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Abstract 

Clean-in-place systems are largely used in food industry for cleaning interior surfaces of equipment without disassembly. These 
processes currently utilise an excessive amount of resources and time, as they are based on an open loop (no feedback) control 
philosophy with process control dependent on conservative over estimation assumptions. This paper proposes a multi-sensor 
approach including a vision and acoustic system for clean-in-place monitoring, endowed with ultraviolet optical fluorescence 
imaging and ultrasonic acoustic sensors aimed at assessing fouling thickness within inner surfaces of vessels and pipeworks. An 
experimental campaign of Clean-in-place tests was carried out at laboratory scale using chocolate spread as fouling agent. During 
the tests digital images and ultrasonic signal specimens were acquired and processed extracting relevant features from both 
sensing units. These features are then inputted to an intelligent decision making support tool for the real-time assessment of 
fouling thickness within the clean-in-place system. 
 
© 2017 The Authors. Published by Elsevier B.V. 
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Production. 
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1. Introduction 

In modern food manufacturing contexts, the standard 
procedure for cleaning equipment is the Clean-in-place (CIP) 
system, which uses a mix of chemicals, heat and water 
applied over a set period of time without the requirement of 
dismantling. 

CIP is a multi-stage process, typically starting with a pre-
rinse, followed by caustic solution wash, an intermediate 
rinse, and terminates with a sanitation phase made of an acid 
solution wash and a final rinse [1].  

Existing CIP processes are time intensive and waste large 
amounts of energy, water, and chemicals [1,2] . Furthermore, 
it is estimated that on average, a food and beverage plant will 
spend 20% of each day on cleaning equipment, which 
represents significant downtime for a plant [2]. Monitoring of 

fouling can provide useful information on cleaning status and 
ensure efficient, effective operation of the equipment. 

Ultraviolet (UV) light detection methods, are particularly 
used for the detection of residual cells and soiling on 
industrial surfaces [3,4]. State of the art on thickness 
assessment techniques includes transient thermal probe 
developed by [5] to estimate the fouling thickness of heat 
exchangers.  

Pneumatic gauges for non-contact thickness measurement 
based on pressure profiles were developed and implemented 
by [6–8] presenting however distortions in measurement of 
soft deposit due to either the impinging jets or the suction 
streams [9].  

An application of Heat flux sensor can be found in [10] 
aimed at monitoring local fouling of non-heated surfaces in 
commercial plants. 
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Ultrasonic (US) measurement techniques transmits low 
power (< 100 mW cm-2) high frequency (> 20 KHz) 
mechanical waves through physical systems and are most 
commonly used is medical imaging and non-destructive 
testing.  The techniques can be used to obtain information 
about the physical chemical structure of liquid materials and 
can identify any inhomogeneities within fluid systems by how 
they scatter or reflect the waves.   

Ultrasound techniques have previously been used to detect 
fouling in heat exchangers [11–13] and pipe work [14,15]. 
Neural network (NN) classification can be found in [16] for 
determining the presence of fouling in heat exchangers.  

This paper proposes a methodology for a multi-sensor 
monitoring system able to assess the fouling thickness within 
openable and non openable components of CIP equipment, 
utilising a vision and ultrasonic sensing units respectively for 
tanks and pipeworks, as outlined in Fig. 1. The output of these 
sensors will ultimately need to be correlated with the 
threshold of cleanliness to industrial standards. 

2. Materials and experimental procedures 

In this section, a description of the experimental setup 
utilised for both the vision system and ultrasonic tests is 
reported, with the procedure adopted for this research 
illustrated in Fig. 2. 

2.1. Samples preparation 

For the experimental campaign of thickness assessment 
tests, chocolate spread was used as fouling material, with the 
following characteristics (for 100 g of product): density=1.26 
g/ml, protein = 5.4 g, water = 0 g, fat = 30 g, viscosity = 28.1 

s (10 s-1, 25°C).  
In order to produce repeatable samples, a series of eight 

RK Printcoat Instruments close-wound stainless steel hand-
coaters were used to apply a known-thicknesses layer of 
chocolate spread on two different substrate materials: stainless 
steel for the vision system tests and transparent polymer for 
ultrasonic tests.  

Table 1. Nominal and measured thickness values 

Test # Nominal wet film deposit 
thickness  

Measured average 
thickness (  

1 6 5.96 
2 12 12.43 
3 24 24.45 
4 40 40.25 
5 50 50.14 
6 60 60.36 
7 80 80.04 
8 100 99.69 

 

Fig. 3. Darkroom box design for image acquisition tests 

The consistency between the sample thickness and the 
nominal value was verified using a Taylor Hobson CLI 2000 
3D profilometer. Each sample was subject to a number of 
non-contact measurements, utilising the substrate as baseline 
and acquiring the average thickness. The nominal and 
measured thickness values are reported in Table 1. 

2.2. Vision System setup 

A darkroom box (Fig. 3) was designed and realised in 
order to allow a comprehensive and consistent experimental 
campaign of digital image acquisition of chocolate spread 
samples.  

The darkroom box is insulated from external light sources 
and endowed with a set of two 18 W 370 nm fluorescent UV 
lights to allow the fluorescence of the chocolate layer [3].  

The image acquisition was carried out using a Nikon 
D3300 DSLR Camera and a 10-20 mm wide angle Sigma 
zoom.  

Nine different photographic configurations were used by 
varying the following parameters: 
 ISO sensitivity = [1600, 3200, 6400] 
 Shutter speed (s) = [1/10, 1/25, 1/50] 

Other photographic parameters were kept constant: 
 Focal length = 10 mm 
 F-Stop = F/5 
 WB = auto 

By combining the ISO sensitivity and the shutter speed 
values a number of 9 digital images was acquired for each 
test, for a total number of 72 image instances. 

Fig. 1. Framework for thickness assessment 

Fig. 2. Thickness assessment procedures 
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2.3. Ultrasonic tests setup 

This research utilises a pulse echo ultrasound setup 
(scheme reported in Fig. 4) [17–20]. In this configuration a 
single ultrasound pulse is transmitted from a 2.25 MHz 
transducer (Imasonic IM series), reflected from the sample 
holder and received at the same transducer.  

A Lecoeur US Box (Lecoeur Electronique, France), 
controlled by a laptop, is connected to the transducer and 
generates and receives the ultrasonic signals. The propagation 
of ultrasound waves are temperature dependent so the 
temperature within the sample cell was recorded using a 
PRT1000 probe and data logger (PT-104, Pico Technology 
Ltd, UK).   

The transducer was excited by a 200 v, 7 ns flat top pulse 
and the received signal was amplified by 15 dB.  For all 
experiments the sample cell was filled with water. The sample 
holder was removed before each measurement and the thin 
layer was applied on it according to the procedure described 
in section 2.1.   

Five repetitions were carried out for each sample to 
increase the tests reliability, for a total number of 40 
ultrasonic tests, during which, the time of f
received amplitude (%) data were acquired and recorded. 

3. Data processing  

In this section the procedures for data processing are 
reported, for both the vision system and the ultrasonic tests. 

3.1. Vision System 

The image processing procedure is illustrated in Fig. 5, and 
it was applied to all the 72 digital image instances.  

The acquired red-green-blue (RGB) image appears as a 
6000 x 4000 x 3 elements matrix, where the first two 
dimensions (6000 x 4000) represent the image resolution 
(24Mp), and the third dimension (3) represents the three 
colours channels red, green and blue respectively. An 
example of RGB image is reported in Fig. 6 for Test 8. 

In order to isolate the fluorescent layer of chocolate spread 
from the rest of the image, the green channel was extracted 
from the RGB image and reported in Fig. 7. After this 
transformation, the green channel appears as a 6000x4000 px 
image in greyscale.  

At this point, a manual selection of a region ofi Interest 
(ROI) was carried out. The ROI is identified in 
correspondence of the area which was previously scanned 
with the 3D profilometer, with a width of 20px ( 1 mm) and 
highlighted in red in Fig. 7.  

The mean value of the pixel intensity was computed within 
the ROI for each image instance of each test for a total of 72 
values.  

In this way, it was possible to construct a series of 
thickness-intensity curves, as shown in Fig. 8.  Nine curves (9 
photographic conditions) of 9-point each (8 thickness samples 

were plotted.  
 

 

Fig. 4. Ultrasonic tests setup 

The purpose of the image processing was to assess the 
thickness value given the pixel intensity; in this respect, a 3rd 
degree polynomial fitting was chosen to interpolate the data 
according to the following equation: ( ) = + + +  

Where x is represented by the pixel intensity and f(x) is the 
computed thickness value. 

Fig. 5. Image processing flow chart 

Fig. 6. Test 8  RGB image (ISO 6400, S 1/10) 

Fig. 7. Green channel image and ROI, Test 8 (ISO 6400, S 1/10) 
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This kind of fitting consists in computing the coefficient of 
the polynomial f(x) of degree 3 that fits the thickness data in a 
least squares sense [21].   

The data fitting procedure was applied to all the nine 
in 

Table 2 for all the photographic configurations. Outliers were 
removed from the curve fitting modelling. 

3.2. Ultrasonic signal processing 

US data were processed in order to compute the Ultrasonic 
path length, which was calculated by multiplying the 
ultrasonic velocity through the water by the Time of Flight of 
the received signal.  

The Time of Flight was recorded as the first zero crossing 
once the received signal is larger than the selected threshold 
value. To account for temperature effects the ultrasonic 
velocity is calculated using the Marczak Equation reported 
below [22]. = 1.402385 × 10 + 5.038813 5.799136 ×10  + 3.287156 × 10  1.398845 × 10  +2.787860 × 10    

Where T is the water temperature measured using the 
embedded thermocouple (°C).  

The received signal amplitude is a function of attenuation 
through the propagating fluid and the percentage of reflected 
signal from the sample holder (with or without fouling layer). 

The percentage of reflected signal depends on the relative 
acoustic impedance (z) of the water and reflecting surface: =  , where c is the ultrasonic velocity and  the density of 
each material [23].  

Table 2. Polynomial coefficients 

Configuration     

ISO1600-S1/10 7.71E+04 -7143 254.6 1.846 

ISO1600-S1/25 3.85E+06 -2.14E+05 3314 0.1667 

ISO1600-S1/50 2.62E+07 -6.24E+05 4347 2.886 

ISO3200-S1/10 2.63E+04 -5927 387.4 -0.535 

ISO3200-S1/25 6.23E+05 -5.99E+04 1653 -1.16 

ISO3200-S1/50 7.30E+06 -3.68E+05 5074 1.378 

ISO6400-S1/10 5148 -1815 174.9 0.3628 

ISO6400-S1/25 2.42E+04 -2857 154.7 1.574 

ISO6400-S1/50 2.05E+05 -1.48E+04 716.7 0.9556 

Table 3. 2-element ultrasonic feature vector 

ID Test   
T 1.1 38.1941 33 
T 1.2 38.3098 34 
… … … 
T 8.4 38.0093 10 
T 8.5 38.0043 11 

 
A large acoustic impedance difference results in a larger 

proportion of the signal been reflected.  There is the potential 
for signal attenuation (due to acoustic absorption, weak 
reflections, depth of penetration, etc.) to create a problem in 
terms of signal-to-noise ratios, but this was not observed in 
this study.  Any such problems could be overcome by using 
multiple ultrasonic detection methods. 

4. Neural network data fitting for thickness assessment 

Ultrasonic features, i.e. US Path and Amplitude were 
grouped in a 2-element feature vector [24] (partially reported 
in Table 3) and inputted to a Neural Network data fitting [25] 
decision making support system for thickness assessment 
purpose. 

Three-layer feed-forward neural networks were built with 
the following architecture: 

 Input layer: 2 nodes corresponding to the US feature vector 
(40 instances x 2 features) 

 Hidden layer nodes (HLN): variable 
 Target layer: 1 node corresponding to the nominal 

thickness value  of each 
instance (40 instances x 1 thickness value) 
Several NN configuration were considered, by varying the 

number of hidden layer nodes: 4, 8 and 16, and the training 
algorithm, i.e. Levenberg-Marquardt (LM) [26], Bayesian 
regularisation (BR) [27,28] and scaled conjugate gradient 
(SCG) [29].  Data division for NN learning was carried out 
randomly with the following percentages: 70% for training, 
15% for validation and 15% for testing [29]. 

5. Results and discussions 

In this section the results of the vision system and 
ultrasonic experimental tests are presented and discussed. 

Fig. 8. Intensity-thickness curves used for polynomial fitting 
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5.1. Vision System 

Considering the polynomial fitting model computed for a 
given set of photographic conditions, it is possible to build a 
3D mesh plot of the surface fouling within an openable 
component (see Fig. 9), where the x- and y-axes represent the 
image resolution, and the z-axis represents the computed 
fouling thickness. It should be noted that image acquisition 
and processing for fouling assessment is applied in a time-
lapse context of fouling monitoring within openable 
components of CIP systems. In this way it is possible to have 
a real-time assessment of the fouling within the tank and its 
removal rate in order to adapt, during the cleaning process, 
the cleaning parameters such as time, detergent concentration 
and potentially water pressure and water spray direction. 

5.2. Ultrasonic tests 

The goodness of fitting is shown in terms of Pearson 
Correlation Coefficient R, defined as [30]: R = (x x)(y y)(x x) (y y)  

Where x is the target vector (nominal thickness values) and 
y is the estimated thickness value. The coefficients were 
calculated for all the stages of the NN fitting: training, 
validation, testing and a total one. A synoptic chart of the 
overall R coefficients vs hidden layer nodes and training 
algorithm is reported in Fig. 10. 

All the NN configurations adopted yielded to a Correlation 
coefficient higher than 0.9 which demonstrates a good 
suitability of the US features in assessing the fouling 
thickness.   

For this specific application, the best fitting is given by 
LM-4HLN NN configuration, which corresponds to the 
Levenberg-Marquardt training algorithm with 4 hidden layer 
nodes. A detailed regression plot for this configuration is 
reported in Fig. 11 including training, validation, testing and 
total regressions. The number of hidden layer nodes doesn't 
show a clear influence on results trend, whilst, on average, the 
most consistent training algorithm results to be the BR. 

Fig. 10. Data Fitting Results 

Fig. 11. Regression plots for the LM-4HLN configuration 

6. Conclusions 

For a comprehensive clean-in-place monitoring system a 
broad study on the thickness assessment needs to be carried 
out. In this paper two methodologies were proposed, for 
openable components and non openable components 
respectively. 

A vision system endowed with UV light was set up to 
model the fouling thickness within tanks and vessels, and an 
ultrasonic intelligent system was used to assess the fouling 
thickness within pipeworks. 

A correlation between the fouling thickness and the pixel 
intensity was found, enabling a real time control of the fouling 
removal rate. 

Ultrasonic tests results indicated that the technique was 
capable of determining the thickness of the fouling material in 

Fig. 9. 3D mesh plot of thickness, Test 8 (ISO 6400 S 1/10) 
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real-time with a similar level of sensitivity as the vision 
technique. 

Future work will include the implementation on a 
laboratory scale CIP system featuring a range of typical 
process operating conditions and fouling materials. This work 
will combine the two sensor techniques demonstrated in the 
current work into a system capable of characterising the 
internal surface fouling conditions within different 
components simultaneously to deliver real-time data on 
cleaning performance. 

Moreover, further investigation needs to be carried out on 
the correlation between the sensor monitoring system outputs 
and Adenosine Triphosphate (ATP) swabbing technique. This 
standard is currently utilised within the food and drink 
industry to determine the cleanliness level. This will enable 
the real-time monitoring of the fouling removal which is 
suitable for industrial applications. 
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