts from the HOST85 and CD4 T-cell only control were not significantly different,

demonstrating that the immunosuppression effect is caused by the hMSCs and not due

to the co-culture system employed here or due to the presence of another adherent cell

type.

The kynurenine concentration was also measured (Figure 5.13b). Surprisingly, pre-treatment

of the hMSCs with IFN-γ did not significantly increase the final kynurenine concentra-

tion when compared to the control. In the other conditions tested, hMSC/DMSO, HOST

and CD4 T-cell control, the same amount of kynurenine was produced and it was lower

when compared to the other tests. These findings agree with those previously reported by

François et al. (2012) who found that freshly thawed hMSCs exhibited low levels of IDO

expression and therefore low levels of tryptophan to kynurenine conversion. Even though

the hMSC/DMSO group did not significantly increase the concentration of kynurenine

it did show a reduction of T-cell proliferation suggesting other factors play a role in the

immunosuppression effect of hMSCs.

With current hMSC allogeneic therapies the cells are thawed and delivered directly to

the patient without time for in vitro recovery. The data shown suggests this is a viable
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Figure 5.12: Representative images of pre-treated hMSCs and controls in the co-culture

with CD4 T-cells a) hMSC b) hMSC/IFN c) hMSC/DMSO d) HOST85 e) CD4 only

Scale bar = 250µm
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Figure 5.13: hMSC and CD4 T-cell co-culture pre-treatment screening under normal

conditions, pre-treatment with 10ng/ml IFN-γ, thawed and left in freeze mix (90% FBS,

10% DMSO) for 60 minutes, HOST, and CD4 only control a) CD4 cell counts after 72

hours b) Kynurenine concentration. Values presented as mean ± SD (n = 6)

option as there was no significant difference from the standard cultured hMSCs compared

to the DMSO-exposed hMSCs in terms of CD4 T-cell suppression. However, others have

reports shown that freshly-thawed hMSCs perform worse in a similar T-cell proliferation

assay (François et al. 2012).

Due to the inhibition of proliferation and the high concentration of kynurenine produced,

the remaining experiments will focus on the hMSC only group with no IFN-γ pretreat-

ment.

Taken together, these results showed the optimal assay would be a 3 day co-culture with

a ratio of 1:5 hMSC to CD4 T-cells.
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5.4.4 hMSCs reduce CD4 T-cell proliferation and viability

Next, the co-culture assay was examined using M2, M3, and M4 hMSC lines to assess

donor variability and the effect on hMSC potency.

Figure 5.14 shows the CD4 cell counts following the co-culture. All selected hMSC lines

were able to inhibit the proliferation of CD4 T-cells, with M2 and M3 cell lines showing

the same level of inhibition as seen by the cell count and percent suppression. However,

M4 cell line showed the most suppression (87.2 ± 1.52%) when compared to M2 (76.0 ±

5.74 %) and M3 (67.0 ± 2.51%) lines.

In addition to the proliferation suppression effect, hMSCs can induce apoptosis in ac-

tivated T-cells (Plumas et al. 2005). Therefore, the viability of the CD4 T-cells was

measured by measuring intra-cellular reduced glutathione (GSH). The decrease of GSH

is an early indicator of cell death (Franco and Cidlowski 2012). Figure 5.15 shows a rep-

resentative result where apoptotic cells are in the top half stained by propidium iodide

(PI). Lower right quadrant indicates healthy cells, while low vitality cells are present in

the lower left quadrant. As shown in Figure 5.15, there is an inverse correlation to the

apoptotic cells and healthy cells. However, across all tested conditions, there were statis-

tically insignificant differences in the number of low viability cells. M2 cell line induced

the most cell death with 46.8± 6.0% undergoing apoptosis and 41.2 ± 2.3% healthy cells,

In contrast M4 cell line induced the least CD4 T-cell apoptosis (22.8 ± 6.1%) and showed

70.1± 4.0% healthy cells. This apoptotic effect has been previously reported (Plumas

et al. 2005) and since shown to be partly due to contact-dependent mechanisms such as

the FAS ligand (Akiyama et al. 2012).
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Figure 5.14: CD4 T-cell counts and percent of proliferation suppression following co-

cultures with three hMSC lines. Values presented as mean ± SD (n = 6)
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5.4.5 hMSCs produce kynurenine

In response to the CD4 cells, the hMSCs converted tryptophan into kynurenine via IDO

as seen previously when cultured in the defined inflammatory environment (section 5.2.3).

There was no significant difference in the final kynurenine concentration between the three

hMSC lines (Figure 5.16). As expected there was little to no kynurenine found in the CD4

T-cell only control. The medium used in these experiments (RPMI 1640) contains 25µM

of tryptophan, with a full conversion this would produce an equal amount of kynurenine.

5.5 hMSC and Peripheral Blood Mononuclear Cell

(PBMC) Co-Cultures

The previous section has examined the ability of hMSCs to inhibit proliferation of purified

CD4 T-cells. This next section will investigate if hMSC can affect the phenotype of T-

cells from a mixed population of peripheral blood mononuclear cells (PBMCs). Earlier

reports by Maccario et al. (2005) have shown that hMSCs can specifically inhibit dendritic

cell differentiation whilst favouring T-reg cell activation. More recently, Selmani et al.

(2008) and English et al. (2009) have shown this effect can be attributed to soluble factors

produced by hMSCs such as HLA-G5 and through direct cell-cell contact mechanism.

Regulatory T-cells (T-regs) are a specialised sub-set of CD4 cells that are identified by

their expression of CD25, FoxP3 and CTLA-4 amongst other markers. They were origi-

nally defined as preventing autoimmune diseases, but other functions include maintenance

of self-tolerance and immune homoeostasis by suppressing activation and proliferation of

other immune cells (Sakaguchi et al. 2009). Inducing a differentiated T-reg phenotype

from naive T-cells is one of the other immunomodulatory functions thought to be pos-

sessed by hMSCs.
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5.5.1 PBMC Culture

PBMCs were thawed and cultured for 4 days to examine if proliferation would occur

spontaneously or require the CD3/CD28 DynaBeads as previously with the CD4 T-cell

culture.

Figure 5.17a shows PBMCs cultured with or without CD3/CD28 bead stimulation. Both

contained a mixed population of suspension blood cells including lymphocytes (L) (CD4

and CD8 cells), granulocytes (G) and monocytes (M). After four days in culture the cells

were counted and there was clear proliferation of those cultured with the beads (Figure

5.17b).

The cells were also analysed by flow cytometry, Figure 5.17c shows the initial characterisa-

tion of the cells. The forward and side scatter plots showed typical PBMC characteristics

with clear distinction between the smaller lymphocytes to the larger and more granular

monocytes. Further analysis on the lymphocyte population revealed high CD4 expression

but no expression of CD25 or FoxP3 suggesting that within the unstimulated and naive

state there were no regulatory T cells present.

5.5.2 hMSC and PBMC Co-Culture

As previously with the CD4 T cells, the hMSCs were co-cultured with PBMCs. After 72

hours, the PBMCs were sampled for counting, viability testing and for T-reg induction.

Figure 5.18 shows the cell counts and viability as measured by acridine orange and DAPI

staining. Similarly to the CD4 co-cultures, all the individual hMSC lines were able to

inhibit proliferation of the PBMCs, when compared to controls. There was no difference in

the inhibition between the selected hMSC lines. Viability analysis shows that M4 cell line

induced the most apoptosis (68.23 ± 5.98 % live cells) , whereas the M2 cell line induced
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the least (77.80 ± 1.82% live cells). However, all recorded values were significantly lower

than the PBMC only control.

The next aim of this study was to examine if hMSCs could induce a regulatory T-cell

phenotype following direct co-culture. After the co-culture the PBMCs were harvested

and stained with CD4, CD25 and intracellular FoxP3.

Figure 5.19a shows that hMSCs were able to induce a small population of T-regs from

naive PBMCs as analysed via flow cytometry. The full expression of the CD4/CD25/FoxP3

taken from the upper right quadrant (Q2) is given in Figure 5.19b. No significant dif-

ference between M2 cell line and the control was observed, whereas M3 and M4 cell

lines were able to generate 21.4 ± 5.80% and 15.4 ± 2.43% T-regs respectively. M2 cell

line generated high CD25 positive cells, but only a small number of cells had FoxP3 ex-

pression. This phenotype is indicative of an activated T-cell, but not necessarily a fully

differentiated T-reg (Corthay 2009).

Also, IDO activity by the hMSCs was measured by the concentration of kynurenine present

in the spent medium. Figure 5.20 shows that in all hMSC/PBMC co-cultures there was

full conversion of tryptophan into kynurenine. There was no significant difference found

between each of the selected hMSC lines. In PBMC-only controls there was little to no

conversion. This shows that the inhibition of proliferation by the hMSCs is partly due to

the IDO activity and supports previous findings by Krampera et al. (2006) and Gieseke

et al. (2007).

To summarise, this data shows that bone marrow derived hMSCs possess the potential to

alter the phenotype of naive T-cells into specific regulatory T-cells. Initially, hMSCs can

inhibit proliferation, reflecting the effect seen previously with the purified CD4 T-cells.

This finding was in agreement with previous reports as by Gieseke et al. (2007) and Jones

et al. (2007) who have also described the inhibition of PBMCs with adipose and umbilical

cord-derived hMSCs.
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Moreover, inducing a T-reg phenotype could be considered a standard for the measure-

ment of the immunomodulatory properties of hMSCs. Here, it was shown that M3 and

M4 hMSC lines were able to effectively cause T-reg induction, whereas M2 cell line did

not possess the same potential as it has only induced the expression of CD25 and not

FoxP3. Unlike previous studies, here it was shown that there are marked differences in

the immunomodulatory properties of hMSCs, which were previously determined to have

similar characteristics. Producing a reliable and reproducible immunomodulatory potency

assay could potentially be the key to develop these cell lines for diseases such as GvHD or

ulcerative colitis. It is not sufficient to measure hMSC potency by growth rate or marker

expression, for example. Instead, functional assays that measure the intended in vivo

biological function should be required.

Measuring kynurenine concentration is a quick and simple way to assess hMSC reaction

to an inflammatory environment. However, the data shown here does not indicate any

significant differences between the individual cell lines, unlike what is seen when measur-

ing the T-reg phenotype change. Therefore, given the sensitivity of the flow cytometry

method, it makes it a better choice to determine hMSC potency by determining the

immunomodulation potential.

5.6 Conclusions

The aim of this chapter was to develop an immunomodulatory potency assay that could

measure key known MoAs of hMSCs. This chapter has examined the hMSCs under three

separate inflammatory culture conditions to analyse the response and effect. In order to

reduce inconsistency with co-culture assays, the hMSCs were first cultured in a hostile

environment by the addition of pro-inflammatory cytokines. This allowed for the analysis

of known modulators such as IL-6 secretion, IDO gene expression and tryptophan to

kynurenine conversion. Next, in order to determine if these metrics could be applied
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to measure the immunosuppressive ability of the cells, the selected hMSC lines were co-

cultured with purified CD4 T-cells. Here, it was found that all the hMSC lines could

effectively suppress proliferation and induce apoptosis in the CD4 T cells. In particular,

M4 cell line showed the greatest level of suppression, when compared to M2 and M3 lines.

However, M2 line induced the most cell death. Following this study, the hMSC lines were

then co-cultured with PBMCs to again determine their proliferation suppression ability.

In addition, the PBMCs were further analysed for differentiation into a regulatory T-cell

phenotype. As such, the M3 cell line was found to significantly induce this T-cell subset

when compared to M2.

These assays considered both the effector cells (i.e. hMSCs) and the responder cells

(either CD4 T cells or PBMCs) and examined key mechanistic pathways that are known

to be responsible for their clinical activity. The use of these QC assays take a much needed

step towards standardising potency assays of hMSCs to ensure an effective cell therapy is

delivered.
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Figure 5.15: CD4 T-cell health following co-culture. Top plot shows representative image,

top quadrant indicates propidium iodide (PI) positive cells (dead/apoptotic); lower left

indicates low viability (VB48 low) and lower right indicates healthy cells (low PI, high

VB48). Graph presents CD4 analysis after co-culture with each hMSC line as a percentage

in each quadrant. Values presented as mean ± SD (n = 6)
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Figure 5.16: Kynurenine concentration following hMSC and CD4 T-cell co-culture for

three days. Values presented as mean ± SD (n = 6)
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Figure 5.17: Culture of PBMCs over 4 days. a) No stimulation (top), with CD3/CD28

DynaBead stimulation (bottom). L = Lymphocytes, G = Granulocytes, M = Monocytes,

B = CD3/CD28 DynaBeads. Scale bar = 100µm. b) Cell counts following 4 days of

culture. c) Flow cytometry plots of fresh PBMCs and analysed for the CD4/CD25/FoxP3

T-reg sub-population. Values presented as mean ± SD (n = 3)
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Figure 5.18: Co-culture of PBMCs with hMSCs after 72 hours a) Cell counts b) Viability.

Significance as compared to the PBMC control. Values presented as mean ± SD (n = 6)
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Figure 5.19: Regulatory T-cell phenotype expression from PBMCs following co-culture

with hMSCs. a) Representative flow cytometry plots of CD25 and FoxP3 subgated from

CD4 b) Graph of T-reg full expression phenotype compared to PBMC only control. Values

presented as mean ± SD (n = 4)
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Figure 5.20: IDO activity as measured by kynurenine concentration following 72 hours of

hMSC and PBMC co-culture. Values presented as mean ± SD (n = 6)



Chapter 6

Development of an Angiogenesis

Assay

6.1 Introduction

In 2013, ischaemic heart disease was the leading cause of death in England and Wales

accounting for 15.4% of death in males (ONS 2015). Heart failure following myocardial

infarction (MI) remains one of the leading causes of death and disability worldwide,

while treatment still remains a major challenge for cardiovascular medicine. Reperfusion

therapy is a medical treatment that acts to restore blood flow to the ischaemic tissue and

organs. For large to medium sized vessels an angioplasty or bypass surgery is required, for

smaller sized vessels it may be possible to utilise stem cell treatment to induce angiogenesis

(Williams and Hare 2011). Others have shown growth factors such as vascular endothelial

growth factor (VEGF) and placental growth factor (PIGF) can also induce small vessel

angiogenesis (Luttun et al. 2002).

Angiogenesis, or neo-angiogenesis, is the formation of blood vessels from existing vascu-

lature or creation of new vasculature. It is a key stage in embryo development, growth,

146
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and wound healing in adult life. Wound healing occurs as part of the repair and regen-

eration mechanism after injury to aid removal of dead cells and restore blood flow to the

surrounding tissue. The process of angiogenesis involves endothelial cells invading a fibrin

wound clot and reorganising into a microvascular network throughout the tissue. This

dynamic interaction occurs due to angiogenic cytokines such as fibroblast growth factor

(FGF), VEGF, and angiopoietin released by activated macrophages and endothelial cells

(Tonnesen, Feng, and Clark 2000).

In vitro hMSC are able to induce endothelial tube formation due to the broad range of

cytokines they release into the local area (Bronckaers et al. 2014). In addition, delivery of

hMSC conditioned medium has been shown to improve blood flow and function in murine

hind limb ischaemia (Deuse et al. 2009; Lee et al. 2013). Therefore, investigating the

secretome will be essential to determine the molecular mechanisms through which hMSCs

exert their pro-angiogenic effect. It is likely that they release multiple cytokines, therefore

identifying the factors that relate to efficient angiogenesis will be crucial to developing

in-line quality control checks during hMSC manufacturing.

There are a number of assays that can be used to determine angiogenic potential (de-

scribed in Chapter 1 Section 1.6.3). The most reproducible in vitro assay is the HU-

VEC/endothelial tube formation assay and will be used in this chapter (Auerbach et al.

2003). By seeding a known number of cells onto a basement membrane matrix, the spon-

taneous formation of capillary or tube-like structures can be observed. By allowing the

tubes to form on a two-dimensional surface, the level of angiogenesis can be quantified us-

ing computer based image analysis and allows for high-throughput screening. Therefore,

this assay will be utilised in this chapter as it is suitable in a bioprocess and manufac-

turing environment. Researchers using this method typically choose an endpoint between

16-24 hours, however as tube formation is a dynamic process occurring over short time

period it is possible that key time points are missed (Dao et al. 2013; Bara et al. 2015).

To overcome this problem time lapse imaging will be used to record the full formation
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and degradation of the tubule structures.

The objectives of this chapter were:

• Verify and consistently perform an in vitro angiogenesis assay

• Compare and evaluate analysis software

• Investigate the use of hMSC-conditioned medium to enhance angiogenesis and com-

pare different donor lines

• Screen and quantify known pro-angiogenic cytokines produced by hMSCs

6.2 Establishing Critical HUVEC Tube Formation

Parameters and Analysis

The most specific in vitro assessment for angiogenesis is the measurement of endothelial

cells to form three-dimensional tube structures (Auerbach et al. 2003). Human umbilical

vein endothelial cells (HUVECs) are cells isolated from the endothelium of veins from the

umbilical cord and they are typically used in wound healing, angiogenesis, and migration

assays (Vailhé, Vittet, and Feige 2001). For this set of experiments pooled multiple donor

HUVECs were purchased at p0 and plated onto standard tissue culture treated plastic

for 7 days. They exhibited small, rounded cobblestone/endothelial-like morphology from

thaw until confluent and cryopreservation (Fig. 6.1).

6.2.1 Inducing HUVEC Tube Formation

Under the correct conditions HUVECs can undergo extensive morphological changes from

a flat monolayer to form high organised, three dimensional tube/capillary-like structures
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Figure 6.1: Representative images of HUVECs from initial thaw and seeding for 96 hours.

Scale bar = 250µm
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Figure 6.2: Example of HUVEC analysis following tube formation. a) Raw image with

nodes (red circle), branches (blue arrow) and extremities (green arrow). b) The same

image following ImageJ processing overlaid with the analysis skeleton. Scale bar = 250µm

thus mimicking angiogenesis in vitro. The extent of angiogenesis can be determined by

a number of different characteristics (Staton, Reed, and Brown 2009; Arnaoutova and

Kleinman 2010). Nodes are the central branching point from which branches sprout,

branches (and their total length) are the tubes connecting between nodes, and extremities

are branches that connect to only one node (Figure 6.2). Branch and node analysis

methods are detailed later in Section 6.2.3.

Positive differentiation of HUVECs into tubules was performed with Medium 200PRF

on a GelTrex basement membrane layer, Figure 6.3 shows the formation of tubules after

24 hours. Tube formation was observed only in the GelTrex coated wells that contained

either Medium 200PRF (Positive Control) or hMSC conditioned medium (hMSC-CM)

(Figure 6.3a and b). No significant difference was found in the number of nodes from the

two conditions, 35.25 ± 5.68 and 47.50 ± 6.36 (p = 0.05) respectively. Similarly, the total

branching length did not show any significant difference 2320 ± 213px and 2803 ± 734px.

However, the total number of branches was found to be significantly different than the

positive control at 10 ± 1 and hMSC-CM at 39 ± 2.
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There was no observed tube or node formation when HUVECs were seeded without a

GelTrex layer with hMSC-CM. Cells in these conditions retained their undifferentiated

cobblestone-like appearance (Figure 6.3c). Finally, a negative control was also included

by the addition of 30µM of suramin, an anti-angiogenic compound and as expected there

was no tube formation (Fig 6.3d).

To conclude, in order for HUVECs to initiate tube formation a basement membrane is

required and the efficiency was found to be enhanced by the use of hMSC-CM. However,

use of hMSC-CM alone was not sufficient to cause tube formation.

6.2.2 Optimising Basement Matrix Choice

Previous studies have used various coatings, including GelTrex and growth factor reduced

Matrigel, to induce HUVEC tube formation (Faulkner et al. 2014; Kwon et al. 2014). Both

matrices contain purified extra-cellular proteins from the Engelbreth-Holm-Swarm (EHS)

tumour. The major components of these matrices include laminin, collagen IV, entactin,

and heparin sulphate proteoglycan. The main role is in the physical support and com-

partmentalisation of tissue. Specifically for angiogenesis it supports the role in cell/tissue

organisation as it affects cell adhesion, migration and proliferation (Grant et al. 1994).

Previous studies have also shown that gelatin hydrogels can support the implantation and

survival of cardiomyocytes in myocardial infarction mouse models (Dreesmann, Ahlers,

and Schlosshauer 2007; Nakajima et al. 2015). Gelatin was therefore included in the

screening test to assess if it could promote angiogenesis. The basement membrane layers

were prepared as described in Chapter 2 Section 2.14.4.

At 6 hours of formation the cells were fixed, imaged, and analysed. GelTrex 100% was

found to be the most potent inducer of angiogenesis (Figure 6.4a) Left image and b) Blue

bar) with 41 ± 19 nodes and 16969 ± 6750 px of branching length. The dilutions of

GelTrex (75% and 50%) also showed node and tube formation however at a much lower
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Figure 6.3: Critical parameters for HUVEC tube formation a) Positive control with Gel-

Trex b) GelTrex and hMSC conditioned medium c) HUVEC and hMSC conditioned

medium only d) Negative control by the addition of 30µM Suramin e) Graphs from anal-

ysed images. Values presented as mean ± SD (n = 4). Scale bar = 250µm.
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Figure 6.4: Basement membrane coatings for HUVEC tube formation a) Representative

images for 100% GelTrex, 2% Gelatin, and Matrigel Layer. Regions of interest are shown

in red boxes, branches in green. b) Graphs of number of nodes and branching length

taken after 6 hours of formation. Values presented as mean ± SD (n = 3). Scale bar =

400µm.

efficiency. Both Matrigel preparations had similar branching lengths and nodes.

Gelatin was the worst performer at all concentrations demonstrating 2-3 nodes per field

of view and 3386 ± 1421 px branching length. Previous studies that used gelatin to

induce HUVEC tube formation also incorporated VEGF into the hydrogels to induce

angiogenesis (Del Gaudio et al. 2013; Li et al. 2015). This may explain the lack of tubes

formed from these preparations of gelatin.

To study HUVEC tube formation a relatively large volume of basement membrane is

required, typically around 50µl/cm2. As well as increasing the overall cost per assay,

thicker gel preparations can lead to uneven surfaces making image analysis more prob-
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Table 6.1: Cost of each surface matrix/basement membrane per cm2 for the HUVEC tube

formation assay

Surface Matrix Volume per cm2 (µl) Cost per ml (£) Total cost per cm2 (£)

GelTrex 100% 50 23.18 1.16

GelTrex 75% 37.5 23.18 0.87

GelTrex 50% 25 23.18 0.58

Gelatin 2% 50 0.38 0.02

Gelatin 1% 37.5 0.38 0.01

Gelatin 0.5% 25 0.38 0.01

Matrigel Layer 50 43.95 2.20

Matrigel Coating 1.22 43.95 0.54

lematic. Table 6.1 outlines the cost for each matrix preparation per cm2. For bioprocess

and quality control assays the ease of use, reproducibility, throughput, and total cost per

test will play a factor in deciding its usability.

Overall the Matrigel layer preparation was the most expensive at £2.20 per cm2 whereas

as the gelatin solution was the cheapest at £0.01 per cm2. GelTrex 100% represented a

middle price point with the maximum cost at £1.16 per cm2.

Due to the best tube formation efficacy resulting from the GelTrex at 100% and being

more cost effective than both the Matrigel Layer and Coating methods, GelTrex was

selected to be used for further experiments.

6.2.3 Analysing HUVEC tube formation

In this chapter, the level of angiogenesis was determined by the efficiency of tube formation

in HUVECs. The interpretation of this assay was quantified by software packages that

could determine key angiogenic characteristics. ImageJ is an open-source image analysis
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software with the ability for users to develop specific plugins to fulfil specific requirements

(Schneider, Rasband, and Eliceiri 2012). For part of this work an Angiogenesis Analyser

plugin was used in conjunction with ImageJ (Chevalier et al. 2014).

For time-lapse culture, images were analysed using a custom recipe (macro) developed for

the Nikon CL-Quant software. Both ImageJ and CL-Quant software packages were able

to output nodes (branching points), number of branches, and branching length. These

outputs are shown in Figure 6.5a. The left image shows the original image overlaid with

the analysed skeleton or outline. The middle image shows the skeleton only with the

background removed. The right image shows an enlarged section of the skeleton, for each

of the numbered triangles, annotation ”1” indicates an extremity branch, connected to

one node only, ”2” depicts a full mesh loop, while ”3” shows a branch connected between

two separate nodes and ”4” shows a node. Each image was analysed individually and the

results were collated over the time points.

As both software packages were used in conjunction they were compared to determine if

there were any significant differences from the outputs. For this, a sample of 125 images

were randomly selected and processed. The number of nodes and total tube length were

plotted. Figure 6.5b shows a linear regression plot for the number of nodes while Figure

6.5c shows a plot for the branching length. The r2 value was 0.965 for the number of

nodes and 0.957 for branching length. Therefore, as both software packages gave the

same output within a 95% confidence interval, it was concluded that both can be used

alongside each other with confidence.

In all experiments the formation and degradation of the tubes were imaged every 20 min-

utes for 24 hours. By using a live-imaging system it was possible to follow the formation

and degradation of the tubes over this time. Figure 6.6 shows a representative point in a

well of HUVECs undergoing tube formation. The cells rapidly organised between 0 to 1.5

hours of seeding to form connecting networks of tubes. This effect continued for a further

4.5 hours. After approximately 6 hours the mesh network began to degrade and there
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Figure 6.5: Comparative analysis of ImageJ Angiogenesis Analyzer plugin and CL-Quant

software a) Analysis of the same image, left shows the original with overlay, middle shows

the skeleton map, right displays a section of the image 1. extremity branch, 2. mesh loop,

3. branch between two nodes, 4. nodes. Regression plots of 125 images for b) Nodes and

c) Branching length
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were fewer branches and nodes. The slow degradation continued until 20 hours where

there were only a few remaining branches observed.
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marked in blue and nodes marked in purple. Scale bar = 400µm
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Once all images were collected they were then analysed via the CL-Quant software and

plotted to show nodes or branching length. Figure 6.7 shows the plots of nodes (top) and

branching length (bottom) for HUVEC tube formation from the M2 and M3 cell lines

conditioned medium. The highest value for node or branch length at the time point is

shown by either a dashed line (M3) or dotted line (M4).

For the M2 cell line, the number of nodes increased to 192 at 420 minutes, while for the

M3 cell line the maximum nodes was 87 at 320 minutes. Similarly for branching length,

the maximum shown by M2 was 8034 px at 400 minutes compared to M3 which gave a

maximum of only 4679 px at 300 minutes. From the maximum value and time the rate

of node/branch formation can be given by the following equations:

Rateofnodeformation =
Nodesstart −Nodesend

Timeminutes
(6.1)

Rateofbranchformation =
BranchLengthstart −BranchLengthend

Timeminutes
(6.2)

From the example given in Figure 6.7, M3 cell line exhibited a node formation rate of

0.46 nodes/min whereas M4 cell line had a rate of 0.27 nodes/min. Likewise for branch

length formation M3 had a rate of 20 px/min while M4 had a rate of 15.6 px/min.

In a similar manner the rate of degradation can also be calculated. For this the difference

between the value at the maximum point and at the end of 24 hours was divided over the

time. As such, it was found that the node degradation for M3 and M4 were -0.1 nodes/min

and -0.05 nodes/min respectively. Branch degradation was similar in both lines at -2.27

px/min and -2.26 px/min respectively. However, as M3 had a higher starting value for

nodes and branches the final values at the end of 24 hours were still higher than those

of M4. Due to the differences of the starting value, comparing the degradation rate does

not give a clear indication to the angiogenic potency but to the stability of the nodes and

branches. This may correlate to in vivo stability however further investigation is required.

As both values start at zero then comparing the formation rate up to the highest point
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Figure 6.7: Example from a single sample showing rate of node formation from M3 (blue)

and M4 (red) conditioned medium. Dashed lines show the maximum observed value from

M3 cell line, dotted line from M4 cell line.
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Figure 6.8: Correlation of branching length (px) to number of nodes. r2 = 0.80. Sample

of 375 images.

will be more indicative of potency, therefore for the remaining work the rate of formation

will also be given.

Nodes represent the origin for branch formation, therefore as more nodes are formed

the number of branches should increase and thus the total branching length should also

increase. To test this theory a sample of 375 images were taken at peak formation, between

5 to 7 hours, and branch length was plotted against the number of nodes (Figure 6.8).

The r2 value was 0.80, suggesting a moderately good correlation between the number

of nodes and branching length. As both are important characteristics of angiogenesis

and the mostly widely described in the literature, both aspects will be reported here

(Bahramsoltani et al. 2009; DeCicco-Skinner et al. 2014). Other characteristics include

mesh area (a loop of connecting networks of branches) and segments, however, these

parameters are both dependent on nodes and branches.

Previous studies that have reported a similar assay to determine angiogenesis have anal-
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ysed the cells after 12 hours (Shen et al. 2015), 16 hours (Hoch et al. 2012), or 24 hours

(Bara et al. 2015). According to the results shown here, these time points will not be

suitable as most of the branches would have degraded by then and any experimental dif-

ferences would not be as pronounced. By examining the cells throughout formation it has

been possible to gather a greater depth of data than previously reported and allowed for

optimisation of the assay.

This study has also highlighted that the maximum formation time was approximately

5 to 6 hours following seeding makes this a rapid assay to determine hMSC angiogenic

potency, an advantage previously discussed in Chapter 1.

6.2.4 Serum Free and Hypoxic Pre-Conditioning of hMSCs

hMSCs are generally cultured under ’normoxic’ oxygen conditions (21% O2 and 5% CO2).

However, in vivo the cells exist within a physiological perivascular niche and are subjected

to a much lower (2-8% O2) concentration that is thought to maintain the hMSCs in an

undifferentiated state (Mohyeldin, Garzón-Muvdi, and Hinojosa 2010). Previous studies

have shown that hypoxic pre-conditioning and culture of adipose-derived hMSCs were

able to enhance the angiogenic potential by increased secretion of VEGF and other pro-

angiogenic cytokines (Liu et al. 2013). Therefore investigations were undertaken to de-

termine if hypoxic culture (5% O2, 5% CO2, supplemented with nitrogen) could enhance

the angiogenic potency of bone-marrow derived hMSCs.

Serum is classically used in protein expression systems such as Chinese Hamster Ovary

(CHO) cells and HEK 293 for maintenance and expansion. For protein production and pu-

rification the medium is then switched to serum-free formulations for ease of downstream

purification. It was therefore tested to determine if culturing hMSCs without serum in

basal medium could alter angiogenesis by increasing the secretion of pro-angiogenic cy-

tokines/proteins.
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hMSCs were cultured under either normoxic or hypoxic conditions in medium with or

without serum for two consecutive passages. During the second passage the medium was

harvested at 48 hours post exchange. The conditioned medium was then used to induce

HUVEC tube formation.

Tube formation was tracked by imaging the cells every 20 minutes for 24 hours (Figure

6.9a and b) and analysed using the Angiogenesis Analyser plugin for Image J. Normoxic

conditions were found to induce the highest number of nodes over time. The maximum

number of nodes was 248 ± 37.61 and the branching length was found to be 10725 ± 541.2

px at 5 hours (300 minutes) (Figure 6.9c and d, blue bars). This finding also correlated

to having the longest total branching length throughout the culture when compared to

the other conditions. For node formation both the serum-free oxygen conditions showed

the same number throughout (shown in green and purple) with no significant difference.

However, the overall branching length was significantly longer in the normoxic condition

(6213 ± 625.2px) at 5 hours when compared to hypoxic (1469 ± 339.1px). On the other

hand, hypoxic serum-free conditions showed the shortest branching length, but was not

found to be significantly different when serum was introduced.

The worst overall performing condition was seen with the hypoxic culture with serum.

Node formation did not exceed the value of 45 and the branching length was the shortest

(Figure 6.9a and c, red).

The serum-free media that was used in these studies comprised of DMEM supplemented

with Ultra-Glutamine and without the addition of FBS. However, this formulation is not

ideal for growth or expansion of hMSCs. Therefore, other fully defined serum-free media,

such as StemPro MSC SFM (Invitrogen) or Mesencult-XF (StemCell Technologies) should

be considered instead (Jung et al. 2012).

Taken together, these results showed that conditioned medium from standard culture

conditions of hMSCs in normoxic culture with serum-containing media enabled HUVECs
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Figure 6.9: Node and total branching length from hMSC conditioned media cultured

in normoxic (20% atmospheric O2, blue), hypoxic (5% atmospheric O2, red), normoxic

(serum free) (green), and hypoxic (serum free) (purple) conditions. a) Number of nodes

b) Total branching length c) Number of nodes at 5 hours of formation d) Total branching

length at 5 hours of formation. All graph values presented as mean ± SEM (n = 4)
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to effectively form tubules and retain them over time. The formation period was also

recorded over 24 hours as the peak time may differ and imaging after 12 hours did not

give a clear representation of the angiogenic properties of hMSC-CM (Figure 6.9a). Other

culture parameters such as serum removal and low oxygen adversely affected the angio-

genic potency of the hMSCs so will not be considered in the remaining experiments,

however further studies are needed to fully explore these conditions.

The next experiments investigated the potency differences from the individual hMSC

lines as previously done in Chapter 5. The in vitro age in terms of passage was also

examined to determine if the potency changed as passage ages increased. As a result of

the optimisation experiments performed, the following conditions were selected to be used

further:

• GelTrex layer coating at 100%

• hMSC-CM from 48 hours of culture in normal conditions i.e. with serum at normoxic

O2 conditions

• HUVECs allowed to form for 24 hours and analysed via Nikon CL-Quant software

6.3 Angiogenic Properties of hMSCs

Following the optimisation of the assay parameters the angiogenic potency of the indi-

vidual hMSCs lines was investigated. Conditioned media from M2, M3 and M4 cell lines

between passage 3 to 7 was collected after 48 hours and stored at -20◦C until use. By

examining multiple lines across the in vitro age it may be possible to determine if there

are differences in the angiogenic potency and if this changes with time in culture.

Figure 6.10 shows representative images of HUVEC tube formation at 6 hours following

seeding. The analysis skeleton is overlaid over the original image. Clear differences in
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Figure 6.10: Visual comparison of HUVEC tube formation at 6 hours using hMSC con-

ditioned medium from M2, M3, and M4. Top row: raw images; bottom row: analysis

overlay

the angiogenic potency between the hMSC lines was observed. M3 cell line showed the

most node appearance (purple dots) and the most number of connecting branches (yellow

lines), thus giving a higher overall branching length. This also resulted in the largest

mesh area shown in blue. Comparatively, M4 cell line showed the fewest number of nodes

and branches, due to the lack of connecting points it displayed the most extremities and

isolated branches, highlighted in dark blue.

The clear differences between the hMSCs lines warranted further investigation, therefore,

the formation and degradation of HUVEC tubes were analysed over 24 hours using time

lapse (Figure 6.12). Each graph represents an individual hMSC line with p3 (purple), p4

(blue), p5 (red), p6 (green) and p7 (orange) plotted as three separate lines. The top row

shows the number of nodes, and the bottom row shows the total branching length. Some

points at the start were omitted as they produced erroneous results.
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M2 produced a maximum of 145 ± 14 nodes at p3, which increased at p4 and p5 where

it produced a maximum of 562 ± 107 and 387 ± 70 nodes respectively. At p6 there was

a significant reduction in the number of nodes with a maximum of 177 ± 21. Very few

nodes were observed at p7 with an average of 7 nodes over 24 hours. A similar behaviour

was also observed across all three hMSC lines employed. As such, M3 demonstrated

the highest number of nodes at p4 with a maximum of 838 ± 177 at 420 minutes. A

high number of nodes was also observed at p5 (820 ± 43) with the maximum number

occurring early at 240 minutes. However, M4 produced the fewest number of nodes across

all passages with the highest reaching 393 ± 33 at p4.

Similar patterns were seen in the total branching length where earlier passages showed

longer tubes (Figure 6.11 bottom row). Across the passages, M2 showed similar tube

lengths with the only significant difference at their maximum point between p4 (2.26x105

± 3.61x103 px) and p6 (1.22x105 ± 2.50x103 px) at 440 minutes.

M3 showed the longest tube formation at p4 with a length of 2.88x105 ± 2.58x103 px,

however it reduced over the next passages. Similarly to the nodes, M4 shows lower,

consistent branching length across all passages (1.74x105 ± 1.5x104 px) except for p7

where the maximum observed length was 4.31x104 ± 1.2x102 px.
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Figure 6.11: Comparison of number of nodes (top row) and total branching length (bottom row) over 24 hours (1440 minutes) for each

hMSC line over 5 consecutive passages. Each line indicates a different passage. Values reported as mean ± SEM (n = 4)
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Next, the plots were grouped on the basis of passage number to assess a comparison of the

three different cells lines selected at the same time points. Figure 6.12 shows the same data

but grouped based on passage number. At p3, M2 and M3 cell lines showed similar node

formation characteristics were the same as the unconditioned medium control. However,

M4 cell line developed fewer nodes when compared to the other lines. The branching

length at p3 was the same for all conditions and not statistically different.

At p4 and p5, the differences were more apparent. M3 developed the most nodes and

had the longer total branching length, which were significantly higher than M4 and the

control. At p6, the loss of angiogenic potency was noticeable as all conditions produced

fewer nodes and shorter total branches, when compared to p4 or p5. Finally, at p7, all

the hMSC lines showed poor angiogenic potency as the maximum number of nodes and

branching length were less than the control.

As before in Figure 6.7, the rate of node and tube formation was calculated per passage

from zero minutes until the maximum value was reached (Figure 6.13). Node formation

gives a clear indication to the differences in potency. At p4, M2 and M4 had the same

node formation rate, 1.32 ± 0.40 nodes/min and 1.00 ± 0.28 nodes/min respectively. In

contrast, M3 showed the fast rate at 2.40 ± 0.50 nodes/min. At p5, the rate for M4

decreases to 0.7 ± 0.11 nodes/min whereas M2 and M3 continued to show the same rates

as before.

However, the differences in branch formation rate is less clear with significant differences

only seen with M3 at p5 when compared to M2 and M4. The node and branching

formation rate was the same for all lines at passages 6 and 7.

This assay offers the ability to determine the efficiency and rate of in vitro angiogenesis,

and it is not possible with in vivo assays. Whilst not simulating the complete process,

it demonstrates two main steps: the migration and the potential to differentiate into

endothelial tubes. The data described here shows the potency of hMSC conditioned
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Figure 6.12: Number of nodes (left column) and total branching length (right column)

for each passage. Each line represents a different hMSC line, M2 (blue), M3 (red), and

M4 (green). Values reported as mean ± SEM (n = 4)
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Figure 6.13: Rate of node and branch formation for hMSC lines. Values reported as mean

± SD (n = 4)

media to induce this effect. By using only spent/conditioned media to measure angiogenic

potency, there is no requirement to harvest any cells. For a bioprocess this is an advantage

as it is a non-invasive procedure that does not lose any product.

Significant differences were found not only between cell lines but also over multiple pas-

sages. M3 was found to be the most effective at inducing node formation at p4 and p5.

This also correlated to the longest overall tube length, and is reflected in Figure 6.13

showing the higher rates during these passages.

Passage, or in vitro age, had the most profound effect on angiogenic potency. In all cases,

later passages (p6 and p7) showed a significant reduction in the total number of nodes

and branching length along with a reduction in formation rate. This decline in potency,

and ultimately quality, suggests that for a more effective cell therapy, hMSCs at lower

passages (p4 - 5) should be used.
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6.4 Screening of Pro-Angiogenic Cytokines Produced

by hMSCs

As conditioned medium from the hMSC lines was able to enhance angiogenesis in HUVECs

there must be secreted products/cytokines present in the medium that causes this action.

There is a growing body of evidence that transplanted hMSCs are able to produce soluble

factors that contribute to cardiac repair and regeneration is one of the proteins of interest.

(Gnecchi et al. 2008).

Next, known angiogenic proteins were screened and analysed using Luminex MAGPIX

technology. VEGF, a potent mediator of angiogenesis which is know to induce growth of

blood vessels and stimulate migration of endothelial cells (Ferrara, Gerber, and LeCouter

2003). Another protein of interest is hepatocyte growth factor (HGF), a regulator of cell

growth, motility and morphogenesis, it was first identified as a mitogen for hepatocytes

(Nakamura and Mizuno 2010). More recently, the specific receptor, c-met, was found

on cardiac myocytes and studies have demonstrated its therapeutic use in treatment of

cardiovascular diseases (Morishita et al. 2004). IL-8 is another member of the chemokine

family and can induce endothelial cell proliferation and tube formation. It is also included

one of the three cytokines in the Athersys Multistem QC tests for stroke treatment (Li et

al. 2003; Lehman et al. 2012). Fibroblast growth factor (FGF), is acts in a similar way to

VEGF by binding to tyrosine kinase receptors and mediating proliferation, migration and

differentiation of endothelial cells. VEGF and FGF together act synergistically to promote

angiogenesis (Cross and Claesson-Welsh 2001; Kano et al. 2005). Platelet derived growth

factor (PDGF) is mitogenic in early developmental stages, while later in development it

is involved in tissue remodelling for angiogenesis (Andrae, Gallini, and Betsholtz 2008).

The same multi-passage hMSC conditioned medium used to induce tube formation was

used for this analysis. Results of the cytokine screen are shown in Figure 6.14, where the

total concentration per ml is shown on the left and normalised per cell value is shown on
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the right.

VEGF was the most highly secreted cytokine by all hMSC lines ranging from a total

concentration of 329 ± 96.2pg/ml (M3 p3) to 647 ± 5.85 (M3 p6). The per cell production

of VEGF remained constant over the passages by all cell lines with M3 only significantly

higher at passages 4 and 7. Hung et al. (2007) reported concentrations between 250 -

100 pg/ml in cells cultured under normoxic conditions, but with an increase to 600 pg/ml

when cultured in hypoxic conditions, which more closely reflects what is seen here. Kwon

et al. (2014) reported VEGF concentrations from 336 - 428 pg/ml, slightly lower than the

concentrations reported here. Through immunodepletion and re-addition, Lehman et al.

(2012) found the minimum concentration of VEGF required for tube formation to be 34

pg/ml, much lower than the observed value here.

HGF was only found to be produced by M3 mostly during passages 3 to 5. The highest

concentration occurred at passage 4 with 142.9 ± 4.16 pg/ml or 1.82 ± 0.00047 fg/cell.

At passages 6 and 7 the concentration decreased to 27.1 ± 2.13 fg/cell and 15.4 ±1.51

fg/cell. On the other hand, M2 and M4 did not show any production of HGF throughout

the experimental passages. This suggests that HGF secretion maybe donor specific, how-

ever Kwon et al. (2014) found concentrations ranging from 169 - 283 pg/ml across three

hMSC donors. Furthermore, the production of HGF also correlated to the improved an-

giogenic potency as seen in Figure 6.11 suggesting that HGF may enhance potency alone

or synergistically with another cytokine. Indeed, a previous study by Xin et al. (2001)

found that the addition of both HGF and VEGF improved angiogenesis when compared

to either growth factor alone.

M2 showed a steady decrease of IL-8 production from passage 3 to 7 in both the total and

per cell concentration. On a per cell level, M3 produced the most throughout culture.

Regardless of cell line, there was an increased production of IL-8 at passage 5. Similar to

the results found here, Chen et al. (2014) found IL-8 at 240 pg/ml in conditioned medium

and found an increase to 320 pg/ml when cultured in hypoxic conditions. As before,
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Figure 6.14: Cytokine screening results from hMSC lines: M2 (Blue), M3 (Red), and M4

(Green) from passage 3 to 7. Left column shows protein concentration in pg/ml, right

column are results normalised to per cell. Values presented as mean ± SD (n = 4)
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Lehman et al. (2012) found 112 pg/ml of IL-8 was the minimum concentration to induce

tube formation. Along with VEGF and IL-8 these three cytokines form part of a surrogate

potency assay that must be met for a pass/fail lot release of Athersys MultiStem MAPC

product (Chapter 1, Section 1.6).

FGF was produced most consistently and equally by all hMSC lines throughout all culture

points. At passage 3, the total concentration was not significantly different by M2 (107.9

± 1.59 pg/ml), M3 (105.3 ± 2.47 pg/ml) or M4 (105.28 ± 0.933 pg/ml). There was a

steady loss of overall total production over the passages at a rate of 2.77 ± 0.09 pg/passage

seen across all three hMSC lines. When taken on a per cell basis the concentration remains

steady throughout (1 - 2 fg/cell). The decline of total FGF was possibly due to the slower

proliferation rate of cells at higher passages.

Finally, the concentration of PDGF was also measured. It was found that this cytokine

was the lowest measured cytokine regardless of the cell line or passage number, ranging

from 2 to 5 pg/ml. However, these values were registered below the lower limit of detection

and any signal may be erroneous.

By using a high content screening technique, it was possible to compare the proangio-

genic secretome from multiple hMSC lines. The results shown here were in agreement

with previously published reports and identified HGF as a novel important factor that

contributes to the angiogenic potency and further investigation is warranted. As pos-

tulated by Lehman et al. (2012), defining a panel of key angiogenic factors that could

be measured in-line with manufacturing, will ensure the quality of the product is not

adversely affected.

On the other hand, analysis of the hMSC secretome provides a non-destructive and re-

producible method that could be applied for quality control and product manufacturing.

Although the main clinical efficacy is attributed to the released cytokines it has also been

shown that hMSCs could provide therapeutic effects through direct cell-cell interactions
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and may warrant future investigations (Carrion et al. 2013; Pedersen et al. 2013).

6.5 Conclusions

The overall aims of this chapter was to develop a high-throughput assay to examine the

angiogenic potency of hMSCs by using a HUVEC tube (vessel) formation method.

The first aims of this chapter was to evaluate the assay parameter and optimise the

hMSC conditioned medium protocol. Initial experiments found that a basement mem-

brane layer was required for HUVEC tube formation and it was enhanced in the presence

of hMSC-CM. Further comparisons of basement membranes found GelTrex to be superior

to another widely used alternative, Matrigel. Different conditioning protocols of hM-

SCs found regular culture conditions to be more effective than 20% dO2 and serum-free

cultures.

High-throughput technologies have emerged as a promising tool for basic and clinical in-

vestigations. Combining the Nikon Biostation CT and CL-Quant software provided an

automated and accurate methodology to determine HUVEC tube formation from multi-

ple hMSC line conditioned media. Novel data was thus generated for the formation and

degradation of the HUVEC tube formation. Unlike previously described reports where the

endothelial tube formation was only measured after 12-24 hours, this chapter highlights

that at these time points the key metrics of nodes and branches have passed the optimal

range and have noticeably degraded and thus are not as accurate as the methodology de-

scribed here. The work here shows that the optimal time for observation is approximately

6 hours after seeding.

Next, conditioned medium from three individual hMSC donor lines were examined. It

was found that M3, previously a poorer performing line in terms of growth rate (Chapter

3), was the best inducer of HUVEC tube formation when compared to the other tested
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lines, M2 and M4. Further cytokine analysis revealed all lines secreted similar amounts of

known pro-angiogenic cytokines except for M3 that produced HGF between passage 3 and

6. This correlated to the higher node and longer tube formation during these passages,

therefore HGF may be an indicator of enhanced angiogenic potential.

High-content screening of the various cytokines has suggested HGF may be a key surrogate

potency marker for angiogenesis due to its correlation to node formation. Likewise, VEGF

was highly expressed throughout and is a known inducer of angiogenesis. In order to fully

investigate the relationship of these proteins to the angiogenic potential of the hMSCs

either knock-out or neutralisation antibody experiments could be performed to determine

the key cytokines.



Chapter 7

Summary & Future Work

7.1 Summary

Cell therapy and regenerative medicine is the next significant development that will rev-

olutionise modern healthcare. hMSCs are likely to play a large role in this success due to

their proliferative potential and many areas of therapeutic application. With many late-

stage clinical trials and treatments already taking place it is imperative the cells being

administered are efficacious and will produce the desired outcome. Therefore, the aim

of this thesis was to fully characterise multiple hMSCs lines then develop standardised

potency assays that reflect the in vivo MoA.

Five individual donor hMSCs were isolated, expanded and characterised. Isolation was

performed using their tissue culture plastic adherence properties and was successful in

all five donors. From recent publications indicating a specific hMSC marker, isolation

was also attempted using the low-affinity nerve growth factor receptor, CD271. However,

after separation and flow cytometry analysis on thawed PBMCs there was no evidence of

this marker on the samples tested here.
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Next, more detailed characterisation was performed. Following isolation, the growth

rate over five consecutive passages were compared. Here, M2 and M4 demonstrated a

significantly higher growth rate when compared to the other three lines, when extrapolated

and compared to current allogeneic therapies there were clear significant advantages of

choosing a faster growing hMSC line due to the reduced number of days in continuous

culture for a full treatment dose. Unsurprisingly, the faster growing lines also had greater

glucose demands whilst also producing more metabolic waste products including lactate

and ammonia. However, with the culture and medium exchange regime used in these

experiments glucose or lactate concentrations did not approach inhibitory levels.

In accordance with the minimal criteria set by the ISCT to define an hMSC, tri-lineage

differentiation into the adipogenic, osteogenic and chondroblast lineages was performed

along with analysis of the canonical extracellular surface markers using a multiparameter

flow cytometry technique developed in Chapter 4. All five hMSC were able to meet the

minimal criteria. Table 7.1 summaries these characteristics.

Confirming cell identity/purity is a critical step for cell therapy regulations. Chapter

4 describes the method development of a multiparameter flow cytometry assay using

the extracellular cell surface markers as suggested by the ISCT. This method allowed

the simultaneous analysis of all markers on the same sample resulting in greater depth of

information when compared to the more commonly used method of single marker analysis.

From a practical standpoint the multiparameter method also provided savings in sample

volume, reagent use, and time. This technique was then replicated on a different flow

cytometry analyser and improved with further controls showing the method is transferable

and adaptable.

Perhaps the most critical part developing a cell therapy is the quantification of the potency

- a quantitative measure of the intended MoA. This will determine if the product will have

a clinical benefit. The next two chapters in this thesis then went on develop potency assays

that reflect their main clinical applications as identified by the trends in current clinical
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Table 7.1: Summary of differentiation capability and cell surface marker expression of the

five individual hMSC lines

hMSC line
Adpiocyte

Differentiation

Chondrocyte

Differentiation

Osteoblast

Differenetiation

% complete surface marker

expression profile

M1 Yes Yes Yes 98.87

M2 Yes Yes Yes 96.21

M3 Yes Yes Yes 98.19

M4 Yes Yes Yes 93.6

M5 Yes Yes Yes 98.14

trials.

For the remaining experiments, M2 and M4 hMSCs were chosen as ‘good’ quality lines as

they both demonstrated rapid and consistent growth rates, whereas M3 was chosen as a

poorer cell line due to its slower growth rate.

The immunosuppressive potency was first examined. Initially the cells were cultured

under a chemically defined inflammatory environment using IFN-γ and TNF-α cytokines.

Several factors such as IL-6 protein production; IDO gene expression and function; and

metabolism were all compared over several passages as surrogate assays of suppression.

In these conditions M4 produced the most IL-6, and M2 and M4 expressed the largest

upregulation of IDO gene.

Next, the hMSCs were examined for their immunosuppressive capability by co-cultures

with purified CD4+ T-cells. Initially, the hMSC:CD4 T-cell ratios, co-culture length and

hMSC pre-treatment variables were first optimised. It was found that a 1:5 ratio was

optimal as it allowed for accurate cell counting whereas higher ratios caused the T-cells

to overtake the culture. Priming the hMSCs with IFN-γ to induce IDO expression did

not have any significant effect on the suppression. When assessing the individual hMSC
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lines, M4 showed the greatest amount of suppression when compared to M2 or M3. There

was no difference in the amount of kynurenine produced although the concentrations

were near the maximum level if there was full conversion of tryptophan in the medium.

Another widely reported immunomodulatory assay is hMSC co-cultured with a mixed

lymphocyte reaction (MLR). Under this system all hMSC lines showed the same level

of suppression and amount of tryptophan to kynurenine conversion. They were also

examined for their ability to induce a T-reg phenotype, M3 and M4 were found to induce

a higher proportion of a CD4/CD25/FoxP3 expressing cells when compared to M2. With

these results taken together it seems M4 is likely the better candidate for immunotherapies

as it could effectively inhibit CD4 T-cell proliferation and induce a T-reg phenotype in

MLRs. Table 7.2 summaries the immunomodulatory characteristics of the hMSCs and

shows overall M4 performed better under the inflammatory conditions when compared to

M2 and M3.

Angiogenesis is a key factor in the treatment of many cardiovascular diseases in including

myocardial infarction and ischaemia. In a separate assay the hMSCs were examined for

their pro-angiogenic effect using conditioned medium to induce HUVEC endothelial to

tube (capillary) formation. By using time-lapse imaging over 24 hours it was possible to

observe the tube formation and degradation, and quantify the results using image analysis

software. In contrast to current literature that observe the cells after 24 hours, the data

shown here shows the most tube formation occurs within 4 to 6 hours following plating.

Having identified the key factors for efficient angiogenesis and analysis, conditioned medium

from the three hMSCs lines over several passages were examined in this potency assay.

Whilst conditioned medium from all three lines was able to induce tube formation, M3

induced more nodes and a longer overall tube length when compared to M2 and M4. This

effect was most noticeable in earlier passages as in later passages (p6-7) there was a sig-

nificant decrease in both nodes and tube length from all hMSC lines. This suggests that

the potency of hMSCs is greater in younger in vitro cells. As this work was conducted
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on conditioned medium, this was then analysed for known pro-angiogenic cytokines. Un-

surprisingly there was a high concentration of VEGF, FGF and IL-8 which are known to

be secreted by hMSCs. Additionally M3 was found to produce HGF which correlated to

its greater node and tube length formation suggesting this protein could be used to as a

surrogate marker for angiogenesis. Table 7.3 summaries the key pro-angiogenic aspects

of hMSCs and shows M3 outperformed M2 and M4 in all angiogenic potency assays.

In summary, this thesis shows the successful characterisation of five individual hMSC

lines that all meet the ISCT minimal criteria, however, functionally they are significantly

different. By examining the same cells under two different potency assays M4 was found

to be the better cell line for immunosuppression and modulation. Whereas, M3 hMSCs,

a line that was used as a ‘poorer’ quality line due to its slower growth rate was found to

be the better inducer of angiogenesis. This shows that a ‘one-fits-all’ approach for hMSC

allogeneic therapies is not appropriate and there must be a comparison into the potency

for an effective treatment.
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Table 7.2: Summary of immunomodulatory characteristics of the hMSC lines in Chapter 5, blue highlighted cells indicate the best

performer

hMSC line
Maximum HLA-DR

Expression

IL-6 Yield

(pg/cell)

Kynurenine

Concentration (nM/cell)

Fold increase IDO

Expression (p3 D2)

% CD4 T-Cell

proliferation inhibition

% Induction

of T-reg

M1

M2 94.55 ± 0.7 0.15 ± 0.01 0.015 ± 0.002 108848.3 75.9 ± 5.7 5.4 ± 0.98

M3 82.78 ± 2.9 0.18 ± 0.02 0.011 ± 0.004 756.6 69.9 ±2.5 21.2 ± 9.12

M4 10.67 ± 1.63 0.79 ± 0.07 0.013 ± 0.004 182803.3 87.2 ± 1.5 16.1 ± 3.6

M5

Table 7.3: Summary of pro-angiogenic characteristics of the hMSC lines in Chapter 6, blue highlighted cells indicate the best performer

hMSC line
Maximum Node

formed (p5)
Maximum Branch length (p5) HGF production (fg/cell, p5)

M1

M2 387.5 ± 140 149270 ± 30785 0.05 ± 0.009

M3 593.8 ± 106.8 223936 ± 89625 1.52 ± 0.2

M4 227.3 ± 70.65 128844 ± 22693 0.11 ± 0.01

M5
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7.2 Future Work

This thesis has started with the aim to develop standardised and robust assays to measure

hMSCs quality and potency as defined by their MoA as a cell therapy. This aspect is just

one part of a larger development process.

• The work in this thesis uses hMSCs that were cultured in medium containing fetal

bovine serum (FBS). With advances in traditional bioprocess and cell culture there

is an increasing use of serum-free and other chemically defined media. Currently

there is no study into the effect of serum-free or chemically defined medium on the

potency or efficacy of hMSCs. Therefore a comparison of hMSCs cultured in serum-

containing and serum-free media in terms of potency would provide an indication

into the utility of such media.

• The effect of cryopreservation on the potency of hMSC was only briefly examined.

Chapter 5, Figure 5.13 showed that DMSO exposure did not affect the immuno-

suppressive properties hMSCs on CD4 T-cells by way of overall cell counts, but the

conversion of tryptophan to kynurenine was significantly lower than control hMSCs.

This could be explored further by comparing freshly thawed cells to those in culture

and to cells which have never been cryopreserved. The same principal can also be

implemented in the angiogenesis assay in Chapter 6

• Microcarrier-based expansion within a stirred tank bioreactor is a promising method

to gain the required number of hMSCs for a cell therapy treatment. This change

in culture method may affect the quality and potency, therefore, both the immuno-

suppression and angiogenesis assay can be used before, during, and after expansion

to determine if the potency changes. Therefore, these assays could be deployed

alongside the bioprocess manufacturing stage as quality control checks.

• For the angiogenic assay, the cytokines were screened from hMSC conditioned
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medium and correlated to the potency. Future studies can look at selectively remov-

ing these cytokines via antibody deletion to determine the critical cytokines that

lead to the tube/capillary formation.

This thesis has presented ways to characterise hMSCs based upon their extracellular

surface markers, immunosuppressive potential and angiogenic potency. Continuing to

develop these potency assays and implement them into a manufacturing process will be

key to producing a successful cell therapy.
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Abecasis, Cláudia Lobato da Silva, and Joaquim M S Cabral (2010). “Maximizing the

ex vivo expansion of human mesenchymal stem cells using a microcarrier-based stirred

culture system.” In: Journal of biotechnology 146.4, pp. 194–7.

Eming, S, B BRACHVOGEL, T ODORISIO, and M KOCH (2007). “Regulation of angio-

genesis: Wound healing as a model”. In: Progress in Histochemistry and Cytochemistry

42.3, pp. 115–170.

English, K, J M Ryan, L Tobin, M J Murphy, F P Barry, and B P Mahon (2009). “Cell

contact, prostaglandin E(2) and transforming growth factor beta 1 play non-redundant



References 195

roles in human mesenchymal stem cell induction of CD4+CD25(High) forkhead box

P3+ regulatory T cells.” In: Clinical and experimental immunology 156.1, pp. 149–60.

English, Karen, Frank P. Barry, and Bernard P. Mahon (2008). “Murine mesenchymal

stem cells suppress dendritic cell migration, maturation and antigen presentation”. In:

Immunology Letters 115.1, pp. 50–58.

English, Karen, Frank P Barry, Ciara P Field-Corbett, and Bernard P Mahon (2007).

“IFN-gamma and TNF-alpha differentially regulate immunomodulation by murine mes-

enchymal stem cells.” In: Immunology letters 110.2, pp. 91–100.

Fattori, E, M Cappelletti, P Costa, C Sellitto, Lavinia Cantoni, M Carelli, R Faggioni, G

Fantuzzi, P Ghezzi, and V Poli (1994). “Defective inflammatory response in interleukin

6-deficient mice.” In: The Journal of experimental medicine 180.4, pp. 1243–50.

Faulkner, Ashton, Robert Purcell, Andrew Hibbert, Sally Latham, Scott Thomson, Wendy

L Hall, Caroline Wheeler-Jones, and David Bishop-Bailey (2014). “A thin layer an-

giogenesis assay: a modified basement matrix assay for assessment of endothelial cell

differentiation”. In: BMC Cell Biology 15.1, p. 41.

Ferrara, James LM, John E Levine, Pavan Reddy, and Ernst Holler (2009). “Graft-versus-

host disease”. In: The Lancet 373.9674, pp. 1550–1561.

Ferrara, Napoleone, Hans-Peter Gerber, and Jennifer LeCouter (2003). “The biology of

VEGF and its receptors”. In: Nature Medicine 9.6, pp. 669–676.

Figueroa, Fernando E, Flavio Carrion, Sandra Villanueva, and Maroun Khoury (2012).

“Mesenchymal Stem Cell treatment for autoimmune diseases: a critical review”. In:

Biol. Res. 45.3, pp. 269–277.

Fishman, Jonathan M, Katherine Wiles, Mark W Lowdell, Paolo De Coppi, Martin J

Elliott, Anthony Atala, and Martin A Birchall (2014). “Airway tissue engineering: an

update”. In: Expert Opinion on Biological Therapy 14.10, pp. 1477–1491.

Franco, Rodrigo and John a Cidlowski (2012). “Glutathione efflux and cell death.” In:

Antioxidants & redox signaling 17.12, pp. 1694–713.
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Hassan, Mehmet Uzunel, and Olle Ringdén (2004). “Treatment of severe acute graft-

versus-host disease with third party haploidentical mesenchymal stem cells.” In: Lancet

363.9419, pp. 1439–41.

Le Blanc, Katarina, Francesco Frassoni, Lynne Ball, Franco Locatelli, Helene Roelofs,

Ian Lewis, Edoardo Lanino, Berit Sundberg, Maria Ester Bernardo, Mats Remberger,



References 205

Giorgio Dini, R Maarten Egeler, Andrea Bacigalupo, Willem Fibbe, and Olle Ringdén

(2008). “Mesenchymal stem cells for treatment of steroid-resistant, severe, acute graft-

versus-host disease: a phase II study.” In: Lancet 371.9624, pp. 1579–86.

LeBlanc, K., L. Tammik, B. Sundberg, S. E. Haynesworth, and O. Ringden (2003). “Mes-

enchymal Stem Cells Inhibit and Stimulate Mixed Lymphocyte Cultures and Mitogenic

Responses Independently of the Major Histocompatibility Complex”. In: Scand J Im-

munol 57.1, pp. 11–20.

Lee, Eun Ju, Hwan-Woo Park, Hyo-Jin Jeon, Hyo-Soo Kim, and Mi-Sook Chang (2013).

“Potentiated therapeutic angiogenesis by primed human mesenchymal stem cells in a

mouse model of hindlimb ischemia.” In: Regenerative medicine 8.3, pp. 283–93.

Lee, Jamie A., Josef Spidlen, Keith Boyce, Jennifer Cai, Nicholas Crosbie, Mark Dalphin,

Jeff Furlong, Maura Gasparetto, Michael Goldberg, Elizabeth M. Goralczyk, Bill Hyun,

Kirstin Jansen, Tobias Kollmann, Megan Kong, Robert Leif, Shannon McWeeney,

Thomas D. Moloshok, Wayne Moore, Garry Nolan, John Nolan, Janko Nikolich-Zugich,

David Parrish, Barclay Purcell, Yu Qian, Biruntha Selvaraj, Clayton Smith, Olga Tchu-

vatkina, Anne Wertheimer, Peter Wilkinson, Christopher Wilson, James Wood, Robert

Zigon, Richard H. Scheuermann, and Ryan R. Brinkman (2008). “MIFlowCyt: The min-

imum information about a flow cytometry experiment”. In: Cytometry 73A.10, pp. 926–

930.

Lee, O. K. (2004). “Isolation of multipotent mesenchymal stem cells from umbilical cord

blood”. In: Blood 103.5, pp. 1669–1675.

Lehman, Nicholas, Rochelle Cutrone, Amy Raber, Robert Perry, Wouter Van’t Hof,

Robert Deans, Anthony E Ting, and Juliana Woda (2012). “Development of a surrogate

angiogenic potency assay for clinical-grade stem cell production.” In: Cytotherapy 14.8,

pp. 994–1004.

Li, Aihua, Seema Dubey, Michelle L Varney, Bhavana J Dave, and Rakesh K Singh (2003).

“IL-8 directly enhanced endothelial cell survival, proliferation, and matrix metallopro-

teinases production and regulated angiogenesis.” In: Journal of immunology (Baltimore,

Md. : 1950) 170.6, pp. 3369–3376.



References 206

Li, Zhe, Tiejun Qu, Chen Ding, Chi Ma, Hongchen Sun, Shirong Li, and Xiaohua Liu

(2015). “Injectable gelatin derivative hydrogels with sustained vascular endothelial

growth factor release for induced angiogenesis”. In: Acta Biomaterialia 13, pp. 88–

100.

Lin, Ching-Shwun, Hongxiu Ning, Guiting Lin, and Tom F Lue (2012). “Is CD34 truly a

negative marker for mesenchymal stromal cells?” In: Cytotherapy 14.10, pp. 1159–63.

Liu, Linqi, Jianhua Gao, Yi Yuan, Qiang Chang, Yunjun Liao, and Feng Lu (2013).

“Hypoxia preconditioned human adipose derived mesenchymal stem cells enhance an-

giogenic potential via secretion of increased VEGF and bFGF”. In: Cell Biology Inter-

national 37.6, pp. 551–560.

Luckheeram, Rishi Vishal, Rui Zhou, Asha Devi Verma, and Bing Xia (2012). “CD4+T

Cells: Differentiation and Functions”. In: Clinical and Developmental Immunology 2012,

pp. 1–12.

Luetzkendorf, Jana, Katrin Nerger, Julian Hering, Angelika Moegel, Katrin Hoffmann,

Christiane Hoefers, Carsten Mueller-Tidow, and Lutz P Mueller (2015). “Cryopreser-

vation does not alter main characteristics of Good Manufacturing Process-grade human

multipotent mesenchymal stromal cells including immunomodulating potential and lack

of malignant transformation.” In: Cytotherapy 17.2, pp. 186–198.

Luttun, Aernout, Marc Tjwa, Lieve Moons, Yan Wu, Anne Angelillo-Scherrer, Fang Liao,

Janice A. Nagy, Andrea Hooper, Josef Priller, Bert De Klerck, Veerle Compernolle,

Evis Daci, Peter Bohlen, Mieke Dewerchin, Jean-Marc Herbert, Roy Fava, Patrick
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and Richard Schäfer (2013). “Phenotype, donor age and gender affect function of human

bone marrow-derived mesenchymal stromal cells.” In: BMC medicine 11, p. 146.

Silva, Meirelles da, Arnold I. Caplan, and Nance Beyer Nardi (2008). “In Search of the

In Vivo Identity of Mesenchymal Stem Cells”. In: Stem Cells 26.9, pp. 2287–2299.

Silva, W. A. (2003). “The Profile of Gene Expression of Human Marrow Mesenchymal

Stem Cells”. In: Stem Cells 21.6, pp. 661–669.

Sotiropoulou, Panagiota A., Sonia A. Perez, Angelos D. Gritzapis, Constantin N. Bax-

evanis, and Michael Papamichail (2006). “Interactions Between Human Mesenchymal

Stem Cells and Natural Killer Cells”. In: Stem Cells 24.1, pp. 74–85.

Spaggiari, G. M., A. Capobianco, H. Abdelrazik, F. Becchetti, M. C. Mingari, and L.

Moretta (2007). “Mesenchymal stem cells inhibit natural killer-cell proliferation, cyto-

toxicity, and cytokine production: role of indoleamine 2, 3-dioxygenase and prostaglandin

E2”. In: Blood 111.3, pp. 1327–1333.

Sreeramkumar, Vinatha, Manuel Fresno, and Natalia Cuesta (2011). “Prostaglandin E2

and T cells: friends or foes?” In: Immunology and Cell Biology 90.6, pp. 579–586.

Staton, Carolyn A., Malcolm W. R. Reed, and Nicola J. Brown (2009). “A critical anal-

ysis of current in vitro and in vivo angiogenesis assays”. In: International Journal of

Experimental Pathology 90.3, pp. 195–221.

Stroncek, David F, Ping Jin, Ena Wang, and Betsy Jett (2007). “Potency analysis of

cellular therapies: the emerging role of molecular assays”. In: Journal of Translational

Medicine 5.1, p. 24.



References 216

Suni, Maria A, Holli S Dunn, Patricia L Orr, Rian de Laat, Elizabeth Sinclair, Smita A

Ghanekar, Barry M Bredt, John F Dunne, Vernon C Maino, and Holden T Maecker

(2003). “Performance of plate-based cytokine flow cytometry with automated data anal-

ysis”. In: BMC Immunol 4.1, p. 9.

Sutton, M. G. St. J. and N. Sharpe (2000). “Left Ventricular Remodeling After Myocardial

Infarction : Pathophysiology and Therapy”. In: Circulation 101.25, pp. 2981–2988.

Sylvester, Paul W. (2011). “Optimization of the Tetrazolium Dye (MTT) Colorimetric

Assay for Cellular Growth and Viability”. In: pp. 157–168.

Tabera, S., J. A. Perez-Simon, M. Diez-Campelo, L. I. Sanchez-Abarca, B. Blanco, A.

Lopez, A. Benito, E. Ocio, F. M. Sanchez-Guijo, C. Canizo, and J. F. San Miguel (2008).

“The effect of mesenchymal stem cells on the viability, proliferation and differentiation

of B-lymphocytes”. In: Haematologica 93.9, pp. 1301–1309.

Takahashi, Kazutoshi and Shinya Yamanaka (2006). “Induction of Pluripotent Stem Cells

from Mouse Embryonic and Adult Fibroblast Cultures by Defined Factors”. In: Cell

126.4, pp. 663–676.

Tan, Kah Yong, Kim Leng Teo, Jessica F.Y. Lim, Allen K.L. Chen, Shaul Reuveny, and

Steve Kw Oh (2015). “Serum-free media formulations are cell line–specific and require

optimization for microcarrier culture”. In: Cytotherapy 17.8, pp. 1152–1165.

Tan, P. K. (2003). “Evaluation of gene expression measurements from commercial mi-

croarray platforms”. In: Nucleic Acids Research 31.19, pp. 5676–5684.

Tanavde, Vivek, Candida Vaz, Mahendra S. Rao, Mohan C. Vemuri, and Radhika R.

Pochampally (2015). “Research using Mesenchymal Stem/Stromal Cells: quality metric

towards developing a reference material”. In: Cytotherapy 17.9, pp. 1169–1177.

Tarca, Adi L., Roberto Romero, and Sorin Draghici (2006). “Analysis of microarray exper-

iments of gene expression profiling”. In: American Journal of Obstetrics and Gynecology

195.2, pp. 373–388.

Terness, P., T. M. Bauer, L. Rose, C. Dufter, A. Watzlik, H. Simon, and G. Opelz

(2002). “Inhibition of Allogeneic T Cell Proliferation by Indoleamine 2, 3-Dioxygenase-



References 217

expressing Dendritic Cells: Mediation of Suppression by Tryptophan Metabolites”. In:

Journal of Experimental Medicine 196.4, pp. 447–457.

Thomson, J. A. (1998). “Embryonic Stem Cell Lines Derived from Human Blastocysts”.

In: Science 282.5391, pp. 1145–1147.

Timmers, Leo, Sai Kiang Lim, Imo E. Hoefer, Fatih Arslan, Ruenn Chai Lai, Angelique

A.M. van Oorschot, Marie Jose Goumans, Chaylendra Strijder, Sui Kwan Sze, Andree

Choo, Jan J. Piek, Pieter A. Doevendans, Gerard Pasterkamp, and Dominique P.V. de

Kleijn (2011). “Human mesenchymal stem cell-conditioned medium improves cardiac

function following myocardial infarction”. In: Stem Cell Research 6.3, pp. 206–214.

Tondreau, Tatiana, Nathalie Meuleman, Alain Delforge, Marielle Dejeneffe, Rita Leroy,

Martine Massy, Christine Mortier, Dominique Bron, and Laurence Lagneaux (2005).

“Mesenchymal Stem Cells Derived from CD133-Positive Cells in Mobilized Peripheral

Blood and Cord Blood: Proliferation, Oct4 Expression, and Plasticity”. In: Stem Cells

23.8, pp. 1105–1112.

Tonnesen, M. G., X. Feng, and R. a F Clark (2000). “Angiogenesis in wound healing”.

In: Journal of Investigative Dermatology Symposium Proceedings 5.1, pp. 40–46.

Uccelli, Antonio, Lorenzo Moretta, and Vito Pistoia (2006). “Immunoregulatory function

of mesenchymal stem cells”. In: European Journal of Immunology 36.10, pp. 2566–2573.

Vaes, Bart, Wouter Van’t Hof, Robert Deans, and Jef Pinxteren (2012). “Application of

MultiStem Allogeneic Cells for Immunomodulatory Therapy: Clinical Progress and Pre-

Clinical Challenges in Prophylaxis for Graft Versus Host Disease”. In: Front. Immun.

3.
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Table A.1: Number of bone marrow-derived hMSC clinical trials from 2011 to 2015

grouped into treatment area

Year

Area 2011-2012 2012-2013 2013-2014 2014-2015

Immune

System Diseases
4 8 8 9

Wounds and Injuries 0 2 2 0

Muscle, Bone, and Cartilage

Repair
16 10 11 8

Heart and Vascular

Diseases
10 10 10 6

Digestive System

Diseases
0 0 0 3

Respiratory Tract (Lung and

Bronchial) Diseases
1 3 4 2

Ear, Nose, and Throat

Diseases
2 0 0 1

Eye Diseases 0 0 0 2

Nervous System Diseases 4 9 9 9

Nutritional and Metabolic

Diseases
7 2 2 3

Skin and Connective Tissue

Diseases
0 1 1 0

Symptoms and General

Pathology
0 0 0 1

Urinary Tract, Sexual Organs,

and Pregnancy Conditions
0 1 1 5

Total 44 46 48 49
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Regression Type: Logistic - 5PL Regression Type: Logistic - 5PL
Std. Curve: FI = -67.9855 + (7191.19 + 67.9855) / ((1 + (Conc / 1324.47)^-8.52443))^0.1 Std. Curve: FI = -16.7468 + (24273.9 + 16.7468) / ((1 + (Conc / 5204.62)^-1.62669))^0.973423
FitProb. = 0.5750, ResVar. = 0.3144 FitProb. = 0.9166, ResVar. = 0.0110

Regression Type: Logistic - 5PL Regression Type: Logistic - 5PL
Std. Curve: FI = 0.13173 + (20678.4 - 0.13173) / ((1 + (Conc / 6927.3)^-1.86106))^0.527409 Std. Curve: FI = -0.260201 + (9347.61 + 0.260201) / ((1 + (Conc / 1760.89)^-3.34154))^0.2858
FitProb. = 0.8536, ResVar. = 0.0341 FitProb. = 0.8131, ResVar. = 0.0559

Regression Type: Logistic - 5PL
Std. Curve: FI = -5.41281 + (10930.7 + 5.41281) / ((1 + (Conc / 843.726)^-8.95172))^0.0999975
FitProb. = 0.4707, ResVar. = 0.5202
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Figure A.1: Standard curves generated for IL-8, FGF-basic, HGF, VEGF and PDGF-AA

for the Luminex assay
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