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KEY POINTS: 

 Visceral thermoreceptors that modify thermoregulatory responses are widely accepted in 

animal, but not human, thermoregulation models. 

 Recently, we have provided evidence of viscerally-mediated sweating alterations in humans 

during exercise brought about by warm and cool fluid ingestion. 

 In this study, we characterize the modification of shivering and whole-body thermal 

sensation during cold stress following the administration of a graded thermal stimuli 

delivered to the stomach via 52C, 37C, 22C and 7C fluid ingestion. 

 Despite no differences in core and skin temperature, 52C fluid ingestion rapidly decreased 

shivering and sensations of cold compared to 37C, whereas 22C and 7C fluid ingestion led 

to equivalent increases in these responses.  
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 Warm and cold fluid ingestion independently modifies cold defence thermoeffector 

responses, supporting the presence of visceral thermoreceptors in humans. However, the 

cold-defence thermoeffector response patterns differed from previously identified hot-

defence thermoeffectors. 
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ABSTRACT: Sudomotor activity is modified by both warm and cold fluid 

ingestion during heat stress, independently of differences in core and skin 

temperatures, suggesting independent viscerally-mediated modification of 

thermoeffectors. The purpose of the present study was to determine 

whether visceral thermoreceptors modify shivering responses to cold 

stress. Ten males (27±5y, 1.73±0.06m, 78.4±10.7kg) underwent whole-

body cooling via 5C water perfusion-suit, on four occasions, to induce a 

steady-state shivering response, at which point two aliquots of 1.5 ml/kg 

(SML) and 3.0 ml/kg (LRG), separated by 20-min, of either 7°C, 22°C, 37°C 

or 52°C water were ingested. Rectal, mean skin and mean body 

temperature (Tb), electromyographic activity (EMG), metabolic rate (M) 

and whole-body thermal sensation on a visual analogue scale (WBTS) 

ranging from 0mm [very cold] to 200mm [very hot] were all measured 

throughout. Tb was not different between all fluid temperatures following 

SML (7°C:35.7±0.5°C, 22°C:35.6±0.5°C, 37C:35.5±0.4°C, 52°C:35.5±0.4°C; 

P=0.27) or LRG (7°C:35.3±0.6°C, 22°C:35.3±0.5°C, 37C:35.2±0.5°C, 

52°C:35.3±0.5°C; P=0.99) fluid ingestion. With SML ingestion, greater 

metabolic rate and cooler thermal sensations were observed with 7°C 

(M:179±55W, WBTS:29±21mm) compared to 52°C (M:164±34W, 

WBTS:51±28mm; all P<0.05) ingestion. With LRG ingestion, compared to 

shivering and thermal sensations with 37C ingestion (M:215±47W, 

EMG:3.9±2.5%MVC, WBTS:33±2mm) values were different (all P<0.05) 

following 7°C (M:269±77W, EMG:5.5±0.9%MVC, WBTS:14±12mm), 22°C 

(M:270±86W, EMG:5.6±1.0%MVC, WBTS:18±19mm) and 52°C 

(M:179±34W, EMG:3.3±2.1%MVC, WBTS:53±28mm) ingestion. In 

conclusion, ingesting 52°C fluids decreased shivering and the sensation of 

coolness, whereas 22°C and 7°C fluids increased shivering and sensations 

of coolness to similar levels, independently of core and skin temperature.  

List of abbreviations: 

Small volume (SML) 

Large volume (LRG) 
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Electromyographic activity (EMG) 

Metabolic rate (M) 

Whole-body thermal sensation (WBTS) 

Mean body temperature (Tb) 

Rectal temperature (Tre) 

Mean skin temperature (Tsk) 

Maximal voluntary contraction (MVC) 

Heart rate (HR) 

Mean arterial pressure (MAP) 

INTRODUCTION 

 Traditionally in models of human thermoregulation, hot and cold defence responses are 

primarily driven by thermoreceptors within the hypothalamus and modified by afferent inputs from 

peripheral cutaneous thermoreceptors (Werner, 2010). Conversely in animal models of 

thermoregulation, multiple locations for peripheral thermoreceptors which modify thermoeffector 

responses have been identified, including: muscle (Jessen et al., 1983), cutaneous (Minut-Sorokhtina 

& Glebova, 1976) and possibly abdominal (Cranston et al., 1978) veins, spinal column (Rautenberg et 

al., 1972), upper airway (Orani et al., 1991), abdominal wall (Riedel, 1976), lower oesophagus (El 

Ouazzani & Mei, 1982), stomach (Rawson & Quick, 1972; El Ouazzani & Mei, 1982) and small 

intestine (Rawson & Quick, 1972). Additionally, several peripheral thermoreceptors responsible for 

modifying non-thermoregulatory responses, such as inducing bladder contractions, have been 

identified (Gardiner et al., 2014).  

 Recently, we demonstrated warm and cold fluid administration via ingestion and direct 

delivery to the stomach via a nasogastric tube, but not mouth swilling, modified sudomotor 

responses in the heat, independently of differences in core and skin temperatures (Morris et al., 

2014). Later, these findings were expanded upon, as similar responses were observed with ice slurry 

ingestion, including the modification of vasomotor activity (Morris et al., 2015). From a thermal 
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control perspective, the modification of sudomotor activity by both cold and warm fluid ingestion 

was likely the result of warm and cold visceral thermoreceptors influencing thermoeffector activity 

in a manner comparable to cutaneous thermoreceptors, as both spinal tract visceral and cutaneous 

thermoreceptors follow similar central circuitry pathways (Nakamura, 2011). Therefore, the 

ingestion of warm fluids would likely lead to excitation of warm-sensitive neurons in the 

hypothalamus (Nakamura & Morrison, 2010), whereas the ingestion of cool and cold water would 

excite inhibitory neurons within the hypothalamus which then project to the warm-sensitive 

neurons in the preoptic area of the hypothalamus (Nakamura & Morrison, 2011). In the present 

study, similar findings in the cold should be observed, whereby cold thermoeffector responses (i.e. 

shivering) should be increased by cold fluid ingestion stimulating cold thermoreceptors, leading to 

inhibition of warm-sensitive neurons in the hypothalamus whereas warm fluid ingestion would lead 

to excitation of warm-sensitive neurons and an inhibition of cold thermoeffector responses (Simon, 

2006; Morrison, 2016; Tan et al., 2016; Song et al., 2016). 

 Previously, modifications to heat-defence thermoeffector responses (sudomotor and 

vasomotor) have been sufficient to negate the effects of ingesting aliquots of and 1.5°C, 10°C and 

50°C fluids (Bain et al., 2012), as well as ice slurry ingestion (Morris et al., 2015). The adequacy of 

these responses to a variety of temperature stimuli suggests that not only do visceral 

thermoreceptors exist, but also possess sizeable representation and integration within the central 

nervous system, which is consistent with the large visceral thermal and sensory integration 

previously demonstrated in animals (Nakamura, 2011). Additionally, the administration of graded 

fluid temperatures to various areas of the gastrointestinal tract in humans has consistently elicited a 

perceptual response, but inconsistently elicited a thermally-mediated gastric tension response 

(Villanova et al., 1997). This disparity between perceptual and physiological responses likely stems 

from the unique integration pathways that have been demonstrated between afferents evoking 

physiological and perceptual responses (Osaka, 2004; Nakamura & Morrison, 2008). 

 The aim of the present investigation was to determine whether ingestion of different fluid 

temperatures would modify cold-defence thermoeffectors (i.e. shivering), as represented by 

metabolic rate and electromyographic activity, as well as whole-body thermal sensation in the cold, 

independently of differences in core, skin, and mean body temperature. A secondary aim was to 

determine whether shivering would be proportionately modified relative to the thermal stimuli 

applied. It was hypothesized that compared to a thermoneutral fluid (37C), ingesting hot (52°C) 

fluids would decrease shivering responses, while ingesting cool (22°C) and cold (7°C) fluids would 

increase shivering and that all modifications to shivering would occur independently of any 

differences in core, skin, or mean body temperature.  

METHODS 

Ethical Approval 
 The experimental protocol was approved by the University of Sydney Human Research 

Ethics Committee and was in accordance with the Declaration of Helsinki. Written informed consent 

was provided by all volunteers in the study prior to participating in any data collection. The 

participants also completed Physical Activity Readiness Questionnaires (PAR-Q) as well as American 
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Heart Association/American College of Sports Medicine Health/Fitness Facility Pre-participation 

Screening Questionnaires. 

Participants 
 Ten healthy young men were recruited to participate in the experiment (age: 27 ± 5 y; body 

mass: 78.4 ± 10.7 kg, height: 1.73 ± 0.06 m). To be included in the study, participants had to be 

regarded as “healthy”. Exclusion criteria for the study included being on prescription medication, 

being a smoker and having any currently diagnosed medical conditions including but not limited do: 

metabolic, cardiovascular, and respiratory disorders.  The participants were instructed to refrain 

from consuming alcohol or partaking in any strenuous physical activity for 24 hours prior to testing, 

to refrain from consuming caffeine the day of testing, and to maintain a consistent routine (e.g. 

sleep schedules and diet) during the day before and the day of experimental sessions.  

Study Design 
 In order to isolate the independent effect of visceral thermoreceptors on cold-defence 

thermoeffector responses, an open-loop study design was employed. This design consisted of 

maintaining core and skin temperature at a fixed point, while thermal stimuli were applied to the 

abdomen via fluid ingestion. This study design was based on previous investigations into regional 

cutaneous thermosensitivity in humans (Cotter & Taylor, 2005). Participants were cooled for 40 min 

prior to any fluid administration in order to achieve steady-state shivering, as well as relatively 

steady-state core and skin temperature. The duration required to achieve steady-state was 

determined through pilot testing. The cooling was performed by circulating 5°C water through a 

perfusion suit (One-piece Coretec, Delta Temax, Inc., Pembroke, ON, Canada). The temperature 

perfusing the suit was monitored continuously using a thermistor (TM400, Covidien, Mansfield, MA, 

USA) at the inlet of the suit. The water temperature used was selected to induce a moderate level of 

shivering [i.e. ~300 W or approximately half of the maximal shivering response (Haman et al., 2005)]. 

Participants were in a semi-reclined position throughout the duration of the experiment, and 

underwent 15 min of rest in a thermoneutral room (22°C, 50%RH) before ambient temperature was 

lowered to 15°C, 50%RH when cooling began. 

 In order to assess how shivering and whole-body thermal sensation responses would 

respond to an array of thermal stimuli, four fluid temperatures: cold (7°C), cool (22°C), 

thermoneutral (37°C), and hot (52°C); and two volumes: small (1.5 ml/kg of body mass; SML) and 

large (3.0 ml/kg of body mass; LRG) were used. The resultant range of ingested fluid volumes was 

between 100-150 ml for the SML aliquot and 200-300 ml for the LRG aliquot. These volumes were 

selected so that the larger of the two volumes was not sufficiently large to affect rectal temperature 

via local cooling (which in pilot testing began to occur with aliquots of 3.5 ml/kg) and for the small 

volume to be half the size of the large volume. The participants were instructed to ingest the SML 

aliquot in under 30 s and the LRG aliquot in under 1 min, as had been done in earlier studies (Bain et 

al., 2012; Morris et al., 2014, 2015). The temperatures were specifically selected in order to 

administer thermal stimuli of similar magnitudes but opposite direction, relative to an approximate 

core body temperature of 37C (i.e. 52°C = 37°C +15°C; 22°C = 37°C-15°C) and to administer 

approximately double the negative thermal stimuli on the cold side (i.e. 22°C = 37°C-15°C; 7°C = 

37°C-30°C). Additionally, by administering fluids of precisely double the volume, we were able to 
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assess whether the modifications of the responses would be twice as large. The above was 

accomplished through four experimental trials, each consisting of a SML and LRG ingestion of the 

same temperature fluid at 40 and 60 min of cooling, respectively. This order of ingestion was 

maintained for all trials as the response time for the SML ingestion was shorter than the LRG 

ingestion and we required the metabolic responses to return to 37°C trial levels prior to the 

administration of the LRG fluid. Conversely, the order of temperature ingestion between trials was 

performed in a counterbalanced manner, using an incomplete Latin square design. 

Measurements 
 Metabolic rate: Metabolic data was continuously measured throughout rest and cooling 

using a Quark CPET metabolic cart (Cosmed, Rome, Italy). Subjects donned a rubber face mask and 

were asked to ensure a proper seal between the face and the mask had been formed by covering the 

inspiration/expiration opening and exhaling, verifying no air could escape from the edges of the 

mask. During the trial, participants were asked to breathe normally. Metabolic rate (M) was 

calculated from minute-average values for oxygen consumption in litres per minute, and the 

respiratory exchange ratio (Nishi, 1981), and reported in watts.  

Electromyography (EMG): Shivering EMG signals were recorded simultaneously from eight 

muscle sites located on the left side of the body: upper trapezius, latissimus dorsi, pectoralis major, 

rectus abdominis, vastus lateralis, rectus femoris, vastus medialis, and gastrocnemius. These muscles 

were selected as they have been used in previous investigations into shivering using similar 

protocols (Haman et al., 2004a, 2004b) and have been demonstrated to be responsible for >90% of 

metabolic heat production during cold exposure (Bell et al., 1992).  The skin was prepared with 

alcohol and an abrasive gel to reduce skin impedance. Two surface electrodes (100 series, 

Covidien,Mansfield, MA, USA) were placed over each measurement site, two cm apart and parallel 

to the orientation of the muscle fibers (Basmajian & Blumenstein, 1980). Inter-electrode resistances 

were always ensured to be <10 k.  EMG signals were amplified and filtered ( EMG 100B/C BIOPAC 

Systems Inc., California, USA; gain 100-1000, bandpass filtered between 10 and 500 Hz) before 

transferring to a PC with a 16 bit analog to digital converter (MP150, BIOPAC Systems Inc., California, 

USA) at a sample rate of 2000 Hz using AcqKnowledge software (v3.9.0, BIOPAC Systems Inc., 

California, USA).  

Six isometric maximal voluntary contraction (MVC) tests were performed on each testing 

day at the completion of the experiment while the participants were still being cooled, to ensure 

skin temperature was the same during the tests as it was during fluid ingestion. The MVC tests were 

based on those recommended in the literature (Boettcher et al., 2008; Rutherford et al., 2011; Ginn 

et al., 2011): 1) palm press at shoulder adduction at 90°, 2) shoulder extension at 30° abduction, 3) 

knee extension at 15°, 4) knee flexion at 15°, 5) plantar flexion in a neutral position, and 6) 

dorsiflexion at 15° plantar flexion. Each test lasted 5 s: 1 s to reach maximum, 3 s sustained 

maximum; and gradual release over the final 1 s with a minimum rest interval of 30 s between 

repetitions. Strong verbal encouragement was provided throughout MVC testing. EMG signals were 

high pass filtered (10 Hz, dual pass 4th order Butterworth), rectified, and low pass filtered (4 Hz, dual 

pass 4th order Butterworth) using (Matlab 2014b, The Math Works, Natick, MA). The MVC for each 

muscle was taken as the maximum during these rectified and filtered signals and was used to 

normalize the EMG signals for that muscle during the trials. The values from the 8 sites were then 

combined into a non-weighted average to represent the mean EMG activity as %MVC. Finally, we 
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considered both lower levels of EMG activity from increases in tonal muscle contraction and low 

intensity shivering as well as higher levels of EMG activity from bursting muscle contraction as 

shivering, as both forms of muscle contraction contribute to metabolic thermogenic responses in the 

cold (Haman et al., 2004a, 2004b). 

 Thermometry: Rectal (Tre) temperature was measured with general purpose paediatric 

thermistor probe (TM400, Covidien, Mansfield, MA, USA) inserted to a depth of 15 cm past the anal 

sphincter. Skin temperature (Tsk) was measured using thermistors integrated into heat flow sensors 

(2252 Ohms, Concept Engineering, Old Saybrook, CT, USA) secured to shaved and cleaned skin with 

double-sided adhesive discs and surgical tape (Transpore, 3M, London, ON, Canada) at four sites. 

Mean Tsk was expressed as an average of the four sites using the weighting of 30% chest, 30% arm, 

20% thigh and 20% calf (Ramanathan, 1964). As previous thermoregulatory research in humans has 

demonstrated that core temperature has approximately nine to ten times the influence on 

thermoeffector responses as skin temperature (Nadel et al., 1971; Gisolfi & Wenger, 1984; Simon et 

al., 1986), mean body temperature (Tb) was estimated as a forcing function for thermoeffector 

responses using a weighting of 0.9   Tre and 0.1   Tsk. Thermometric measurements were displayed 

in real-time using LabView (v7.0, National Instruments, Austin, TX, USA) at a sampling rate of 5 

seconds. 

  Whole-body thermal sensation: Participants reported their whole-body thermal sensation 

(WBTS) on a hand-scored 200 mm visual analogue scale (anchor points: Very cold [0 mm] and Very 

hot [200 mm]; middle point: Neutral [100 mm]). These measurements were taken exactly 5 min 

before and after fluid ingestion.  

 Cardiovascular measurements: Heart rate (HR) was recorded at 5-s intervals throughout the 

trial using a Polar RS400X coded transmitter and stored with a Polar Advantage interface and Polar 

Precision Performance software (Polar Electro Oy, Kempele, Finland). Blood pressure was measured 

using an automatic blood pressure cuff (M10-IT, Omron, Hoofddorp, Netherlands) and expressed as 

mean arterial pressure (MAP). 

 Water temperature: The temperature of the aliquots of water to be ingested for the 22°C, 

37°C, and 52°C trials was carefully maintained in a hydrostatic controlled water bath (Polyscience – 

DA05A, Niles, IL, USA) until two minutes before each time of ingestion, at which point the correct 

volume was measured, the temperature verified and thereafter the aliquot was returned to the 

water bath to maintain temperature until immediately prior to ingestion. The temperature of the 

7°C aliquot was attained by cooling water to ~1.5°C in a thermos with ice and then combining the 

1.5°C with warm water until the aliquot was at 7°C, 1 min prior to ingestion. The temperature of the 

water was measured using a factory-calibrated glass thermometer (Durac Plus, Blue Spirit, precision 

thermometer, Cole-Parmer) with a certified range between -1°C and +100°C with an accuracy of 

±0.1°C and precisely recorded immediately prior to ingestion.  

Statistical analysis  
 All data are expressed as a mean with standard deviation. In order to ensure an adequate 

sample size for the experiment, a power calculation using G*Power 3 software (Heinrich-Heine-

Universität Düsseldorf, Germany (Faul et al., 2007)) was performed employing an α of 0.05, a β of 

0.20, and an effect size of 1.0, calculated from the smallest significant difference between metabolic 

rate during low and moderate shivering (Haman et al., 2005). A sample size of 10 individuals was 

determined for sufficient statistical power.  
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 Thermometric (suit temperature, Tre, Tsk and Tb), physiological (M, EMG, MAP and HR) and 

perceptual (WBTS) responses were compared using the 10-min and 15-min post-ingestion averages 

for the SML and LRG ingestions, respectively. Additionally, in order to isolate the effect of the fluid 

ingestion on thermoeffector response, a second comparison was made whereby all responses were 

standardised to the 37°C condition by subtracting the 37°C values from all other trials as well as 

subtracting the 2 min pre-ingestion averages from all values in order to remove any within-trial pre-

ingestion differences. For WBTS and MAP, data were standardized to the 5 min pre-ingestion 

averages. Accordingly, all responses and change in responses following fluid ingestion, relative to the 

37°C trial, for thermometric, physiological and perceptual data were analysed using a two-way 

repeated measures ANOVA employing the independent variables of fluid temperature (absolute 

comparison, 4 levels: 7°C, 22°C, 37°C, 52°C; relative to 37°C comparison, 3 levels: 7°C, 22°C, 52°C) 

and ingestion size (2 levels: SML, LRG). Additionally, in order to ascertain the mean latency and 

duration of the shivering response following ingestion, M and EMG values from the 37°C trial were 

subtracted from those of the 7°C, 22°C and 52°C trials, and the change in thermoeffector responses 

were compared for 22 min post-ingestion, relative to the 1-min average immediately prior to 

ingestion. These data were assessed using a two-way repeated measures ANOVA, employing the 

independent variables of post-ingestion time (0 to 22 min) and fluid temperature (3 levels: 7°C, 22°C, 

52°C). 

 When significant main effects or interactions were found, individual differences were 

assessed using independent Student’s t-tests, while maintaining a fixed probability (5%) of making a 

type I error by using a Holm-Bonferroni correction. 

RESULTS 

Suit water temperature 
 The water temperature entering the suit was the same temperature between trials (7°C: 

4.6±0.2°C, 22°C: 4.4±0.6°C, 37°C: 4.7±0.5°C, 52°C: 4.5±0.3°C; P=0.37).  

Core and skin temperatures 
 The 1-min average data for all thermometry data is displayed in Figure 1. Fluid temperature 

had no effect on Tre (P=0.47), Tsk (P=0.71), or Tb (P=0.46).  

Metabolic rate 
 The 1-min average data for M are displayed in Figure 1 and the change in M following fluid 

ingestion, relative to the 37°C trial, are displayed in Figure 2. Both fluid temperature and fluid size 

affected M (P<0.01). Following the SML ingestion, M was greater in the 7°C compared to 52°C trial, 

(P=0.05) but no other differences were found (P>0.05). Following LRG ingestion, M was greater in 

the 7°C and 22°C compared to both the 37°C and 52°C trials (P<0.05). Additionally, M was smaller in 

the 52°C compared to the 37°C trial (P<0.05) and not different between the 7°C and 22°C trials 

(P=0.98). The same trends in the data were observed after accounting for pre-ingestion differences 

and relative to the 37°C values (Figure 2).  

 The 1-min averages for M, after accounting for pre-ingestion differences and relative to the 

37°C values (Figure 5), were not different after the SML ingestion (P=0.35) but differed after the LRG 

ingestion (P<0.001). Specifically, M was greater than baseline after 4 min and 5 min with the 22°C 
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and 7°C trials, respectively, and remained lower until 20 min post-ingestion for both the 22°C and 

7°C trials. In the 52C trial, M was greater than baseline after 2 min and remained greater until 15 

min post-ingestion.   

Electromyographic activity 

 The 1-min average data for EMG are displayed in Figure 1 and the change in EMG following 

fluid ingestion, relative to the 37°C trial, are displayed in Figure 2. Both fluid temperature and fluid 

size affected EMG (P=0.04). Following the SML ingestion, EMG was greater in the 7°C compared to 

52°C trial, (P<0.01) but no other differences were found (P>0.05). Following LRG ingestion, EMG was 

greater in the 7°C and 22°C compared to both the 37°C and 52°C trials (P<0.05). Additionally, EMG 

was lower in the 52°C compared to the 7°C trial (P<0.05) and not different between the 7°C and 22°C 

trials (P=0.60).  

 The 1-min averages for EMG, after accounting for pre-ingestion differences and relative to 

the 37°C values (Figure 5), were not different after the SML ingestion (P=0.24) but differed with the 

LRG ingestion (P=0.05). Specifically, EMG was greater than baseline after 1 min and 3 min with the 

22°C and 7°C trials, respectively, and remained lower until 21 min and 20 min post-ingestion for the 

22°C and 7°C trials, respectively. In the 52C trial, EMG was greater than baseline after 1 min and 

remained greater until 9 min post-ingestion.   

Whole-body thermal sensation 
 The change in thermal sensation data following fluid ingestion, relative to the 37°C trial, are 

displayed in Figure 3. Both fluid temperature and fluid size affected WBTS (P<0.01). Following the 

SML ingestion, WBTS was lower (colder) in the 7°C compared to 52°C trial, (P<0.01) but no other 

differences were found (P>0.05). Following LRG ingestion, WBTS was lower (colder) in the 7°C and 

22°C compared to both the 37°C and 52°C trials (P<0.05). Additionally, WBTS was greater (warmer) 

in the 52°C compared to the 7°C trial (P<0.05) and not different between the 7°C and 22°C trials 

(P=0.45).  

Heart rate and blood pressure 
 The 1-min average data for HR is displayed in Figure 1. HR was different between fluid 

temperatures and time points (P<0.001). No differences in HR were observed before (P>0.05) or 

after SML ingestion (P>0.05). No differences existed in advance of the LRG ingestion (P>0.05). 

Following the LRG ingestion, HR was lower in the 52°C compared to the 22°C (P<0.01) and 7°C 

(P<0.01) trials.  

 Mean arterial pressure (MAP) data are displayed in Figure 4. MAP was not affected by fluid 

ingestion (P=0.41) nor was there an interaction between time and fluid temperature (P=0.30).  

DISCUSSION 

 Collectively, the findings from the present study demonstrate that the previously identified 

visceral thermoreceptors, which modify heat-defence thermoeffector responses (i.e. sweating), 

similarly alter cold-defence thermoeffector responses (i.e. shivering). Specifically, compared to 37°C 

fluid ingestion, 7°C and 22°C fluid ingestion independently increased shivering, whereas 52°C fluid 

ingestion independently decreased shivering, as both M and EMG were different between trials 
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without any measured differences in Tre, Tsk, or Tb at any point in time; thereby supporting the 

concept of visceral thermoreceptors independently modifying thermoeffector responses in humans. 

Following the LRG ingestion, the thermoeffector responses in the 7°C and 22°C trials were similar, 

even though the 7°C stimulus was twice as cold, relative to body temperature, as the 22°C stimulus. 

Whole-body thermal sensation followed similar response-patterns to the thermoeffector responses. 

Collectively, these findings demonstrate both cold defence thermoeffector responses and thermal 

sensation are modified by visceral thermoreceptors. 

 Thermoeffector responses were different between trials despite no differences in Tre, Tsk, or 

Tb. These findings add to the growing body of evidence in the literature concerning human visceral 

thermoreception. The response time observed in EMG data following cold/hot fluid ingestion (Figure 

5) aligns with our previous observation of changes in heat-defence thermoeffector responses within 

one minute of cold/warm fluid ingestion (Morris et al., 2014, 2015). These findings support the 

notion that the thermoreceptors responsible for modifying thermoeffector responses reside either 

in the stomach or small intestine, as stimulation of both locations elicited thermoeffector responses 

in the ewe (Rawson & Quick, 1972). However, due to the rapidity of the response, the location of the 

receptors is most likely in the stomach. Indeed the rapid EMG response time is a strong 

counterargument to other proposed mechanisms for altering thermoeffector responses, specifically 

hypothalamic cooling through heat transfer between the blood, bodily tissues, and ingested fluid 

(Siegel & Laursen, 2012).  

 Both M and EMG responses following large 22°C and 52°C ingestion increased and 

decreased, respectively, to equal but opposite levels, whereas 7°C and 22°C ingestion resulted in 

almost identical changes in thermoeffector responses, even though the 7°C stimuli were twice as 

cold, relative to body temperature, as the 22°C stimuli. We consider these findings to be the greatest 

evidence to date of visceral thermoreceptors in humans. Were the modification of thermoeffector 

responses due to subtle changes in blood temperature, which in turn affected brain temperature as 

has been previously proposed (Siegel & Laursen, 2012), 7°C ingestion should have elicited 

proportionately greater defence shivering responses due to greater cooling of the blood. As maximal 

shivering does not occur until a core temperature  34-35°C (Castellani et al., 2006), no upper limit 

should have been met. Rather, as some research suggests cold fluids have been shown to 

dramatically increase gastric emptying time compared to cool and hot fluids (Ritschel & Erni, 1977) 

and as the stomach and duodenum, but not other segments of the small and large intestine, affect 

thermoeffector responses (Rawson & Quick, 1972), it is possible the cold water passed from the 

thermosensitive area to the non-thermosensitive area before all heat exchange occurred.  

 Contrary to our initial expectations, thermoeffector responses in the LRG trials were more 

than twice the size of those in the SML trial. These findings may be due to the small ingested fluid 

mass with the SML ingestion, as a greater relative proportion of the ingested thermal stimuli could 

have been lost to oral tissues, which we have previously demonstrated do not possess 

thermoeffector-modifying thermoreceptors capable of modifying thermoeffector responses during 

heat stress (Morris et al., 2014). Supporting this idea, 1.5°C fluid ingestion in that study reduced 

oesophageal temperature for ~7 min (unpublished data), whereas ingestion of 4°C fluid of a similar 

volume reduced intragastric temperature for ~25 min (Sun et al., 1988), indicating that while some 

heat transfer occurs in the mouth and oesophagus, most occurs in the stomach. However, a similar 

response has not yet been investigated during cold stress and therefore future studies that 
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simultaneously measure tissue temperature at several locations along the gastroinitestinal tract with 

fluid ingestion, particularly during cold stress, are warranted. 

 In the present study, blood pressure greatly increased and HR decreased following the onset 

of cooling, which is the typical cold exposure response in humans, as cutaneous blood vessels 

undergo maximal vasoconstriction, elevating blood pressure and the resulting baroreflex slows HR 

(Budd & Warhaft, 1966; Collins et al., 1985). Following fluid ingestion, blood pressure was 

unaffected whereas HR changed in a similar pattern as M and EMG. These findings are likely because 

the level of cooling employed in this study is beyond the point of maximal vasoconstriction which 

has been previously identified (Cannon & Keatinge, 1960) and was subsequently confirmed using 

laser Doppler velocimetry during pilot testing. Therefore blood pressure would be unaffected by 

changes in cutaneous vasomotor activity, whereas HR would be modified to meet the oxygen 

demands of the shivering muscles. Conversely in mice, cold administration causes an immediate 

increase in HR and brown adipose tissue activation (Nakamura & Morrison, 2011). While brown 

adipose tissue activity was not investigated in the present study, it is not a prominent cold defence 

thermoeffector in man, with maximal heat production values ranging from 2 to 20 W (Yoneshiro et 

al., 2011). However, as activation of shivering and non-shivering thermogenesis occurs through the 

same circuitry pathways (Nakamura & Morrison, 2011) it is quite possible brown adipose tissue 

activity would be affected by hot and cold fluid ingestion. This information could be of interest for 

studies in animal species that rely more heavily on brown adipose tissue in the cold, as well as 

researchers interested in brown adipose tissue activation for potential weight loss in humans 

(Chechi et al., 2014).  

 The participants’ WBTS responses (Figure 4) demonstrated a similar response pattern to that 

of the physiological measures in that the participants felt similarly cold following 22C and 7C 

ingestion, rather than reflect the magnitude of the ingested thermal stimulus. Furthermore, while 

the participants’ local thermal sensation was not formally recorded at either the mouth or the 

abdomen, the participants’ were able to differentiate between the 22°C and 7°C fluids during 

ingestion and remarked upon this difference during testing. This discrepancy in perceptual responses 

is consistent with previous observations that local cutaneous thermal sensation operates 

independently from whole-body thermal sensation (Chatonnet & Cabanac, 1965; Cotter & Taylor, 

2005). Additionally physiological and perceptual/behavioural responses are similarly uncoupled, as 

mouth swilling cold fluids mildly benefits exercise performance and thermal comfort in the heat 

(Burdon et al., 2013), but does not affect sweating (Morris et al., 2014), whereas cold fluid 

administration directly to the stomach does affect sweating (Morris et al., 2014). Therefore it 

appears that WBTS and physiological responses share a similar thermal forcing function, comprised 

of cutaneous, visceral and hypothalamic thermal afferents.  

Perspectives  

 The viscera are innervated by both spinal and vagal thermoafferents and while the spinal 

thermoreceptor circuitry and how it contributes to thermoregulation is well known (Nakamura, 

2011), much less is known about the vagal thermoreceptor circuitry and how it contributes to 

thermoregulation. Generally, vagal afferents are involved in reflex control of gastrointestinal 

function, primarily eliciting chemical secretions and changes in motility (Andrews & Sanger, 2002). 

Some research suggests a role for vagal thermoreceptors in modifying febrile responses 

(Romanovsky et al., 1997) as well as metabolism and core temperature during starvation (Székely et 
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al., 1997). Additionally, one study demonstrated stimulation of vagal thermoreceptors located in the 

oesophagus changed respiration rate in cats (El Ouazzani & Mei, 1982). Conversely, other research 

has demonstrated no electrical response to cooling of vagal nerves in the abdomen (Gupta et al., 

1979) as well as spinal but not vagal thermoreceptor stimulation causing modifications to 

thermoeffector responses (Rawson & Quick, 1972; Riedel, 1976). Therefore, more work is needed to 

identify the exact thermoregulatory circuitries and their independent effects on thermoregulation of 

vagal afferents. 

 Previously, core body thermoreceptors have been identified in the spinal cord and 

hypothalamus (Simon, 2006). The present findings give evidence for core body thermoreceptors that 

reside outside the central nervous system which provide temperature feedback for an area which 

contains multiple organs essential to life. Additionally, we believe visceral thermoreceptors act as 

auxiliary thermoreceptors, similar to cutaneous thermoreceptors, whereby the thermoreceptors 

function as an early response system to environmental thermal stress (Romanovsky, 2014). Indeed,  

the temperature of ingested foods, and particularly fluids,  plays an important role for wild animals, 

especially for those in cold environments (Wilson & Culik, 1991; Berteaux, 2000). Considering 

humans did not evolve in thermally controlled environments and would periodically need to ingest 

non-thermoneutral foods and fluids, the ability to detect and defend against ingested substances 

which could threaten thermal homeostasis would likely be beneficial. As the mouth is densely 

innervated with thermoreceptors yet evokes no physiological responses with hot and cold stimuli 

(Morris et al., 2014), it is likely the function of oral thermoreceptors to guard against fluids of 

noxious temperatures. Conversely, visceral thermoreceptors likely function to account for warm and 

cold food and fluids in advance of core temperature being altered. The finding that thermoeffectors 

are only modified by  temperature stimuli applied to the stomach and duodenum, but not other 

areas of the gastrointestinal tract, supports this proposition as warm and cold food and fluids would 

likely equilibrate with body temperature prior to reaching these tissues (Rawson & Quick, 1972).  

Limitations 
 In the present study mean skin temperature was comprised of four skin temperature sites, 

whereas as typically more sites are employed under cold environmental conditions (Parsons, 2003). 

However, suit temperature was not different between trials and fluid temperature explained a mere 

0.03% of the variation observed in skin temperature, therefore it is highly unlikely difference in skin 

temperature existed were not detectable. Additionally, in order to minimize the duration of cold 

exposure for the participants, the small aliquot was always administered first, as pilot testing 

demonstrated that modifications to the thermoeffector responses always returned to baseline in 

less than 20 min. Because of this timing, some water from the first aliquot, albeit of insufficient 

volume and temperature to alter thermoregulatory responses, may have remained in the stomach 

when the second aliquot was administered. Another potential concern is that while sudomotor and 

vasomotor effectors are sympathetically innervated, muscles are somatically innervated and 

therefore the shivering responses could be altered by voluntary contractions. However, the central 

circuitry responsible for modifying shivering thermogenesis via somatomotor innervation parallel 

those for autonomic thermogenesis (Nakamura & Morrison, 2011). As such, any conscious 

modification of muscle activity would likely be overridden by the central demand to attain thermal 

balance; akin to an individual attempting to hold their breath. Finally, as modifications in metabolic 

rate were of primary interest, the level of cooling was selected to elicit moderate shivering and in 
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doing so elicited maximum vasoconstriction (Cannon & Keatinge, 1960), which was confirmed during 

pilot study and therefore not measured in the main study.  

CONCLUSION   

 In support of previous work from our laboratory, cold defence thermoeffector responses are 

modified following 50C, 22C and 7C fluid ingestion, independently of any changes in core or skin 

temperature, supporting the notion of thermoeffector-modifying visceral thermoreceptors. While 

22C  and 52C fluids respectively increased and decreased shivering responses to equal but 

opposite levels, shivering responses were the same between the 22C and 7C fluid ingestion. 

Additionally, thermoeffector responses did not respond proportionately to manipulations of fluid 

volume. Finally, whole-body thermal sensation responded similarly to the thermoeffector responses. 

Collectively these results reaffirm the concept of thermoeffector-modifying visceral thermoreceptors 

in man and provide novel evidence that these visceral thermoreceptors can contribute to 

thermoregulatory function.  
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LIST OF FIGURES 

Figure 1. One-minute averages (±SD), in clockwise order starting from top left for: rectal 

temperature (Tre), metabolic rate (M), electromyographic activity (EMG), heart rate (HR), mean body 

temperature (Tb) and skin temperature (Tsk). The coloured lines represent the 7°C (blue), 22°C 

(green), 37°C (orange) and 52°C (red) trials, respectively. The grey area denotes rest before cooling 

and the solid lines denote fluid ingestion. Statistical analyses are absent from the graph for clarity. 

See text for the interpretation of the data. 
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Figure 2. Mean change in cold-defence physiological responses (±SD), from 2 min before to 10 min 

(SML) or 15 min (LRG) after fluid ingestion, relative to the 37°C trial, for metabolic rate (M) and 

electromyographic activity (EMG). The coloured bars represent the 7°C (blue), 22°C (green) and 52°C 

(red) trials, respectively. Where * denotes 7°C or 22°C > 52°C (P<0.05). 

 

Figure 3. Mean perceptual responses (±SD), left side panels represent whole-body thermal sensation 

(WBTS) 5 min before and 5 min after fluid ingestion and right side panels represent the change in 

WBTS from pre to post ingestion, relative to the 37°C trial. The coloured bars represent the 7°C 

(blue), 22°C (green) and 52°C (red) trials, respectively. Where # denotes 7°C or 22°C < 52°C (P<0.05). 
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Figure 4. Mean arterial pressure (MAP) (±SD). The coloured lines represent the 7°C (blue), 22°C 

(green), 37°C (orange) and 52°C (red) trials, respectively. The grey area denotes rest before cooling 

and the solid lines denote fluid ingestion. 

 

Figure 5. Change in thermoeffector responses (±SD) from baseline (i.e. relative to the 1 min average 

prior to ingestion, standardized to the 37°C condition in order to account for any differences in 

responses prior to ingestion). The top panels depict the changes following the 1.5 ml/kg (SML) 

ingestion and the bottom panels depict the changes following the 3.0 ml/kg (LRG) ingestion. Left 

columns illustrate change in metabolic rate (M) and right columns illustrate change in 

electromyographic activity (EMG). The coloured lines represent the 7°C (blue), 22°C (green) and 52°C 

(red) trials, respectively. Dashed (7°C), black (22°C) and dotted (52°C) are significantly different to 

37°C (P<0.05).  

 


