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Abstract—This paper proposes methods for optimizing bidi-
rectional information rates between a base station (BS) and
a wirelessly powered mobile station (MS). In the first phase,
the MS harvests energy using signals transmitted by the BS,
whereas in the second phase both the BS and MS communicate
to each other in a full-duplex mode. The BS-beamformer and
the time-splitting parameter (TSP) of energy harvesting scheme
are jointly optimized to obtain the BS-MS rate region. The joint
optimization is non-convex, however a computationally efficient
optimum technique based upon semidefinite relaxation and line-
search is proposed to solve the problem. Moreover, a subopti-
mum approach based upon the zero-forcing (ZF) beamformer
constraint is also proposed. In this case, a closed-form solution
of TSP is obtained. Simulation results demonstrate the advantage
of the optimum method over the suboptimum method, especially
for smaller values of BS transmit power and number of transmit
antennas at the BS.

I. INTRODUCTION

Currently most bi-directional wireless systems have been

developed assuming half-duplex (HD) operation [1]. As a

way of improving the spectral efficiency of contemporary

HD systems, full-duplex (FD) communications can be used.

Although the concept of FD is not new, it has been considered

as impossible to date due to large loopback interference (LI)

[2], [3]. However, FD is now becoming feasible thanks to

promising analog and digital LI cancellation techniques that

can achieve high transmit-receive isolation [4]–[6].

In addition to spectral efficiency, the issue of energy ef-

ficiency has gained wide research attention for the design

of future wireless networks. For example, energy constraints

impose an upper limit on transmit power and associated

signal processing in wireless devices. To this end, a new

communication paradigm that can power devices by utilizing

wireless energy transfer (WET) has emerged [7]–[9].

Some existing works in the literature have investigated

point-to-point (P2P) bi-directional FD wireless systems.

These include papers that have focused on information-

communication theoretic metrics such as achievable sum rates

and the symbol error probability. In [3], achievable upper

and lower sum-rate bounds of multiple antenna bi-directional

communication that use pilot-aided channel estimates for

transmit/receive beamforming and interference cancellation

were derived. The beamforming performance of bi-directional

multiple-input multiple-output (MIMO) transmission with spa-

tial LI mitigation was investigated in [10]. The capacity of a

bi-directional MIMO system with spatial fading correlation

was presented in [11]. The maximization of the asymptotic

ergodic mutual information for a MIMO bi-directional com-

munication system with imperfect channel state information

(CSI) assumptions was the focus of [12].

Motivated by the advantages of FD and WET, some recent

works have also investigated the performance of wireless-

powered P2P bi-directional FD [13]–[15]. In [13], considering

a hybrid FD access-point (AP) that broadcasts wireless energy

to a set of downlink users while receiving information from a

set of uplink users, a solution to an optimal resource allocation

problem was presented. In [14], hardware implementation of

a wireless system that transmits data and power in the same

frequency was presented. More recently, in [15], a weighted

sum transmit power optimization problem for a bi-directional

P2P FD system with WET was formulated and solved. How-

ever, it neglected an important aspect of FD operation, namely,

perfect LI cancellation was assumed at each terminal.

Inspired by wireless-powered FD communications, in this

paper, we consider bi-directional communication between an

N -antenna base station (BS) and an mobile station (MS)

with two antennas. In our “harvest-then-transmit” system, the

BS first transmits energy to the MS which will be used by

the MS for subsequent uplink transmission. At the end of

energy transfer phase, both BS and MS simultaneously transfer

information in the uplink and downlink. The boundary of

the BS-MS information rate region is characterized, which

describes the trade-offs between BS and MS information rates.

We propose optimum and suboptimum methods for jointly

optimizing the beamformer at the BS and the time-splitting

parameter (TSP) that divides a given time-slot into energy

harvesting and data transmission phases. A computationally

efficient optimum method based upon semidefinite relaxation

(SDR) and line-search is proposed, whereas the suboptimum

method uses the zero-forcing (ZF) criterion for designing

the beamformer. In the latter case, a closed-form solution

of TSP is also derived. Simulation results demonstrate that

the proposed optimum method outperforms the suboptimum

method, especially when BS transmit power and number of

transmit antennas at the BS assume low values.

The rest of the paper is organized as follows. The system

model and problem formulation are presented in Section II.

The proposed optimum and suboptimum methods are solved
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in Section III, whereas in Section IV simulation results are

presented. Finally, the conclusions are drawn in Section V.

II. SYSTEM MODEL AND PROBLEM FORMULATION

We consider bidirectional communications between an N -

antenna BS and a MS with two antennas [15]. Specifically, the

BS has Nt transmit antennas and (N −Nt) receive antennas.

This number, Nt, together with the associated transmit/receive

chosen antennas could be optimized, but we keep them fixed.

At the MS side, one antenna is for transmission and the other

is for reception. Since the MS is usually power limited and

the uplink rate is the bottleneck, we consider a case where the

BS first transmits energy to the MS, which will be used by

the MS for the subsequent uplink transmission.

The communication takes place in two phases with duration

α and (1−α), respectively. In phase I, the BS transmits energy

to the MS. Suppose the transmit power of BS in this phase is

P , then the received energy is

E = αPλ
(

HBMH
H
BM

)

, (1)

where the channel between the BS and the MS is denoted as

HBM and λ(·) returns the maximum eigenvalue of a matrix.

In phase II, the BS and the MS communicate to each other

using FD operation. The MS’s transmit power can be written

as

pm =
αηPλ

(

HBMH
H
BM

)

1− α
, (2)

where η is the conversion efficiency of wireless energy trans-

fer. Assume that the BS’s transmit power is no more than P

(not necessarily P ) in this phase. Let the 1×Nt BS → MS

channel be h
H
B and the (N −Nt)× 1 MS → BS channel is

hM . The LI channels are HB ∈ C
(N−Nt)×Nt and hM at the

BS and MS, respectively. The respective transmit and receive

beamformers at the BS are wB and rB .

A. Signal Model

Received signals at the BS and the MS, are:

yB = r
H
B (

√
pmhMsM +HBwBsB + nB),

yM = h
H
BwBsB +

√
pmhMsM + nM . (3)

Then achievable rates (using the minimum mean-square

error receiver at the BS) are

rB =(1− α) log

(

1 +
pm|rHBhM |2

1 + |rHBHBwB |2
)

=(1− α) log
(

1 + pmh
H
M (I+HBwBw

H
BH

H
B )−1

hM

)

,

=(1− α) log

(

1 + pm

(

‖hM‖2 − |hH
MHBwB |2

1 + ‖HBwB‖2
))

(4)

rM =(1− α) log

(

1 +
|hH

BwB |2
1 + pm|hm|2

)

. (5)

B. Problem Formulation

We are interested to find the MS-BS rate region. This can

be achieved by maximizing the MS rate while confirming that

the BS-rate is equal to a certain value RB . By solving this

optimization problem for all RB where RB ∈ [0, Rmax
B ] and

Rmax
B is the maximum value of BS rate, we obtain the MS-

BS rate region. Note that Rmax
B is derived in closed-form in

Appendix VI-A. As such, the optimization problem for a given

RB is expressed as
max

‖wB‖2≤P,0≤α≤1,pm

(1− α) log

(

1 +
|hH

BwB |2
1 + pm|hm|2

)

s.t.

(1− α) log

(

1 + pm

(

‖hM‖2 − |hH
MHBwB |2

1 + ‖HBwB‖2
))

= RB ,

pm =
αηPλ

(

HBMH
H
BM

)

1− α
. (6)

The optimization problem (6) is a complicated nonconvex

optimization w.r.t. wB and α. However, the problem can be

solved efficiently by finding optimum wB for a given α and

vice-versa. Since α is scalar valued, the optimum solution can

be ascertained by using one-dimensional search w.r.t. α.

III. PROPOSED JOINT OPTIMIZATION

In this section, we propose optimum and suboptimum

methods for solving the joint optimization of beamformer and

the time-splitting parameter (α).

A. Optimum Method

In this method, the optimum wB is found for a given

α. Since α is a scalar, the jointly optimal solution of wB

and α is obtained using one-dimensional search w.r.t. α.

The computational complexity of line search is minimized by

exploiting the nature of the optimization problem (6).

1) Optimization of wB: We first consider a problem to

optimize wB for a given α. In this case, the optimization

problem (6) is expressed as

max
‖wB‖2≤P

(1− α) log

(

1 +
|hH

BwB |2
1 + pm|hm|2

)

s.t. (7)

(1− α) log

(

1 + pm

(

‖hM‖2 − |hH
MHBwB |2

1 + ‖HBwB‖2
))

= RB .

Since log(1 + x) is a monotonically increasing function of

x and the denominator 1 + pm|hm|2 of x ,
|hH

BwB |2

1+pm|hm|2 is

independent of wB , (7) can be solved via

max
‖wB‖2≤P

|hH
BwB |2

s.t.
|hH

MHBwB |2
1 + ‖HBwB‖2

= ΓB , (8)

where ΓB , ||hM ||2 − 1
pm

[

2
RB
1−α − 1

]

. It is clear that the

objective function in (8) is maximized with ||wB ||2 = P . This

optimization problem is nonconvex due to the fact that it is the

maximization of a quadratic function with a quadratic equality

constraint. Moreover, to the best of our knowledge, (8) does

not admit a closed-form solution. However, it can be efficiently

and optimally solved using semi-definite programming. For



this purpose, define VB = wBw
H
B and relax the rank-one

constraint rank(VB) = 1. The relaxed optimization is

max
VB

f(α, pm) = tr(VBhBh
H
B )

s.t. tr(VBH
H
BhMh

H
MHB) = ΓB

(

1 + tr(VBH
H
BHB)

)

,

tr(VB) = P,VB � 0. (9)

The optimization problem (9) is a standard SDR problem with

only two equality constraints. Therefore, according to Shapiro-

Barvinok-Pataki (SBP) rank reduction theorem [16], there

exists a rank-one optimum solution of VB for this relaxed

optimization problem. Let V
∗
B be the optimum solution of

(9). Since V
∗
B is rank-one matrix, the optimum solution w

∗
B

is obtained w
∗
B =

√
P ũũ

H , where ũ is the eigenvector

corresponding to non-zero eigenvalue of V∗
B .

2) Optimization of wB and α: In order to jointly opti-

mize wB and α, we solve the SDR problem (9) using one-

dimensional (or line search) search over α where 0 ≤ α ≤ 1.

However, this line search can be limited to a small segment,

and therefore, the number of required SDR optimizations can

be significantly minimized. To illustrate this, let the objective

function in (7), for a given w
∗
B , be defined as

f(α) = (1− α) log2

(

1 +
β

c+ αb
1−α

)

(10)

where

β =
|hH

Bw
∗
B |2

|hm|2 , c =
1

|hm|2 , b = ηPλ
(

HBMH
H
BM

)

. (11)

The derivative of f(α) w.r.t. α is

df(α)

dα
= − log2(g(α))−

bβg(α)−1

(1− α) log(2)

(

c+
αb

1− α

)−2

(12)

where g(α) = 1 + β

c+ αb
1−α

≥ 0, ∀α ∈ [0, 1]. It is clear from

(12) that
df(α)
dα

< 0 for all α, i.e., f(α) is a monotonically

decreasing function of α. This means that maximum of the

objective function is achieved when α is minimum provided

that the equality constraint is fulfilled. However, as α → 0,

ΓB → ∞, i.e., the infeasibility of the SDR optimization

problem (9) increases. Consequently, the optimum α is the

minimum α for which (9) is feasible. The output VB of such

feasible SDR provides the optimum wB . In a nutshell, the

proposed optimum solution can be summarized as follows:

• 1) Define a fine grid of α in steps of ∂α.

• 2) Solve (9) with the smallest α.

• 3) If feasible, stop and output α and VB .

• 4) If not, repeat step (2) with the increment of ∂α.

B. Suboptimal Method

As a suboptimal method of optimizing wB and α, we

consider ZF approach. This requires that

w
H
BH

H
BhM = 0. (13)

1) Optimization of wB: Substituting (13) into (6), the

resulting optimization problem is expressed as

max
‖wB‖2≤P,0≤α≤1

(1− α) log

(

1 +
|hH

BwB |2
1 + pm|hm|2

)

s.t. (1− α) log
(

1 + pm‖hM‖2
)

= RB ,

pm =
αηPλ

(

HBMH
H
BM

)

1− α
(14)

w
H
BH

H
BhM = 0.

For a given α, the optimization of wB becomes

max
wB

|hH
BwB |2

s.t. ‖wB‖2 ≤ P (15)

w
H
BH

H
BhM = 0.

Using a standard Lagrangian multiplier method and skipping

the corresponding details, the closed-form solution of wB is

expressed as

wB =
√
P

BhB

‖BhB‖
,B = I− H

H
BhMh

H
MHB

‖HH
BhM‖2 (16)

which is independent of α. Consequently, the corresponding

objective function is

|hH
BwB |2 = P

|hH
BBhB |2
‖BhB‖2

= P‖BhB‖2. (17)

2) Optimization of α: Denote the suboptimal beamformer

solution of (16) by w
∗
B . The remaining optimization problem

w.r.t. α is expressed as

max
0≤α≤1

f(α) , (1− α) log2

(

1 +
β

c+ αb
1−α

)

s.t. (1− α) log2

(

1 +
α

1− α
bγ

)

= RB . (18)

where γ = ||hM ||2. Note that the optimum α would be zero

if there were no equality constraint (or the constraint with

RB = 0). In the presence of equality constraint with RB > 0,

it is clear that the optimum α is the smallest α that satisfies

the equality constraint. The following proposition derives the

optimum α.

Proposition 1. When equality constraint is feasible (i.e.,

RB ≤ Rmax
B ) , the optimum α is given by

αopt =
− 1

RB log(2)W
(

−RB log(2)
bγ

eRB log(2)(1− 1
bγ )

)

− 1
bγ

1− 1
RB log(2)W

(

−RB log(2)
bγ

eRB log(2)(1− 1
bγ )

)

− 1
bγ

(19)

where W (y) is the Lambert function, i.e., y = xex =⇒ x =
W (y).

Proof. The proof is given in Appendix VI-B.
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Fig. 1. Comparison of rate regions with P = 0 dB, and Nt = 4, 5

IV. SIMULATION RESULTS

In all simulation results, we take N = 6 and change the

value of Nt. The channel coefficients for all channels are

taken as zero-mean independent and identically distributed

complex Gaussian random variables with unit variance. All

results correspond to averaging of 100 independent channel

realizations. The BS rate is varied from 0 to Rmax
B , where

Rmax
B is computed as in Appendix VI-A. The noise powers at

both the BS and MS are set to unity.

Fig. 1 shows the rate regions obtained with the optimum

and suboptimum methods for Nt = 4 and 5, when P = 0
dB, whereas the corresponding regions for P = 10 dB

are shown in Fig. 2. As a benchmark, the achieved BS-MS

rate regions are also shown for the HD mode. It can be

observed from Figs. 1 and 2 that the maximum value of

the MS rate is obtained when RB is minimum, whereas the

minimum value is obtained when RB takes maximum value.

Moreover, as expected both the BS and MS rates increase

when P increases from 0 dB to 10 dB. Both figures show that

the optimum method performs better than the suboptimum

approach. However, the advantage of the optimum method

over the suboptimum method diminishes when P increases

from 0 dB to 10 dB. Moreover, when Nt increases, the

obtained maximum MS rate increases, whereas the obtained

maximum BS rate decreases. This can be explained from the

fact that increasing Nt improves the transmit beamforming at

the BS, which in turn is attributed for an increase in the MS

rate. However, increase in Nt decreases Nr = N − Nt for a

given Nt. This means that the LI rejection capability of the

BS decreases which leads to a drop in the supported BS rate.

All results also show that the FD operation almost doubles the

rate of the HD mode.

The rate regions of the optimum and suboptimum methods

with different values of Nt = 2 and 3 are shown in Fig. 3 and

Fig. 4 for P = 0 dB and P = 10 dB, respectively. From these

figures, similar observations can be made as in Figs. 1 and

Fig. 2. However, in contrast to the latter figures, Figs. 3 and 4

show a significant performance gains for the optimum method

compared to the suboptimum method. More specifically, the

advantage of the optimum method is more pronounced for

smaller values of Nt and P .
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V. CONCLUSIONS

In this paper, computationally efficient optimum and sub-

optimum methods were proposed to enlarge the boundary of

the BS-MS rate region for a bi-directional FD communication

system equipped with an N -antenna BS and a wireless-

powered MS equipped with two antennas. Simulation results

demonstrate that significant performance gains are achievable

when the BS-beamformer and the time-splitting parameter,

which splits the available time between energy harvesting
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and FD communication modes, are jointly optimized. The

advantages of multi-antenna transmission for LI suppression

were also demonstrated.

VI. APPENDIX

A. Derivation of maximum BS rate Rmax
B

It is obvious that

‖hM‖2 − |hH
MHBwB |2

1 + ‖HBwB‖2
≤ ‖hM‖2 (20)

where the equality is achieved with the ZF constraint

h
H
MHBwB = 0. The maximum BS rate is then obtained as

Rmax
B = max

0<α<1
(1− α) log2

(

1 +
α

1− α
b‖hM‖2

)

(21)

where b = ηPλ
(

HBMH
H
BM

)

. Denote b̃ = b‖hM‖2. Equating

the first order derivative of Rmax
B w.r.t. α, we obtain

∂Rmax
B

∂α
= 0 =⇒ log

(

1 +
α

1− α
b̃

)

=
b̃

1 + α
1−α

b̃

1

1− α
(22)

which can be written in the form

z log(z) = z + b̃− 1, where z = 1 +
α

1− α
b̃. (23)

After straightforward manipulation, we obtain

z

e
log

(z

e

)

=
b̃− 1

e
=⇒ log

(z

e

)

elog(
z
e ) =

b̃− 1

e
. (24)

According to the definition of Lambert-W function, the solu-

tion of the equation y = xex for a given y is expressed as

x = W (y), where W (·) is the Lambert-W function. Thus,

(24) is given by

z = e
W

(

b̃−1
e

)

+1
. (25)

Substituting z into (25), the optimum α is

αOpt =
e
W

(

b̃−1
e

)

+1 − 1

b̃+ e
W

(

b̃−1
e

)

+1 − 1

. (26)

Therefore, Rmax
B is given by

Rmax
B = (1− αOpt) log2

(

1 +
αOpt

1− αOpt
b‖hM‖2

)

. (27)

B. Proof of Proposition 1

Proof. The equality constraint for the BS rate is expressed as

log

(

1 +
α

1− α
bγ

)

= RB log(2)

(

α

1− α
+ 1

)

. (28)

Define y , 1 + α
1−α

bγ. Then (28) can be expressed in terms

of y as

y = e
RB log(2)

bγ
yeRB log(2)(1− 1

bγ ) (29)

which after simple manipulation is expressed as
(

−RB log(2)

bγ
y

)

e−
RB log(2)

bγ
y =

(

−RB log(2)

bγ

)

×eRB log(2)(1− 1
bγ ). (30)

Using the Lambert-W function W (y) (i.e., y = xex → x =
W (y)), y in (30) is expressed as

y =
−bγ

RB log(2)
W

(

−RB log(2)

bγ
eRB log(2)(1− 1

bγ )
)

. (31)

Note that
RB log(2)

bγ
eRB log(2)(1− 1

bγ ) ≤ 1
e is required to have a

real value of y. If not, the equality constraint is not feasible

for given b, γ, and RB where RB ≤ Rmax
B . Substituting y in

(31), we obtain

α

1− α
=

−1

RB log(2)
W

(

−RB log(2)

bγ
eRB log(2)(1− 1

bγ )
)

− 1

bγ

which yields the optimum αOpt given in (19).
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