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Corpus linguists attempt to understand language by statistically analyzing large collections of 
text, known as corpora. We describe the creation of three corpora designed to enable the study 
of expert and learner mathematical language. Our corpora were formed by collecting and 
processing three different genres of mathematical texts: mathematical research papers, 
undergraduate-level textbooks, and undergraduate dissertations. We pay particular attention to 
the method by which our corpora were created, and present a mechanism by which LaTeX 
source files can be easily converted to a form suitable for use with corpus analysis software 
packages. We then compare these three different types of mathematical texts by analyzing their 
word frequency distributions. We find that undergraduate students write in remarkably similar 
ways to textbook authors, but that research papers are substantially different. These differences 
are discussed. 
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Understanding the nature of mathematical language is a goal for at least three research 
communities. Sociologists and philosophers have long been interested in the practices of 
intellectual communities, and mathematics, with its uniquely deductive mode of inquiry, has 
attracted particular attention (e.g., Larvor, 2016). Mathematicians increasingly recognize that 
novices need to learn not only the content of mathematics but also the practices of 
mathematicians. Transition-to-proof courses are therefore common, and a growing number of 
textbooks directly address logical norms of mathematical communication (e.g., Vivaldi, 2014). 
Mathematics educators at all levels aim to support learners in developing sophisticated modes of 
thinking: a commonly-stated goal is that learners should engage in authentic mathematical 
activity that involves reasoning, proving, and communicating their arguments with others in the 
classroom and in written work (e.g., Stylianides, 2007). 

These communities – sociologists and philosophers, mathematics educators, and 
mathematicians – therefore share an interest in understanding the norms of mathematical practice 
and communication. To date, however, there are relatively few empirical studies of this practice, 
and those that exist indicate less homogeneity among mathematicians than is typically portrayed 
in introspective accounts (e.g., Inglis, Mejía-Ramos, Weber & Alcock, 2013). In particular, to 
our knowledge, there have been few large-scale attempts to study the authentic mathematical 
communication of research mathematicians, or to compare this to the communication of 
undergraduates.   

One method of studying language is to use the techniques of corpus linguistics, a branch of 
linguistics that statistically interrogates large collections of naturally occurring text, known as 
corpora. Methods developed by corpus linguists can be used to investigate many different types 
of linguistic question, and have revealed important and surprising findings (e.g., McEnery & 
Hardie, 2011). 
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Our goal in this project was to compare three distinct types of mathematical written 
language: that used by mathematicians when writing research papers, that used by 
mathematicians when communicating with undergraduates for pedagogical purposes, and that 
used by undergraduates when writing for assessment. By collecting and processing naturally 
occurring mathematical texts of these three types we aimed to understand the similarities and 
differences of these three genres of mathematical language. A subsidiary goal was to compare all 
these versions of mathematical language with general (non-mathematical) written English. We 
first discuss the process involved in creating our three corpora. 

 
Collecting the Texts 

The first task for a researcher who wishes to create a corpus is to collect examples of the 
language that they wish to study. We adopted two largely pragmatic criteria: 

1.   We collected only text in LaTeX format to enable consistent processing (discussed 
below). 

2.   We collected only text that had been published non-commercially or, in the case of 
student projects, where the author agreed to assign us copyright. 

Subject to these criteria, we collected texts for the three corpora in different ways. 
To create the learner corpus we invited undergraduate students to submit their final-year 

projects or dissertations.  Such dissertations are common in the UK (where students specialize to 
study three subjects at age 16 and to one or two when at university) and degree programs vary in 
their dissertation criteria.  But students commonly have the opportunity to undertake an 
individual project – which might be expository or applied– accounting for approximately one 
sixth of their final-year credit.  We invited submissions from such students via project 
coordinators at 15 universities, who sent on an email directing interested students to a Facebook 
page that explained how to process their dissertation LaTeX file to remove personal identifiers, 
and how to submit this along with a copyright transfer form.  Each student who submitted 
received a £5 (approximately $7) Amazon voucher and was asked to encouraged their friends to 
submit too.  By this method we collected 50 student dissertations, which contained a total of 
419,965 words. 

To create the pedagogic text corpus we located online undergraduate-level open textbooks 
using the Open Textbook Library, the College Open Textbooks site, and the American Institute 
of Mathematics Approved Textbook list. Topics included abstract algebra, analysis, linear 
algebra, complex analysis, and textbooks designed to support the transition to proof. If the 
textbooks were not available in LaTeX format we contacted the author and asked for permission 
to access their source files. This approach left us with the source files for 21 complete 
undergraduate textbooks, which contained a total of 1,518,932 words. 

To create the expert corpora we first downloaded all papers that had been uploaded to the 
arXiv in the first four months of 2009. The arXiv is an online repository that is routinely used by 
research mathematicians to share their research articles. The majority of articles on the arXiv are 
available in LaTeX format, and can be bulk downloaded using a command line tool. We then 
sorted the articles using their primary subject classification (e.g., mathematics, physics, etc.) and 
further sorted them using their secondary subject classification (e.g., algebraic geometry, 
algebraic topology, etc.). This left us with a total of 6988 mathematics articles, containing 
30,892,695 words. 
 



Processing the Texts 

Collecting mathematical language and converting it into a form that can be processed using 
the standard software packages used by corpus linguists presents a challenge. Unlike most texts, 
mathematical language contains numerous atypical characteristics, such as inline mathematical 
notation. Most mathematics is written using the LaTeX markup language, not plain text. Our first 
goal was therefore to create a method of converting LaTeX source code to plain text in a way 
that preserved the natural sentence structure of the language, but which removed non-linguistic 
features of the source code (the code for bold or italic text for instance). 

An important question for the would-be creator of a mathematical corpus concerns how to 
deal with inline mathematical notation. For instance, a typical mathematical sentence might be 
“Let 𝑓: 𝑋 → 𝑌 be a bijection.” How would we want the “𝑓: 𝑋 → 𝑌” to appear in a plain text 
corpus? One approach would be to leave the LaTeX source code intact and to analyze the code 
as if it were natural language. The difficulty with adopting this option is that there are several 
different ways in which one could encode “𝑓: 𝑋 → 𝑌” in LaTeX. For instance, 
$f:X\rightarrow Y$ and \(f:X\rightarrow Y\) produce identical output, and 
$f\,:\,X\longrightarrow Y$ only differs stylistically. We therefore felt that this 
approach would be unhelpful for the majority of questions a researcher would wish to answer 
using a mathematical corpus (although our code does allow this approach as an option, as a 
researcher who wished to primarily focus on the semantic content of papers might wish to retain 
these markup codes). 

A second option would be to delete all mathematical code entirely, and simply record the 
example above as “Let be a bijection”. We rejected this option as it seemed not to preserve the 
logical structure of sentences, which would influence certain analyses (those that investigate the 
collocation of words, for instance). Instead we opted to replace all occurrences of inline 
mathematics with the string “inline_math” (although this decision can be altered by the 
researcher if desired). The scripts we used to convert LaTeX to analysis-ready plain text are 
freely available for the research community at: 
https://github.com/sangwinc/arXiv-text-extracter 

 As our corpus of general written English we used the combined Lancaster-Oslo/Bergen 
corpus (commonly referred to as the LOB corpus; Johansson, 1986) and Brown corpora. The 
Brown University Corpus of Standard American English (commonly referred to as the Brown 
corpus; Francis & Kucera, 1961) is formed of 1 million words of American English from texts 
published in 1961. The LOB corpus consists of written British English created to mirror the 
structure of the Brown corpus (i.e. texts were taken from similar sources in similar proportions). 
Thus our combined Brown/LOB corpus consisted of 2 million words of British and American 
written English. 

Analyzing the Corpora 
 
Having created the corpora, our primary goal was to understand the extent to which they 

were similar: is it the case that the language used in mathematical textbooks, mathematics 
research papers, and undergraduates’ final year projects is consistent? If not, where are the 
differences between these genres, and how can these differences be characterized? 

Kilgarriff (2001) proposed a variety of measures that aimed to assess the similarity of 
different corpora. All his approaches relied upon the so-called ‘bag of words’ model of text 
construction. This model ignores the order in which words occur and instead focuses on 



understanding texts by assessing their distributions of word frequencies. The basic idea is that 
two texts are likely to be a similar genre, and focus on a similar topic, if they have broadly 
similar word frequency distributions. Of the measures he studied, Kilgarriff concluded that a chi-
squared approach performed best. Suppose one wishes to calculate the similarity of corpora A 
and B. Kilgarriff proposed determining the most frequent n words in the supercorpus formed of  
𝐴 ∪ 𝐵, and then calculating the test statistic for a chi-squared test of goodness of fit. Since these 
n words were selected to be the most frequent, and not sampled randomly from the population of 
words, it would be inappropriate to actually perform the chi-squared hypothesis test, but 
Kilgarriff reasoned that the test statistic would serve as a suitable measure of similarity (with 
lower values represent more similarity).  

Unfortunately Kilgarriff’s (2001) chi-squared method would not suffice for our purposes, as 
it requires that we are comparing corpora of the same size. We therefore modified his proposal as 
follows. We first determined the 100 most frequent words across our four corpora, where each 
corpus was weighted as representing 25% of the supercorpus (we needed to perform this 
weighting because our expert arXiv corpus was considerably bigger than the others). We did not 
include “inline_math” as a word for this analysis, as clearly it did not appear at all in the 
Brown/LOB corpus. We then calculated the proportion of each corpus consisting of each word. 
For instance, the word “the” represented 6.08% of the arXiv corpus, 6.72% of the textbook 
corpus, 6.62% of the learner corpus, and 6.69% of the Brown/LOB corpus. 

For each pairwise combination of corpora, A and B, we then calculated 

𝑆*+ =
𝑎. − 𝑏. 1

𝑎.
+

𝑎. − 𝑏. 1

𝑏.

344

.53

 

where 𝑎. represents the proportion of corpus A formed of word i, and 𝑏. represents the proportion 
of corpus B formed of word i. While this is not a true chi-squared value (which would be 
calculated with frequencies rather than proportions) it fulfils a similar role. Therefore if 𝑆*+ <
𝑆*7 , we can conclude that corpora A and B are more similar than corpora A and C. The 𝑆*+ 
values for each pairwise combination of our four corpora are given in Table 1, and plots of the 
frequencies of the top 100 words are shown in Figure 1 (so, a point at (x,y) in the bottom left 
graph indicates that the same word formed x% of the arXiv corpus and y% of the textbook 
corpus). 

The results shown in Table 1 and Figure 1 paint a consistent picture. We found that the 
textbook and learner corpora had remarkably similar word frequency distributions, that the arXiv 
corpus formed of mathematical research papers was somewhat different, and that all three 
mathematical corpora were substantially different to the regular written English of the 
Brown/LOB corpus. Before exploring the differences between the arXiv and textbook corpora 
below, we first make some remarks on these findings. 

 
 Textbook Learner Brown/LOB 

ArXiv 0.105 0.097 1.215 
Textbook  0.011 1.317 
Learner   1.320 

Table 1: The similarity measures, 𝑆*+, for each pairwise combination of our four corpora. 
 

Although our analysis was exploratory in the sense that we did not have strong hypotheses 
about the results in advance, we were somewhat surprised by these findings. We anticipated 



there would most likely be a gap between the language used by experts and novices. After all, 
mathematicians have typically had many years of enculturation into the discipline, whereas the 
undergraduates who provided the texts for our learner corpus had only had three or four years of 
university-level study. However, we found something quite different. Our learners seemed to 
produce very similar written language to that found in textbooks written by experts, at least in 
the sense that their word frequency distributions were close to identical. One hypothesis that 
might account for this similarity would be if the two corpora had similar balances of 
mathematical topics. For instance, two corpora focused on linear algebra might be expected to 
have similar word frequencies for “kernel”, “matrix”, and so on. But we do not believe that this 
suggestion can account for our data. Because we only considered the 100 most frequent words, 
few were highly domain specific: in fact, only “theorem” and “proof” were words in the overall 
top 100 which had fewer than 100 occurrences in the Brown/LOB corpus. 

Instead our conclusion is that the undergraduate students who provided the texts for our 
learner corpus did successfully produce written mathematics that was consistent with that found 
in undergraduate textbooks written by expert mathematicians. At least in the sense that it shared 
a similar distribution of word frequencies. 
 

 
 

Figure 1. Scatterplots showing the frequencies of the top 100 words (as percentages) for 
each pairwise combination of our four corpora. Axes have logarithmic scales (therefore words 

with zero frequency in one corpus are not shown). 



 
The main difference we found between the mathematical corpora concerned the word 

frequency distributions of the textbook and arXiv corpora. We can explore this difference in 
more detail by considering the keywords for each corpus – those words which occur 
disproportionately in one corpus compared to the other. These are shown in Table 2, which is 
ordered by chi-squared value (i.e. the contribution of the word to 𝑆*+ defined earlier).  

Some of these key words are unsurprising: for instance, ‘example’, and ‘solution’ occur 
proportionately more often in the textbook corpus than the arXiv corpus. The textbook corpus 
also contains proportionately more instances of verbs such as ‘find’, ‘show’, ‘do’, and ‘prove’ – 
than the arXiv corpus. Indeed, the only verbs appearing in the right-hand side of Table 2 are ‘let’ 
and ‘see’. Although one might attribute this to the inclusion of exercises in textbooks, this 
explanation would not account for the extremely similar frequencies for these words found in the 
textbooks and the undergraduates’ final-year projects: although clearly textbooks normally 
contain exercises, student projects do not. 

One further difference between the mathematical corpora concerned the frequency of 
mathematical notation. The arXiv corpus had considerably more instances of “inline_math” per 
100 words (11.1%) compared to the textbook (8.8%) or learner (7.6%) corpora.  

Further analyses are required to understand the significance of some of the other differences 
between the corpora. For instance, ‘by’ occurs disproportionately often in the arXiv corpus 
(1.02% of words) compared to the textbook corpus (0.64%) , but why? Investigating the most 
common clusters of words that include ‘by’ in the arXiv corpus indicates that the word is used to 
both name (“defined by”, “denote by”) and assert (“given by”, “obtained by”, “generated by”). 
By systematically studying such cases we can begin to understand the differences between 
research-level and undergraduate-level mathematical language. 

Conclusion 
 
Our main goal in this paper has been to describe the creation of three mathematical corpora 

designed to aid researchers understand mathematical language. The tools we used to construct 
these corpora are freely available for the research community to use. Having constructed the 
corpora we presented an analysis of word frequency distributions which suggested that 
undergraduate students are, by the end of their courses, surprisingly successful at writing in a 
manner consistent with the language used in undergraduate textbooks. The developmental 
trajectory by which students develop mathematical language skills would be a worthy topic of 
future study. In contrast to the similarity observed between textbooks and final year dissertations 
however, the language mathematicians use in research papers is different to both. 

In this paper we have focused on comparing the word frequency distributions of four 
different corpora, but there are a great many other techniques that can be used to analyze corpora 
which go well beyond this approach (e.g., McEnery & Hardie, 2011). Given the interest shown 
by mathematics educators and other researchers in mathematical language, we believe that 
corpus linguistics is a potentially useful, but currently under used, research technique. 
  



More frequent in the 
textbook corpus  

More frequent in the  
arXiv corpus 

Word 𝜒1  Word 𝜒1 
find 0.01279 

 
by 0.00367 

what 0.01103 
 

on 0.00190 
number 0.00689 

 
where 0.00144 

example 0.00477 
 

case 0.00120 
if 0.00266 

 
i 0.00120 

must 0.00265 
 

with 0.00100 
use 0.00265 

 
for 0.00094 

show 0.00242 
 

let 0.00071 
function 0.00232 

 
in 0.00061 

set 0.00220 
 

see 0.00058 
that 0.00218 

 
following 0.00055 

or 0.00218 
 

such 0.00054 
about 0.00212 

 
space 0.00050 

is 0.00201 
 

which 0.00049 
solution 0.00181 

 
proof 0.00033 

do 0.00167 
 

theorem 0.00028 
two 0.00163 

 
also 0.00019 

not 0.00159 
 

we 0.00015 
each 0.00141 

 
now 0.00013 

than 0.00139 
 

given 0.00010 
so 0.00130  our 0.00007 

prove 0.00124  and 0.00007 
this 0.00123  since 0.00003 
are 0.00113  from 0.00002 
a 0.00113  every 0.00002 

Table 2: The left-hand table shows the top 25 words that occur in the textbook corpus that 
differentiate it from the arXiv corpus. The right-hand table shows the equivalent words for the 

arXiv corpus. 
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