
A New Methodology for Automatic Fault Tree Construction based on
Component and Mark Libraries

Mr. Ashish Bhagavatula1, Dr. Jun Tao2, Dr. Sarah Dunnett1, Dr. Paul Bell3

1Department of Aeronautical and Automotive Engineering,
Loughborough University, Loughborough LE11 3TU, UK

2School of Automobile and Traffic Engineering,
Wuhan University of Science and Technology, Wuhan 430081, China

3Department of Computer Science,
Loughborough University, Loughborough LE11 3TU, UK

Abstract

During the design stage of the development of a new system, automated fault
tree construction would produce results a lot sooner than the manual process
and hence be highly beneficial in order to modify the system design based on
identified weakest areas. Although much work has been performed in this
area, the construction of fault trees is still generally done manually. In this
paper, a new methodology of constructing fault trees from a system
description is proposed. Multi-state input/output tables are introduced, which
have the capability to capture output deviations during the normal operation of
a component as well as under the influence of abnormality or failure. Two
libraries, namely a component library and a mark library, are introduced. The
former stores component models and the latter stores a range of marks. The
main purpose of a mark is to identify a certain feature of the system, such as a
feedback loop or multiple redundancies. These two libraries are used to
redraw the system in a graphical environment where the designer can witness
the system come together and also input the necessary failure data for each
component. An algorithm has been developed, that uses input/output tables
and marks, to automatically construct fault trees for failure modes of interest.

In order to demonstrate this methodology, it is applied to an automotive
emission control system, and a fault tree is generated using the algorithm
developed in this work.

1. Introduction

With increase in complexity of engineering systems day by day, the necessity
to identify hazards and control them in time is ever increasing. In today’s world,
it is a must for any new system to be thoroughly analysed for potential
hazards, preferably in the early design stages before progressing in the
product life cycle. Currently, this is not dealt with in the most efficient manner.
During the system design phase, once an initial system design is completed, it
is handed over to the Risk and Reliability Department who then manually
analyse the system and generate an appropriate reliability model. Often,
within the time they get back to the design team with proposed design
improvements, the system design has already progressed a long way. At this
point, the design team either make the changes which prove expensive, or
carry on with the existing design. In the latter case, the risk of a hazardous
failure during operation increases and so does the probability of uncertain

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Loughborough University Institutional Repository

https://core.ac.uk/display/288370569?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

failures. It is this gap which demands an automated reliability model generator
to avoid the time lapse between the design team and the risk and reliability
team. In this paper, Fault Tree Analysis (FTA) has been selected as the
appropriate reliability model

FTA has been identified as one of the most commonly employed reliability
models in the aeronautical and automotive industry. FTA is a deductive
approach to determine the various combinations of hardware failures,
software failures and human errors that could lead to undesirable events at a
system level. A certain system failure is selected as the top event for which a
fault tree is generated. This tree combines basic failures with the help of logic
gates in order to present all possible combinations that could lead to the top
event. [1]

The construction of fault trees can be time consuming and tedious depending
on the complexity of the system. As the task is done manually, it is also prone
to errors and misinterpretations. There have been several attempts in the past
to explore the requirement of automatic fault tree generation. The most
ground breaking of methodologies are considered to be the digraph technique
[2] and the decision table method [3]. The digraph technique uses deviations to
model failures which allow more freedom to describe different types of failures.
The decision tables can take into account a larger number of failure modes
with clarity due to its tabular format.

Besides these, commercial software has been developed to help automate
the construction process. For example, a program called HiP-HOPS was
developed by University of Hull and launched in 2012 [4]. This software has
been integrated with Mathworks Matlab and SimulationX in order to be able to
extract information from the system model directly. Hip-HOPs requires the
user to specify failure modes for each component as well as failure
expressions which link the failure modes and inputs to their respective outputs.
This requirement gives the user flexibility to define the behaviour of system
components but at the same time can be time consuming for the user. This
program definitely aids the user to build a fault tree but it is believed that the
automation can be done to a greater extent by using predefined generic
component tables and mark operators which will be explained in Section 4.

The very first requirement of automatic fault tree generation is defining the
system in a way that bridges the semantic gap. Various approaches have
been considered for this stage such as system description in the form of
Computer-Aided Design (CAD), Process and Instrumentation Diagrams
(P&ID), Mathworks Simulink or even a personalised Graphic User Interface
(GUI). Lately, System Modelling Language (SysML) has gained a lot of
importance as it has a vast number of features to describe the system, by
taking into account system structure as well as behaviour. In this paper, such
specifics of system description haven’t been discussed, but are being
explored for future work in this field.

2. Overview of Methodology

Figure 1 - Overview of methodology

The methodology is explained with the help of a flow diagram as can be seen
in Figure 1. Each block has been numbered and is expanded as follows:-

(1) System Connectivity: List of system components, inputs and outputs for
each component.

(2) Component and Mark Library: The component library stores a multi-
state Input / Output (I/O) table for each component. The mark library
stores a range of marks to identify complex features in a system such
as loops or redundancies.

(3) Deviation Tree (DevTree): It is an intermediate representation of the
system which can be used to generate fault trees automatically for any
given top event.

(4) Top Event Specification: Critical system level failures for which a fault
tree needs to be generated can be specified here. The format in which
the top event is specified can be in two different ways:-

a. Specification by means of deviation in an output from a
component

b. Specification by means of a partial fault tree

In a system, the top event could either be failure of a certain component,
abnormality at a certain point in the system or a combination of component
failures. It is for this reason; the logic code must be able to accept the top
event in different formats.

(5) Logic Code – AutoFTConst: The algorithm for automatic fault tree

construction will be written in C++ or Java. It will include predefined
rules to formulate logic gates, extract component tables and deal with
marks. These predefined rules are expanded upon in Sections 4 and 5.

System
connectivity

Component &
Mark Library

DevTree

Logic Code -
AutoFTConst

Top Event
Specification

Methodically
Generated

FAULT TREE

3. Example System Description

In order to demonstrate the new methodology, it is applied to an automotive
emission control system. This system is adapted from the lambda closed loop
control system and the changes made are explained in this section.

The original system can be seen in Figure 2, it comprises of 6 components
which have been labelled [5]. The composition of mixture of fuel and air
supplied to the engine is continuously maintained within the optimum
deviation range by a closed loop control. Hence, the emissions must be
measured for unburnt oxygen content, and the injected fuel quantity is
immediately corrected based on this measurement. This measurement is sent
from the emission flow sensor located in the exhaust pipe, to the controller [6].
The air flow sensor also continuously sends mass flow data to the controller.
Both these measurements are sent in voltages and the controller in turn sends
a voltage signal to the injection valve to correct its timing accordingly.

Figure 2 - Original Emission Control System [5]

Changes were made to the original system based on the following criteria:
Requirement of a simple system with limited number of components, a
negative feedback loop and a redundancy feature in order to demonstrate the
concept of marks.

Paying attention to the above stated criteria, the following changes were made
to the original system:-

1. Removal of the catalytic convertor as it is not part of the closed loop
control.

2. Treating the injection valves as a single entity.
3. Addition of the pressure regulator which regulates fuel flow from two

fuel pumps and supplies it to the injection valve.

Figure 3 - Adapted Emission Control System

3.1 Description of Variables – Mass flow, Voltage

The adapted system is drawn in the form of a block diagram and can be seen
in Figure 3. Each variable is explained as follows:-

Mass Flow Rates:-
Fa: Intake Air
FfP1: Fuel from Pump 1
FfP2: Fuel from Pump 2
Ff: Regulated Fuel
FfT: Fuel - timed injection
Fdo: Emission flow; Subscript ‘do’ represents Density of unburnt Oxygen

Voltages:-
Va: Voltage sent by AFS to C, notifying mass flow rate of intake air
Ve: Voltage sent by EFS to C, notifying amount of unburnt oxygen in the
emission
Vc: Voltage sent by C to IV in order to time fuel injection into the engine

3.2 System Boundaries

1. Source of fuel is shown to come from two fuel pumps, each connected
to a fuel tank. The fuel tanks and pumps are not part of the system as
these components have been assumed to be failure-proof.

2. Power sources for the valves, sensors and the controller are not part of
the system and this marks another boundary of the system under study.

3. Ordinarily, in an automotive engine, the intake air flow passes through
an air filter before it goes through the air flow sensor and to the engine.
In this system however, this component has been disregarded and is
therefore considered failure-proof as well.

4. Application of Methodology to Example System

This section illustrates the procedure of systematic fault tree generation by
applying it to the emission control system. The very first step is generating
multi state I/O tables for each component in the system. Such tables can be
generated for a variety of components that appear in aeronautical and
automotive systems in order to enable reusability and reduce user effort
during systematic fault tree construction.

4.1 Component Library

The component library stores multi-state I/O tables for each component.
There are 6 components in the emission control system, hence 6 tables. The
structure of this table is quite different to the traditional decision table structure
[3]. These tables use deviations to represent failure modes which provide a
higher degree of flexibility to represent the type of failure accurately. The
tables are self-explanatory except for a few notations that are explained
below:-

Variable Relationship: This states the relationship between the input and
output in terms of direction of flow. ‘S’ implies single directional flow and ‘B’
implies bi-directional flow.
Deviation: Any variable in a system can deviate from its original state due to
abnormality or failure. A deviation of ±10 implies uncontrollable disturbance
and a deviation of ±1 implies controllable disturbance. ‘w’ implies whole range
of deviation.
Transmit Coefficient: The relationship between the input and output based on
proportionality. ‘1’ implies direct proportionality and ‘-1’ implies inverse
proportionality. A transmit coefficient of ‘0’ implies that the failure is
independent of the input.

Tables 1 to 6 represent the I/O tables for all the components in the emission
control system and can be seen as follows:-

State No. Variable
Relationship Output Transmit

Coefficient Input

Normal

1 S Va(w) 1 Fa(w)
2 S Fa(w) 1 Fa(w)

Failure Modes

Measurement
Error 1 Va(w)

Sensor
Broken 2 Va(w) 0

Table 1 - Air Flow Sensor (AFS)

State No. Variable
Relationship Output Transmit

Coefficient Input

Normal

1 S Ve(w) 1 Fdo(w)
2 S Fdo(w) 1 Fdo(w)

Failure Modes

Measurement
Error 1 Ve(w)

Sensor
Broken 2 Ve(w) 0

Table 2 - Emission Flow Sensor (EFS)

State No. Variable
Relationship Output Transmit

Coefficient Input

Normal
1 S Vc(w) 1 Va(w)
2 S Vc(w) 1 Ve(w)

Failure Modes
Controller
failure 1 1 Vc(w)

Controller
failure 2 2 Vc(w) 0

Table 3 - Controller (C)

State No. Variable
Relationship Output Transmit

Coefficient Input

Normal
1 S Ff(w) 1 Ffp1(w)
2 S Ff(w) 1 Ffp2(w)

Failure Modes
PR valve

failed
open

1 Ff(-10)

PR valve
failed
closed

2 Ff(+10)

PR valve
stuck 3 Ff(w) 0

Table 4 - Pressure Regulator (PR)

State No. Variable
Relationship Output Transmit

Coefficient Input

Normal
1 S Ff T(w) 1 Vc(w)
2 S Ff T(w) 1 Ff(w)

Failure Modes
Timing

Problem 1 Ff T(w)

IV broken 2 Ff T(w) 0

Table 5 - Injection Valve (IV)

State No. Variable
Relationship Output Transmit

Coefficient Input

Normal
1 S Fdo(w) 1 Fa(w)
2 S Fdo(w) -1 Ff T(w)

Failure Modes
Engine
failure 1 1 Fdo(+10)

Engine
failure 2 2 Fdo(-10)

Engine
failure 3 3 Fdo(w)

Table 6 - Engine (E)

In Table 3, ‘Controller failure 1’ refers to an error in the voltage sent to the
injection valve. ‘Controller failure 2’ indicates that there is either no voltage
sent or the voltage sent is independent of its inputs and hence such a failure
cannot be compensated for by the loop.

4.2 Mark Library

The mark library is a new concept introduced in this paper. While tracing a
fault through a system automatically, it is difficult to model the trace algorithm
around complex features such as loops or redundancy. The logic in most
cases becomes erratic. The mark library is introduced in order to deploy rules
in the form of operators when such features are encountered in the system.
For this system, two marks, namely Negative Feed-Back Loop Mark (NFBL
Mark) and Redundancy Mark (RMark) are introduced.

NFBL Mark: During automatic fault tree generation, when an event is found to
be part of the NFBL, the fault tree takes the form of the mini-fault tree shown
in Figure 4.

Figure 4 - NFBL Operator

The NFBL operator implies that the top event occurs either if the loop itself
has failed or if the fault propagates from another component. The event ‘NFBL
Failed’ implies that the loop itself has failed and is thereby unable to
compensate any moderate disturbances. The event ‘NFBL Blocked’ will
combine under an OR gate, failure modes of components in the NFBL that are
not affected by the input. All these failure modes have a transmit coefficient of
0 in the I/O tables which implies that their failure is independent of the input
and hence cannot be compensated by the loop. Event ‘Original Propagation
Branch’ traces the fault to connecting components. If any of these input
events are part of the NFBL too, the same operator is deployed again, if not,
they are dealt with the help of an algorithm which is explained in Section 5.
RMark: The redundancy mark is deployed in case of multiple redundancies. In
such a scenario, a failure occurs only if the necessary input has failed as well
as all the redundancies. Hence the inputs are combined under an AND gate
as can be seen in Figure 5.

Figure 5 - Redundancy Mark Operator

4.3 Deviation Tree

Deviation Tree is an intermediate structure which portrays the principal
diagram along with its inputs, outputs and the transmit coefficient between
them. This structure can be automatically generated and is used along with
component tables and mark operators to generate a fault tree for any given
top event in a systematic manner.

The deviation tree is similar to the topology graph generated by Andrews and
Henry [7]. In their paper, a topology graph was generated as an intermediate
representation to aid with identification of loops.

The method of identifying the NFBL loop from the deviation tree is by following
the path beginning and ending at the very same event. For the example
system, this path would be E-IV-C-EFS-E as can be seen in Figure 6. The
deviation tree terminates when event E-Fdo (w) is encountered for the second
time.

Figure 6 - Deviation Tree

Besides the marks introduced in this paper, there is much scope to model
operators for other complex features, for example, ‘Negative Feed Forward
Loop’ or ‘Vote Redundancy’.

5. Fault Tree Generation

In this section a fault tree is generated in a systematic manner following the
methodology described in the previous sections.

The top event selected is an output deviation of Fdo (-1) from the Engine. As
explained previously, Fdo is the mass flow rate of emissions and a deviation of
-1 implies that the density of unburnt oxygen is lower than the desired air-fuel
ratio thereby indicating a rich mixture and in turn black smoke out of the
exhaust. The reason for selection of this top event is the environmental impact
of the deviation.

The algorithm searches the deviation tree for the component associated with
the top event and this becomes the starting point to trace the fault through the
system. While generating the fault tree, each event is checked if it belongs to
any of the marks. If it is, the appropriate operators are deployed, if not, the
algorithm follows the rules stated below:-

1. Check I/O tables under ‘Failure Modes’ if deviation can be caused by
any of them. All such failures are combined under an OR gate.

2. Check I/O tables ‘Normal State’ to track fault through component inputs
and transmit coefficient. If more than one input is found, combine
events under OR gate.

Figure 7 shows the fault tree generated for top event Fdo (-1). The events are
named in the following way – ‘Component acronym’ followed by a number
which represents the failure mode in the I/O tables. For example event ‘E-3’
denotes ‘Engine failure 3’. In the example system, 4 out of 6 components are
part of the NFBL which explains the repeated occurrence of event ‘NFBL
Failed’ in the fault tree. It is also essential to make the above algorithm work
seamlessly with the marks while deploying logic gates and events. Figure 4
shows the NFBL operator which has a block ‘Event not part of NFBL’. This
allows events outside the NFBL to be developed at the same time, for
example, event ‘Fa (-1)’ or ‘PR-Ff (+1)’. The deployment of the NFBL events
has been explained in Section 4.2. The fault tree generated can be further
trimmed down by deleting repeated events and inconsistent events i.e. events
that have already occurred higher up in the fault tree by using techniques
introduced in the past. [8]

Figure 7 - Fault Tree for Top Event 'Black Smoke out of Exhaust'

6. Conclusion

The concern of assisted fault tree construction during the design stage has
been undergoing research since the 1970s and has gone a long way since
then. Component and mark libraries can prove useful in reducing human effort
and retaining human supervision at the same time. A component library can
significantly assist systematic fault tree generation by providing the user with
predefined component tables that represent the behaviour of components
under failure or abnormality. A mark library can reduce the semantic gap in
representing complex systems by taking into account the effect of loops or

redundancies while generating the fault tree. In this paper, only 6 component
tables and 2 marks were employed, but it provides a platform for expansion.

Component and Mark libraries can be designed in a way that they can simply
be dragged and dropped onto the system diagram. Having linked the
component tables and mark operators to the concerned components, they can
either be used in their original form or be edited to suit the requirements of
specific components that are not found in the library. This ensures human
supervision and at the same time avoids repeatability in terms of defining
failure modes for each component.

A generic component library can be developed for each discipline which
stores component tables for discipline specific components. This methodology
is still being developed to accommodate systems from different disciplines of
engineering. Editing and pruning procedures are also being developed so that
the tree can be reduced to a concise form by eliminating repeated and
contradictory events. Human supervision with minimal effort would be the
ideal degree of automation for a technique as sensitive as fault tree
generation.

7. References

[1] S. Pilot, “What is a Fault Tree Analysis?,” 2002. [Online]. Available: 1.
http://asq.org/quality-progress/2002/03/problem-solving/what-is-a-fault-
tree-analysis.html.

[2] S. A. Lapp and G. J. Powers, “Computer-aided Synthesis of Fault-trees,”
Reliab. IEEE Trans., vol. R-26, no. 1, pp. 2–13, 1977.

[3] S. L. Salem, G. E. Apostolakis, and D. Okrent, “A new methodology for
the computer-aided construction of fault trees,” Ann. Nucl. Energy, vol. 4,
no. 9–10, pp. 417–433, 1977.

[4] U. of Hull, “HiP-HOPS User Manual.” 2013.

[5] R. Bosch, Automotive Electric/Electronic Systems. 1988.

[6] M. T. Sunderland, “Lambda Sensors,” 2008. [Online]. Available: 10.
http://www.picoauto.com/applications/lambda-sensor.html.

[7] J. D. Andrews and J. J. Henry, “A computerized fault tree construction
methodology,” Proc. Inst. Mech. Eng. Part E J. Process Mech. Eng., vol.
211, no. 3, pp. 171–183, 1997.

[8] A. Majdara and T. Wakabayashi, “Component-based modeling of
systems for automated fault tree generation,” Reliab. Eng. Syst. Saf.,
vol. 94, no. 6, pp. 1076–1086, 2009.

