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Abstract

This article suggests a series of problems related to various algebraic and ge-
ometric aspects of integrability. They reflect some recent developments in the
theory of finite-dimensional integrable systems such as bi-Poisson linear algebra,
Jordan-Kronecker invariants of finite dimensional Lie algebras, the interplay be-
tween singularities of Lagrangian fibrations and compatible Poisson brackets, and
new techniques in projective geometry.

1 Introduction
The idea to publish such a paper was on the one hand inspired by our discussions
with both the organisers and the participants of the conference “Finite Dimensional
Integrable Systems in Geometry and Mathematical Physics (FDIS 2015)” held in July
2015 at the Mathematical Research and Conference Center (MRCC) in Będlewo. On
the other, for a number of years our research group has been working on a list of open
problems [5] published in Russian and almost unavailable for the general audience. That
list included about 70 problems with various level of difficulty — from the diploma and
the PhD levels to serious conjectures which could rather be considered as possible
directions for further research. The present paper is based on [5] and is to some extent
part of it. The problems offered herein are selected and extended according to our
preferences and adapted for publication as a journal paper. So, first of all, we would
like to acknowledge the contribution of Andrey Konyaev and Andrey Oshemkov, our
co-authors in [5] with whom we are currently working on the English version of the
latter. It will contain a background section for beginners, comments and updates and,
hopefully, will soon appear on the arXiv. For a similar paper of open problems the
reader may wish to refer to a recently published work by S. Rosemann and K. Schöbel
[39].

The immediate goal of this paper is to introduce the reader to a bunch of interesting
open problems. There is no section with preliminaries but we have tried all our best
to define the main concepts as well as to properly motivate the problems to follow.
Our selection of problems concerns bi-Poisson algebra and geometry, Jordan-Kronecker
invariants, Applications to projective geometry and Singular Lagrangian fibrations. It is
worth mentioning that many of the problems under discussion are, directly or indirectly,
related to the argument shift method [34] which originated from a two-page note by
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S.Manakov [33] published in 1976. It is quite surprising that 40 years later this very
elegant and simple idea still remains a source of non-trivial problems, new constructions
and applications. Therefore, we would like to take this opportunity to emphasise its
importance in a context much wider than one could have expected forty years ago. It
is our intention to try to convince the reader that not only there are reasonable open
problems in the area but also that some of the ideas/solutions may have far reaching
applications.

This set of problems have been discussed with many of our colleagues, including
the authors of [39], and we are very grateful to all of them. We are especially thankful
to A.Borisov, D.Dowell, L.Guglielmi, I. Kozlov, V.Matveev, E.Miranda, A. Panasyuk,
C.Wacheux, N.T. Zung.

2 Existence of integrable systems and chaotic Poisson
brackets

Let M be a smooth manifold. A Poisson bracket on M is a bilinear (over R) skew-
symmetric operation { , } on the space of smooth functions C∞(M) which satisfies the
Leibniz rule

{fg, h} = f{g, h}+ {f, h}g

and the Jacobi identity

{f, {g, h}}+ {h, {f, g}}+ {g, {h, f}} = 0

for any f, g, h ∈ C∞(M). This operation turns C∞(M) into an infinite-dimensional Lie
algebra. A manifold M endowed with a Poisson bracket is called a Poisson manifold.

A Poisson bracket onM can be given by means of a smooth tensor field A =
(
Aij
)
,

called a Poisson tensor, or a Poisson structure:

{f, g} = A(df, dg) =
∑
i,j

Aij(x)
∂f

∂xi
∂g

∂xj
, f, g ∈ C∞(M).

The rank of a Poisson bracket at a point x ∈ M is the rank of the corresponding
tensor A at this point. The rank of the Poisson tensor (equivalently, of the Poisson
bracket) on M is defined to be rankA = maxx∈M rankA(x). A bracket is called non-
degenerate if det(Aij) 6= 0. The non-degeneracy of the Poisson bracket everywhere on
M is equivalent to the fact that the 2-form ω = A−1 defines a symplectic structure on
M .

Our first question is about the existence of integrable Hamiltonian systems on Pois-
son and symplectic manifolds. In the case of symplectic manifolds (equivalently, non-
degenerate Poisson), by an integrable system we understand a collection of n = 1

2
dimM

Poisson commuting functions f1, . . . , fn which are independent almost everywhere on
M . If the Poisson bracket is degenerate then we need more commuting functions,
namely,

k =
1

2
(dimM + corankA). (1)

If one ignores the structure of the singular set where the differentials of commut-
ing functions become linearly dependent, then, by using partition of unity argument,
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one can easily construct a C∞-smooth integrable system on any Poisson manifold [8].
However, in applications we have to deal with polynomial or real-analytic Poisson struc-
tures, so it is natural to require that commuting functions (or at least one of them,
considered as a Hamiltonian) belong to a natural functional space, e.g., polynomial,
rational or real analytic. Alternatively, one may impose some additional conditions
on common singularities of these functions (i.e., to require that all of them are non-
degenerate). These additional assumptions lead us to a natural existence problem “Do
any integrable systems exist on a given Poisson manifold?” or, conversely, to a question
on obstructions to integrability. In the algebraic context, this problem can be stated
as follows:

Problem 1. Let V be a vector space endowed with a polynomial Poisson structure A,
i.e., the bracket of two polynomials is again a polynomial. Do there exist any polynomial
integrable systems on (V,A)? This question can be naturally generalised by replacing
V with an arbitrary algebraic Poisson variety or polynomial Poisson algebra.

One of the important achievements in this direction was the proof of the Mischenko-
Fomenko conjecture by S.Sadetov [41] (see also [3, 51]), which says that for linear
Poisson structures on V the answer to the above question is always positive.

There are, however, many other examples of polynomial Poisson brackets for which
the above problem remains open. In the theory of integrable geodesic flows on Rie-
mannian manifolds, the following question naturally appears. Consider a homogeneous
space G/H of a compact Lie group G assuming, for simplicity, that both G and H are
connected (one may, of course, consider an arbitrary homogeneous space). Let F be
the algebra of all G-invariant functions on T ∗(G/H) which are polynomial in momenta.
This algebra can be naturally considered as a polynomial Lie algebra (see [7, 35]).

Problem 2. For which homogeneous spaces M = G/H, does F admit a complete
commutative subalgebra? Notice that such a subalgebra can be equivalently understood
as an integrable system on the orbit space T ∗M/G which has a natural structure of an
algebraic Poisson variety.

Let g∗ be the dual space of g = Lie(G) endowed with the standard (linear) Lie-
Poisson bracket and P(g) denote the space of all polynomials on g∗ considered as
polynomial Poisson algebra. Consider the coadjoint action of H on g∗ and the subalge-
bra P(g)h ⊂ P(g) of all H-invariant functions. Equivalently, P(g)h can be characterised
as the centraliser of h = Lie(H) in P(g).

Problem 3. Does P(g)h admit a complete commutative subalgebra?

The algebras P(g)h and F from Problems 2 and 3 are closely related. Geometri-
cally, P(g)h can be understood as the algebra of functions on the orbit space g∗/H
whereas F is the algebra of functions on the Poisson submanifold h⊥/H ⊂ g∗/H where
h⊥ ⊂ g∗, the annihilator of h in g∗, is considered as an invariant subspace of the coad-
joint action of H on g∗. Problems 2 and 3 have been discussed for various classes of
homogeneous spaces in the context of integrability of geodesic flows (e.g., see the re-
view paper [7] and the recent paper by I.Mykytyuk [35]) but, in the general setting,
they remain open. Although it is hard to expect a complete answer, developing new
methods for constructing integrable systems in polynomial Poisson algebras (as well
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as finding algebraic obstructions to integrability) is, in our opinion, an interesting and
promising direction of research.

Possible obstructions to existence of integrable systems could be related to the
chaoticity of the Poisson structure itself. We illustrate this idea by a couple of simple
models. In the theory of integrable Hamiltonian systems, formula (1) can be interpreted
as follows: if the rank of the Poisson bracket is 2r, then for complete integrability we
need to have r nontrivial integrals in addition to Casimir functions (which are usually
considered as trivial integrals). In particular, if r = 1, then the Hamiltonian itself can
be taken as a nontrivial integral and therefore in this case one should expect that every
Hamiltonian system is integrable.

In some concrete problems in mechanics, however, A.V.Borisov and
I.S.Mamaev [16] found a series of examples of Hamiltonian systems on Poisson
manifolds of rank 2 that demonstrate chaotic dynamics, i. e., are not integrable.

One such system is a particular case of the Suslov problem. Without going into
the mechanical nature of the problem and following the original notation from [16] we
shall explicitly define the corresponding Poisson bracket. Consider R5 with coordinates
γ1, γ2, γ3, ω1, ω2 and set:

{ω1, γ3} = − 1

A

∂V

∂γ2

, {ω2, γ3} =
1

B

∂V

∂γ1

,

{γ1, γ3} = −ω2, {γ2, γ3} = ω1,

where A,B are constants and V (γ1, γ2) is an arbitrary function of γ1 and γ2. It can be
shown [16] that for A = B and a suitable choice of V (potential of some non-integrable
natural system on the plane), the Hamiltonian H = γ2

1 + γ2
2 + γ2

3 from the Suslov
problem determines a non-integrable system.

This effect is due to the fact that the Poisson structure itself is chaotic in the
sense that its symplectic leaves are embedded in the Poisson manifold in some chaotic
manner. In particular, the Casimir functions are not globally defined.

Problem 4. Give a rigorous definition of chaotic Poisson brackets and construct ex-
amples of such brackets.

The minimal research programme would be to clarify the situation when a dynam-
ical system, which is Hamiltonian with respect to a Poisson structure of rank 2, might
be non-integrable and even chaotic. The following example helps to better understand
this phenomenon.

Let v be an arbitrary vector field on Rn. Consider the space Rn+1 = Rn×R, where
τ is taken as an additional coordinate on R and define the bi-vector A = v ∧ ∂τ on
it. Since the vector fields v and ∂τ commute, A is a Poisson structure of rank 2. If we
take the Hamiltonian H = τ then the corresponding Hamiltonian vector field precisely
coincides with v. If v is chaotic on Rn, then it will still remain chaotic on Rn+1.

Problem 5. a) What will the dynamics be in the example just described if we take
the Hamiltonian H =

∑
x2
i + τ 2? This Hamiltonian is interesting because its isoenergy

surfaces {H = ε} for small ε are spheres on which local Casimir functions are well-
defined. It follows from this that for small ε almost all trajectories are closed and
therefore there should be no chaos. Can chaos appear with the growth of ε?
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b) A more general question is: can chaotic dynamics arise if the Poisson structure
has rank 2 and the level sets of the Hamiltonian H are compact?

c) Does there exist an analytic (polynomial) Poisson structure of rank 2 for which
every analytic (polynomial) Hamiltonian gives a chaotic system? Note that such a
Poisson structure would give an example of a Poisson algebra which does not admit a
complete commutative subalgebra.

d) Generalise the above example for Poisson structures of an arbitrary rank.

In classical mechanics there are quite simple examples of Poisson brackets whose
symplectic leaves are not separated by global Casimir functions which lead to interest-
ing dynamical phenomena related to Problem 5, see [1].

3 Bi-Poisson linear algebra
A vector space V is called bi-Poisson if it is endowed with a pair of skew-symmetric
bilinear forms A and B. The reader may think of these forms as (constant) Poisson
tensors defined on V ∗ or, alternatively, as two (compatible) Poisson tensors on T ∗xM ,
i.e., at a fixed point x. Both interpretations make sense and give us a natural motivation
to study the properties of bi-Poisson vector spaces as an object of linear algebra.

The main tool of the bi-Poisson linear algebra is the Jordan–Kronecker decom-
position theorem (see [9, 44]) that describes a canonical form of the pair A, B (over
C).

Theorem 1. A pair of skew-symmetric bilinear forms A and B on V = Cm can be
simultaneously reduced to a block-diagonal matrix form by means of an appropriate
change of coordinates:

A 7→


A1

A2

. . .
Ak

 , B 7→


B1

B2

. . .
Bk

 (2)

where the corresponding pairs of blocks have one of the following three possible types :

1) Jordan type µi-block : Ai =

(
0 Id
−Id 0

)
, Bi =

(
0 J(µi)

−J>(µi) 0

)
,

where J(µi) is a Jordan block of size ki × ki with eigenvalue µi and Id is the identity
matrix of the same size;

2) Jordan type ∞-block : Ai =

(
0 J(0)

−J>(0) 0

)
, Bi =

(
0 Id
−Id 0

)
,

where J(0) is a Jordan block of size ki × ki with eigenvalue 0 and Id is the identity
matrix of the same size;

3) Kronecker block : Ai =

(
0 D
−D> 0

)
, Bi =

(
0 D′

−D′> 0

)
,
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where D and D′ are both matrices of size ki × (ki + 1) of the form:

D =

1 0
. . . . . .

1 0

 , D′ =

0 1
. . . . . .

0 1


Bi-Poisson linear algebra seems to be a rather new topic. Albeit some basic results

can be found in [9, 54], there are still a lot of natural questions to clarify. Below we list
some of them.

Instead of A and B, it is more convenient to work with the pencil of skew-symmetric
bilinear forms J = {Aλ = A+ λB}λ∈C̄ generated by them (we may consider the forms
from the pencil up to proportionality and formally set A∞ = B). The automorphism
group of the pencil is an algebraic group defined by

Aut(V, J) = {φ ∈ End(V ) | Aλ(φ(ξ), φ(η)) = Aλ(ξ, η), for all Aλ ∈ J} (3)

Obviously, the structure of this group essentially depends on the algebraic type of
J (see [54]), that is, the type of the canonical Jordan–Kronecker decomposition (2).

Problem 6. Consider the action of Aut(V, J) on the set of all subspaces U ⊂ V of
dimension k < dimV (or equivalently, on the Grassmannian Gr(k, V )). It is not hard
to see that this action admits infinitely many orbits. What are the orbits (equivalently,
subspaces) of generic type?

Problem 7. What happens to the algebraic type of a pencil J under reduction? This
question is very important in the differential-geometric context for various applications
related to (bi)-Hamiltonian reduction. In bi-Poisson linear algebra, by reduction one
can understand the restriction of a pencil to a certain subspace U ⊂ V . The simplest
version of this question is as follows. Consider a pencil J of a certain algebraic type
and take its restriction to a subspace U ⊂ V of codimension 1. What may happen to
its algebraic structure? Which scenarios are typical (i.e. what happens for a generic
subspace U)? The converse is also interesting: what happens to the algebraic structure
of a pencil if the dimension is increased by one and the pencil is prolonged to the
extended space? What is the typical scenario?

Problem 8. The reductions occurring in applications are not “generic” in the sense
of linear algebra; they correspond to subspaces with some special properties. One of
them can be defined as follows. We will say that a subspace U ⊂ V of a bi-Poisson
vector space is admissible if its Aλ-orthogonal subspace {v ∈ V | Aλ(v, U) = 0} does
not depend on the choice of a (generic) skew-symmetric form Aλ from the pencil. We
want to describe such subspaces and study their properties. In particular, we want to
understand how the algebraic structure of the pencil J changes under reduction to an
admissible subspace U ⊂ V .

In the theory of bi-Poisson manifolds, an analog of the subspace U ⊂ V is a bi-
Poisson subalgebra F ⊂ C∞(M), and the above property in terms of Poisson subalge-
bras means that the polar subalgebras1 of F with respect to the compatible Poisson
structures A and B coincide, which is a very useful property in the bi-Hamiltonian
context.

1Following S. Lie, by the polar subalgebra of a Poisson algebra F we understand the collection of
functions f satisfying {f,F} = 0.
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Problem 9. What happens to the algebraic structure of a pencil A + λB under con-
tinuous deformation Aα + λBα? Which pencils are “more stable” than the others?

More precisely, consider a pencil Jα = {Aα + λBα} which depends (continuously,
smoothly, analytically, algebraically) on a parameter α in such a way that its algebraic
type remains the same for all values of α except for a certain bifurcation value α0. What
the algebraic type of Jα0 could be? In other words, the goal is to study bifurcations of
pencils. Which bifurcations are generic? From a more formal point of view, the problem
is to describe the so-called “closure of orbits” diagram for the natural action of GL(V )
on the set of all pencils.

Without loss of generality we may assume that A and B are both regular, that is,
they have a maximal rank within the pencil. We shall say that a subspace L ⊂ V is bi-
Lagrangian if it is simultaneously Lagrangian with respect to both forms A and B. The
set LG(V, J) of all bi-Lagrangian subspaces is called the bi-Lagrangian Grassmannian.
This is a projective algebraic variety with rather non-trivial properties (a detailed
description of LG(V, J) is an important open problem, see the discussion in [39]),
which essentially depends on the algebraic type of the pencil J . For example, if J is of
Kronecker type, then there is a unique bi-Lagrangian subspace, i.e., LG(V, J) consists
of one single point. If, on the contrary, J is of Jordan type and is diagonalisable with
simple spectrum, i.e., all the blocks Ai, Bi in Theorem 1 are 2×2 and all µi are distinct,
then LG(V, J) is diffeomorphic to the torus T k = (S1)k, (in the real case) or (CP 1)k

(in the complex case), k = 1
2

dimV . Moreover, the action of Aut(V, J) on LG(V, J)
is transitive. However, if the structure of Jordan blocks is more complicated, then
LG(V, J) may consist of several orbits.

Problem 10. Describe the partition of the bi-Lagrangian Grassmannian LG(V, J) into
orbits of the automorphism group Aut(V, J).

In a symplectic space every isotropic space is contained in a Lagrangian one. In a
bi-Poisson vector space, this is not true any more.

Problem 11. Describe bi-isotropic subspaces W ⊂ V that can be extended up to bi-
Lagrangian ones. In bi-Poisson geometry, a non-linear analog of this question is “which
sets of functions in bi-involution can be (at least locally) extended up to a bi-integrable
system (or, equivalently, up to a complete set of functions in bi-involution).

4 Bi-Poisson geometry and the argument shift
method

4.1 Existence of bi-integrable systems

It is well known that compatible Poisson structures are one of the most effective tools
for constructing integrable systems, see for example [31, 32] . In particular, in almost all
non-trivial examples of Poisson algebras P(g)h and F from Problems 2 and 3 for which
complete commutative subalgebras (i.e. integrable systems) have been found, this was
done by using an appropriate pencil of compatible Poisson brackets. Recall that two
Poisson brackets { , }1 and { , }2 are called compatible if any linear combination of them
is again a Poisson bracket (a necessary and sufficient condition for this is the Jacobi
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identity for the sum { , }1 +{ , }2). The set {λ{ , }1 +µ{ , }2 | (λ, µ) ∈ R2 \(0, 0)} of all
non-trivial linear combinations of two compatible Poisson brackets is called a Poisson
pencil.

The rank of a Poisson pencil at a point x ∈ M is defined as the maximum of the
ranks of the brackets λ{ , }1 + µ{ , }2 at that point. The rank of the pencil in a
neighbourhood of a point x ∈M (or on the whole manifold M) is the maximum of the
ranks of the pencil over all points of that neighbourhood (manifold).

It deserves to be noticed that by virtue of the Jordan–Kronecker theorem (Theo-
rem 1) we can distinguish three essentially different types of Poisson pencils according
to the Jordan–Kronecker decomposition of a given pencil at a generic point. Thus, we
shall say that a Poisson pencil is of Kronecker type if its canonical form only consists
of Kronecker blocks. Similarly, if the canonical form of a pencil consists only of Jordan
blocks, we shall call it Jordan or symplectic. In the most general case, we shall just say
that the pencil is of a mixed algebraic type.

As pointed out in Section 3, every bi-Poisson vector space (V, J = {A+λB}) admits
a bi-Lagrangian subspace L ⊂ V (at least one), i.e., a subspace which is simultaneously
Lagrangian (i. e. maximal isotropic) with respect to all regular forms A+ λB.

An analogous statement in the case of compatible Poisson brackets would be the
existence of a complete subalgebra F ⊂ C∞(M) consisting of functions in involution
with respect to all the brackets in a given pencil. By completeness in this case we mean
that the subspace generated by the differentials of functions f ∈ F in the cotangent
space T ∗xM is maximal isotropic. It is natural to refer to such a subalgebra (or to a
collection of its generators) as a bi-integrable system.

In the case of Kronecker pencils such a subalgebra F is generated by the (local)
Casimir functions of all the brackets in the pencil. It is well known that F so obtained
is complete and commutative with respect to all the brackets in the pencil ([2, 23]).
Similar results in the symplectic case can be found in the works of P.Olver [36] and
H.Turiel [48].

Of great interest, however, is the mixed case.

Problem 12. Let A1 and A2 be two compatible Poisson structures of an arbitrary type
on a manifold M and x ∈ M be a generic point in the sense that the structure of the
Jordan-Kronecker decomposition of the pencil does not change in a neighbourhood of x.
Does there exist, in a neighbourhood of x, a complete set of functions in bi-involution?

In fact, the answer to this question is positive but to the best of our knowledge
this result has never been published. We would like, however, to formulate a more
interesting version of this local problem. As pointed out in Section 3, bi-Lagrangian
subspaces L ⊂ V may have different algebraic types (in other words, the bi-Lagrangian
Grassmannian LG(V, J) may consist of several orbits of the automorphism group of
the pencil J). In this view, bi-integrable systems may be of different algebraic types
too. More precisely, let f1, . . . , fk be a complete set of functions in bi-involution, i.e., a
bi-integrable system. We restrict our considerations to a small neighbourhood U of a
generic point x ∈M such that for each y ∈ U the Jordan-Kronecker type of the pencil
defined on T ∗yM by a pair of compatible Poisson brackets is the same. If we think of T ∗yM
as a bi-Poisson vector space, then the subspace Ly = span{df1(y), . . . , dfk(y)} ⊂ T ∗yM is
bi-Lagrangian and therefore can be characterised by its algebraic type (i.e., by the type
of the orbits of the automorphism group action in the bi-Lagrangian Grassmannian to
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which L belongs). If this type remains the same for all points y ∈ U , we refer to it as
the algebraic type of the bi-integrable system f1, . . . , fk.

Problem 13. Do bi-integrable systems of a given algebraic type exist? In the local
setting, this question can be reformulated as follows. Let us consider a (co)-distribution
on U all of whose subspaces Ly ⊂ T ∗yM are bi-Lagrangian and belong to the same
algebraic type. Do there exist integrable (in the sense of Frobenius) co-distributions of
this kind?

4.2 Argument shift method, the generalised argument shift
conjecture, and Jordan-Kronecker invariants

The argument shift method was developed by A.S.Mischenko and A.T. Fomenko [34]
as a generalisation of S.V.Manakov’s construction suggested in [33]. In the context
of bi-integrable systems, it is perhaps the first non-trivial example which illustrates
almost all phenomena that one can observe in finite-dimensional bi-Poisson geometry.

Let g∗ be the dual space of a finite-dimensional Lie algebra g. It is well known that g∗
possesses two natural compatible Poisson brackets. The first one is the standard linear
Lie-Poisson bracket

{f, g}(x) = 〈x, [df(x), dg(x)]〉, (4)

and the second one is a constant bracket given by

{f, g}a(x) = 〈a, [df(x), dg(x)]〉, (5)

where a ∈ g∗ is a fixed element. Here we assume a to be regular although formula (5)
makes sense for an arbitrary a (see the next section).

Now, let f ∈ P(g) be a polynomial invariant of the coadjoint action. Then its shift
f(x+ λa) is Casimir for the linear combination { , }+ λ{ , }a. Therefore, for any two
coadjoint invariant polynomials f, g ∈ C∞(g∗), their shifts f(x + λa) and g(x + µa)
commute with respect to both brackets (4) and (5). In this way, one can, as a rule,
construct a large (bi-)commutative subalgebra of P(g). However, in many examples,
there are either no polynomial coadjoint invariants, or their number is too small. In
this case, one needs to modify the construction. To that end, consider local analytic
invariants f1, . . . , fs, s = ind g defined in a neighbourhood of a ∈ g∗ such that their
differentials dfi(a) form a basis of Ann a (recall that a is regular so that such invariants
do exist). Take the Taylor expansions of fi at a:

fi(a+ λx) = f
(0)
i + λf

(1)
i (x) + λ2f

(2)
i (x) + λ3f

(3)
i (x) + . . . , (6)

and consider the commutative subalgebra Fa ⊂ P(g) generated by polynomials f (k)
i

where i = 1, . . . , ind g, and k > 0. We call Fa the algebra of (polynomial) shifts. In
terms of the algebra Fa, the main result of [34] can be stated as follows

Theorem 2 (A.S.Mischenko, A.T. Fomenko [34]).
1) The functions from Fa pairwise commute with respect to both brackets { , }

and { , }a.
2) If g is semisimple, then Fa is complete, i.e., contains 1

2
(dim g+ind g) algebraically

independent polynomials.
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Although in general Fa is not necessarily complete, A.S.Mischenko and
A.T. Fomenko stated the following well known conjecture.

Mischenko–Fomenko conjecture. On the dual space g∗ of an arbitrary Lie algebra g
there exists a complete family F of commuting polynomials.

In other words, for each g one can construct a (polynomial) completely integrable
system on g∗ or, speaking in algebraic terms, the Lie-Poisson algebra P(g) always
contains a complete commutative subalgebra.

This conjecture was proved in 2004 by S.T.Sadetov [41], see also [3, 51]. However,
Sadetov’s family F ⊂ P(g) is essentially different from the algebra Fa of shifts. Thus,
it is still an open question whether or not one can modify the argument shift method to
construct a complete family of polynomials in bi-involution, that is, commuting with
respect to both brackets (4) and (5). In many examples we have already studied, the
answer turned out to be positive which led us to the following bi-Hamiltonian version
of the Mischenko–Fomenko conjecture.

Generalised argument shift conjecture ([9]). Let g be a finite-dimensional Lie
algebra. Then for every regular element a ∈ g∗, there exists a complete family Ga ⊂ P(g)
of polynomials in bi-involution, i.e., in involution w.r.t. the two brackets { , } and { , }a.

In fact, our conjecture can be reformulated in the following equivalent way: the
algebra Fa of polynomial shifts can always be extended up to a complete subalgebra
Ga ⊂ P(g) of polynomials in bi-involution.

Problem 14. Either prove this conjecture or construct a counterexample.

Some results in this direction can be found in [9, 25] where this conjecture has been
verified for several classes of Lie algebras. However, there is one example for which we
could not do it.

Problem 15. Let g = gl(4)+(R4 +R4) be the semidirect sum of gl(4) with two copies
of R4 on each of which gl(4) acts in the standard way2. Construct a complete family
of polynomials in bi-involution or prove that no such family exists.

Possible difficulties are related to the algebraic structure of the “argument shift”
pencil on g = gl(4) + (R4 + R4) which can be naturally described by means of the
so-called Jordan-Kronecker invariants introduced in [9].

Consider an arbitrary Lie algebra g and its dual space g∗. For an arbitrary pair of
elements x, a ∈ g∗ we define two skew-symmetric forms on g by

Ax(ξ, η) = 〈x, [ξ, η]〉 and Aa(ξ, η) = 〈a, [ξ, η]〉.

These forms can be understood as the Poisson tensors corresponding to the brackets (4)
and (5) (at the point x ∈ g∗). By the Jordan-Kronecker theorem (Theorem 1) the forms
Ax and Aa can be reduced to some canonical form. We are interested in their discrete
invariants:

1) the number jm and the sizes n1, . . . , njm of the Jordan blocks for each eigenvalue
µm;

2) the number i and the sizes 2p1 + 1, . . . , 2pi + 1 of the Kronecker blocks.
2The matrix representation of this Lie algebra is very simple: all 6×6 matrices with two zero rows.
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Consider a generic pencil of this type, i. e., such that these invariants do not change
under small perturbations of its parameters x, a ∈ g∗. It can be shown that the set
of such generic pairs (x, a) ∈ g∗ × g∗ is Zariski open. Then, the numbers jm, nr and
ps are invariants of the Lie algebra g and are called Jordan–Kronecker invariants (for
more details see [9]). They are closely related to some important properties of g. For
instance, the completeness of the algebra of shifts Fa is equivalent to the absence of
Jordan blocks, i. e., j =

∑
jm = 0. Lie algebras of purely Jordan type (i.e., with no

Kronecker blocks) are exactly Frobenius Lie algebras g, i.e. can be characterised by
the condition ind g = 0 (see [20]). Furthermore, the numbers ps in the semisimple case
are related to the so-called Chevalley indices (exponents of g) and in the general case
may be considered as lower estimates for the degrees of Ad∗-invariant polynomials of g
(A.S.Vorontsov [52]).

Problem 16. Compute the Jordan–Kronecker invariants for the most interesting
classes of Lie algebras, and particularly for the following
(a) semidirect sums g +ρ V , where ρ : g→ End(V ) is a representation of a semisimple
Lie algebra g and V is assumed to be commutative;
(b) Borel subalgebras of simple Lie algebras;
(c) parabolic subalgebras of simple Lie algebras;
(d) the centralisers of singular elements a ∈ g, where g is simple;
(e) Lie algebras of small dimensions.

For Lie algebras of dimension ≤ 5, the Jordan–Kronecker invariants were com-
puted by P. Zhang. Her results, as well as some other examples of computing Jordan–
Kronecker invariants, can be found in the arXiv version of [9].

Problem 17. Can an arbitrary set of Jordan–Kronecker invariants jm, nr, ps be re-
alised by means of an appropriately chosen Lie algebra? Or there are some non-trivial
restrictions?

A partial, but quite substantial, solution to Problem 17 has been obtained by Ivan
Kozlov, see [9]. Roughly speaking, the answer is obtained for Lie algebras of Jordan and
Kronecker type. It turns out that in the Jordan case there are non-trivial restrictions on
the sizes of blocks, while in the Kronecker case any combination of blocks is allowed. The
mixed case remains open because of possible non-trivial interaction between Kronecker
and Jordan blocks.

Coming back to Problem 15, the Lie algebra g = gl(4)+(R4+R4) is Frobenius, i.e., of
pure Jordan type. The Jordan-Kronecker decomposition of a generic pencil Ax + λAa
contains 6 Jordan blocks of size 4 × 4 (i.e., non-trivial) with distinct characteristic
numbers λ1, . . . , λ6. It can be shown that locally bi-integrable systems on g∗ exist but
it is not clear if the corresponding bi-Lagrangian integrable (co)-distribution can be
defined by means of polynomial functions.

4.3 The limit of the argument shift method

Let us recall, in more detail, how the argument shift method works in the case of a
simple Lie algebra g. Identify g with its dual space by means of the Killing form. As
before, let P(g) denote the symmetric algebra of g, i.e., the algebra of polynomials on
g∗ = g, endowed with the standard Lie-Poisson bracket. Further, let I(g) ⊂ P(g) be
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the subalgebra of polynomial invariants of the adjoint, or, which is the same, coadjoint,
representation (recall that I(g) is exactly the centre of P(g) with respect to the Lie-
Poisson bracket). Then it is known that I(g) is freely generated by certain homogeneous
polynomials I1, . . . , In, where n is the rank of the Lie algebra g. Consider an arbitrary
element a ∈ g and the corresponding expansion

Ii(x+ λa) =
∑
j

λjfij(x, a).

Each coefficient fij in this expansion is a certain homogeneous polynomial of degree
deg Ii − j. In this way we obtain exactly 1

2
(dim g + rank g) non-constant functions fij.

The subalgebra Fa ⊂ P(g) generated by the polynomials fij is called theMischenko-
Fomenko subalgebra corresponding to the element a ∈ g. Note that the symmetric
algebra P(g) has a natural grading by polynomial degrees

P =
⊕
i≥0

P i,

and since the subalgebra Fa ⊂ P(g) is generated by homogeneous functions, it inherits
the grading:

Fa =
⊕
i≥0

F ia ,

where F ia = Fa ∩ P i.
It follows from Theorem 2 that the subalgebra Fa ⊂ P(g) is commutative with

respect to the Lie-Poisson bracket. Furthermore, if a is a regular element, then Fa
has maximal (for a Poisson-commutative subalgebra) transcendence degree 1

2
(dim g +

rank g). Such subalgebras are called complete.
In the case of a singular element a ∈ g, the corresponding subalgebra Fa is not

complete. However, as was shown by E.B.Vinberg [50], it can always be included in
some bigger complete commutative subalgebra. To see this, consider an analytic curve
a(t) ∈ g such that a(t) is regular for 0 < |t| < ε, and a(0) = a is a prescribed singular
element. Considering the corresponding Mischenko–Fomenko subalgebras and their ho-
mogeneous parts F ia(t) ⊂ P i, we obtain a family of subspaces such that ki = dimF ia(t) is
independent of t for 0 < |t| < ε. Now, we claim that if F ia(t) is regarded as a point in the
corresponding Grassmannian Gr(ki,P i), then there exists the limit lim

t→0
F ia(t). Indeed,

let gt1, . . . , gtki be a basis of F ia(t) chosen in such a way that the coefficients of every
polynomial gtj are analytic functions of t. Since the Mischenko–Fomenko subalgebra is
free, such a basis can be constructed by taking products of polynomials of the form
fij(x, a(t)) of suitable degrees. Let also

ω(t) = gt1 ∧ · · · ∧ gtki ∈ ΛkiP i.

Now, observe that since the form ω(t) depends analytically on t and does not vanish
identically, it follows that there exists k such that ω(t) = tkω̃(t), where ω̃(0) 6= 0.
Further, notice that the coefficients of the form ω(t) are, by definition, the Plücker
coordinates of the subspace F ia(t) ⊂ P i. Therefore, since the image of the Plücker
embedding

Gr(ki,P i) ↪→ P(ΛkiP i)

12



is closed, the coefficients of the form ω̃(0) are also Plücker coordinates of a certain
subspace of P i, which can be naturally viewed as the limit lim

t→0
F ia(t). Now, taking the

direct sum ⊕
i≥0

lim
t→0
F ia(t),

we obtain a Poisson-commutative graded algebra which we denote by lim
t→0
Fa(t). Note

that, in contrast to the actual algebra of shifts Fa, this subalgebra may depend on
the curve a(t), and not only on a itself. However, we always have lim

t→0
Fa(t) ⊃ Fa. So,

it remains to show that the subalgebra lim
t→0
Fa(t) is complete. To that end, recall that

for any graded algebra F =
⊕

iF i, its Poincaré series is defined by F (t) =
∑

i nit
i,

where ni = dimF i. In the case of subalgebras of finitely generated algebras, this series
uniquely determines the transcendence degree [50]. Now, notice that, by construction
the Poincaré series of a pre-limit algebra Fa(t) coincides with the Poincaré series of the
limit algebra lim

t→0
Fa(t). Therefore, the number of algebraically independent polynomials

in the algebra lim
t→0
Fa(t) is equal to 1

2
(dim g+ rank g), i. e., the limit algebra is complete,

as desired.

Problem 18. Generalize the limit argument shift method to the case of an arbitrary
Lie algebra. Find a necessary condition for the completeness of the limit algebra of
shifts.

Let a(t) be a polynomial in t whose coefficients lie in the same Cartan subalgebra.
In this case, an explicit description of the generators for the limit Mischenko–Fomenko
subalgebra was obtained by V.V. Shuvalov [42]. Namely, assume that

a(t) = a0 + a1t+ · · ·+ amt
m.

Define
Ci = Cg(a0) ∩ · · · ∩ Cg(ai),

where Cg(ai) is the centraliser of ai in g. Then the limit Mischenko–Fomenko subalgebra
lim
t→0
Fa(t) is generated by the conventional Mischenko–Fomenko subalgebra Fa0 , and by

the union of the shifts of invariants for the Lie algebras Ci along the elements ai+1.

Problem 19. Describe the generators of the limit Mischenko–Fomenko algebra in the
case of an arbitrary analytic curve a(t) in a simple Lie algebra. If Problem 18 is solved,
then generalize the description of the generators to the case of an arbitrary analytic
curve a(t) ∈ g∗ for an arbitrary Lie algebra g.

4.4 Quantization of the argument shift method

Let g be a finite-dimensional Lie algebra, P(g) be its Lie-Poisson algebra that consists
of polynomial functions on g∗, and let Fa ⊂ P(g) be the commutative subalgebra of
shifts for a regular element a ∈ g∗.

The problem of quantization consists in constructing the corresponding (quantum)
commutative subalgebra F̂a in the universal enveloping algebra U(g). The correspon-
dence between the quantum algebra of shifts F̂a and the classical algebra of shifts Fa
is required to be as follows.
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The universal enveloping algebra U(g) has a natural filtration by degree

U0 ⊂ U1 ⊂ · · · ⊂ Uk−1 ⊂ Uk ⊂ . . . , U(g) =
∞⋃
k=0

Uk.

The quotient space Uk/Uk−1 is naturally identified with the subspace Pk ⊂ P(g) of
homogeneous polynomials of degree k. Let p̂ ∈ F̂a ∩ Uk be some element of degree k.
It is required that its “principal symbol” p ∈ Uk/Uk−1 ' Pk lies in the algebra of shifts
Fa, and Fa must be generated by such elements.

Equivalently, this question can be reformulated as a problem of lifting of the ho-
mogeneous generators p1, p2, . . . , ps of the classical algebra of shifts Fa to the universal
enveloping algebra U(g) in such a way that the lifted generators still commute.

A method for constructing the quantum algebra of shifts F̂a for a semisimple Lie
algebra g was suggested by L.G.Rybnikov [40]. However, it is not clear whether or not
a similar construction works for an arbitrary Lie algebra g.

Problem 20. Quantize the algebra of shifts Fa in the case of an arbitrary finite-
dimensional Lie algebra g (or find an obstruction for quantization).

4.5 Flat Pencils

A Poisson pencil is called flat if there exists a local coordinate system in which the
Poisson tensors of all brackets of the pencil are constant. The problem of flatness
for Poisson pencils has been actively studied [22, 23, 36, 47, 48]. At present, some
fundamental results are known.

Recall that a Poisson pencil on a manifold M is called Kronecker at x ∈ M if the
Jordan-Kronecker normal form for the corresponding Poisson tensors at the point x
has no Jordan blocks. A Poisson pencil is called Kronecker on a manifold M if it is
Kronecker at a generic point x ∈ M . Note that the problem of flatness is mainly of
interest in the Kronecker case, because if a flat pencil has Jordan blocks, then the
corresponding eigenvalues must be constant. At the same time, the latter case can be
easily reduced to the Kronecker situation [49].

To formulate a criterion for flatness of Kronecker pencils, we need the notion of a
Lenard chain. A sequence fi of functions on M is called a Lenard chain for compatible
Poisson brackets { , }1 and { , }2 if

{fi+1, g}1 = {fi, g}2

for any two consecutive members fi, fi+1 of the chain and any g ∈ C∞(M).

Theorem 3. Let { , }1 and { , }2 be two compatible Poisson brackets defining a Kro-
necker pencil with Kronecker blocks of sizes 2n1 − 1, . . . , 2nk − 1. Such a pencil is flat
in a neighbourhood of a point x if and only if there exist k Lenard chains

0→ f 1
1 →· · · → f 1

n1
→ 0,

. . .

0→ fk1 →· · · → fknk
→ 0,

where f ji ’s are local smooth functions with linearly independent differentials.
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In the case when there is only one Kronecker block and all objects are analytic
this theorem was proved by I.M.Gelfand and I.S. Zakharievich [22]. The general case
follows from the results of A. Panasyuk [37] and F.J. Turiel [47].

The paper [26] gives a more explicit criterion for flatness of Kronecker pencils with a
single block in terms of bi-invariant volume forms. A volume form ω on M is called bi-
invariant with respect to compatible Poisson brackets { , }1 and { , }2 if ω is preserved
by all vector fields Hamiltonian with respect to { , }1, as well as by all vector fields
Hamiltonian with respect to { , }2. According to [26], a Kronecker pencil with a single
block is locally flat if and only if it admits a local bi-invariant volume form.

For arbitrary Kronecker pencils, the existence of a bi-invariant volume form no
longer implies flatness, see Remark 4.4 of [26].

Problem 21. Generalize the results of [26] to the case of arbitrary Kronecker pencils.

In the case of the argument shift pencil on the dual of a Lie algebra, that is a pencil
generated by brackets (4) and (5), Theorem 3 implies the following.

Theorem 4. Let g be a Lie algebra whose ring of polynomial invariants of the coadjoint
action has maximal transcendence degree ind g and is generated by polynomials of total
degree 1/2(dim g + ind g). Assume also that the codimension of the singular set in g∗

is at least two. Then, for any regular a ∈ g∗, the corresponding argument shift pencil
is Kronecker and flat in a neighbourhood of a generic point.

In particular, we have the following

Theorem 5 (A. Panasyuk [37], I.S. Zakharievich [53]). Let g be a semisimple Lie alge-
bra and a ∈ g∗ = g be regular. Then the argument shift pencil is flat in a neighbourhood
of a generic point.

Note that the condition of Theorem 4 is not necessary for flatness. For example,
the three-dimensional Lie algebra with relations [x, y] = y, [x, z] = z does not have
polynomial invariants, but the corresponding argument shift pencil is Kronecker and
flat [24]. Also, note that even if a Lie algebra g admits a complete (i.e., of transcendence
degree ind g) set of polynomial invariants but their degrees are two high, then the
corresponding argument shift pencil does not have to be flat (consider, for instance,
the algebra discussed in Remark 4.4 of [26]).

Problem 22. Find necessary and sufficient algebraic conditions under which the ar-
gument shift pencil on the dual space of a Lie algebra is flat.

In [24], Problem 22 is solved for all three-dimensional Lie algebras. More generally,
the technique of [26] can be used to study argument shift pencils with a single Kronecker
block. In particular, from the flatness criterion of [26] it follows that any such pencil
associated with a unimodular Lie algebra is flat.

Analogous questions may be asked for other natural pencils of compatible Poisson
brackets.

Example 1. Consider the Lie algebra gl(n). Let A ∈ gl(n) be fixed. Define a new
operation on gl(n) by

[X, Y ]A = XAY − Y AX.
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It is easy to check that this operation satisfies the Jacobi identity and defines a structure
of a Lie algebra on gl(n) which is compatible with the standard one. Therefore, on the
dual space gl(n)∗ we obtain a pair of compatible Poisson brackets.

Furthermore, it is easy to see that if the matrix A is taken to be symmetric, then
so(n) ⊂ gl(n) will be a subalgebra with respect to both commutators. Hence, on the
dual space to so(n), we also get a pair of compatible Poisson brackets.

Problem 23. Are the pencils on gl(n) and so(n) defined in Example 1 flat?

This question might be of interest in connection with the unsolved problem of
separation of variables for the Manakov top.

5 Applications to Differential Geometry

5.1 Sectional operators, projective equivalence and holonomy
groups

An interesting relationship between a special class of integrable Hamiltonian systems
on semisimple Lie algebras, projectively equivalent metrics, and pseudo-Riemannian
metrics with special holonomy groups has been discovered recently [12, 13, 14].

Let g = so(g) be the Lie algebra of the (pseudo)-orthogonal group related to a non-
degenerate bilinear form g defined on a finite-dimensional vector space V . Consider a
linear operator R : so(n)→ so(n), symmetric w.r.t. the Killing form and satisfying the
relation

[R(X), A] = [X,B] for all X ∈ so(g),

where A and B are some fixed g-symmetric matrices.
Such operators play an important role in the theory of finite-dimensional integrable

systems since the corresponding Hamiltonian equations on so(n)

Ẋ = [R(X), X]

can be viewed as natural generalisations of the Euler equations describing the dynamics
of an n-dimensional rigid body [33, 34]. These equations admit a family of commuting
integrals Tr(X + λA)n which are sufficient for complete integrability if A is regular.
Following [45, 46], we will call such operators sectional (see also [11, 12, 15, 29]).

Two (pseudo)-Riemannian metrics are called projectively equivalent if they have the
same unparametrised geodesics and affinely equivalent if their geodesics coincide with
parametrisation.

The following two facts illustrate the relationship between sectional operators and
projectively equivalent metrics.

Theorem 6 (A.V. Bolsinov, V. Kiosak, V.S. Matveev [12]). Let g and ḡ be projectively
equivalent metrics on M . Then the Riemann curvature operator3 of g at each point
x ∈M :

R : Λ2(TxM) ' so(g)→ so(g) (7)
3Recall that the Riemann curvature tensor of a metric g can (pointwise) be considered as a linear

map from the space of bivectors to the space of g-skew symmetric operators, and these two spaces
can be naturally identified by means of g.
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is a sectional operator in the above sense. Namely, it satisfies

[R(X), A] = [X,B]

where A =
∣∣∣det ḡ

det g

∣∣∣ 1
n+1

ḡ−1g and B = 1
2
∇(grad trA).

If g and ḡ are affinely equivalent, then the operator A from this theorem is covari-
antly constant, the above identity takes the form

[R(X), A] = 0

and the Lie algebra hol(∇) of the (local) holonomy group of g is contained in gA =
{Y ∈ so(g), Y A = AY }.

Is it possible to construct examples of metrics g for which hol(∇) coincides with
gA? In other words, is gA a holonomy algebra (for an appropriate (pseudo)-Riemannian
metric)? Not only the answer is positive, but there is also an elegant construction,
based on the idea of sectional operators, that gives a series of explicit examples of such
metrics.

Theorem 7 (A.V. Bolsinov, D. M. Tsonev [14]). For any g-symmetric operator A,
the algebra gA can be realised as a holonomy Lie algebra hol(∇) of some (pseudo)-
Riemannian metric g. Moreover, such metrics can be constructed explicitly.

The definition of sectional operators is naturally generalised to the case of Z2-graded
Lie algebras of the form g = k + v, where [k, k] ⊂ k, [k, v] ⊂ v and [v, v] ⊂ k:

R : k→ k is such that [R(x), a] = [b, x] for all x ∈ k

with a, b ∈ v being fixed (they play the role of parameters for R). In the sense of
this definition, the sectional operators (7) correspond to the standard decomposition
of gl(n) into g-skew symmetric and g-symmetric matrices.

Problem 24. Is it possible to generalise the above theorems to the case of the other
Z2-graded Lie algebras? Can we use such sectional operators to construct examples of
metrics with non-standard holonomy groups in the (pseudo)-Kähler and hyper-Kähler
setting by means of explicit formulas similar to the so-called magic formulas from [14]?
Does the notion of projective equivalence has a natural meaning in the case of hyper-
Kähler manifolds?

These questions have been motivated by two recent results. The first one is a descrip-
tion of all possible algebras of parallel endomorphisms obtained by C. Boubel in [17].
The centralisers of these algebras are exactly the non-standard holonomy groups men-
tioned in Problem 24. The second result is an analog of Theorem 6 for the so-called
c-projectively equivalent Kähler metrics which, in algebraic terms, corresponds to the
Z2-grading gl(n,C) = u(n) + v where v denotes the space of Hermitian matrices. The
proof of this latter result can be found in [13] .
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5.2 Singularities of bi-Hamiltonian systems and bi-Hamiltonian
reduction

A recent series of papers [6, 10, 27] has been devoted to the study of singularities of
bi-Hamiltonian systems. The underlying bi-Hamiltonian structure discussed in these
papers is related to Poisson pencils P = {A0+λA1} of Kronecker type (see Section 4.1).
Such pencils appear in many interesting integrable problems in geometry and physics
and usually the verification of the property of being Kronecker is not very difficult.
Recall that this property is in fact algebraic and means that at a generic point x ∈M
the Jordan–Kronecker decomposition of the pair of skew-symmetric forms A0(x) and
A1(x) consists only of Kronecker blocks (see Theorem 1).

However, there are important examples of Poisson pencils for which such a verifi-
cation is not obvious at all. In particular, the situation becomes unclear for Poisson
pencils obtained by a bi-Hamiltonian reduction. Here is one example of this kind. Con-
sider the Lie-Poisson pencil on the space of skew-symmetric matrices from Example 1:

[X, Y ]E+λA = X(E + λA)Y − Y (E + λA)X

where E is the identity matrix and A = diag(a1, . . . , a1, a2, . . . , a2, . . . , ak, . . . ak) is a
(singular) diagonal matrix. This pencil is not Kronecker as λi = −a−1

i is a characteristic
number and as a result the bracket [ , ]E−a−1

i A admits a non-trivial centre isomorphic
to so(ni) where ni is the multiplicity of ai. There is, however, a natural way to “kill”
all these centres.

To that end, consider the natural decomposition so(n) = k + v, where k = so(n1)⊕
so(n2)⊕ · · · ⊕ so(nk) ⊂ so(n) and v is the natural complement to k in so(n). Consider
on so(n) ' so(n)∗ the subalgebra P

(
so(n)

)k ⊂ P(so(n)
)
consisting of all the functions

commuting with k (w.r.t. the standard so(n)-bracket). It is easy to see that P(so(n))k

is closed w.r.t. { , }A so that we still have a Poisson pencil on P
(
so(n)

)k. Moreover,
this pencil is also naturally defined on the space P(v)k of all k-invariant functions on
v ' v∗, cf. Problems 2 and 3.

Problem 25. What are the algebraic properties of the Poisson pencil on P(v)k obtained
from { , }E+λA by the above reduction? Are they of Kronecker type? Is there any general
mechanism describing the behaviour of (algebraic properties of) Poisson pencils under
reduction?

This particular question is directly related to the integrability of geodesic flows on
the homogeneous space SO(n)/

(
SO(n1)× SO(n2)× · · · × SO(nk)

)
. It follows from the

paper by I. Mykytyuk [35] that the reduced pencil on P(v)k is of Kronecker type. The
same conclusion follows from [19]. However, the approaches suggested in [35] and [19]
do not use the reduced pencil directly (notice that the sizes of the corresponding Kro-
necker blocks are still unknown). In fact, the construction in [35] is applied to arbitrary
semisimple Lie algebras, and in this more general setting, Problem 25 remains open.

Could we use the technology developed in [10] to study this problem? The idea
of such an alternative approach is as follows. The reduced Poisson pencil, as a rule,
is more complicated than the original one. For example, even if we start with quite
simple brackets (e.g., linear as in our example), the new reduced brackets are not linear
any more which leads to many technical problems (e.g., we do not have any natural
coordinate system for explicit computations). The main idea of [10] is to “replace”
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a (non-linear) Poisson pencil by its linearisation. For our purposes, this linearisation
needs to be done at an equilibrium point of the corresponding reduced Hamiltonian
system (more precisely, at a common equilibrium point for all reduced Hamiltonians).
A “good” linearisation may guarantee that the given (non-linear) pencil is of Kronecker
type.

Problem 26. What are the common equilibrium points for the reduced pencil on
P(v)k? Do they exist? Can we describe them explicitly? (In the case of a generic A
with simple eigenvalues, the answer is well known; see for example [27].) What is the
linearisation of the reduced pencil at such points? Can one say anything about the
algebraic type of the reduced pencil (we want it to be Kronecker) if its linearisation
is known? In the more general setting: under which conditions on its linearisation a
(non-linear) Poisson pencil is of Kronecker type?

6 Action variables as symplectic invariants
This section is related to symplectic topology of integrable systems (see [18, 38, 43, 55]).
Consider a singular Lagrangian fibration φ : M → B associated with a certain finite-
dimensional integrable system. The base B of this fibration can be understood as a
stratified manifold whose strata correspond to different levels of degeneracy of singular
fibers. Recall that the action variables are defined on the regular part Breg ⊂ B and
they, in turn, define an integer affine structure on it. In a neighbourhood of a singular
stratum, this affine structure, as a rule, is not smooth but we still may study its
asymptotic behaviour and think of it as a singular affine structure on B as a whole.

Since the action variables are preserved under symplectomorphisms, we may think of
them as symplectic invariants of (singular) Lagrangian fibrations. How much informa-
tion do they contain? Examples show that very often the action variables (equivalently,
singular affine structure on B) are sufficient to reconstruct completely the structure of
the Lagrangian fibration up to symplectomorphisms. The classical result illustrating
this principle is the Delzant theorem [18] stating that in the case of Lagrangian fibra-
tions related to Hamiltonian torus actions, the base B is an affine polytope (with some
special properties) which determines the structure of the Lagrangian fibration (as well
as the torus action) up to a symplectomorphism.

This situation, however, is almost trivial from the point of view of singularities of
action variables as they are smooth functions both on M2n and B (here we think of B
as a manifold with corners). We believe that an analog of the Delzant theorem holds
true in a much more general situation. Ideally, such an analog could be formulated as
the following principle (it is not a theorem as a counterexample is easy to construct!):

Let φ : M → B and φ′ : M ′ → B′ be two singular Lagrangian fibrations. If B and
B′ are affinely equivalent (as stratified manifolds with singular affine structures), then
these Lagrangian fibrations are fiberwise symplectomorphic.

Problem 27. Under which additional conditions, does this principle become a rigorous
theorem?

In our opinion, this is an important general question which is apparently quite
difficult to answer in full generality. Some more specific questions could be of interest
too.
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Let φ : M4 → B be an almost toric fibration (see [30, 43]), which means in particular
that its singularities are all non-degenerate and can be of elliptic and focus type only.
Consider the most typical situation when the base B of such a fibration is a two-
dimensional region with boundary (having some corners) and some isolated singular
points of focus type lying inside B. This domain is endowed with an integer affine
structure having singularities at focus points.

Problem 28. Consider two Lagrangian fibrations φ : M4 → B and φ′ : M ′4 → B′.
Assume that B and B′ are affinely equivalent in the sense that there exists an affine
diffeomorphism ψ : B → B′. Is it true that under these assumptions the corresponding
Lagrangian fibrations are symplectomorphic?

In the semi-global setting, we may ask a similar question for a Lagrangian fibra-
tion in a neighbourhood of a singular fiber. Non-degenerate singularities satisfy one
important property: locally, every action variable can be written as I = Ising + Ireg,
where the singular part Ising is the same for all singularities of a given topological type
and Ireg is a smooth function which can be arbitrary. This reflects the fact that the
singular part Ising has a local nature and is defined by the structure of a fibration in
a neighbourhood of a singular point. According to the Eliasson theorem [21], in the
non-degenerate case there are no local symplectic invariants and hence Ising is uniquely
defined by the topological type of a singular point.

Problem 29. What happens in the case of degenerate singularities? Do local sym-
plectic invariants exist (for diffeomorphic singularities)? How many and of what kind
are they? This question makes sense even in the simplest case of one-degree-of-freedom
systems.

As we know from concrete examples of integrable systems, many degenerate singu-
larities are stable in the sense that they cannot be avoided by a small perturbation of a
system. The problem of description of stable degenerate singularities is very important
on its own but for many degrees of freedom it is quite complicated. However, in the
case of two (and two and a half) degrees of freedom there is a number of well-known
examples of stable singularities (e.g., Hamiltonian Hopf bifurcation). It would be in-
teresting to clarify the situation with asymptotic behaviour of angle variables at least
for such singularities.

V. Kalashnikov [28] has described all stable singularities of rank 1 for Hamiltonian
systems of two degrees of freedom.

Problem 30. Describe the symplectic invariants of stable singularities from [28]. For
such singularities one of the action variables, say I1, is smooth, and the other I2 is
singular. Is it true that the singular part Ising of I2 is always “standard”, i.e., is it the
same for all singularities of a given topological type?

One could also ask the converse question.

Problem 31. Assume that we know explicit formulas for the action variables I1, . . . , In
so that we are able to analyse the asymptotic behaviour of them in a neighbourhood
of a singular fiber. Can we recover the topology of this singularity from the asymptotic
behaviour (or at least to distinguish between different types of singularities)? For ex-
ample, we know that in the case of non-degenerate hyperbolic singularities, the singular
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part Ising is of the form h lnh+ . . . . Is this property a characteristic for non-degenerate
singularities? The answer is apparently positive so that we could use this property
for verifying the non-degeneracy condition. For degenerate singularities, this question
becomes, of course, more interesting and important.

Another particular question in the same spirit is related to geodesic flows on 3-
dimensional manifolds. Among the eight 3-dimensional geometries, there is only one
which does not admit integrable geodesic flows, namely, the hyperbolic one. The sit-
uation with SL(2,R) geometry is not quite clear. The geodesic flow on a compact
SL(2,R)-manifold M3 seems to be “half”-integrable in the sense that the phase space
T ∗M3 can be partitioned into two open domains one of which carries “integrable” dy-
namics and is fibered into invariant Liouville 3-tori while the other does not admit
three commuting integrals.

Problem 32. Do the action variables of integrable geodesic flows on 3-dimensional
closed manifolds “feel” the underlying geometry? In other words, can we recover the
geometry (i.e., distinguish between 7 possibilities) from the action variables?
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