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Abstract

The advance of massively parallel computing in the nineteen nineties and beyond
encouraged finer grid intervals in numerical weather-prediction models. This has
improved resolution of weather systems and enhanced the accuracy of forecasts,
while setting the trend for development of unified all-scale atmospheric models.
This paper first outlines the historical background to a wide range of numerical
methods advanced in the process. Next, the trend is illustrated with a technical re-
view of a versatile nonoscillatory forward-in-time finite-volume (NFTFV) approach,
proven effective in simulations of atmospheric flows from small-scale dynamics to
global circulations and climate. The outlined approach exploits the synergy of
two specific ingredients: the MPDATA methods for the simulation of fluid flows
based on the sign-preserving properties of upstream differencing; and the flexible
finite-volume median-dual unstructured-mesh discretisation of the spatial differen-
tial operators comprising PDEs of atmospheric dynamics. The paper consolidates
the concepts leading to a family of generalised nonhydrostatic NFTFV flow solvers
that include soundproof PDEs of incompressible Boussinesq, anelastic and pseudo-
incompressible systems, common in large-eddy simulation of small- and meso-scale
dynamics, as well as all-scale compressible Euler equations. Such a framework nat-
urally extends predictive skills of large-eddy simulation to the global atmosphere,
providing a bottom-up alternative to the reverse approach pursued in the weather-
prediction models. Theoretical considerations are substantiated by calculations at-
testing to the versatility and efficacy of the NFTFV approach. Some prospective
developments are also discussed.
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1 Introduction

1.1 Historical background

Weather forecasts have been one of the focal areas of numerical modelling
since the advent of electronic computers [16,2,86] and the creation of the JCP
[4,176]. From the basic ideas of numerical weather and climate modelling de-
veloped a century ago, the computational meteorology went a long way to
become one of the prominent disciplines at the frontiers of computational
physics [97,1,9]. Advances in computational meteorology are primarily driven
by weather forecasting and its verification, by means of data assimilation,
against continuous flow of observations. However, meteorology is a broad dis-
cipline with multiple research areas and foci of knowledge. Their traditional
hierarchy of alignment—often reflected by the names of divisions at atmo-
spheric research centres—corresponds to the spatio/temporal scales of studied
phenomena, from micro-scale of hydrometeor particulates, through small- and
meso-scales of cloud evolution and flows over complex terrain, through synop-
tic weather phenomena, to the planetary scale of global weather and climate.
All such areas rely on PDEs of mathematical physics, the solution of which
necessitates the use of numerical methods. As the properties of atmospheric
motions vary across scales [26,62], the corresponding areas of computational
meteorology develop domain specific expertise and ultimately contribute di-
verse approaches to the advancement of weather forecasts and climate models.

The literature devoted to numerical methods underlying advancements of
weather and climate models is vast. According to the Thomson Reuters Web
of Science, over 1300 papers has been published since 2000 on the topic “nu-
merical models for weather and climate”, with the cumulative citation count
of ≈ 30, 000. Consequently, there is already available a substantial number of
related reviews, developed from various angles and through varied method-
ological preferences, many of which are referenced in this paper. In particular,
we refer the interested reader to [26,62] for indepth discussions of theories guid-
ing multiscale atmospheric modelling and to [146,177,88,144,23,95], among the
others, for specialised reviews of the numerical methods explored in dynami-
cal cores of atmospheric models. To avoid duplicating the existing literature,
we instead outline the historical background to the interdisciplinary cross-
fertilisation at the foundation of the all-scale atmospheric models, with par-
ticular emphasis on a select class of versatile finite-volume methods discussed
in the body of the paper. The order of the presentation reflects the bottom-up
approach of our quest for simulating all-scale atmospheric dynamics.

∗ Corresponding Author.
Email address: smolar@ecmwf.int (Piotr K. Smolarkiewicz).

2



Historically, atmospheric models across scales were dominated by finite-difference
(FD) and spectral-transform methods for spatial discretisation of their govern-
ing PDEs [177]. In particular, finite-difference methods operating on regular
rectangular grids have prevailed in small and mesoscale models for research of
cloud processes and orographic flows [64,123], with terrain fitted grids mim-
icked by continuous mappings [40,20,171] and horizontal resolution refinement
delegated to nested grids [21]. These techniques are still prevailing in compu-
tational studies from planetary boundary layer to regional climate [145,38],
which is not surprising given the sophistication of finite-differencing used in
atmospheric models already in the nineteen sixties. The work [4], in the inau-
gural issue of JCP, introduced higher-order centred (viz. non-dissipative) FD
schemes conserving mean kinetic energy and enstrophy, thus preventing no-
torious nonlinear instability marring the early weather codes [82]. This had a
major impact on the field by: a) enabling long-term simulations of weather and
climate; b) engendering a variety of FD schemes enhancing desired aspects of
accuracy in atmospheric models [157]; and c) redirecting the action of artificial
(nonlinear in shear) viscosity [103] from stabilising/regularising the solution to
parametrising subgrid-scale eddy motions [81,120]—while laying foundations
for large-eddy simulation [77]. Notably, conserving discrete analogues of mean
quadratic quantities is distinct from simulating hyperbolic conservation laws of
gas dynamics [45,75], where the use of locally conservative numerical methods
is the first prerequisite for accurate representation of shock waves in super-
sonic flows. The atmospheric motions are generally characterised by low Mach
numbers, and subject to at most weak acoustic discontinuities [134]. Conse-
quently, their numerical simulation may favour distinct conservation princi-
ples [157]. Notwithstanding the disparity of applications, small- to meso-scale
FD models in the nineteen seventies drew inspiration from advances in com-
putational aerodynamic and mechanical engineering. A substantial example
is a nonhydrostatic anelastic model in terrain-following coordinates [20] that
adopted the strong conservation formulation [73,3,165] together with the pres-
sure projection [19] to a centred (in time and space; the latter staggered after
[50]) discretisation of the governing equations, while using an advanced direct
solver for the resulting discrete Poisson problem. This accomplished conserva-
tion of mass, momentum and entropy fluctuations, while controlling the global
quadratic invariant and enabling large-eddy simulations (LES) in a curvilinear
coordinate frame.

Armed with non-dissipative spectral transform and finite-difference methods,
the atmospheric community renounced upwind differencing schemes, as overly
dissipative albeit nonlinearly stable [82], 1 essentially in all areas of atmo-
spheric simulation, but a few holdouts including cloud physics. Simulation of

1 Lilly implies the Lelevier’s type first-order upwinding [111] rather than upwind
differencing per se, as ibidem he also acknowledges “high-accuracy monotone upwind
schemes” and “semi-Lagrangian schemes”.
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clouds must account for phase changes of water substance, the mathematical
description of which does not tolerate negative amounts of water substance
generated by dispersive oscillations characteristic of higher-order linear advec-
tion schemes. Despite the efforts in minimising dispersion of advection schemes
[39], the first-order-accurate flux-form upwind was one of a few viable options
available for transport of water species in early cloud models [140]. In this
context, the Godunov theorem [45]—revealing that linear schemes guaran-
teeing smooth solutions and the overall accuracy of second- and higher-order
methods do not exist—become most consequential for cross-fertilising all ar-
eas of computational fluid dynamics (CFD). In essence, it left no alternative
but to either accept first-order methods with their notorious implicit diffu-
sivity, or to abandon the premise of linearity, and complicate the problem
by approximating even the simplest constant-coefficient advection equation
with an elaborate nonlinear scheme. The second choice gave rise to nonoscilla-
tory flux-form methods for integrating the conservation laws, pioneered with
such renown approaches as flux-corrected transport (FCT) [12,189], monotonic
upstream-centred scheme for conservation laws (MUSCL) [163,164], high reso-
lution schemes for hyperbolic conservation laws (TVD) [53], and the piecewise
parabolic method (PPM) [22]—all quickly embraced by computational mete-
orology, primarily for conservative tracer transport in cloud and chemistry
models [113]. The interdisciplinary importance of the nonoscillatory methods
has been amplified in the nineteen nineties, as successful simulations of tur-
bulent flows reported in diverse research areas used nonoscillatory advection
schemes to model subgrid effects [105,108,83,91]—establishing the legitimacy
of implicit large-eddy simulation (ILES), widely reviewed in [48] a decade
later.

Regardless of all these spectacular advancements of the FD schemes, the rigid
connectivity of their underlying, topologically rectangular grids has been long
recognised [112] as an obstacle for effective flow simulation in complex ge-
ometric configurations that cannot be efficiently accommodated with global
mappings. 2 The nonoscillatory finite-volume (FV) methods on unstructured
meshes, advanced in the nineteen eighties [58,78,8], extended functionality of
flux-form finite differencing to arbitrary arrangements of nodes (where discrete
solutions are sought) and definitely distinguished FV from FD. 3 Because the
mathematical formalism underlying FV methods is that of the vector differ-
ential calculus—or, more generally, integration of differential forms—the FV
approach naturally lends itself to discrete integrations of conservation laws
on manifolds. For example, a volume integral of the divergence of a vector

2 According to the Thomson Reuters Web of Science, [112] was the first article in
a learned journal that used the “finite volume” term in the context of numerical
methods; similarly, [78] was the first in the JCP literature.
3 In some publications, flux-form FD schemes can be labelled as FV and attributed
to Godunov [45]—who himself refers to FD [46].

4



flux field over an arbitrary shaped computational cell is evaluated as a surface
integral of a flux through the cell boundaries. Consequently, reconstruction of
surface fluxes from cell mean values of the fluxed variables becomes a key ele-
ment of the FV approach. Importantly, it can draw from the experience with
nonoscillatory flux-form finite differencing, without substantial complications
for spatial discretisation up to the second order of accuracy. Because the flux
reconstruction does not require the sampled data to be aligned, higher order
formulations are in principle possible and are the subject of active research
[183,184]. Due to these intrinsic strengths, FV is the first choice approach for
general purpose, commercial and open-source CFD software.

In computational meteorology, the FV philosophy gained popularity for in-
tegrating conservative Lagrangian tracer transport in chemistry models, as
extensively reviewed in a dedicated chapter [88]. In particular, it spawned a
bespoke class of fully conservative, optionally nonoscillatory, semi-Lagrangian
schemes [179,180,100,101,71,72] that extend standard point-wise semi-Lagrangian
advection [142,126] to trajectory-wise advection of finite volumes, while cir-
cumventing the CFL stability condition characteristic of the Eulerian schemes.
The approach also has been adapted for integrating the mass continuity equa-
tion in weather and climate models [143], but found limited application in
operations due to its computational expense [190]. In the area of all scale
(viz. nonhydrostatic) atmospheric dynamics of primary interest to this paper,
a trend towards FV methods is still emerging—cf. [114,162,119] for techni-
cal expositions and [23,95] for recent reviews—even though the existing FV
implementations still lag behind the established spectral-transform codes in
terms of the time-to-solution and energy efficiency [172].

Like with finite-difference methods, there is a variety of finite-volume schemes
and discretisation stencils. In areas of numerical modelling accustomed to
regular finite-difference stencils, grids are often dubbed ”unstructured” when-
ever they depart from standard Cartesian arrangement in the computational
space [144]. In this paper we restrict attention to simulations using flexible
unstructured meshes in the sense of engineering CFD; where a mesh, con-
sisting of either irregular or regular elements, is referred to as unstructured
if the discretisation associated with it does not rely on a systematic princi-
ple for identification of neighbouring points—the examples of which include
flexible element and edge-based connectivity, in contrast to structured data
arrangements such as i, j, k indexing or binary trees [170,156]. The corollary
is that even a structured grid qualifies as an unstructured mesh when used in
a numerical model that does not depend on the particular structure of such a
grid.

Meteorological interest in unstructured meshing dates back to the nineteen
sixties in the context of uniform horizontal discretisation for global flows, sti-
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fled a decade later by the success of spectral transforms [177]. 4 The intrinsic
powers of the FV approach have not been put to practical use until the be-
ginning of the current century, in the framework of the OMEGA model [5] for
forecasting high-impact weather, air quality, and environmental hazard. Since
then, there has been a continuously growing interest in modelling atmospheric
flows on unstructured meshes and especially in utilising flexible mesh adap-
tivity [104,55]. Because unstructured-meshes are essentially free of topologi-
cal constraints, they offer flexibility unmatched by the established techniques
operating on regular Cartesian grids. Admittedly, such grids enable computa-
tionally efficient static and dynamic mesh adaptivity via continuous mappings
[109,171,66,13,14], yet their rigid connectivity imposes stringent constraints on
the adapted grids. The unavailability of regular equidistant discretisation on a
spherical surface is an apparent evidence of these constraints and a venerable
force for advancement of flexible meshing in atmospheric models. However,
benefits of the flexible meshing are not limited to global flows, and they can
be equally important at finer-scale problems of computational meteorology;
for example, in research and forecasting of weather in long winding valleys
and mountainous areas, or onset and evolution of extreme events.

Notwithstanding potential benefits of modelling atmospheric flows with un-
structured meshes and growing interest in their use, the unstructured-mesh at-
mospheric models are still relatively new and have not yet achieved the recogni-
tion of structured-grid models commonly used in research and operations. An
important specificity of the atmospheric dynamics is that it constitutes a rela-
tively small perturbation about dominant balances of hydrostacy, geostrophy
and thermal winds established in effect of the Earth gravity, rotation, stably-
stratified thermal structure of its atmosphere and the incoming flux of solar
energy. 5 Preserving this fundamental equilibrium, while accurately resolving
the perturbations about it, conditions the design of atmospheric models and
subjects their numerical procedures to intricate stability and accuracy require-
ments. This specificity of atmospheric flows poses new challenges to anisotropic
heterogeneous discretisation and flexible mesh adaptivity [32], largely devel-
oped in the engineering community for neutrally stratified non-rotating flows
throughout a range of Mach number regimes [178,98]. Compared to engineer-
ing flows, gravity and planetary rotation provide for restoring forces generat-

4 In the nineteen seventies the spherical harmonics method became the method of
choice for global simulations, and combined over a period with two-time-level semi-
implicit semi-Lagrangian time stepping it became a marvel of numerical weather
prediction at hydrostatic resolutions (NWP) [177,172]. However, the progress of dis-
tributed computing in the nineteen nineties revealed efficiency limits of the spherical
harmonics, and reinvigorated research into compact-stencil discretisations including
the unstructured meshing.
5 Consider that the total conversion of available potential energy to kinetic energy
is only 0.26% of the incoming solar radiation at the top of the atmosphere [172].
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ing continuous spectra of intricate dispersive wave phenomena, energetically
overwhelming hyperbolic (sound) wave dynamics. The associated Froude and
Rossby numbers, on top of the low Mach and high Reynolds numbers, give rise
to multiplicity of scaling regimes underlying weather and climate [62]. Further-
more, scale-specific processes that are the response to mechanical and thermal
forcing and are not primarily the result of dynamical flow instabilities, 6 add
another dimension to the scaling regimes [90]. While each regime could be de-
scribed with its own model equations, the efficacy of operational forecasting,
research and education gives priority to unified theoretical/numerical models
that cover multiple spatio-temporal scales of atmospheric dynamics.

The quest for unified CFD models can be traced back to implicit continuous-
fluid Eulerian (ICE) method [51,52] applicable to all speed flows, from in-
compressible to hypersonic regime, in multidimensional domains. Basically,
ICE extends the marker-in-the-cell (MAC) approach [50] for viscous incom-
pressible flows to an implicit finite-difference solver of full nonlinear equations
of gas dynamics. Interestingly, it depends on the solution of a linear elliptic
Helmholtz problem for a density perturbation, that in the incompressible limit
becomes effectively a Poisson problem for pressure reminiscent of the projec-
tion approaches [50,19]. Over the years many ingenious methods have been
devised to extend concepts underlying compressible flow solvers to low-Mach
number regime [87,61,49,161,34,166,174,116] and/or generalise incompressible
concepts to compressible flows [57,60,191,185,11,186,99,181,182]. In compu-
tational meteorology the progress of unified models was motivated by the
specificity of atmospheric dynamics and goals of weather and climate predic-
tion. The advance of massively parallel computing in the nineteen nineties
has stimulated the development of nonhydrostatic models. With decreasing
grid intervals, operational NWP codes naturally evolved towards extending
their proven hydrostatic apparatus to the fully compressible Euler equations
[187,28,74,10,117,6,173]; whereas cloud-scale and mesoscale nonhydrostatic re-
search models originated in the nineteen seventies [153,20,64] were extending
their functionality by increasing the spatial domain [129,114,118,119,44]. At
present, there is already substantial experience and the accumulated liter-
ature on integrating the all-scale Euler equations for weather and climate;
see [146,23,95] for reviews; however, no current NWP model runs globally at
nonhydrostatic resolutions in operations. Such high resolutions are still com-
putationally unaffordable and too inefficient to meet demands of the limited
time window for distributing global forecasts to the end users. The recent
work [139] shows how the ability of simulating global all-scale atmospheric
dynamics on unstructured meshes can complement established NWP models
and aid the progress—this motivates the technical content of this paper.

6 Such processes are associated with the distribution of solar incoming radiation,
topography, continents and oceans, vegetation, soil and other land-use.
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1.2 Technical scope

This paper consolidates a decade of systematic efforts on generalising proven
nonoscillatory forward-in-time semi-implicit flux-form finite-difference (NFTFD)
integrators of all-scale atmospheric PDEs to unstructured meshes and FV dis-
cretisations. One defining aspect of the NFTFD schemes is a forward-in-time
(FT) two-time-level discretisation of the governing conservation laws. In or-
der to achieve an at least second-order accuracy in time, derivations of FT
schemes convert temporal derivatives to spatial derivatives by exploiting the
analytic dependencies of temporal and spatial partial derivatives in the gov-
erning PDEs—a general Lax-Wendroff concept [75], recently also referred to
as the Cauchy-Kowalevski procedure [159]. The FT integrators have a long
history not only in CFD, but also in computational meteorology, especially
in the context of conservative advection [76,25,122,160]. The acknowledged
advantages of the FT advection schemes are the reduced storage compared
to multi-time-level schemes and the absence of computational modes charac-
teristic of centred-in-time methods. Owing to the generality of the Cauchy-
Kowalevski procedure, the FT schemes are easily adaptable to specific needs
of governing theoretical models, admitting arbitrary dimensionality [33,122],
geometry [127,109] and physics [127,128,47,136].

The other defining aspect of the NFTFD schemes is their reliance on the
nonoscillatory advection algorithms. Over decades many nonoscillatory schemes
were developed, forthcoming from different physical insights inherent in their
composition [48]. One such scheme, known as the multidimensional posi-
tive definite advection transport algorithm (MPDATA) [124], has been de-
vised specifically for atmospheric cloud simulations, where positivity of water
vapour and cloud condensate is imperative. For this reason MPDATA origi-
nated as an iterated upwind scheme exploiting the sign-preserving property
of upstream differencing. Over decades, MPDATA evolved into a family of
solvers for systems of generalised transport equations [59] targeting conser-
vation laws of atmospheric dynamics. Besides standard sign-preservation and
nonlinear stability at the second-order accuracy for arbitrary flows, MPDATA
also provides implicit turbulence modelling capability to the full set of equa-
tions. The implicit large eddy simulation (ILES) properties of MPDATA-based
high-Reynolds-number solvers were widely documented in the context of struc-
tured grids [92,93,30,94,167] and played a key role in extending the realm of
the FT integrators to general fluid models [110], proven for a range of com-
putational studies in all scale atmospheric dynamics [138,68–70] and beyond
[24,169,41,54,67].

The potential of MPDATA for unstructured mesh modelling was recognised
already in the nineteen nineties, first in context of mantle convection mod-
els [15], and then in the area of weather and environmental modelling [5].

8



However its ab initio derivation [130,131] was the first to encompass error
compensating terms required for unstructured meshes and laid the ground
for the MPDATA based NFTFV all-scale atmospheric flow solvers. Initial de-
velopments were first verified in the context of engineering gas dynamics for
all speed flows [133,134] using a selection of techniques for mesh adaptivity
[178,147–149]. These works documented solution accuracy and convergence
and demonstrated favourable comparisons to established benchmarks (the-
oretical and numerical). Subsequent developments addressed meteorological
applications producing models for simulating idealised hydrostatic dynamics
of the planetary atmosphere [150], reduced 2D soundproof models for sim-
ulation of nonhydrostatic gravity-wave dynamics [151,135] and their conse-
quent generalisation to 3D mesoscale modelling of nonhydrostatic dynamics
[137,152]—all supported with extensive verification studies using variety of
meshes with different degree of anisotropy and heterogeneity, in two and three
spatial dimensions. Verified in simulations with intricate stratified rotating
flows the approach performs well for arbitrary shaped meshes and matches
the accuracy of the NFTFD solvers on Cartesian grids.

The next section outlines the system of generalised nonhydrostatic PDEs in-
cluding soundproof equations common in research of small-to-mesoscale dy-
namics and the fully compressible Euler equations favoured in high-resolution
simulation of global dynamics. For simplicity, the presentation is restricted to
dry motions and idealised heat sinks/sources and momentum dissipation. Ap-
plications of the generalised system with account of moist processes and more
realistic scenarios can be found in [69,70], whereas extension of the NFTFV
solvers to moist precipitating dynamics will be reported in a separate study.
Section 3 summarizes the numerics of the NFTFV solvers, starting with the
elemental FT template algorithm that forms the building block for the subse-
quently discussed elaborate semi-implicit integrators of the generalised non-
hydrostatic PDEs. The theoretical considerations of section 3 come to life in
section 4, where the versatility and efficacy of the approach are demonstrated
with flow problems across a range of scales and applications, from convective
boundary layer, to gravity wave dynamics and orographic flows, to global cir-
culation epitomising planetary weather. Section 5 highlights current research
on development of atmospheric general circulation models and concludes the
paper.

2 ANALYTIC FORMULATION

The generalised all-scale system of PDEs can be compactly written as

∂G%
∂t

+∇ · (G%v) = 0 , (1a)
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∂G%θ′

∂t
+∇ · (G%vθ′) = −G%

(
G̃Tu · ∇θa −H

)
, (1b)

∂G%u
∂t

+∇ · (G%v ⊗ u) = (1c)

−G%
(

ΘG̃∇ϕ+ gΥB
θ′

θb
+ f × (u−ΥCua)−M′(u,ua,ΥC)− DDD

)
.

The system (1) encloses three distinct sets of the governing equations: the fully
compressible Euler equations under gravity in a rotating reference frame; and
their two reduced soundproof forms, 7 the pseudo-incompressible equations of
Durran [35] and the anelastic equations of Lipps-Hemler [84,85]. The latter
set includes incompressible Boussinesq equations [141] as a special case. The
distinction between the different sets is encrypted in definitions, collected in
table 1, of the generalised density % and pressure variable ϕ, together with
the corresponding dimensionless coefficients Θ, ΥB, and ΥC that depend on
various states of the potential temperature θ. For ideal gas, θ amounts to
specific entropy via ds = cpd ln θ, with cp denoting the specific heat at constant
pressure. Hereafter, ρ denotes the air density, while subscripts b, 0 and a
mark, respectively, a horizontally homogeneous and hydrostatically balanced
base state, a constant reference value and the ambient state discussed later in
this section. The generalised pressure ϕ depends on the Exner pressure π ≡
(p/p0)Rd/cp , where Rd is the gas constant for dry air. Unless stated otherwise,
the primes denote perturbations with respect to the ambient state; e.g., π′ =
π − πa, θ′ = θ − θa, and so forth.

compressible pseudo-incompressible anelastic

% ρ(x, t) ρb(z)θb(z)/θ(x, t) ρb(z)

ϕ cpθ0π
′ cpθ0π

′ cpθb(z)π
′

Θ θ(x, t)/θ0 θ(x, t)/θ0 1

ΥB θb(z)/θa(x) θb(z)/θa(x) 1

ΥC θ(x, t)/θa(x) θ(x, t)/θa(x) 1

Table 1
Definitions of the density/pressure variables and coefficients Θ, ΥB, and ΥC in (1)

Notably, the soundproof equations contained in (1) do not require the provi-
sion of constitutive laws for their solution, because their respective pressure

7 In contrast to the soundproof systems, the Euler equations are free of any lin-
earisations that discard perturbational terms as negligibly small; see [27,63,138] for
extended discussions of validity regimes of soundproof PDEs.
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perturbations are determined from the elliptic equations that follow from con-
straining the velocity solutions to satisfy mass continuity. In other words, their
constitutive laws were analytically accounted for while deriving the reduced
equations, and afterwards are not required for the solution. Generally, this is
not the case with fully compressible equations where the ideal gas law

ϕ = cpθ0

(Rd

p0

%θ

)Rd/cv

− πa

 . (2)

explicitly relates the thermodynamic pressure perturbations to the distribu-
tion of temperature and mass in the fluid.

For the three sets of PDEs included in (1), the mathematical symbolism antic-
ipates the strong conservation formulation [165,20] and already accounts for
the generalised time-dependent curvilinear coordinates enabling the represen-
tation of orography or dynamic mesh adaptivity [109,171,66]. In particular,
(x, t) refers to the coordinates of the generalised time-dependent frame, and
G(x, t) denotes the Jacobian—so, G2 is the determinant of the metric tensor
that defines the fundamental metric in a space of interest where the problem is
solved [109]. Furthermore, ∇· (..) denotes the scalar product of spatial partial
derivatives with a vector, so the total derivative underlying conservation form
(1), d/dt = ∂/∂t+ v · ∇, takes the velocity v = ẋ not necessarily equal to the
physical velocity u for which equations are solved. The G̃∇ϕ in the momen-
tum equation symbolises the product of a known matrix of metric coefficients
and the vector of partial derivatives, whereas G̃Tu = v−vg on the rhs of the
entropy equation accounts for the mesh velocity vg, set to zero in the remain-
der of this paper. For the reader’s convenience, various metric coefficients are
exemplified for the spherical frame in Appendix.

The remaining symbols are specific to applications addressed in the paper.
In the entropy equation (1b), H symbolises a heat source/sink. In the mo-
mentum equation (1c), the Coriolis parameter is given as f ≡ 2Ω, where Ω
denotes a constant angular velocity of the rotating reference frame. The grav-
itational acceleration g = (0, 0,−g) enters the buoyancy term on the rhs of
(1c). The termM′(u,ua,ΥC) =M(u)−ΥCM(ua) symbolises metric forcings
(both specified in Appendix for the spherical domain), whereas DDD denotes a
momentum sink.

The generalised system of PDEs (1) exploits an auxiliary ambient state (ua, φa, θa)
assumed to be a known particular solution of the governing PDEs, typically
different for each set of PDEs contained in (1) [138]. The primary role of
ambient states is to simplify the design of the initial and boundary condi-
tions as well as to enhance the accuracy of calculations in finite-precision
arithmetic. Generally, ambient states can be time-dependent; e.g., prescribing
oceanic tidal motions [169]. In this paper, only stationary ambient states are
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considered, e.g., geostrophically-balanced thermal wind for momentum equa-
tions, together with identically satisfied ambient mass continuity and entropy
equations. Because such an ambient state derives as a compatibility condition
of the governing PDE system, it does not impose any approximations on the
governing equations but conveniently defines the perturbation variables [138].

3 NUMERICAL APPROXIMATIONS

3.1 Forward-in-time template algorithm

To design computer programs for integrating (1), it is convenient to view all
individual PDEs in (1) as a generalised transport equation for an arbitrary
scalar variable Ψ,

∂GΨ

∂t
+∇ · (VΨ) = GR , (3)

where vector field V (hereafter, “advector”) as well as scalar fields G andR are
assumed to be known functions of time and space. Depending on the definitions
of G, Ψ, V andR, (3) expresses either (1a), (1b) or (1c), as specified in table 2;
see [138] for a comprehensive discussion. For anelastic PDEs, the density % is
prescribed (cf. table 1), and (1a) reduces to a diagnostic constraint, eventually
leading to the elliptic boundary value problem for pressure perturbation ϕ. For
either soundproof or compressible PDEs the cumulative mass flux, VΨ = Gv%
in the mass continuity equation, amounts to transportive momenta in the
entropy and the momentum equations. The latter assures the compatibility
of conservative advection of θ′ and components of u with the mass continuity,
preserving consistency of the entropy and momentum conservation laws with
their Lagrangian form Ψ̇ = R.

equation Ψ V G R

(1a) % Gv G 0

(1b) θ′ G%v G% rhs(1b)

(1c) u G%v G% rhs(1c)

Table 2
Definitions of Ψ, V and G in (3) for corresponding PDEs of the system (1)

A minimal common element of our all NFTFV schemes for integrating (1) is
a second-order-accurate FT template for (3)

Ψn+1
i = Ai

(
Ψ̃n,Vn+1/2, Gn, Gn+1

)
+0.5δtRn+1

i , Ψ̃n ≡ Ψn+0.5δtRn , (4)
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where A is a shorthand for the MPDATA transport operator MPDATA [138].
Furthermore, the index i symbolises position on the computational grid, δt is
a time interval between two consecutive time levels denoted by n and n + 1,
and the “advector” Vn+1/2 is an O(δt2) estimate of V at the intermediate
time level. The template (4) derives from the modified equation analysis [168]
of the forward-in-time differencing for (3), while using the Cauchy-Kovaleski
procedure to determine a means of compensating the O(δt) error-terms (of
the modified equation) with spatial differencing [127,131,132].

3.2 Semi-implicit integrators

In the system (1) only the mass continuity equation (1a) is homogeneous,
whereas the entropy and momentum equations have non-vanishing right-hand-
sides that generally depend on all model variables. In the two-time-level frame-
work, the latter favours implicit representations of the rhs forcings, not only
for the stability but also the overall accuracy of the solutions [65,31]. Thanks
to the homogeneity of (1a), the entire model algorithm for (1) can be naturally
reduced to the two distinct steps.

The first step provides the advectors for the first term on the rhs of (4). For
anelastic or adiabatic pseudo-incompressible PDEs illustrated in this paper,
Vn+1/2 = (G%v)n+1/2 is evaluated by linear extrapolation from tn−1 and tn

and used consistently for all prognostic variables. For compressible PDEs the
linearly extrapolated Vn+1/2 = (Gv)n+1/2 is used only in the density advection,

%n+1
i = Ai

(
%n, (Gv)n+1/2,Gn,Gn+1

)
=⇒ Vn+1/2 = (G%v)

n+1/2
, (5)

while updating the density and concomitantly evaluating the advectors Vn+1/2

as cumulative directional mass fluxes for advection of θ′ and all components
of u; see [138] for an exposition.

The second step integrates the entropy and momentum equations in (1). To
account for the nonlinearity of the rhs—here, due to the coefficients Θ, ΥC

and the metric terms M—the template algorithm (4) is, generally, executed
iteratively lagging nonlinear terms behind. 8 To simplify notation, the lagged
terms will be denoted by the superscript ?, whereas variables without super-
scripts will represent subsequent iterates of the solution future values at tn+1.
Consequently,

8 A standard fixed-point iteration rooted in the Banach Principle—theorem
VIII.1.1 in [96]—is quite effective when applied judiciously; see [134,136,138] for
implementations in, respectively, gas dynamics, magnetohydrodynamics and gener-
alised PDEs (1), all in the context of the FT template (4).
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θ′i = θ̂′i − 0.5δt
(
G̃Tu · ∇θa

)
i

(6)

ui = ûi − 0.5δt

(
Θ?G̃∇ϕ+ gΥB

θ′

θb

)
i

−0.5δt (f × (u−Υ?
Cua)−M′(u?,ua,Υ

?
C)i .

Here, θ̂′i and ûi are the shorthands for the transport operator A applied to θ̃′

and ũ in (4), subsumed with the respective contributions from forcings H and
D estimated to O(δt) at tn+1, given as

θ̂′i = Ai

(
θ̃′ + 0.5δtHn+1,Vn+1/2, %∗n, %∗n+1

)
, (7)

ûi = Ai

(
ũ + 0.5δtDn+1,Vn+1/2, %∗n, %∗n+1

)
,

with Vn+1/2 provided by the preceding step, and the effective densities %∗n

and %∗n+1 defined, respectively, as %∗
n

:= Gn%n and %∗n+1 := Gn+1%n+1. Fur-
thermore,

θi =
(
θ̂′ − 0.5δtG̃Tu · ∇θa + θa

)
i
, (8)

the first guess of which is generated by advecting θ as

θ?i = Ai

(
θn + δtHn,Vn+1/2, %∗n, %∗n+1

)
. (9)

The first guess u?i is obtained by linear extrapolation from tn−1 and tn to
tn+1. With this design, the solution is fully second order accurate even for a
single iteration, and two iterations give already close approximation to the
trapezoidal integral [134].

The scheme outlined in (6)-(8) contains implicit trapezoidal integrals of pres-
sure gradient, buoyancy and Coriolis terms, with coefficients depending on full
potential temperature and metric forces evaluated explicitly. 9 Regardless of
the selected option, derivation of the closed-form expression for the velocity
update is common to all three sets of PDEs. The future value of θ′ is substi-
tuted in the buoyancy term of the momentum equation with the rhs of the
entropy scheme, and all terms depending on the future value of u are gathered
on the lhs of the momentum scheme—while dropping the spatial grid index i
everywhere, as all dependent variables, coefficients and terms are colocated in
(6)-(8). This results in

9 Optionally, the compressible pressure can be evaluated directly from the gas law
(2), leading to the acoustic option of the solver in the spirit of gas dynamics for
high speed flows [134]—a useful reference for large time step simulations of low
Mach number flows [138,69].
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u + 0.5δt f × u− (0.5δt)2gΥB
1

θb
G̃Tu · ∇θa = (10)

û− 0.5δt

(
gΥB

θ̂′

θb
− f ×Υ?

Cua −M′(u?,ua,Υ
?
C)

)
−0.5δtΘ?G̃∇ϕ ≡ ̂̂u− 0.5δtΘ?G̃∇ϕ ,

which symbolises a system of three linear algebraic equations with three un-
known components of the velocity vector u at each point of the colocated grid.
Viewing the lhs of (10) as a linear operator L acting on the velocity vector u,

L u = ̂̂u− 0.5δtΘ?G̃∇ϕ , (11)

the closed-form expression for the velocity update may be symbolised as

u = ˇ̌u−C∇ϕ , (12)

where ˇ̌u = L−1 ̂̂u and C = L−10.5 δtΘ?G̃ denotes a 3 × 3 matrix of known
coefficients. The expanded forms of (12) in either tensorial or explicit compo-
nent notation can be found in [109] and [135,137], respectively. Noting that
the potential temperature perturbation θ′ is updated according to (6) upon
the final velocity update, the only lacking element to complete the solution at
each iteration is the pressure perturbation, and this leads to elliptic boundary
value problems (BVPs) for ϕ.

3.3 Elliptic boundary value problems

For the soundproof PDEs, formulating the BVPs is straightforward, because
the underlying theory of the soundproof systems implies specific velocity di-
vergence constraints [84,35]. Recalling from section 2 that in stationary coor-
dinates v = G̃Tu, (12) entails

v = ˇ̌v − G̃TC∇ϕ , (13)

so the velocity divergence constraints amount to Poisson BVPs for ϕ,

∇ · %∗θ(ˇ̌v − G̃TC∇ϕ) = %∗H , (14a)

∇ · %∗(ˇ̌v − G̃TC∇ϕ) = 0 , (14b)

respectively, for the pseudo-incompressible and anelastic PDEs. 10

10 For the pseudo-incompressible system %θ = ρbθb, so for H ≡ 0 (adiabatic dynam-
ics), the pseudo-incompressible density can be replaced altogether with ρbθb/θ0 and
(14a) with (14b), in the spirit of the anelastic system [135,138].
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For the compressible PDEs, the BVPs are optional in that they are dictated
by the extended stability of numerical schemes. In our NFTFV framework,
the evolutionary form of the equation of state, derived by taking d/dt of (2),
couples all thermodynamic variables and the flow field (through d%/dt and
the mass continuity equation), thus providing a constraint for pressure and
velocity in (12). Taking d/dt(2), expressing the result in the conservation law
form, and manipulating the terms [138,68] leads to the PDE

∂%∗ϕ

∂t
+∇ · (%∗vϕ) = %∗

3∑
`=1

(
a`
ζ`
∇ · ζ`(ˇ̌v − G̃TC∇ϕ)

)
+ bϕ+ c , (15)

where coefficients a`, b, c may depend on ϕ but the modified densities ζ` are
explicitly known. Interpreting (15) as an archetype PDE (3), and integrating
it to O(δt2) with a mixed forward/backward template

ϕn+1
i = Ai

(
ϕ̃,Vn+1/2, %∗n, %∗n+1

)
+ δtR̃ϕ|n+1

i ≡ ϕ̂+ δtR̃ϕ|n+1
i , (16)

where ϕ̃ =
(
ϕ+ δt(bϕ+ c)

)n
and R̃ϕ ≡ rhs(15)− (bϕ+ c), provides a discrete

implicit constraint for (12)

0 = −
3∑
`=1

(
A?`
ζ`
∇ · ζ`(ˇ̌v − G̃TC∇ϕ)

)
−B?(ϕ− ϕ̂) . (17)

The coefficients A? and B? in (17) effect from coefficients a` in (15) and the
superscript ? indicates that their dependence on ϕ is lagged. The Helmholtz
problem (17) was discussed in [138,68]. In the NFTFV codes, we solve both
(14) and (17) with a bespoke nonsymmetric preconditioned Generalised Con-
jugate Residual (GCR) approach, widely discussed in the literature; cf. [135]
for a recent overview and a comprehensive list of references.

3.4 Spatial discretisation

The mathematical formalism adopted in sections 2 and 3 together with the
colocated arrangement of dependent variables simplifies the presentation of the
discrete spatial differential operators. The finite-volume discretisation follows
the median-dual approach described in [150]. It is briefly summarized below.

For clarity, Fig. 1 shows a schematic of an arbitrary mesh in 2D. The median-
dual FV approach constructs the control volume containing the node i by
joining the barycentres of polygonal mesh cells encompassing the node i with
the midpoints of the edges originating in the node i. The derivations and de-
tails of median-dual unstructured mesh discretisation of differential operators
entering NFTFV schemes and the MPDATA operator are provided in [131]
and [148], and a recent summary of finite-volume MPDATA is provided in
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Sji j

Fig. 1. The edge-based, median-dual approach in 2D. The edge connecting nodes i
and j of the primary polygonal mesh pierces, precisely in the edge centre, the face Sj
shared by computational dual cells surrounding nodes i and j; open circles represent
barycentres of the primary mesh, while solid and dashed lines mark primary and
dual meshes, respectively.

[152]. Here, we highlight a key tool for designing discrete differential opera-
tors for control-volume schemes. For a differentiable vector field A, the Gauss
divergence theorem—

∫
Ω∇·A =

∫
∂Ω A ·n—applied over the control volume Vi

surrounding node i leads to

∇i ·A =
1

Vi

l(i)∑
j=1

A⊥j Sj . (18)

Hereafter, l(i) numbers edges connecting node i with its neighbours j, and
Sj refers both to the face per se and its surface area. Equation (18) is exact
given ∇i ·A is interpreted as the mean value of ∇ ·A within the volume Vi,
while A⊥j is interpreted as the mean normal component of the vector A at the
cell face Sj. The approximation begins with specifying A⊥j in terms of data
available on the mesh; i.e., in terms of mean values of the field within the
control volumes Vi and Vj. One elementary example is

A⊥j = 0.5 nj · [Ai + Aj] , (19)

where nj is a mean outward unit normal to the face Sj. Partial derivatives
∂Φ/∂xI of a scalar field Ψ can also be interpreted in terms of the Gauss
theorem (by representing the derivative as the divergence of the augmented
vector field Φ∇xI) as, e.g.,

(
∂Φ

∂xI

)
i

=
1

Vi

l(i)∑
j=1

0.5(Φi + Φj)S
I
j (20)

where SIj denotes the Ith component of the oriented surface element Sj = Sjnj
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of the face at the jth edge.

4 RESULTS

In the following we substantiate the theoretical considerations of the preceding
sections with applications addressing distinct classes of canonical atmospheric
flows. The first example quantifies the approach fidelity in simulation of a
small-scale convective planetary boundary layer over flat terrain. The second
example addresses influence of complex terrain on mesoscale atmospheric mo-
tions in simulation of a strongly stratified flow past a steep isolated hill. The
third example is concerned with non-Boussinesq amplification and breaking
of deep mesoscale stratospheric gravity waves. Finally, the fourth example
addresses global baroclinic instability, an archetype of global atmospheric cir-
culation. Then we also address the computational efficiency of the approach.

4.1 Convective boundary layer

Following [137] we show the numerical experiment from [91], which was one
of the first systematic demonstrations of the implicit large-eddy-simulation
(ILES) with MPDATA based NFTFD schemes. The generalised equations
(1) assume a nonrotating Boussinesq limit of the anelastic equations, with
constant reference profiles θb(z) = θ0 and ρb(z) = ρ0 on a horizontally periodic
small-scale Cartesian domain. The growth of the convective boundary layer is
driven by a prescribed diabatic source H in (1b) that assumes divergence of
an exponentially decaying surface heat flux over a few mesh increments in the
vertical. The effect of surface friction in (1c) is parametrized similarly, as DDD =
−dτττ /dz, with exponentially decaying stress τττ with surface value defined by a
simple drag law; see [137] for details. Because these specified diabatic/viscous
forcings quickly decay with height, they only parametrize near-surface effects;
whereas subgrid-scale modelling aloft is delegated to dissipative properties of
MPDATA [110,107].

The model domain, Lx × Ly × Lz = 3200 × 3200 × 1500 m3, is periodic
in the horizontal, and a stress-free rigid-lid boundary is assumed at the top.
Gravity wave absorbers attenuate the solution toward ambient conditions in
the vicinity of the upper boundary. As an initial condition, a 500 m deep
well-mixed ambient layer is prescribed, with a constant temperature θa(z) =
θ0 = 300 K. Aloft, θa(z) = θ0[1 + zN2/g] and the Brunt-Väisällä frequency
N = 10−2 s−1 define stable stratification S = N2/g. The ambient wind field
ua = 0. The initial conditions are generated by perturbing θa and vertical
velocity component, w, with small amplitude white noise and then finding the

18



potential flow consistent with incompressible mass continuity in (1a) for the
Boussinesq limit. Simulations were run for 15000 s. A statistically stationary
state is reached after about 9000 s, which is equivalent to about 8 large-eddy
turnover time scales. Three basic simulations were performed for this study.

Fig. 2. Vertical velocity in the horizontal plane 150 m above the heated surface;
an instantaneous solution for triangular prismatic mesh is shown after ∼ 13 eddy
turnover times; dashed contours indicate negative values.

The reference simulation, Run R uses the structured-grid NFTFD code [110]
with Nx×Ny×Nz = 64×64×51 regularly distributed points of a Cartesian
grid. Two simulations conducted with the NFTFV code, Run G and Run T
use, respectively, the Cartesian grid of Run R and the unstructured mesh.
The primary unstructured mesh consists of Nxy×Nz = 5228× 50 triangular
based prisms, stacked in 50, δz = 30 m thick, layers. Figure 2 displays the
instantaneous vertical velocity field at the end of the Run T, organized into
characteristic, albeit irregular, Rayleigh-Bénard cells [107]. The quantitative
analysis in [137] documents good agreement of all experiments.

19



Fig. 3. Vertical profile of dimensionless resolved heat flux, and variances of temper-
ature as well as vertical velocity in Runs T (solid), G (long dashes), and R (short
dashes), with dimensionless height on the ordinates; blue crosses denote LES result
of [115], and red circles represent field and laboratory data.

To illustrate the quality of the NFTFV simulations, the normalized vertical
profiles of resolved heat flux 〈θ′w′〉, temperature variance 〈θ′θ′〉, and vertical
velocity variance 〈w′w′〉 (here primes denote deviation from the horizontal
average 〈··〉) are compared in Fig. 3 with the benchmark LES simulations of,
and superimposed measurements by, Schmidt and Schumann [115]. Generally,
the profiles generated with the NFTFV codes match closely each other and
agree within the data scatter with the structured-grid NFTFD calculations
and LES results of [115].

4.2 Strongly stratified flow past a steep isolated hill; simulation on tetrahedral
meshes

In contrast to modelling engineering flows, where simulations on tetrahedral
and related meshes have achieved a high degree of maturity, their applicability
to atmospheric flows is still being explored. While prismatic meshes are ideally
suited for global models—for which the (relatively) thin atmosphere imposes
stringent constraints on the design of numerical models—the unstructured
tetrahedral discretisation can benefit small- and mesoscale models, where ap-
plications involving terrain so complex as caves and canyons cannot be eas-
ily resolved with continuous mappings [40,20,171]. On the other hand, at-
mospheric flow simulations pose new challenges for tetrahedral discretisation,
because the underlying hydrostatic balance and physics (e.g., rainfall and ra-
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diation) are predominantly ordered in the vertical direction. Following [152]
we show the results attesting to the accuracy of tetrahedral discretisation, in
the context of strongly stratified flow past a steep 3D mountain. For this pur-
pose, we adopt the canonical problem of a low-Froude number flow past an
axially-symmetric hill [56,125,37], simulated in [137] on dual meshes derived
from structured and prismatic primary meshes.

Fig. 4. The central, y = 0, vertical cross-section (top) of the tetrahedral mesh;
the nearby mesh points are projected on the cross-section for visualisation. The
horizontal cross-section (bottom) of the mesh at the elevation z = (1/3)h0.

The cosine hill defined as

h(x, y) =h0 cos2(πr/2L) if r = ((x− x0)2 + (y − y0)2)1/2 ≤ L (21)

h(x, y) = 0 otherwise ,

where the half-width L = 3000 m and height h0 = 1500 m, is centred at the
bottom of the computational domain. The domain size is 5L×4L×2L in x, y
and z directions, respectively. Two primary meshes consisting of tetrahedral
elements were generated in the domain. The first one (not shown) using a
uniform background point spacing of δx = δy = δz = 120 m giving 1945090 of
the total number of points, and the second one with the varying point spacing.
Figure 4 shows two cross-sections of the primary mesh that consists of 337510
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points and uses varying resolution ranging from 450 m at the boundaries
to about 100 m in the hill’s vicinity. The number of points in the varying
resolution tetrahedral mesh is not only substantially lower than in the constant
resolution tetrahedral mesh but also lower than in the prismatic (refined in the
horizontal only) and Cartesian meshes used for this problem in [137]. In order
to produce solutions of matching quality, those meshes consisted of 692533
and 1121812 computational points respectively.

Fig. 5. Fr = 1/3 flow solution after two advective time scales T = L/U . Contours of
vertical velocity in central xz cross section y = 0 (top) and in the xy cross-section at
z = h0/3 (bottom). The contour interval is 0.5 ms−1, and positive/negative contours
are presented with solid/dashed lines; the zero contours are not displayed.

The governing equations (1) assume Boussinesq limit of the anelastic PDEs,
with the constant potential temperature of the reference state Θo = 300K
and the ambient state characterised by constant buoyancy frequency N =
10−2s−1 and uniform wind U = 5 ms−1. With the specified hill geometry,
the ambient conditions result in a low Froude number, Fr = U/Nh0 = 1/3,
flow. Because h0/L ∼ O(1), the problem is essentially nonhydrostatic and
can be compared to experimental results given in [56]. All results are shown
after two advective time scales T = L/U (t = 1200s) when the main features
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of the solution are already established. The initial condition is provided by
the solution of the potential flow problem, with a gradient of the potential
perturbation imposed on the ambient wind. While the boundary conditions
are rigid in x, y and z, the gravity-wave absorbers near the upper and lateral
streamwise boundaries attenuate the solution toward ambient profiles with
absorbing coefficient increasing linearly from zero at the distance L/2 from
the boundary to 150−1 s−1 at the boundary.

The flow patterns displayed in figure 5 are computed for the varying resolu-
tion mesh. They show key features of a low Froude number flow, including
the characteristic separation and reversal of the lower upwind stream, and
the formation of intense vertically-oriented vortices on the lee side of the hill
[56,37], with the flow aloft transitioning to the linear gravity wave response
[121]. In Figure 5, in the central xz cross-section at y = 0, a turbulent wake
is formed in the lee-side of the hill and characteristic gravity waves response
is visible above the wake. This result matches closely the reference solution
obtained on structured and prismatic meshes (upper panels in Figs. 6 and
8 in [137]). Figure 5, in xy cross-section at z = (1/3)h0 = 500 m, presents a
pair of eddies behind the hill, showing the intrinsic three-dimensionality of the
lee-side flow, the horizontal flow pattern of which also compares well with the
reference results in [137]. In brief, the reason of this flow structure is that the
incoming flow up to zc ≈ (1−Fr)h0—the so called dividing streamline [56]—is
forced to deflect and split around the hill as it lacks sufficient kinetic energy
to go over the hill. Above the dividing streamline the hill is sufficiently low
for the flow to go over, thus resulting in the characteristic gravity response
aloft. The corresponding solutions for the regular tetrahedral mesh are not
shown, because their departures from the results in Fig. 5 are insignificant.
For quantitative analysis attesting to the quality of the NFTFV results the
interested reader is referred to [152] and references therein.

4.3 Amplification and breaking of 2D stratospheric gravity wave

The preceding examples addressed small- and mesoscale problems in a rel-
atively shallow portion of the troposphere, where incompressible Boussinesq
limit of the anelastic equations holds well; i.e., the differences between the re-
sults generated with either of the PDEs included in (1) are insignificant [27].
Following [135], here we consider an essentially non-Boussinesq problem in a
2D deep stratosphere. A small amplitude wave packet—excited by a hypo-
thetical squall line with the top impinging upon the tropopause—propagates
into the stratosphere. Because density of the media decreases with altitude,
the amplitude of the wave increases with height in proportion to ρ

−1/2
b . When

the wave amplitude becomes comparable with the vertical wavelength, the
problem becomes inherently nonlinear. Then, the wave overturns and breaks
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Fig. 6. A near surface fragment of the primary mesh used in simulations of a deep
stratospheric gravity; the height and half-width of the lower boundary deflection
are 628 and 1000 m, respectively.

generating bursts of turbulence far from the excitation region. The problem
is numerically challenging, because it covers about nine density height scales
and vertical wavelengths, and a transition from the linear-wave regime near
the bottom of the domain to a vigorous turbulent flow with a broad range of
scales about 30 km aloft.

Fig. 7. Isentropes at t = 90 min, in the entire domain, simulated with the pseu-
do-incompressible (top) and anelastic (bottom) PDEs using the unstructured mesh
highlighted in Fig. 6.

Following [135] the model setup assumes an isothermal stratosphere, with
uniform potential temperature stratification fourfold of the tropospheric val-
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ues. The background density decreases exponentially, such that the density
scale Hρ = −(d ln ρb/dz)−1 = 6515 m is 3.5 times smaller than the po-
tential temperature scale Hθ. The ambient wind ua = (ua, 0) is constant
with speed ua = U = 20 m s−1, and the ambient profile of potential tem-
perature θa(z) ≡ θb(z). The 60 km deep and 120 km wide domain is re-
solved with fully unstructured triangular primary mesh illustrated in Fig. 6
that consists of 59·103 nodes, effecting in a fairly uniform mesh resolution of
≈ 380 m. The wave is excited by a small deflection of the lower boundary
with the height profile h(x) = ho[1 + (x/L)2]−1 centred at the origin of the
[−60L, 60L] × [0, 60L] (x, z)-domain; the deflection’s height and half-width
are, respectively, ho = 628.319 m and L = 1000 m. The problem is inherently
nonhydrostatic because the dominant horizontal wavenumber of the problem,
1/L, equals the asymptotic wavenumber N/U of the induced waves; where
N denotes the buoyancy frequency. Furthermore, the problem is only weakly
nonlinear (the Froude number Fr = U/Nho ≈ 1.6) with respect to linear
Boussinesq theory. The onset of wave breaking in the upper half of the model
domain is observed after 90 min of the simulated time. The corresponding
pseudo-incompressible and anelastic solutions are shown in top and bottom
panels of Fig. 7. The results convey the same underlying physics while devi-
ating only in minor details, consistent with the results reported in [138] for
structured-grid NFTFD model.

4.4 Baroclinic instability

Fig. 8. Classical (left) and octahedral (right) meshes generated around reduced
Gaussian grid points with approximate resolution of 3.75◦ (415 km). The shading
represents the dual resolution, computed as the square root of the local dual volume.

In contrast to the preceding sections that addressed nonhydrostatic perfor-
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mance of the NFTFV approach in local-area simulations, here we illustrate its
capability for simulating essentially hydrostatic modes of global circulation.
The illustration employs a high performance finite-volume module (FVM)
[139], with NFTFV discretisation hybridising unstructured-mesh in the hori-
zontal with the structured-grid in the vertical. The governing equations are for-
mulated in the classical meteorological latitude-longitude spherical framework
[109,150,138] frequently criticised for its notorious stiffness in the polar regions.
Yet, unstructured flexible meshes can circumvent this issue by designing dual
cells in lat-lon space such as to generate homogeneous meshing on the physical
surface of the sphere [150]. In the FVM such bespoke unstructured meshes,
Fig. 8, generated about Gaussian grids of the ECMWF Integrated Forecast-
ing System (IFS)—a world leading medium-range spectral-transform based
model—circumvent this stiffness and accommodate both spectral-transform
and grid-point solutions at the same physical locations. In the vertical, a
uniform discretisation in the computational space facilitates the solution of
intricate elliptic problems in thin spherical shells, while the pliancy of the
physical vertical coordinate is delegated to generalised continuous transfor-
mations between computational and physical space. Consequently, the FVM
uses the entire analytic apparatus of section 2.

Here we show the compressible solution generated with FVM using an octa-
hedral reduced Gaussian grid, with horizontal grid spacing of 12.5 km corre-
sponding to state-of-the-art operational NWP. 11 The model depth ≈ 24 km
is resolved with 61 stretched vertical levels, with smoothly varying resolution
of δz = 50 m near the ground, through δz = 150 m at 2 km altitude, up to
δz = 850 m near the model top. The employed time step δt = 80 s resulted in
the maximal Courant number >

∼0.5 at the time of the frontal collapse.

Figure 9 displays the baroclinic wave train after 8 days evolution from a weakly
perturbed unstable-equilibrium initial state consisting of the two planetary
jets in midlatitudes. The upper panel shows isentropes overlaid with con-
tours of the vertical velocity, in the vertical cross section through the centre
of the northerly jet. Lower panel shows isentropes together with the surface
meridional velocity. Together these figures highlight a 3D structure of idealised
frontogenesis and formation of weather systems in midlatitudes. These results
are consistent with those familiar from the literature. Notably, at the rela-
tively high resolution employed, the simulation begins to capture mesoscale
gravity waves radiated at collapsing fronts. In inviscid simulations the associ-
ated grid-scale features are intermittent. Generally they are filtered out with
an aid of artificial viscosity or subgrid-scale parametrisations. Here they are
controlled by the model nonoscillatory numerics in the spirit of ILES. The
latter is substantiated in Fig. 10 depicting surface kinetic energy spectra at

11 Soon after these calculations were conducted, the state-of-the-art resolution got
refined down to 9 km [89].
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Fig. 9. Baroclinic instability, day 8: (top) color map of vertical velocity [cm/s] over-
laid with isentropes, in the vertical cross section at the 53o N latitude; (bottom)
color map of surface meridional velocity [m/s] and isentropes. In both panels, isen-
tropes are displayed with the contour interval of 5 K. The abscissa and ordinate
of the lower panel are in degrees, whereas the ordinate of the upper panel is in
kilometres.

various resolutions; cf. Fig. 8 in [175] for similar results generated with five
different nonhydrostatic models. The spectra follow each other closely at the
resolved scales of motion and tend to separate at the grid-scale, where implicit
dissipation is effective. For an extended discussion of spectra generated in the
evolution of baroclinic waves, see [69] and references therein.

We end this section with a comment on the potential efficiency of the NFTFV
approach. The calculations in preceding sections were all serial and their over-
all expense were insignificant. On the other hand, the FVM shares the equal
regions parallelisation scheme with the IFS, with multiple layers of parallelism
hybridising MPI tasks and OpenMP threads. The presented simulations of the
baroclinic instability were conducted on Cray XC30 at the ECMWF and used
768 MPI tasks and 6 OMP threads (i.e., 4608 cores). An equivalent simula-
tion (not shown) with the 30 km resolution and three times larger time step
δt = 240 s required roughly 20 times shorter wall-clock time of the 4608 cores,
commensurate with 17-fold reduction of the computational work due to the
coarser temporal and spatial resolution. This together with the quality of the
results indicates the potential of NFTFV approach for advanced NWP and
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Fig. 10. Surface kinetic energy spectra at day 9 of the baroclinic instability evolution,
simulated with various horizontal resolutions. Vertical lines on the right indicate four
grid intervals for each corresponding resolution. For reference, the -3 and -5/3 slopes
are shown with solid and dashed lines, respectively.

climate studies.

5 Conclusion

We have reviewed the historical progress leading to the implementation of
finite-volume methods in atmospheric modelling, with emphasis on a con-
sistent and systematic development that shapes the numerical formulation
well-suited for the atmospheric flows of all scales. As illustrated in section 4,
the NFTFV approach has been proven a success in capitalising on the intrin-
sic strengths of the FV methodology, so as to benefit the resulting numerical
model in at least three aspects. First, the rigorous conservativeness guarantees
reliable and physics-consistent solutions; second, the adaptability for arbitrary
unstructured meshes effectively deals with geometrical complexities and rigid
connectivity of structured grids; and third, the semi-implicit solution pro-
cedure mitigates CFL restrictions while solving for all scales under a single
numerical framework.
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The presented NFTFV approach is technically akin to the general-purpose
engineering CFD solvers designed for wide-spectrum of applications, and thus
one should think it would be appealing in a wide range of atmospheric sce-
narios as well as other geophysical/astrophysical disciplines and challenging
multiscale problems of industrial CFD. The example of section 4.4 shows that
the NFTFV technology can complement established spectral-transform based,
semi-implicit semi-Lagrangian NWP models—most effective in medium-range
weather forecasting—by supplying them with methods, connectivities, and
communication patterns previously inaccessible to these models. This enables
combining the strengths of spectral-transform NWP and cloud-resolving re-
search models into a new hybrid entity that offers exciting opportunities for
advancing computational meteorology and eventually other areas of computa-
tional science and engineering. Nowadays strong arguments are emerging for
establishing international supercomputing centres dedicated to climate pre-
diction [106]. In order to reduce uncertainties in global warming, climate sim-
ulations are envisaged that would run globally at 1 km horizontal resolution
over a time scale of century. This requires exascale calculations with over
1018 floating-point operations per second [106]. To achieve such a scale of
computing, apart from the new generation computer hardware new numerical
algorithms will need to evolve, building on strengths and experience of past
and present developments.

The development of dynamical cores for atmospheric general circulation mod-
els is an active field of research. For this purpose, nearly all existing numeri-
cal methodologies usable throughout interdisciplinary CFD have been experi-
mented with. In the quest for unified all-scale atmospheric models (recall the
last paragraph of section 1.1), the top-down and bottom-up paths of extending
the spectral range of simulated scales were advancing their preferred integra-
tion methods for stiff PDEs, with marked examples including semi-Lagrangian
semi-implicit time integrators originated in NWP [187,28,74,10,117,173] on the
one hand, and Eulerian split-explicit time stepping methods [114,118,6,119], a
heritage of small-scale limited-area models [153,64], on the other. The collec-
tion of schemes was further enhanced with various forms of spatial discretisa-
tion, including finite differences [187,28,118,6], spectral transforms [187,10,173],
finite volumes [114,119], and more recently high-order element based methods
such as spectral element [154,42,155,29] and discontinuous Galerkin [102,43,7,44],
or the multi-moment finite-volume approach [17,79,80,18], or combinations
thereof [158]. The technical literature devoted to the advancement of nonhy-
drostatic atmospheric models is extensive, and the references provided merely
illustrate its diversity. So far there is no approach perfect in every respect,
and all existing techniques have some trade-off between computational stabil-
ity, numerical accuracy, computational complexity and performance [188,172].
Consequently, in order to meet the challenge of exascale computing, it is im-
portant to see multiple options being advanced, especially that the future may
belong to hybrids enabling methods, as exemplified in section 4.4.
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Appendix. Specifications of the spherical frame

Governing PDEs (1) assume the spherical curvilinear framework of [109].
Consequently, the vector u represents the physical velocity with components
aligned at every point of the spherical shell with axes of a local Cartesian frame
(subsequently marked as c) tangent to the lower surface (r = a) of the shell; r
is the radial component of the vector radius, and a is the radius of the sphere,
cf. Fig. 7.7, section 7.2 in [36]. Consequently, dxc = r cosφ dλ, dyc = r dφ and
zc = r − a; where λ and φ denote longitude and latitude angles, respectively.
Then, in the formalism of sections 2 and 3 and in the absence of coordi-
nate stretching, x = aλ, y = aφ, and z = zc; thereby effectively employing
longitude-latitude coordinates standard in many global atmospheric models
[150]. Furthermore, the coefficient matrix G̃ consists of zero off-diagonal en-
tries, whereas G̃1

1 = [Γ cos(y/a)]−1, G̃2
2 = Γ−1, and G̃3

3 = 1. Here, Γ = 1 + z/a,
and indices 1, 2, and 3 correspond to x, y, and z components. Consequently,
the Jacobian is G = Γ2 cos(y/a).

In the momentum equation, the components of the Coriolis acceleration are

−f × u =
[
v f0 sin(y/a)−w f0 cos(y/a) , (22)

− u f0 sin(y/a) ,

u f0 cos(y/a)
]
,

where u = [u, v, w] and f0 = 2|Ω|. Furthermore, the metric forcings (viz.,
component-wise Christoffel terms associated with the convective derivative of
the physical velocity) are,
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M(u) = (Γa)−1
[

tan(y/a)u v−uw , (23)

− tan(y/a)uu− v w ,
u u+ v v

]
.
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