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Abstract 

 
The use of recycled rubber crumb in the design and production of thermoplastic-rubber 

composites as sound absorbers can provide solutions to noise pollution and for the 

recovery of post-consumer materials from both packaging and waste tyres. The work of 

this study is concerned with the effect of rubber crumb incorporation in high density 

polyethylene (HDPE) and also in HDPE glass-fibre composites on acoustic, 

mechanical and physical properties. Recycled HDPE compounds containing variable 

concentrations of cured rubber crumb particles were prepared by twin screw extrusion. 

Thermal analysis has revealed a significant increase in the level of crystallinity of the 

HDPE component by increasing the rubber content in the mixes. Standard three-point 

bending and notched impact test specimens were manufactured by injection moulding 

and large-scale beam samples were produced by compression moulding using an ad-

hoc method that allows variation of the through-thickness elastomer content as a 

means of obtaining composition gradients. The flexural modulus and impact strength 

varied monotonically with rubber crumb concentration. A Fast Fourier Transform (FFT) 

technique was used to determine the acoustic performance of the beams over a wide 

frequency range. The graded structures produced large improvements in acoustic 

absorption properties in the frequency range 2-6 kHz, notably from composite beams 

containing 20% rubber and also in some multilayer beams with rubber concentration 

gradients.  
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Introduction 
The rapid development of modern transport infrastructure is highly beneficial to society, yet 

causes major problems of urban community noise that is undesirable and potentially 

hazardous to human health and local environments. Road traffic is a significant source of 

noise, since the number of vehicles has increased dramatically in most countries over the 

past few decades but other sources such as aircraft/airport, railways and construction noise 

also contribute to increasing noise pollution1-3. This can be expressed in terms of the 

frequency and sound pressure level boundaries relative to the audible range of human 

hearing1, so that solutions to the issue of noise pollution have become a major focus for 

future development of modern transportation systems. Solutions to these problems will 

undoubtedly involve innovative design with new and enhanced composite materials, such as 

foams and sound damping formulations, as a way of producing structures capable to act as 

sound absorbers for the protection of residential communities from noise pollution. Natural 

materials have been researched for sound absorption and noise reduction4-6, however these 

have been found to exhibit inadequate absorption coefficients while good soundproofing 

properties can only be achieved over a narrow frequency range. Murugan et al.7 have shown, 

on the other hand, that recycled polyolefin-based plastic waste, as well as thermoplastic 

composites produced from recycled materials, offers excellent potential for sound barriers. 

More recently, recycled rubber crumb has found a significant range of applications as a 

sound absorption material, for use along highways and between buildings to reduce noise in 

neighbouring residential areas8-9.  

The use of recycled rubber crumb for sound absorbing structures not only helps in 

solving existing environmental problems of traffic and other transport noise pollution, but 

offers also a potential solution for end-of-life tyre waste management8-10. It has been 

estimated that around 2.5 million tonnes of waste tyres are accumulated each year in the 

European Union and 3.25 million tonnes in the United States10-11. Whilst waste tyres have in 

the past been disposed mainly through landfill, increasing concern about the environmental 

protection and sustainable development (together with more stringent legislation such as the 

European Commission Directives: The Waste Landfill Directive 1999/31/EC and The End of 

Life Vehicle Directive 2000/53/EC) have led to a substantial decrease in landfilling of these 

products. Waste management techniques including recycling, tyre derived fuel and ‘waste to 

energy’ options are each providing acceptable alternatives to landfill11-13. More specifically, 

civil engineering applications for recycled crumb contribute significantly to a large proportion 

of the market and these solutions are expected to grow10,14-15. The good performance of 

recycled rubber crumb in acoustic damping and in sound absorbing properties has been 

reported previously. These studies have shown that improvements in acoustic damping 
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capability can be obtained over a wide frequency range, owing to the high porosity caused 

by the dispersed particles8,9,11. The effects of adhesives and polymeric binders have also 

been studied9,13,16-17 while Zhou et al.2 have developed composite sound absorbing 

perforated panels, combining double-layer structures of recycled rubber particles with open-

cell polyurethane foam. More recently, the sound insulation properties of wood/recycled tyre 

rubber composite panels have been investigated and it has been shown that an increase in 

recycled rubber crumb produced improvements in soundproofing properties3.  

Studies on soundproofing properties of thermoplastic/recycled rubber crumb 

composite products have not been widely reported. Bearing in mind the function that some 

of the products are intended to serve as structural materials, it is important to also consider 

other physical properties and processes, notably mechanical fixing by nails or screws when 

substituting traditional timber products. In this respect it should be noted that the properties 

of the related thermoplastic composites are not only influenced by rubber crumb 

concentration, but may also be controlled through the addition of glass fibres in order to 

improve a range of mechanical properties including modulus, strength and toughness, as 

well as creep resistance. Previous work4,8,18-19 has provided the evidence that glass fibres 

can be used as sound absorbents as a means of reducing environmental noise.  

In the case of composite materials and structures it should be borne in mind that the 

sound energy is transmitted and some is reflected from the surface. At the same time a 

fraction of the incident energy is also absorbed by the material as thermally dissipated 

energy. The energy balance can, therefore, be written as1,3: 

arti EEEE ++=        (1) 

Where E represents energy and the subscripts represent the various types of energy 

involved, i.e. i = incident, t = transmitted, r = reflected and a = absorbed. 

 

The soundproofing performance of composite materials and structures is known to 

be related to frequency, component thickness, surface finish/texture and material 

composition, as well as to the fixing systems used in practice. Attenuation and sound 

absorption in materials are attributed to two main mechanisms, namely: energy dissipation 

caused by viscous loss through molecular motions and the additional energy dissipation 

caused by mechanical friction effects between constituent material/particles under the 

influence of the sound waves. It can be assumed, therefore, that a combination of 

viscoelastic behaviour of the materials within the composite structure and the incorporation 

of large interface areas in the design of macro-scale structures (including porous media, 

particles of complex shape and fibres) can offer efficient soundproofing characteristics. The 
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sound absorption coefficient (α) is defined as the fraction of the incident sound energy 

absorbed1,20, i.e.: 

          (2) 

 

Some material data listing sound absorption coefficients (α) and corresponding 

values of noise reduction coefficient (NRC) have been widely reported1,4,7. The use of rubber 

particles is known to be very effective in enhancing the sound absorption characteristics 

across a wide range of frequencies, exhibiting α values between 0.2 and 0.56 within a 

frequency range 250 to 2000 Hz. (Note the α value is simply the fraction of incident energy 

absorbed by the material or structure; equation 2). 

Whilst the overall dimensions of large scale structures assume an obvious high level 

of importance, it has to be borne in mind that sound absorption properties are affected by the 

microstructural characteristics of absorbers, as these exert considerable influence on the 

three main fundamental parameters, such as flow resistivity, porosity and tortuosity1,8,21-23. 

For systems containing rubber crumb, the interfacial friction between matrix and rubber 

particles can also cause damping of incident energy1,21, which is enhanced by the geometric 

irregularity of the particles and the resulting interfacial porosity3. While increasing rubber 

content in the composite may cause significant reduction in modulus, reducing the size of 

rubber particles has been found to be beneficial9 and that the best performance is obtained 

with smaller particle size (< 0.35mm), due to the high sound path length associated with high 

tortuosity around the particles and increased interfacial friction2. It has also been suggested 

that as rubber content reaches a certain level, the aggregation of smaller rubber particles 

may reduce soundproofing performance3, possibly because of the low energy dissipation by 

interfacial friction between rubber particles. 

Previous investigations have shown that a deterioration of mechanical properties 

takes place when ground rubber tyre powders are incorporated into recycled polyethylene, 

which has been attributed to the weak interfacial adhesion between the rubber and PE 

matrix and is not significantly influenced by the mean particle size (between 380 and 

1200µm) or surface roughness of the particles26. The present study examines primarily the 

effect of recycled rubber crumb at different concentration levels on the physical, mechanical 

and acoustic properties of recycled HDPE-based thermoplastic composite beams, which 

includes the effect of rubber concentration gradients from the surface of multilayer composite 

products, as well as the use of two different arrangements of continuous glass fibres as 

reinforcing components.  

  

i

a

E
E

=α



5 
 

Experimental 
Materials 

The materials used to manufacture the composite beams were  

(i) A recycled grade of high density polyethylene (HDPE) derived from post-

consumer bottle waste supplied by Thermoplastic Composites (UK) Limited 

(nominal melt flow index 2.6 dg min-1) 

(ii) A recycled vulcanised rubber powder (CS0420-0000), supplied by Rubber Crumb 

Limited.  

(iii) Continuous E-glass fibres in the form of glass ribbon and glass rod coated with a 

proprietary functional bonding agent, supplied by Thermoplastic Composites (UK) 

Limited.  

 

Processing Techniques 
An APV MP20/30 twin screw compounding unit (screw diameter 30mm, length to diameter 

L/D ratio 30:1) fitted with gravimetric feeders, a 2-strand die and downstream pelletising 

system was used to compound recycled HDPE and rubber crumb to produce a series of 

composite materials with rubber concentration varying between 5 and 20% by weight. 

Process conditions were as follows: screw speed 210 rpm, mass output 5 kg hr-1 and a 

maximum die temperature of 210 oC. The control HDPE sample (post-consumer recycled 

HDPE) was also ‘compounded’ to achieve an identical thermal history to the other 

compounds. Injection moulding of rectangular-section notched / un-notched specimens was 

used for all HDPE/rubber crumb compounds using a Negri-Bossi NB62-tonnes injection 

moulding machine (maximum melt temperature 210 oC; mould tool temperature 30 oC). Un-

notched beams were produced for three-point bending tests, whilst the sharp notched 

beams were used for Izod impact tests: nominal beam dimensions were 60mm (length), 

12mm (width) and 6mm in depth; the notch length was 3mm with a tip radius of 0.25mm. A 

50-tonnes hydraulic press was used to prepare the HDPE/rubber crumb beams at a 

temperature of 200 oC under a constant pressure of 10 tonnes. The mould used to prepare 

the beams has dimensions 320mm (length), 60mm (width) and 28mm (depth).The 

formulations of the materials used for compression moulding are shown in Table I, and the 

configurations of the glass ribbons and glass rods in the mould are shown in Figure 1. (Two 

pieces of glass ribbons formed a layer in the mould, while three glass rods, aligned by two 

shorter glass rods with an epoxy adhesive, were also placed as a distinct layer.  

 

Physical Characterisation 
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The particle morphology of rubber crumb was analysed using a Cambridge Stereoscan 360 

Scanning Electron Microscope (SEM), using an acceleration voltage of 20kV. In addition, 

energy-dispersive X-ray (EDX) spectroscopy was employed for elemental analysis and 

chemical characterisation, to identify specific types of additives. The Coulter LS-130 

(Fraunhofer) model was used to study the particle size distribution (PSD) of the rubber 

crumbs in a propanol suspension produced with the aid of a magnetic stirrer. BET Analysis 

(Tristar-3000 analyser, Micromeritics) was used to obtain information about the surface area 

and porosity of the rubber crumb, using 1g samples and a 40-minute experimental time.  

Differential Scanning Calorimetry (DSC) was used to analyse the endothermic 

melting and crystallisation behaviour of the HDPE/rubber crumb compounds with the aid of a 

TA Instruments DSC, using a heating rate of 10 oC min-1 with an isotherm (5 minutes  at 200 
oC) followed by a thermal cycle at 20 oC min-1, using a sample weight of 10 - 11mg.  

 

Mechanical Properties 

Flexural tests were performed at room temperature according to ASTM D790-10, using a 

Lloyd Instruments LR50K tensometer. The specimens used were respectively un-notched 

injection moulded samples and compression moulded composite beams. The injection 

moulded specimens were simply supported beams with span length of 50mm and loaded at 

the opposite midpoint with a crosshead speed of 60 mm min-1. The data were analysed to 

estimate flexural stress, strain and the secant flexural modulus at 1% strain. Compression 

moulded beams were tested under the same conditions using a span length of 200mm, a 

50kN load cell and a clamp separation rate set at 1 mm min-1. Izod impact testing was 

carried out at room temperature using a Ray-Ran pendulum impact unit according to ASTM 

D256-10 (fixed vertical cantilever beams and struck by a pendulum with hammer weight 

1.796 kg, impact velocity 3.5 m s-1).  

 

Morphology 

Samples were analysed using different microscopy techniques in order to assess the degree 

of mixing and the microstructure of the compounded HDPE/rubber crumb composites. 

Notched injection moulded samples were cryogenically fractured then sputter coated and 

analysed by SEM as described above. The X-ray backscatter facility was used to identify the 

elastomer phase and EDX spectroscopy was used for elemental analysis.  

 

Determination of Acoustic Properties 

Acoustic tests for compression moulded beams were carried out at Thermoplastic 

Composites (UK) Ltd. Sharp edge pulses caused a piezo-crystal transmitter (placed at one 
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point of the beam) to oscillate, which produces ‘white’ noise containing a wide band of 

frequencies. A receiver was placed at the other end of the beam, situated 105mm from the 

transmitter. The energy transmitted through the sample was detected by the receiver, 

amplified and a software routine was used to capture time domain signals and to convert the 

voltage-time plot to a Fast Fourier Transform (FFT) spectrum, for amplitude-frequency 

analysis. From the acoustic tests, the noise signals produced from voltage-time plots are 

transformed to amplitude-frequency spectra to demonstrate the acoustic performance of 

compression moulded beam samples. Sound frequencies in the range 2-6 kHz usually 

correspond to human hearing and the observed transmission peaks are mainly situated 

within this region. Good acoustic performance is exemplified by low measured amplitudes, 

indicating reduced sound transmission. Hence, the areas under the amplitude-frequency 

curves (in the 2-6 kHz range) are calculated to estimate the transmitted sound intensity in 

the frequency range of interest. Overall, the reason for using this method is that it is more 

realistic to the envisaged industrial applications for which sound absorption, rather than 

reflection of the incident waves, is the target.  

 

Results and Discussion 
Characterisation of raw materials and compounds  

SEM micrographs of ‘as-supplied’ recycled rubber crumb particles (Figure 2) have verified 

that the particle size distribution lies within the range 100 - 600µm, with a mean particle size 

of 340µm. The rubber particles have an irregular geometry originating from the preparation 

technique and are well segregated. Some thread-like fibrous materials (diameter 

approximately 20µm) can also be observed, due to the presence of reinforcing fibres from 

waste automotive tyres. The SEM-EDX spectrum taken from a small area of rubber crumb 

surface confirms that the recycled rubber particle surfaces contain elements of carbon, 

oxygen, sulphur, zinc and silicon; the weight and atomic content of these elements are 

presented in Table II. Sulphur is commonly used as a vulcanising agent for the crosslinking 

of rubber compounds and zinc oxide is an activator. Silicon content can be attributed to the 

use of silicone rubber in the tread part of low energy tyres, and/or from silica particles. 

The Coulter LS-130 makes use of laser light diffraction with a patented Polarisation 

Intensity Differential Scattering (PIDS) technology25. Particle size distribution (PSD) curves 

are produced (see Figure 3) and together with the size distribution parameters provide an 

indication of packing and flow characteristics of particles within a continuous medium. The 

data show a very uniform particle size distribution, with a range between 168 to 504 µm with 

a mean particle size of 327 µm (Table III). The absence of secondary peaks in the 

distribution curve denotes the absence of significant levels of particle agglomeration in the 
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supplied particulate materials. The BET surface area of the rubber crumb sample was found 

to be 0.215 m2 g-1 with adsorption / desorption pore diameters of 10.7 and 7.3 nm 

(respectively). In other studies, the porosity of rubber recyclate has been shown to provide 

an effective sound absorption mechanism, provided that the size of the aggregates and the 

binder content are carefully controlled and the component thickness is adjusted to the 

frequency range of interest9.  

The thermal analysis data for rubber/HDPE compounds obtained from cooling and 

second heating scans are shown in Figure 4. Re-crystallisation and melting temperatures 

shown are taken from the peak values rather than onset data; the areas under the 

endothermic peaks correspond to melting enthalpy from which the HDPE crystallinity is 

estimated. In order to erase the previous processing thermal history, the second (re-heating) 

scans were used to compare the melting characteristics of the materials. The crystallinity of 

the HDPE component ( cc ) is obtained from27: 

%100
)1.(100

x
wH

H

r

m
c −∆

∆
=c       (3) 

ΔHm is the experimental enthalpy of melting, ΔH100 is the enthalpy of melting for 100% 

crystalline HDPE (taken as 295 J g-1)28  and wr is the weight fraction of rubber. 

 

Re-crystallisation and melting temperatures are respectively 116 and 137 °C, which 

remains invariant for all compounds produced, confirming the anticipated lack of miscibility 

with the amorphous rubber particles (Figure 4). The crystallinity in HDPE products usually 

lies between 80 and 85%, depending on chain structure, molecular weight and thermal 

history28. In this case, the observed crystallinity of recycled HDPE has a lower value (71.6%), 

presumably owing to the mixture of polymer types, grades and additives arising from the 

recycling process. Chain branching can also occur in PE when subjected to re-processing, 

which would also be expected to contribute to the observed reduction in crystallinity. The 

crystallinity of the HDPE component is found to increase slightly with the rubber content over 

the entire concentration range, reaching a maximum at around 75%. This observation is 

unlikely to be associated with heterogeneous nucleation effects since the onset and peak 

temperatures on cooling are unaffected (Figure 4a). It is proposed that the in-cavity cooling 

rates decrease when rubber crumb is added due to reduced thermal diffusivity, allowing 

greater opportunity for crystallisation within the HDPE phase. 

 

Flexural Properties of HDPE / rubber crumb compositions 
Flexural stress (σf), strain (εf) and modulus (secant at 1% strain, as derived from the raw 

data) were obtained using elastic beam theory, which are calculated using the equations  
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where P is the maximum load on the load-deflection curve, L is the length of the support 

span, D is the deflection of the centre of the beam of width b and depth d. The flexural 

stress-strain graphs are shown in Figure 5. Deformation resistance at low strain is important 

for beam design and, therefore, tests were terminated at around 17% nominal strain, beyond 

the region in which gross plastic deformation was first observed. 

 

The variation of mechanical properties with rubber concentration is summarised in 

Figure 6. Flexural stress and modulus decrease monotonically with increasing the rubber 

crumb concentration, whilst the corresponding flexural strain exhibits the opposite trend. 

Experimental variability was comparatively low in all cases, confirming the consistency of the 

formulations and manufacturing techniques. Overall, the 20% rubber-filled HDPE compound 

exhibits 28% and 36% reductions in flexural stress and secant modulus, respectively, 

whereas the flexural strain exhibits a 33% increase, when compared to the control sample. 

These data are consistent with other research reported on similar compositions of rigid 

thermoplastics modified by cross-linked elastomers. Due to the permanent network structure 

of the elastomer phase, short range interfacial compatibility with the HDPE cannot occur 

since the cross-linked rubber molecules cannot flow and diffuse through the interface with 

the thermoplastic matrix, owing to both the mentioned thermodynamic immiscibility and the 

network structure, resulting in distinct two-phase structures with the possible formation of 

voids29. 

 

Izod impact properties 

Impact measurements were used as a guide to mechanical performance under impulse 

loading situations. Standard impact tests only measure the specific fracture energy (Uk) 

which corresponds to the fracture energy per unit cross-section area and is generally known 

as ‘impact strength’. Although Uk is not a fundamental property, the data can be used as a 

first order approximation for comparisons. The data obtained are shown in Figure 7 and 

demonstrate that all elastomer-filled systems experience an approximate 40% reduction in 

specific fracture energy, relative to the neat recycled HDPE. The reason for the large drop in 

notched Izod impact strength is rooted in the loss of ductility of the HDPE matrix resulting 

from the triaxiality of the stress field at the notch tip and the lack of interfacial adhesion with 

the rubber particles, which create preformed crack paths through the matrix. 

 

Fractography 
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Micrographs of the cryogenic fractured surfaces of injection moulded specimens were 

examined by SEM and the related X-ray backscatter technique, as shown in Figures 8-9. 

The SEM images of the specimen surfaces allow adequate detection of the particulate 

elastomer phase, whilst the backscattered electron imaging technique provides a good 

contrast between rubber crumb particles and HDPE owing to the presence of heavy 

elements in the vulcanised rubber, such as sulphur and zinc, which backscatter electrons 

more strongly than the comparatively light atoms in PE and, therefore, produce brighter 

images30. The trend with rubber concentration in the mixtures is clear. These observations 

are confirmed in the SEM-EDX analysis of the original rubber crumb (Figure 9b), which 

shows a similar chemical composition as those described earlier (Table II).  

 

Mechanical Properties of Compression Moulded Beams 

 

Effect of rubber content and concentration gradients in HDPE 

The influence of recycled rubber crumb content and concentration gradient on the 

mechanical behaviour of the products examined is illustrated in Figures 10-11 (see also 

Table I). Although the flexural modulus of the composite beams decreases monotonically 

with rubber crumb concentration (Figure 10), the data in Figure 11 confirm that influence of 

the concentration gradient is more complex. For example, sample 6 with a high rubber 

crumb loading (20%) in the outer layers and a lower concentration near the centre exhibits 

an intermediate flexural modulus (496 MPa), which is similar to the value for the uniform 

beam containing 10% rubber. Sample 14 with a low rubber concentration on the outside 

layer (5%) exhibits enhanced flexural properties in comparison with sample 12, which also 

has a symmetrical distribution of rubber with a maximum of 20% in the centre layers and 10% 

rubber in the external surface layer. This demonstrates the importance of material 

composition close to the external surface of the specimens under flexural loads, where the 

state of stresses is dominated by the tensile stress component. The rubber concentration 

near the centre of the beam is clearly shown to be less influential on the flexural behaviour of 

the composites. These data therefore provide opportunity for optimising both mechanical 

and acoustic properties in composite beam design. 

 

Effects of glass reinforcement 

While the mechanical properties of thermoplastic composites are enhanced by the 

incorporation of high aspect ratio glass reinforcement, for the case of HDPE systems, the 

surface energy discrepancy between the non-polar polymer and glass fibres gives rise to 

poor interfacial bonding, which prevents the achievement of high levels of reinforcement. 

The results of this study show that incorporating two layers of glass ribbons provides only a 
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modest increase in flexural modulus (in the region of 10%) due to the occurrence of de-

bonding within the glass ribbons (Figure 12) and, also to the presence of voids. Consistent 

increases in flexural modulus with glass rod reinforcement diameter (and hence 

concentration / volume fraction) is evident from the data in Figure 13. For example, the use 

of 8.7mm diameter rods (sample 10) has resulted in a 140% enhancement in the stiffness of 

the beam. Further improvements are expected if the interfacial adhesion between HDPE and 

glass is enhanced and if the formation of internal voids is prevented during manufacture 

(Figure 12b). The effects of rubber content, concentration gradients, glass ribbon layers, 

glass rod diameter and rubber/glass composite beams are summarised in Figure 13 

(categorised as beam sample groups 1-5, respectively).  

 

Acoustic properties 

The noise signals in voltage-time plots from the acoustic tests are transformed to amplitude-

frequency spectra, in order to demonstrate the acoustic performance of compression 

moulded beam samples. The target is to achieve low measured amplitudes, indicating 

reduced sound transmission through the structures, so that the areas under the amplitude-

frequency curves indicate the transmitted sound intensity in the frequency range of interest 

(2 - 6 kHz).  

This measurement technique determines sound absorption characteristics 

specifically, as relevant to many potential applications for sound barriers in the construction 

sector. For structural applications there may be earth, stone or concrete on the rear face of 

the structures, so that preventing reflection and causing absorption are important 

mechanisms. In a through transmission test a material that was highly reflective would 

exhibit little sound transmission but would reflect large amounts of noise back into the 

environment, so that sound transmission data is less useful for the envisaged applications. 

The macro mechanical resonance of the structures is at a much lower frequency than 2-6 

kHz and is not the method of attenuation which was sought in this research; rather we are 

seeking, through sequential partial reflection, to ‘trap’ the sound energy inside the barrier 

and cause energy loss, hence the measurement technique chosen. As well as preventing 

reflection of the incident wave this also prevents transmission so that both are achieved 

simultaneously. 

The raw data obtained for the acoustic measurements are summarised in Table IV 

and some examples of the graphical output from acoustic tests are shown in Figures 14-16.  

Sound intensity, or ‘sound power density, is a vector which can be estimated from the 

sound power relative to the area over which energy transmission is taking place, hence units 

are typically in W m2. However, it is more relevant to express data as a sound intensity level 

(IL) which is defined relative to a reference level by: 
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         (5) 
 
 
Where: 

 

I = sound intensity (W m-2) and I0 is the reference sound intensity (1x10-12 W m-2 = 0 dB). 

 

The output data in Figures 14-16 are shown in dB and this can be related sound 

intensity level using this approach. For example, a measurement detection of 40 dB is a 

sound amplification of 104, therefore equivalent to 10-8 W m-2. 

 

Effect of Rubber Crumb Concentration 

The data in Table IV (specimens 1-5) show that the transmitted sound intensities for rubber 

concentrations up to 15% exhibit little difference, relative to the recycled HDPE reference, 

while the transmitted sound intensity for the 20% rubber significantly decreases (Figure 14 a-

c). This observation is significant and is also indicative of the potential to exploit the 

enhanced acoustic performance by incorporating concentration gradients of the elastomer 

phase in the HDPE. Rubber crumb has adequate air flow resistivity, porosity and especially 

high tortuosity, which lengthens sound transmission routes and hence absorbs more sound 

energy8. Furthermore, Zhao et al.3 indicated that carbon black in rubber crumb causes 

increasing diffraction and dispersion of transmitted sound waves. 

 

Effect of Rubber Crumb Concentration Gradient 

While the concentration gradient in the beams was intended to be symmetrical about the 

centre axis, the manufacturing techniques used has not made it possible to achieve precise 

control of the through thickness concentration of rubber crumb. Instead, the samples are 

likely to consist of blurred concentration gradients, without distinct boundaries between the 

layers. Some interesting variations in acoustic data have been achieved on various samples 

in Table IV which can be exemplified by the following observations: for beams with low 

rubber concentrations on the incident surface (samples 12 and 14), the absorbed sound 

intensity is not improved. Sample 15, on the other hand, offers the best performance relative 

to the overall amount of rubber crumb. It should be noted that this sample has an 

asymmetrical rubber concentration gradient. The measured differences in acoustic 

properties between samples 12 and 13, which differ only with respect to the thickness of the 

centre layer containing 20% rubber crumb, demonstrate the importance of component 

dimensions to control attenuation effects (Figure 15).  









=

0

log10
I
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The advantage of multilayer sound absorbs over monolayer beams is that a larger 

proportion of sound waves can be refracted from the surface of each layer and can also be 

absorbed within each layer, as reported elsewhere31.  

 

 

Effect of Glass Ribbon / Rod Reinforcements 

The sound absorption of glass fibres is mainly attributed to sound energy attenuation by 

scattering from the fibres and by vibrations within the individual fibres1. Furthermore, fibrous 

materials often possess large flow resistivity and porosity (for example, spacing between 

individual fibres, within rovings) that are also beneficial for acoustic absorption18,22. Thus, as 

observed in Table IV, glass rod reinforced composites (samples 8 to 10) and glass ribbon 

reinforced beams (sample 7) offer some improvement in soundproofing performance relative 

to the reference HDPE (probably attributed to sound reflection from the macro-scale 

reinforcement), but the output data do not compare favourably with the optimum 

performance of sample 5 (HDPE + 20% rubber beam, Figure 14c). Glass ribbon reinforced 

HDPE, without the addition of rubber (samples 16, 17) has produced poor sound absorption 

characteristics (Figure 16b). It has been suggested that soundproof properties are enhanced 

when an effective interface zone is formed, since sound energy is dissipated by reflecting 

and refracting mechanisms in the continuous composite interface3. The present study shows 

that if rubber crumb is added to HDPE containing glass fibres, the soundproof performance 

of the resulting more complex composite structure is significantly improved (sample 11).  

Although the experimental research has been carried out on an appropriate 

macroscopic scale, the specimen size is clearly much smaller than typical sound barrier 

structures used in industrial applications. The research outcomes provide the basis to 

suggest that scale-up towards industry-scale structures is feasible and it is demonstrated 

that this can be achieved using post-consumer recycled polymers, thus ensuring a positive 

contribution towards the increased use of sustainable materials. 

 

Conclusion 
Post-consumer recycled materials, including HDPE (from a high molecular weight bottle 

grade source) and recycled rubber crumb (from mechanically-ground tyres), have been 

compounded successfully to produce composite materials containing up to 20% elastomer. 

An analysis based upon SEM / EDX has been used to determine the main elemental 

compositions, such as sulphur and zinc oxide, which are commonly used in the vulcanisation 

of rubber compounds. The presence of silicon, on the other hand, can be ascribed to the use 

in the tread part of low energy tyres containing silica reinforcement. The particle size 
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distribution of elastomer crumb is uniform with a mean equivalent diameter around 320-

340µm. The thermal behaviour, such as re-crystallisation and melting temperatures of 

HDPE/rubber compounds are all very similar; however the HDPE crystallinity increases 

slightly with the addition of rubber crumb, attributed to the decrease in cooling rate of the 

HDPE as a result of the reduction in the overall thermal diffusivity of the composite. Injection 

moulded specimens and compression moulded beams exhibit similar trends, showing a 

monotonic decrease in flexural modulus with increasing rubber crumb concentration. 

Compression moulded beam samples exhibit inferior mechanical performance compared 

with injection moulded samples due to the low pressure nature of the process which 

prevents adequate compaction being achieved.  

Acoustic properties have been analysed in terms of sound absorption in the 

frequency range 2-6 kHz and have been found to be enhanced by the incorporation of the 

recycled crosslinked elastomer. Optimum acoustic damping behaviour is observed for the 

sample containing 20% rubber crumb. Other moulded beams with variable rubber 

concentration gradients also show enhanced acoustic absorption, demonstrating the viability 

for manufacturing scaled-up components. Composite beams containing glass fibres are also 

found to contribute to the absorption of acoustic energy. For future exploitation, composite 

beam design with recycled PE / rubber crumb compositions (with or without reinforcement) is 

feasible and depending on composition, enhanced acoustic absorption can be achieved, 

together with tailored mechanical properties in the composite materials and structures.  
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Figure Captions  

 
Figure 1 Configuration of glass ribbon (upper) and glass rods (lower image) in the 

mould. 

Figure 2 SEM photomicrographs of raw rubber crumb (left) and dispersion in HDPE 

matrix (see scale bars for magnification). 

Figure 3 Particle size distribution data (Coulter technique) for rubber crumb. 

Figure 4 Thermal analysis data for HDPE compounds containing variable rubber crumb 
concentrations:  (a) cooling scan and (b) second heating scan. 

Figure 5 Flexural stress-strain data and determinations of secant modulus (at 1% 

strain) for injection moulded HDPE / rubber crumb compounds (0-20% 

rubber). 

Figure 6 Effect of rubber crumb weight content on flexural properties (the HDPE 

‘control’ sample is taken as a reference). 

Figure 7 Effect of rubber crumb content on the notched impact strength of recycled 

HDPE / rubber composites (0-20% rubber). 

Figure 8 SEM backscatter photomicrographs of cryogenically-fractured surfaces of PE 

/ rubber crumb composites (see scale bar for magnification):  

(a) Recycled HDPE (reference); (b) 10% (c) 15% and (d) 20% rubber 

compounds.  

Figure 9 SEM-EDX phase analysis for (a) rubber particle surface, and  

(b) continuous polyethylene phase in the composites. 

Figure 10 Flexural stress-strain curves and determination of secant modulus (at 1% 

strain) for compression moulded samples 1 to 5: effects of rubber crumb 

concentration. 

Figure11 Flexural stress-strain curves and determination of secant modulus (at 1% 
strain) for compression moulded samples 6, 12-15; effects of rubber crumb 
concentration. 

Figure 12 Cross section images of glass reinforced compression moulded beams: (a) 

glass ribbon reinforced (sample 7); (b) glass rod reinforced (sample 8). 

Figure 13 Comparison of flexural modulus for group 1 (samples 1 to 5), group 2 

(samples 6, 12-15), group 3 (samples 16, 7, 17), group 4 (samples 8-10) and 

group 5 (sample 11). 

Figure 14 Amplitude-frequency spectra obtained from acoustic tests for sound 

transmission through different compression moulded beams (sample numbers 

– see Table IV):  (a) HDPE control; (b) HDPE + 10% rubber; (c) HDPE + 20% 

rubber. 
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Figure 15 Amplitude-frequency spectra obtained from acoustic tests for sound 

transmission through different compression moulded beams: 

(a) sample 12 (uniform depth profile); (b) sample 13 (thicker centre layer of 

rubber crumb); (c) sample 15 (asymmetric concentration gradient). 

Figure 16 Amplitude-frequency spectra obtained from acoustic tests for sound 

transmission through different compression moulded beams: 

(a) sample 10 (0% rubber and 8.7mm diameter glass rod);  

(b) sample 17 (0% rubber and glass ribbons, 3-layers). 

(Note the different ordinate scale, in Figure 16 b). 

 

 

Table Captions 
 

Table I  Formulations Used for Compression Moulded Composite Beam Samples. 

Samples 6, 12-15 contain concentration gradients and are labelled with nominal 
concentrations of rubber crumb (%), in the layered structures. 

 
Table II Weight and Atomic Content of Elements in Selected Area of Rubber Crumb. 
 
Table III Coulter laser diffraction data for Rubber Crumb. 

 

Table IV  Acoustic Properties of Compression Moulded Composite Beam Samples. 
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Figures and Captions  

 

 

 

 

 
 
 
 
 
Figure 1 Configuration of glass ribbon (upper) and glass rods (lower image) in the 

mould. 

 

Figure 2 SEM photomicrographs of raw rubber crumb (left) and dispersion in HDPE 

matrix (see scale bars for magnification). 

 

 

 

 

 

 

 

 

 

 

Figure 3 Particle size distribution data (Coulter technique) for rubber crumb. 
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Figure 4 Thermal analysis data for HDPE compounds containing variable rubber crumb 

concentrations:  (a) cooling scan and (b) second heating scan. 
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Figure 5 Flexural stress-strain data and determinations of secant modulus (at 1% 

strain) for injection moulded HDPE / rubber crumb compounds (0-20% 

rubber). 
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Figure 6 Effect of rubber crumb weight content on flexural properties (the HDPE 

‘control’ sample is taken as a reference). 
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Figure 7 Effect of rubber crumb content on the notched impact strength of recycled 

HDPE / rubber composites (0-20% rubber). 
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(c)      (d) 

 
Figure 8 SEM backscatter photomicrographs of cryogenically-fractured surfaces of PE 

/ rubber crumb composites (see scale bar for magnification):  

(a) Recycled HDPE (reference); (b) 10% (c) 15% and (d) 20% rubber 

compounds.  
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(a) 

(b) 
 
Figure 9 SEM-EDX phase analysis for (a) rubber particle surface, and  

(b) continuous polyethylene phase in the composites. 
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Figure 10 Flexural stress-strain curves and determination of secant modulus (at 1% 
strain) for compression moulded samples 1 to 5: effects of rubber crumb 
concentration. 
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Figure11 Flexural stress-strain curves and determination of secant modulus (at 1% strain) 
for compression moulded samples 6, 12-15; effects of rubber crumb 
concentration. 
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Figure 12 Cross section images of glass reinforced compression moulded beams: (a) 

glass ribbon reinforced (sample 7); (b) glass rod reinforced (sample 8). 
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Figure 13 Comparison of flexural modulus for group 1 (samples 1 to 5), group 2 (samples 

6, 12-15), group 3 (samples 16, 7, 17), group 4 (samples 8-10) and group 5 
(sample 11).  
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Figure 14 Amplitude-frequency spectra obtained from acoustic tests for sound 

transmission through different compression moulded beams (sample numbers 

– see Table IV):  (a) HDPE control; (b) HDPE + 10% rubber; (c) HDPE + 20% 

rubber. 
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Figure 15 Amplitude-frequency spectra obtained from acoustic tests for sound 

transmission through different compression moulded beams: 

(a) sample 12 (uniform depth profile); (b) sample 13 (thicker centre layer of 

rubber crumb); (c) sample 15 (asymmetric concentration gradient). 
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Figure 16 Amplitude-frequency spectra obtained from acoustic tests for sound 

transmission through different compression moulded beams: 

(a) sample 10 (0% rubber and 8.7mm diameter glass rod);  

(b) sample 17 (0% rubber and glass ribbons, 3-layers). 

(Note the different ordinate scale, in Figure 16 b). 
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Tables 
  

Table I  Formulations Used for Compression Moulded Composite Beam Samples. 

Samples 6, 12-15 contain concentration gradients and are labelled with nominal 
concentrations of rubber crumb (%), in the layered structures. 

Sample  Ingredient 
1 0% rubber compound (i.e. recycled HDPE) 
2 5% rubber compound 
3 10% rubber compound 
4 15% rubber compound 
5 20% rubber compound 

6 
20 / 15 / 10 / 15 / 20 
(5 layers in percent rubber with even depth) 

7 
recycled HDPE + 2 layers of glass ribbons* 
(ribbon length: 308 mm, width: 29 mm, depth: 1.2 mm) 

8 
recycled HDPE + 2 layers of glass rods 
(rod length: 308 mm, diameter: 4.8 mm) 

9 
recycled HDPE + 2 layers of glass rods 
(rod length: 308 mm, diameter: 6.5 mm) 

10 
recycled HDPE + 2 layers of glass rods 
(rod length: 308 mm, diameter: 8.7 mm) 

11 
10% rubber compound + 2 layers of glass ribbons 
(ribbon length: 308 mm, width: 29 mm, depth: 1.2 mm) 

12 
10 / 15 / 20 / 15 / 10 
(5 layers of rubber crumb (%) with even depth) 

13 
10 / 15 / 20 / 15 / 10 
(5 layers of rubber crumb; the 20% layer was 50% thicker) 

14 
5 / 10 / 20 / 10 / 5 
(5 layers of rubber crumb (%) with even depth) 

15 
5 / 10 / 15 / 20 
(4 layers of rubber crumb (%) with even depth) 

16 
recycled HDPE + 1 layer of glass ribbons** 
(ribbon length: 308 mm, width: 29 mm, depth: 1.2 mm)  

17 
recycled HDPE + 3 layers of glass ribbons*** 
(ribbon length: 308 mm, width: 29 mm, depth: 1.2 mm) 
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* 2 layers of glass ribbons and glass rods were placed approximately 5 mm below the 
top and above the bottom surfaces of the sample. 

**  1 layer of glass ribbons was placed in the middle of the sample depth. 
*** 3 layers of glass ribbons were placed based on above two positions.  
 
 
 
 
 
Table II Weight and Atomic Content of Elements in Selected Area of Rubber Crumb. 

Element Weight, % Atomic, % 
C 82.7 90.8 
O 8.02 6.62 
S 2.07 0.85 
Zn 6.34 1.28 

Si 0.89 0.42 

 
 
 
 
Table III Coulter laser diffraction data for Rubber Crumb. 

Particle Size (µm) 

Mean % > 10 % > 25 % > 50 % > 75 % > 90 

326.7 503.6 410.3 316.2 233.7 167.5 
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Table IV Acoustic Properties of Compression Moulded Composite Beam Samples. 

Sample & description Transmitted sound intensity level in 
the 2-6 kHz range  (dB.Hz x 103) 

1. 0% rubber (HDPE reference) 34.4 

2. 5% rubber 33.9 

3. 10% rubber 34.1 

4. 15% rubber 37.1 

5. 20% rubber 16.5 

6. 20/15/10/15/20 (even depth) 22.7 

7. 0% rubber + glass ribbons (2 layers) 27.7 

8. 0% rubber + glass rods (Diameter, D = 4.8 mm) 29.8 

9. 0% rubber + glass rods (Diameter, D = 6.5 mm) 34.3 

10. 0% rubber + glass rods (Diameter, D = 8.7 mm) 27.0 

11. 10% rubber + glass ribbons (2 layers) 22.2 

12. 10/15/20/15/10 (even depth) 40.7 

13. 10/15/20/15/10 (50% thicker for the 20% layer) 22.6 

14. 5/10/20/10/5 (even depth) 32.5 

15. 5/10/15/20 (even depth) 20.1 

16. 0% rubber + glass ribbons (1 layer) 98.5 

17. 0% rubber + glass ribbons (3 layers) 100.5 
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