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Abstract 

 

For flows where the particle number density is low and the Stokes number is relatively high, as found when sand or ice 

is ingested into aircraft gas turbine engines, streams of particles can cross each other’s path or bounce from a solid 

surface without being influenced by inter-particle collisions. The aim of this work is to develop an Eulerian method to 

simulate these types of flow. To this end, a two-node quadrature-based moment method using 13 moments is proposed. 

In the proposed algorithm thirteen moments of particle velocity, including cross-moments of second order, are used to 

determine the weights and abscissas of the two nodes and to set up the association between the velocity components in 

each node. Previous Quadrature Method of Moments (QMOM) algorithms either use more than two nodes, leading to 

increased computational expense, or are shown here to give incorrect results under some circumstances. This method 

gives the computational efficiency advantages of only needing two particle phase velocity fields whilst ensuring that a 

correct combination of weights and abscissas are returned for any arbitrary combination of particle trajectories without 

the need for any further assumptions. Particle crossing and wall bouncing with arbitrary combinations of angles are 

demonstrated using the method in a two-dimensional scheme. The ability of the scheme to include the presence of drag 

from a carrier phase is also demonstrated, as is bouncing off surfaces with inelastic collisions. The method is also 

applied to the Taylor-Green vortex flow test case and is found to give results superior to the existing two-node QMOM 

method and in good agreement with results from Lagrangian modelling of this case. 
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1. Introduction 

The physical phenomenon of particle wall-bouncing is important for dilute, dispersed multiphase flows in a variety 

of applications for which numerical simulations are required. For example, when turbomachinery operates in sandy or 

dusty environments it is important to be able to predict accurately the rate at which particles impact on components in 

order to predict the rate of erosion or deposition [1] [2]. Another example is the build-up of ice both inside and outside 

of aircraft engines which is a matter of concern to the aviation industry. Predictions of ice accretion in such cases rely 
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on accurate calculations of the mass flux of ice crystals hitting a particular surface [3]. These ice crystals, unlike super-

cooled liquid droplets [4], will bounce and travel further into the engine. For these cases it may be necessary to predict 

the motion of particles through the compressor including several rotating and stationary frames of reference for the 

rotors and stators, hence it is important that the method is numerically efficient when particles transfer across the 

interfaces. The prediction of bouncing particles is also important in processes involving powder technology, see [5] [6] 

[7] for examples of this.  

The confinement by a solid surface changes the particle motion significantly as a result of particle-wall collisions. 

This is particularly true for high inertia particles which maintain their direction of motion for a long time after bouncing 

off a wall instead of following the carrier fluid flow path, and this can result in a subsequent collision with another wall 

[5]. The importance of particle inertia can be evaluated by the Stokes number which is defined as the ratio of the 

characteristic time of a particle to the characteristic time of the flow [8]. If the Stokes number is high, as it can be for 

sand particles, then wall bouncing and trajectory crossing will be significant [9, 10]. The examples given above require 

accurate and efficient simulation on complex geometries. It is also true in many engineering applications that the total 

mass flux of particles is of more practical interest than the behaviour of individual particles, making the use of Eulerian 

methods attractive. Hence, it is the aim of this work to provide an improved method of modelling flows involving 

particle bouncing and crossing in an Eulerian CFD framework. 

To simulate wall-bouncing flows, the Lagrangian method is generally used to trace the flow path of particles in a 

dilute gas particle flow. The effects of wall roughness and inter-particle collisions can be included in a straightforward 

manner in this way. For example, Sommerfeld et al. [11] [12] calculated the particle bouncing trajectories in horizontal 

channels with a Lagrangian method. In comparison with experimental results, the Lagrangian calculation method 

accurately modelled the transport phenomena of wall collisions and inter-particle collisions. However, Lagrangian 

based methods have drawbacks compared to Eulerian methods which make them less suitable in practical CFD 

calculations. For reasonably high particle loadings the computational cost of tracking enough particles to model 

accurately the true population can be very high. This is exacerbated in unsteady or two-way coupled flows when a 

‘frozen’ continuous flow-field cannot be employed and the tracking must take place at each timestep rather than as a 

single post-processing step. An Eulerian dispersed phase calculation can be carried out on the same CFD grid as the 

continuous phase which means it can take advantage of existing flow solvers, efficient parallelisation schemes, 

interfaces for rotating reference frames as well as pre and post-processing. Finally, the Eulerian method gives directly 

quantities of engineering interest, such as mass fluxes, which in a Lagrangian method will be dependent on the number 

of particles and the sampling time. For a thorough discussion of the merits of Lagrangian and Eulerian multiphase 

methods see Fox [13]. 

With Eulerian methods, if a single velocity field is used to describe the motion of a dispersed phase then this will be 

incapable of correctly modelling conditions where dilute streams of particles pass through one another, as is the case 
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when bouncing off a surface. By definition, for these cases there will be particles within the same computational cell 

with different velocities and so a single velocity field is not capable of correctly representing such a velocity 

distribution. The Quadrature Method of Moments (QMOM) allows for the simulation of a particle velocity distribution 

within an Eulerian framework. Fox proposed a third order QMOM [14], which successfully predicted particle-trajectory 

crossing. With this third-order QMOM, further testing was carried out for Riemann type shock problems, impinging 

jets, a vertical channel flow and crossing trajectories of particles [15]. Besides dilute particle flow, this high-order 

quadrature-based moment method was also applied to moderately dilute [16] and dense fluid-particle flows [17] [18]. 

The model was also extended for poly-disperse sprays [19] and the n3-node QMOM derived to achieve a higher 

accuracy [20]. 

While the third-order QMOM of Fox [14] is capable of predicting crossing trajectories and bouncing, the set of 20 

moments and 8 weighted velocity fields has a relatively high computational overhead. For dilute gas-particle flows with 

high Reynolds numbers in complex geometries, for example of the type found in turbomachinery, a computationally 

less intense method would be desirable. Desjardins et al [21] proposed a two-node QMOM method for dilute fluid-

particle flows and predicted crossing particle jets and rebounding off the wall with this model. This approach reduces 

the number of nodes from 2d for third-order QMOM to 2, where d is the number of dimensions. Meanwhile, the number 

of moments is reduced from 20 for third-order QMOM system to 8 for a three-dimensional scheme with an associated 

reduction in the computational costs. Therefore, the two-node quadrature moment model is attractive as a 

computationally efficient model for particle bouncing flows. However, as we show in this paper, the method in [21] 

does not give the correct dilute particle flow behaviour in some cases. Jets of particles should, in the dilute limit, pass 

through each other without influencing the other jet. However, for some combinations of jet velocity the two-node 

eight-moment method does not reproduce this - instead the jets erroneously appear to collide with each other. In this 

paper we demonstrate this problem, and its underlying cause, before presenting an improved two-node 13-moment 

method which overcomes this limitation.  

In the next section we first describe the quadrature-based method of moments followed by the existing two-node, 

eight-moment method and demonstrate simple test cases for which it does not give the correct behaviour. We then 

introduce the new two-node 13-moment formulation and demonstrate that it gives the correct behaviour where the 

eight-moment method does not. We then further demonstrate results using the new method for cases where the particles 

undergo bouncing and cases with drag due to a carrier phase, including the Taylor-Green vortex test case.  

 

2. Quadrature-based method of moments for particles 

The method of moments (MOM) was originally used to determine the evolution of the lower-order moments of the 

particle size distribution function of an aerosol population [22] [23]. Because of the unknown distribution function of 
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particle size McGraw [24] introduced the Gaussian quadrature method to MOM by approximating the moments of an 

aerosol distribution as  

 

𝑀𝑀𝑠𝑠 = ∑ 𝑤𝑤𝛼𝛼𝑟𝑟𝛼𝛼𝑠𝑠
𝛽𝛽
𝛼𝛼=1                            (1) 

 

The principle of quadrature based method of moments (QMOM) lies in how to determine the abscissas 𝑤𝑤𝛼𝛼 and 

weights 𝑟𝑟𝛼𝛼  of the 𝛽𝛽 nodes. This can be done using the product difference (PD) algorithm [25] as applied by McGraw [24] 

in QMOM. The QMOM method has been extended to moments of the velocity distribution [21] [14]. The velocity 

distribution is represented by a finite number of weighted velocity fields or nodes. Hence s-order moments of the 

velocity distribution function f can be denoted by summing over the nodes.  

 

𝑀𝑀𝑖𝑖…𝑘𝑘
𝑠𝑠 = ∫𝑈𝑈𝑖𝑖 ⋯𝑈𝑈𝑘𝑘𝑓𝑓𝑓𝑓𝐯𝐯                     (2) 

The weights and abscissas (or velocity field) of each node (the weighting and velocity components of node α can be 

written as [nα,Uαi,Uαj,Uαk]) are determined by forcing them to agree with the set of moments employed. In practice 

QMOM CFD algorithms work by updating a set of moments using the fluxes calculated from the velocity fields in the 

nodes. The updated moments must then be used to find a new set of velocity fields and their weights. Hence, a two-way 

method of converting between weighted velocity fields and moments is central to QMOM. In the next section the 

existing two-node, eight moment QMOM [21] is presented in order to better explain the development of the method in 

the current paper. 

 

2.1. Existing Two-Node Eight Moment QMOM 

Here we consider only the mono-disperse case where all particles are assumed to be uniformly sized spherical 

particles with no growth or nucleation processes present. The transport equations are established by the kinetic theory of 

gases [26],  

 

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝐮𝐮 ∙ 𝜕𝜕𝜕𝜕
𝜕𝜕x

+ 𝜕𝜕𝜕𝜕
𝜕𝜕u
�𝑓𝑓 𝐅𝐅

𝑚𝑚𝑝𝑝
� = ℂ                                                             (3) 

 

where f is the velocity distribution function, and u is the particle velocity vector. ℂ is the collision term, representing the 

property change due to inter-particle collisions. If the particle flow is far from equilibrium, when the Knudsen number 

is quite large, the equation is controlled by the terms on the left-hand side (LHS) in eq. (3) and the collision term is 

neglected for a dilute fluid–particle flow. F in the last term on the LHS is the external force, including gravity and the 

drag force, on the particles. In this study, the drag force and gravity are expressed as  
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𝐅𝐅(𝐔𝐔𝐟𝐟,𝐮𝐮) = 𝑚𝑚𝑝𝑝
𝜏𝜏𝑝𝑝

(𝐔𝐔𝐟𝐟 − 𝐮𝐮) + 𝑚𝑚𝑝𝑝𝐠𝐠         (4) 

 

where mp is the mass of a single particle, g is the gravity vector and 𝜏𝜏𝑝𝑝 is the characteristic timescale for particle drag, 

expressed as 

 

1
𝜏𝜏𝑝𝑝

= 3𝜌𝜌𝑓𝑓
4𝑑𝑑𝑝𝑝𝜌𝜌𝑝𝑝

𝐶𝐶𝐷𝐷|𝐔𝐔𝐟𝐟 − 𝐮𝐮|          (5) 

 

where 𝜌𝜌𝑓𝑓 is the fluid density, 𝜌𝜌𝑝𝑝 is the particle density, 𝑑𝑑𝑝𝑝 is the particle diameter, and 𝐔𝐔𝐟𝐟 is the carrier fluid velocity 

vector. The particle drag coefficient 𝐶𝐶𝐷𝐷  can be modelled for 1 ≤ 𝑅𝑅𝑅𝑅𝑃𝑃 ≤ 1000  as [27],  

 

𝐶𝐶𝐷𝐷 = 24
𝑅𝑅𝑅𝑅𝑝𝑝

�1 + 0.15�𝑅𝑅𝑅𝑅𝑝𝑝�
0.687�          (6) 

where 𝑅𝑅𝑅𝑅𝑃𝑃 = 𝜌𝜌𝑓𝑓𝑑𝑑𝑝𝑝|𝐔𝐔𝐟𝐟 − 𝐮𝐮|/𝜇𝜇𝑓𝑓 is the particle Reynolds number, and 𝜇𝜇𝑓𝑓 is the dynamic viscosity of the fluid phase.  

The moments of the velocity distribution are defined in Eq (2). The transport equations for moments up to third 

order can be obtained from Eq (3), neglecting inter-particle collisions as,  

 

𝜕𝜕𝑀𝑀0

𝜕𝜕𝜕𝜕
+ 𝜕𝜕𝑀𝑀𝑘𝑘

1

𝜕𝜕𝑥𝑥𝑘𝑘
= 0    

𝜕𝜕𝑀𝑀𝑖𝑖
1

𝜕𝜕𝜕𝜕
+ 𝜕𝜕𝑀𝑀𝑖𝑖𝑖𝑖

2

𝜕𝜕𝑥𝑥𝑘𝑘
= 𝐷𝐷𝑖𝑖     

𝜕𝜕𝑀𝑀𝑖𝑖𝑖𝑖
2

𝜕𝜕𝜕𝜕
+

𝜕𝜕𝑀𝑀𝑖𝑖𝑖𝑖𝑖𝑖
3

𝜕𝜕𝑥𝑥𝑘𝑘
= 𝐷𝐷𝑖𝑖𝑖𝑖           (7) 

𝜕𝜕𝑀𝑀𝑖𝑖𝑖𝑖𝑖𝑖
3

𝜕𝜕𝜕𝜕
+ 𝜕𝜕𝑀𝑀𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

4

𝜕𝜕𝑥𝑥𝑘𝑘
= 𝐷𝐷𝑖𝑖𝑖𝑖𝑖𝑖    

 

The notation 𝜕𝜕 𝜕𝜕𝑥𝑥𝑘𝑘⁄  implies summation over the three spatial coordinates. The velocity distribution can be 

represented as the sum of a number of delta functions 

 

𝑓𝑓(𝐮𝐮) = ∑ 𝑛𝑛𝛼𝛼𝛿𝛿(𝐮𝐮−𝐔𝐔𝜶𝜶)𝛽𝛽
𝛼𝛼=1          (8) 

 

where 𝛽𝛽 is the number of nodes. 𝑛𝑛𝛼𝛼 is the number density representing the weights of the nodes, 𝛼𝛼 = 1,⋯ ,𝛽𝛽. 𝐔𝐔𝛼𝛼  is the 

particle velocity vector of node 𝛼𝛼 , representing the abscissas (𝐔𝐔𝛼𝛼 = �𝑈𝑈𝛼𝛼𝛼𝛼  ,𝑈𝑈𝛼𝛼𝛼𝛼 ,𝑈𝑈𝛼𝛼𝛼𝛼�
𝑇𝑇

)  in the QMOM system. 

Accordingly, using a two-node quadrature the moments can be expressed as 

 

𝑀𝑀0 = 𝑛𝑛1 + 𝑛𝑛2      
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𝑀𝑀𝑖𝑖
1 = 𝑛𝑛1𝑈𝑈1𝑖𝑖 + 𝑛𝑛2𝑈𝑈2𝑖𝑖       

𝑀𝑀𝑖𝑖𝑖𝑖
2 = 𝑛𝑛1𝑈𝑈1𝑖𝑖𝑈𝑈1𝑗𝑗 + 𝑛𝑛2𝑈𝑈2𝑖𝑖𝑈𝑈2𝑗𝑗         (9) 

𝑀𝑀𝑖𝑖𝑖𝑖𝑖𝑖
3 = 𝑛𝑛1𝑈𝑈1𝑖𝑖𝑈𝑈1𝑗𝑗𝑈𝑈1𝑘𝑘 + 𝑛𝑛2𝑈𝑈2𝑖𝑖𝑈𝑈2𝑗𝑗𝑈𝑈2𝑘𝑘     

𝑀𝑀𝑖𝑖𝑖𝑖…𝑘𝑘
𝑠𝑠 = 𝑛𝑛1𝑈𝑈1𝑖𝑖𝑈𝑈1𝑗𝑗 ⋯𝑈𝑈1k + 𝑛𝑛2𝑈𝑈2𝑖𝑖𝑈𝑈2𝑗𝑗 ⋯𝑈𝑈2𝑘𝑘     

 

Note that any number of moments can be generated from the two nodes. The unclosed drag force term in the 

moment transport equations (7) can be expressed using a two quadrature node as,  

 

𝐷𝐷𝑖𝑖 = 𝑛𝑛1
𝑚𝑚𝑝𝑝

𝐹𝐹1𝑖𝑖 + 𝑛𝑛2
𝑚𝑚𝑝𝑝

𝐹𝐹2𝑖𝑖    

𝐷𝐷𝑖𝑖𝑖𝑖 = 𝑛𝑛1
𝑚𝑚𝑝𝑝

𝑈𝑈1𝑖𝑖𝐹𝐹1𝑗𝑗 + 𝑛𝑛1
𝑚𝑚𝑝𝑝

𝑈𝑈1𝑗𝑗𝐹𝐹1𝑖𝑖 + 𝑛𝑛2
𝑚𝑚𝑝𝑝

𝑈𝑈2𝑖𝑖𝐹𝐹2𝑗𝑗 + 𝑛𝑛2
𝑚𝑚𝑝𝑝

𝑈𝑈2𝑗𝑗𝐹𝐹2𝑖𝑖      (10) 

𝐷𝐷𝑖𝑖𝑖𝑖𝑖𝑖 = 3 𝑛𝑛1
𝑚𝑚𝑝𝑝

(𝑈𝑈1𝑖𝑖)2𝐹𝐹1𝑖𝑖 + 3 𝑛𝑛2
𝑚𝑚𝑝𝑝

(𝑈𝑈2𝑖𝑖)2𝐹𝐹2𝑖𝑖     

The force components for the two fields are found from the vector F calculated using equation (4). Thus, the 

moment transport equations are set up by equation (7) and the transport of the moments can be calculated from the 

velocity nodes using Equations (9) and (10). The remaining problem is how to calculate the weights and abscissas from 

the set of moments, and this is considered for the eight moment case in the following section. 

 

2.1.1. Calculation of velocity nodes using eight-moments  

 In this section the moment to velocity field conversion method employed in the eight moment QMOM model of 

Desjardins [21] is first presented in order to explain the motivation behind increasing the number of moments to thirteen 

in the present work. In addition to the zeroth moment, first and second moments in each direction are used, together 

with a single third order moment to represent the sum of the third moment in each direction. 

 

𝜕𝜕𝑀𝑀0

𝜕𝜕𝜕𝜕
+ 𝜕𝜕𝑀𝑀𝑘𝑘

1

𝜕𝜕𝑥𝑥𝑘𝑘
= 0                                     (11) 

𝜕𝜕𝑀𝑀𝑖𝑖
1

𝜕𝜕𝜕𝜕
+ 𝜕𝜕𝑀𝑀𝑖𝑖𝑖𝑖

2

𝜕𝜕𝑥𝑥𝑘𝑘
= 𝐷𝐷𝑖𝑖                                 (12) 

𝜕𝜕𝑀𝑀𝑖𝑖𝑖𝑖
2

𝜕𝜕𝜕𝜕
+ 𝜕𝜕𝑀𝑀𝑖𝑖𝑖𝑖𝑖𝑖

3

𝜕𝜕𝑥𝑥𝑘𝑘
= 𝐷𝐷𝑖𝑖𝑖𝑖                                        (13) 

𝜕𝜕Q
𝜕𝜕𝜕𝜕

+ 𝜕𝜕R𝑘𝑘
𝜕𝜕𝑥𝑥𝑘𝑘

= 3∑ (𝐷𝐷𝑖𝑖𝑖𝑖𝑖𝑖)𝑑𝑑
𝑖𝑖=1                                      (14) 

 

where the moments are defined as in equation (9), and 𝐷𝐷𝑖𝑖 , 𝐷𝐷𝑖𝑖𝑖𝑖 , 𝐷𝐷𝑖𝑖𝑖𝑖𝑖𝑖  as in equation (10). In the third moment transport 

equation,  

 

𝑄𝑄 = ∑ 𝑀𝑀𝑖𝑖𝑖𝑖𝑖𝑖
3𝑑𝑑

𝑖𝑖=1                         (15) 
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R𝑘𝑘 = 𝑛𝑛1 �∑ �𝑈𝑈1𝑗𝑗�
3𝑑𝑑

𝑗𝑗=1 � 𝑈𝑈1𝑘𝑘 + 𝑛𝑛2 �∑ �𝑈𝑈2𝑗𝑗�
3𝑑𝑑

𝑗𝑗=1 � 𝑈𝑈2𝑘𝑘             (16) 

 

In order to calculate the equivalent velocity fields a variance x is calculated by 

 

x = 𝑞𝑞𝑝𝑝

2��𝑞𝑞𝑝𝑝�
2
+4�∑ 𝑎𝑎𝑖𝑖𝑖𝑖

𝑑𝑑
𝑖𝑖=1 �

2
                (17) 

 

where  

 

𝑞𝑞𝑝𝑝 = 1
𝑀𝑀0 �𝑄𝑄 − 𝑀𝑀0 ∑ �𝑈𝑈𝑝𝑝𝑝𝑝�

3𝑑𝑑
𝑖𝑖=1 − 3𝑀𝑀0 ∑ 𝑎𝑎𝑖𝑖𝑖𝑖𝑈𝑈𝑝𝑝𝑝𝑝𝑑𝑑

𝑖𝑖=1 �             (18) 

 𝑎𝑎𝑖𝑖𝑖𝑖 = 𝑀𝑀𝑖𝑖𝑖𝑖
2

𝑀𝑀0 − 𝑈𝑈𝑝𝑝𝑝𝑝𝑈𝑈𝑝𝑝𝑝𝑝                  (19) 

 

and 

𝑈𝑈𝑝𝑝𝑝𝑝 = 𝑀𝑀𝑖𝑖
1/𝑀𝑀0          (20) 

 

The number density and velocity of each node are then found by 

 

 𝑛𝑛1 = �1
2

+ 𝑥𝑥�𝑀𝑀0 ,   𝑛𝑛2 = �1
2
− 𝑥𝑥�𝑀𝑀0                   (21) 

𝑈𝑈1𝑖𝑖 = 𝑈𝑈p𝑖𝑖 − �𝑎𝑎𝑖𝑖𝑖𝑖�
1/2−x
1/2+𝑥𝑥

              (22) 

𝑈𝑈2𝑖𝑖 = 𝑈𝑈p𝑖𝑖 + �𝑎𝑎𝑖𝑖𝑖𝑖�
1/2+𝑥𝑥
1/2−𝑥𝑥

                    (23) 

 

There are two deficiencies with this method. Firstly, for each velocity component the value in the second node will 

always be greater than the first assuming that positive roots are chosen or smaller with the negative root. This ordering 

of the velocity components is not physical; it is quite possible to find a situation where 𝑈𝑈1𝑗𝑗 > 𝑈𝑈2j and  𝑈𝑈2𝑖𝑖 > 𝑈𝑈1i and by 

being unable to generate such a combination the existing method will fail for some combinations of particle trajectory. 

For example, Figure 1 shows the case of two dilute streams of particles approaching at right angles to each other with 

conditions [n1,U1i,U1j] = [1,0,1] and [n2,U2i,U2j] = [1,1,0]. It is important to realise that the equations have been derived 

assuming dilute particle flow and hence the streams should cross each other unhindered as seen in Figure 1a. However, 

the existing QMOM method incorrectly shows the streams merging. The correct result requires 𝑈𝑈1𝑗𝑗 > 𝑈𝑈2j and 𝑈𝑈2𝑖𝑖 > 𝑈𝑈1i 

which cannot be obtained using the method above. The actual nodes obtained in the regions where the streams meet are 

[n1,U1i,U1j] = [1,0,0] and [n2,U2i,U2j] = [1,1,1] which, crucially, satisfy the original eight moments but do not give the 

desired crossing trajectories.  
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A second deficiency is in the calculation of the node weighting x from 𝑞𝑞𝑝𝑝 which is in turn calculated in equation 

(18). The method should be capable of recovering the original two velocity fields used to create a two-node quadrature 

velocity distribution. However, in some cases it will incorrectly return a pair of nodes of equal weight. For example, if 

we start from the two node distribution [n1,U1i,U1j]  = [1.5,0,1] and [n2,U2i,U2j] = [0.5,1,0], then the terms in equation 

(18) will be 𝑀𝑀0 = 2,𝑄𝑄 = 2,𝑈𝑈𝑝𝑝𝑝𝑝 = 0.25,𝑈𝑈𝑝𝑝𝑝𝑝 = 0.75, 𝑎𝑎𝑖𝑖𝑖𝑖 = 0.1875and 𝑎𝑎𝑗𝑗𝑗𝑗 = 0.1875 . This will lead to 𝑞𝑞𝑝𝑝  becoming 

zero which would lead to the two node weights incorrectly being recovered as equal. The effect of this will be 

demonstrated in Section 4.1. Both of these deficiencies are essentially the result of the moment set containing 

insufficient information to reproduce a unique combination of nodes. In the next section we present a new method 

which uses 13 moments with two nodes to ensure that the correct, unique, combination of velocities is returned in each 

node for all cases. 

 

   (a) Expected result                 (b) two-node QMOM (6 moments for 2D) 

Figure 1. 2D contours of particle number densities for crossing dilute jets with boundary conditions ([n1,U1i,U1j] = 

[1,0,1] and [n2,U2i,U2j] = [1,1,0] Results (a) show ideal results as from a Lagrangian method and (b) shows results 

obtained using QMOM method of [21] . 

 

2.2. Proposed Two-Node, 13 Moment QMOM 

Given any two weighted velocity fields it is possible to generate any number of moments from them. It is desired to 

use the fewest number of moments needed in order to unambiguously recover the velocity fields. In this work a set of 

13 moments are used in a three dimensional system. The method of converting from a set of 13 moments to two, unique, 

weighted velocity fields is presented in this section. To obtain the weights and abscissas in our method, two steps are 

included. The first step is the calculation of abscissas and weights with the product-difference (PD) algorithm. The 

second step is to use additional cross moments to correctly associate the weights and the velocity components within the 

fields. The set of moments employed is 
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𝑊𝑊3 = �𝑀𝑀0,𝑀𝑀𝑖𝑖
1,𝑀𝑀𝑗𝑗

1,𝑀𝑀𝑘𝑘
1,𝑀𝑀𝑖𝑖𝑖𝑖

2 ,𝑀𝑀𝑗𝑗𝑗𝑗
2 ,𝑀𝑀𝑘𝑘𝑘𝑘

2 ,𝑀𝑀𝑖𝑖𝑖𝑖
2 ,𝑀𝑀𝑗𝑗𝑗𝑗

2 ,𝑀𝑀𝑖𝑖𝑖𝑖
2 ,𝑀𝑀𝑖𝑖𝑖𝑖𝑖𝑖

3 ,𝑀𝑀𝑗𝑗𝑗𝑗𝑗𝑗
3 ,𝑀𝑀𝑘𝑘𝑘𝑘𝑘𝑘

3 � ∈ ℝ13     (24) 

 

In comparison to the two-node, eight-moment system of [21] the extra moments here are the cross moments 𝑀𝑀𝑖𝑖𝑖𝑖
2 , 

𝑀𝑀𝑗𝑗𝑗𝑗
2  and 𝑀𝑀𝑖𝑖𝑖𝑖

2  as well as all three of the third order moments 𝑀𝑀𝑖𝑖𝑖𝑖𝑖𝑖
3 , 𝑀𝑀𝑗𝑗𝑗𝑗𝑗𝑗

3  and 𝑀𝑀𝑘𝑘𝑘𝑘𝑘𝑘
3  instead of just their sum Q. We discuss 

below why these are needed. 

The ith component of the mean velocity is defined as 𝑈𝑈𝑝𝑝𝑝𝑝 = 𝑀𝑀𝑖𝑖
1/𝑀𝑀0, and then from this each component of the 

velocity deviation of each node can be defined 

 

𝑐𝑐1𝑖𝑖 = 𝑈𝑈1𝑖𝑖 − 𝑈𝑈𝑝𝑝𝑝𝑝                  

𝑐𝑐2𝑖𝑖 = 𝑈𝑈2𝑖𝑖 − 𝑈𝑈𝑝𝑝𝑝𝑝          (25) 

Accordingly, the moment of velocity deviation for an arbitrary moment can be defined in terms of the two nodes as 

 

𝑎𝑎𝑖𝑖,𝑗𝑗⋯𝑘𝑘 = 1
𝑀𝑀0 �𝑛𝑛1𝑐𝑐1𝑖𝑖𝑐𝑐1𝑗𝑗 ⋯ 𝑐𝑐1k + 𝑛𝑛2𝑐𝑐2𝑖𝑖𝑐𝑐2𝑗𝑗 ⋯ 𝑐𝑐2k�       (26) 

 

These deviation moments can be found from the velocity moments. We know, by definition, that 

 

 𝑎𝑎0 = 1, 𝑎𝑎𝑖𝑖 = 0.           (27) 

 

The second-order moment can be calculated by the velocity covariance matrix 

 

�𝑎𝑎𝑖𝑖𝑖𝑖� = �
𝑀𝑀𝑖𝑖𝑖𝑖

2/𝑀𝑀0 − 𝑈𝑈𝑝𝑝𝑝𝑝𝑈𝑈𝑝𝑝𝑝𝑝 𝑀𝑀𝑖𝑖𝑖𝑖
2 /𝑀𝑀0 − 𝑈𝑈𝑝𝑝𝑝𝑝𝑈𝑈𝑝𝑝𝑝𝑝 𝑀𝑀𝑖𝑖𝑖𝑖

2 /𝑀𝑀0 − 𝑈𝑈𝑝𝑝𝑝𝑝𝑈𝑈𝑝𝑝𝑝𝑝
𝑀𝑀𝑖𝑖𝑖𝑖

2 /𝑀𝑀0 − 𝑈𝑈𝑝𝑝𝑝𝑝𝑈𝑈𝑝𝑝𝑝𝑝 𝑀𝑀𝑗𝑗𝑗𝑗
2 /𝑀𝑀0 − 𝑈𝑈𝑝𝑝𝑝𝑝𝑈𝑈𝑝𝑝𝑝𝑝 𝑀𝑀𝑗𝑗𝑗𝑗

2 /𝑀𝑀0 − 𝑈𝑈𝑝𝑝𝑝𝑝𝑈𝑈𝑝𝑝𝑝𝑝
𝑀𝑀𝑖𝑖𝑖𝑖

2 /𝑀𝑀0 − 𝑈𝑈𝑝𝑝𝑝𝑝𝑈𝑈𝑝𝑝𝑝𝑝 𝑀𝑀𝑗𝑗𝑗𝑗
2 /𝑀𝑀0 − 𝑈𝑈𝑝𝑝𝑝𝑝𝑈𝑈𝑝𝑝𝑝𝑝 𝑀𝑀𝑘𝑘𝑘𝑘

2 /𝑀𝑀0 − 𝑈𝑈𝑝𝑝𝑝𝑝𝑈𝑈𝑝𝑝𝑝𝑝

�   (28) 

 

The third-order velocity variance is represented by the third central moment 

 

[𝑎𝑎𝑖𝑖𝑖𝑖𝑖𝑖] =

⎣
⎢
⎢
⎢
⎡

1
𝑀𝑀0 𝑀𝑀𝑖𝑖𝑖𝑖𝑖𝑖

3 − �𝑈𝑈𝑝𝑝𝑝𝑝�
3 − 3𝑎𝑎𝑖𝑖𝑖𝑖𝑈𝑈𝑝𝑝𝑝𝑝

1
𝑀𝑀0 𝑀𝑀𝑗𝑗𝑗𝑗𝑗𝑗

3 − �𝑈𝑈𝑝𝑝𝑝𝑝�
3 − 3𝑎𝑎𝑗𝑗𝑗𝑗𝑈𝑈𝑝𝑝𝑝𝑝

1
𝑀𝑀0 𝑀𝑀𝑘𝑘𝑘𝑘𝑘𝑘

3 − �𝑈𝑈𝑝𝑝𝑝𝑝�
3 − 3𝑎𝑎𝑘𝑘𝑘𝑘𝑈𝑈𝑝𝑝𝑝𝑝⎦

⎥
⎥
⎥
⎤
.        (29) 

 

All of these calculations are based on the proposition that (i) 𝑀𝑀0 > 0, and (ii) ∀𝑖𝑖 = 1,⋯ ,𝑑𝑑, 𝑀𝑀0𝑀𝑀𝑖𝑖𝑖𝑖
2 ≥ (𝑀𝑀𝑖𝑖

1)2 . 

Where (i) means the number density is non-negative which must be true physically and (ii) is easily proved according to 

the definition of moments. 
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In this method the two-node quadrature closure is used to calculate the weight and abscissa from each Cartesian 

direction. Only one pair of weights,  𝑛𝑛1 and 𝑛𝑛2, is needed which will be the same for all three directions. However, they 

are calculated from each direction to avoid situations, discussed below, where one or more of the directions cannot yield 

the weights. For example in the i direction the moments (𝑀𝑀0,𝑀𝑀𝑖𝑖
1,𝑀𝑀𝑖𝑖𝑖𝑖

2 ,𝑀𝑀𝑖𝑖𝑖𝑖𝑖𝑖
3 ) and the velocity deviation moments derived 

from these (𝑎𝑎0, 𝑎𝑎𝑖𝑖 , 𝑎𝑎𝑖𝑖𝑖𝑖 , 𝑎𝑎𝑖𝑖𝑖𝑖𝑖𝑖) are used. Introducing a variance 𝑥𝑥 as the deviation of weights, the definition equations and 

moments can be summarized as 

 

𝑛𝑛1 = �1
2

+ 𝑥𝑥�𝑀𝑀0 ,   𝑛𝑛2 = �1
2
− 𝑥𝑥�𝑀𝑀0       (30) 

�1
2

+ 𝑥𝑥� (𝑐𝑐1𝑖𝑖)2 + �1
2
− 𝑥𝑥� (𝑐𝑐2𝑖𝑖)2 = 𝑎𝑎𝑖𝑖𝑖𝑖        (31) 

�1
2

+ 𝑥𝑥� (𝑐𝑐1𝑖𝑖)3 + �1
2
− 𝑥𝑥� (𝑐𝑐2𝑖𝑖)3 = 𝑎𝑎𝑖𝑖𝑖𝑖𝑖𝑖        (32) 

 

From the expression in equations (30-31), in this method values for the variance, x can be calculated in each direction 

by 

 

𝑥𝑥 = 𝑎𝑎𝑖𝑖𝑖𝑖𝑖𝑖
2�(𝑎𝑎𝑖𝑖𝑖𝑖𝑖𝑖)2+4(𝑎𝑎𝑖𝑖𝑖𝑖)3

,    𝑎𝑎𝑖𝑖𝑖𝑖 ≠ 0.        (33) 

 

This is in contrast to Eqn (17) of the eight moment method where summations from all directions are used to find 𝑥𝑥. 

The reason for this is discussed below and demonstrated in Section 4.1. While the same weighting value, 𝑥𝑥, should be 

obtained from all three directions, there will be cases where one or more direction does not give a correct weighting. 

These cases are discussed below. The velocity of each node in the i-direction is found by, 

 

𝑈𝑈1𝑖𝑖 = 𝑈𝑈𝑝𝑝𝑝𝑝 − �𝑎𝑎𝑖𝑖𝑖𝑖�
1/2−x
1/2+x

𝑈𝑈2𝑖𝑖 = 𝑈𝑈𝑝𝑝𝑝𝑝 + �𝑎𝑎𝑖𝑖𝑖𝑖�
1/2+x
1/2−x

        (34) 

 

In a three dimensional system, the weights and abscissas in the other two dimensions can be calculated by moment 

sequences �𝑎𝑎0, 𝑎𝑎𝑗𝑗 , 𝑎𝑎𝑗𝑗𝑗𝑗 , 𝑎𝑎𝑗𝑗𝑗𝑗𝑗𝑗� and (𝑎𝑎0, 𝑎𝑎𝑘𝑘 , 𝑎𝑎𝑘𝑘𝑘𝑘 , 𝑎𝑎𝑘𝑘𝑘𝑘𝑘𝑘) as above. As the moments in all directions are derived from a two-

node quadrature, the moments (𝑀𝑀0,𝑀𝑀𝑖𝑖
1,𝑀𝑀𝑖𝑖𝑖𝑖

2 ,𝑀𝑀𝑖𝑖𝑖𝑖𝑖𝑖
3 ) for all i will have the same relationship leading to the same value of x 

being generated in all three directions which can then be used in Eqn (30) to find the weights. There are two exceptions 

to this: 
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1. If 𝑎𝑎𝑖𝑖𝑖𝑖 = 0 in one or two directions. Under these circumstances the value of x is undefined in that direction as the 

velocity component in each field is equal and hence any combination of weights satisfies the moments in that direction. 

In this situation the variance 𝑥𝑥 used to generate the weights in Eqn (30) is set equal to the non-zero values.  

2. If 𝑎𝑎𝑖𝑖𝑖𝑖 = 0 for all directions then this means the two fields are identical and 𝑥𝑥 is set to zero to give equal weights.  

The eight moment approach of [21] uses summations of moments over all direction to find 𝑥𝑥 as individual third 

order moments for each dimension are not available. As will be discussed further below, this can lead to numerical 

problems when ∑ 𝑎𝑎𝑖𝑖𝑖𝑖𝑖𝑖𝑑𝑑
𝑖𝑖=1 = 0 but a𝑖𝑖𝑖𝑖𝑖𝑖 ≠ 0 and node weights are incorrectly set to be equal.  

Using Eqns. (30-34) node weights and the velocity components in all directions of the abscissas can be calculated. 

However, the association of the velocity components in each node is not fully defined at this point. This stems from 

�𝑎𝑎𝑖𝑖𝑖𝑖  having both positive and negative roots with insufficient information available to choose which root to take. If the 

assumption is made, for example, to use the positive roots of �𝑎𝑎𝑖𝑖𝑖𝑖 ,�𝑎𝑎𝑗𝑗𝑗𝑗  and �𝑎𝑎𝑘𝑘𝑘𝑘  then this restricts the velocity 

components in the nodes to a particular sequence. For example as (𝑈𝑈1𝑖𝑖 − 𝑈𝑈2𝑖𝑖)�𝑈𝑈1𝑗𝑗 − 𝑈𝑈2𝑗𝑗� ≥ 0 in 2-D cases. With 

different assumptions it would be possible to recreate stream crossing, but at the expense of obtaining erroneous results 

for other combinations of stream velocities. Hence, the next step is to associate the correct combination of velocity 

components with each weight. This will eliminate the failed trajectory crossing seen in Figure 1. To achieve this we use 

the cross moments 𝑀𝑀𝑖𝑖𝑖𝑖
2  and the cross moment of velocity difference 𝑎𝑎𝑖𝑖𝑖𝑖 . The cross moment of velocity difference is 

defined by 

 

�1
2

+ 𝑥𝑥� 𝑐𝑐1𝑖𝑖𝑐𝑐1𝑗𝑗 + �1
2
− 𝑥𝑥� 𝑐𝑐2𝑖𝑖𝑐𝑐2𝑗𝑗 = 𝑎𝑎𝑖𝑖𝑖𝑖 , (𝑖𝑖 ≠ 𝑗𝑗)        (35) 

If 𝜀𝜀𝑖𝑖  represents the sign of the roots used in equation (34) then inserting expressions (30, 31) into equation (35) yields 

 

 𝜀𝜀𝑖𝑖𝜀𝜀𝑗𝑗 =
𝑎𝑎𝑖𝑖𝑖𝑖

�𝑎𝑎𝑖𝑖𝑖𝑖�𝑎𝑎𝑗𝑗𝑗𝑗
            (36) 

 

which means if the assumption is made that 𝜀𝜀𝑖𝑖 = 1, then the signs of 𝜀𝜀𝑗𝑗 and 𝜀𝜀𝑘𝑘 can be obtained by expression (36). 

A unique pair of weighted velocity fields can then be obtained from the set of moments. Therefore, the value of the 

remaining four velocities can be recalculated using the second order cross moment of velocity derivation.  

 

𝑈𝑈1𝑗𝑗 = 𝑈𝑈𝑝𝑝𝑝𝑝 − �
𝑎𝑎𝑖𝑖𝑖𝑖
�𝑎𝑎𝑖𝑖𝑖𝑖

��
𝑛𝑛2
𝑛𝑛1

𝑈𝑈2𝑗𝑗 = 𝑈𝑈𝑝𝑝𝑝𝑝 + �
𝑎𝑎𝑖𝑖𝑖𝑖
�𝑎𝑎𝑖𝑖𝑖𝑖

��
𝑛𝑛1
𝑛𝑛2

𝑈𝑈1𝑘𝑘 = 𝑈𝑈𝑝𝑝𝑝𝑝 − � 𝑎𝑎𝑖𝑖𝑖𝑖
�𝑎𝑎𝑖𝑖𝑖𝑖

��
𝑛𝑛2
𝑛𝑛1

𝑈𝑈2𝑘𝑘 = 𝑈𝑈𝑝𝑝𝑝𝑝 + � 𝑎𝑎𝑖𝑖𝑖𝑖
�𝑎𝑎𝑖𝑖𝑖𝑖

��
𝑛𝑛1
𝑛𝑛2

           (37) 
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A unique pair of weighted velocity fields is thus obtained from the set of moments. The velocities of the two nodes 

are re-associated by the cross-moments of second-order.  

 

2.3. Comparison with higher node closures 

If we compare the method proposed here to the eight-node QMOM model by Fox [14] we see that in both methods 

the weighting and two values for velocity are generated for each direction using Eqns. (30) and (34). In our method 

cross-moments are used to associate velocity components in each node whereas in the eight-node third-order QMOM 

[14], all combinations of the three sets of two velocities are taken into account which leads to the eight nodes. The 

higher node closure will lead to a moment set that can contain a greater amount of information on the particle velocity 

distribution and, therefore, a method capable of handling more complex multiphase flow fields. However, our aim in 

this paper is to produce an Eulerian method for the simulation of dilute particle flows where trajectory crossing or 

bouncing takes place. It is desirable for this to be as computationally inexpensive as possible hence why a two-node 

closure is employed here. As well as its relative computational costs, the two-node method here has some numerical 

advantages over the eight-node method. For the eight-node QMOM, no special rules are used to construct the node 

sequence, instead, all options of the velocity sequence, which determine the number of nodes, are considered in the 

moment-inversion approach and the weight of each node is determined by mathematics of the definition of the options. 

This can lead to negative values of weights being observed in the simulation of discontinuous particle flow. To avoid the 

negative value, the offending weights are set to zero, as mentioned in the equations (46-49) in Fox [14]. Thus, the 

accuracy of the quadrature-based moment solution is reduced for dilute particle flows, such as those found in the 

applications of interest in this work. The proposed two-node system will always return positive weights. 

 

3. Numerical Scheme 

The transport step of the QMOM requires the moments to be updated using the weighted velocity nodes. The 

transport equation for the general moment 𝑀𝑀𝑎𝑎𝑎𝑎𝑎𝑎
3  can be written as 

 

 𝜕𝜕𝑀𝑀𝑎𝑎𝑎𝑎𝑎𝑎
3

𝜕𝜕𝜕𝜕
+ 𝜕𝜕𝑀𝑀𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎

4

𝜕𝜕𝑥𝑥𝑘𝑘
= 𝑆𝑆 (a,b,c=i,j,k)       (38) 

 

where S represents source terms such as those due to drag or gravity. As the moment can be found from the two velocity 

nodes as 

 

 𝑀𝑀𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎
4 = 𝑛𝑛1𝑈𝑈1𝑎𝑎𝑈𝑈1𝑏𝑏𝑈𝑈1𝑐𝑐𝑈𝑈1k + 𝑛𝑛2𝑈𝑈2𝑎𝑎𝑈𝑈2𝑏𝑏𝑈𝑈2𝑐𝑐𝑈𝑈2𝑘𝑘       (39) 
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The transport equation can be rewritten as 

 

 𝜕𝜕𝑀𝑀𝑎𝑎𝑎𝑎𝑎𝑎
3

𝜕𝜕𝜕𝜕
+ 𝜕𝜕𝑛𝑛1𝑈𝑈1𝑎𝑎𝑈𝑈1𝑏𝑏𝑈𝑈1𝑐𝑐𝑈𝑈1𝑘𝑘

𝜕𝜕𝑥𝑥𝑘𝑘
+ 𝜕𝜕𝑛𝑛2𝑈𝑈2𝑎𝑎𝑈𝑈2𝑏𝑏𝑈𝑈2𝑐𝑐𝑈𝑈2𝑘𝑘

𝜕𝜕𝑥𝑥𝑘𝑘
= 𝑆𝑆      (40) 

 

This conservative transport equation can then be converted into finite volume form using the divergence theorem. 

 

 𝜕𝜕𝑀𝑀𝑎𝑎𝑎𝑎𝑎𝑎
3

𝜕𝜕𝜕𝜕
+ 1

𝑉𝑉
∑ 𝑛𝑛1𝑈𝑈1𝑎𝑎𝑈𝑈1𝑏𝑏𝑈𝑈1𝑐𝑐𝐔𝐔1 ∙ 𝐀𝐀 + 1

𝑉𝑉
∑ 𝑛𝑛2𝑈𝑈2𝑎𝑎𝑈𝑈2𝑏𝑏𝑈𝑈2𝑐𝑐𝐔𝐔2 ∙ 𝐀𝐀 = 𝑆𝑆     (41) 

 

where V is the cell volume and the summation is over all faces enclosing a cell, and A is the directed area vector. While 

the calculations in this paper are carried out on a Cartesian grid the above formulation is valid on any arbitrary 

unstructured mesh. Note that at each cell face there will be two fluxes, one due to velocity node one and the other due to 

velocity node two. The time step is set to a fraction of the smallest characteristic time among convection (ΔtCFL), drag 

(τp) and collisions (τcoll). 

 

3.1. Spatial Discretisation Schemes 

As with any finite volume transport scheme the remaining stage is to find the face fluxes using an appropriate 

discretisation scheme. It would be possible to apply the discretisation scheme to the moments to find the set of face 

moments and then convert them to the velocities, but following [15] we apply the discretisation schemes to the velocity 

and weight fields; this is to avoid a problem if high-order schemes are used to discretise the moments that may produce 

non-realizable combinations of moments.  

For first-order transport a simple upwind scheme is used where 𝜙𝜙𝛼𝛼,𝑓𝑓 represents any velocity component of node α 

on face f. 

 

 𝜙𝜙𝛼𝛼,𝑓𝑓 = 𝜙𝜙𝛼𝛼,𝑈𝑈𝑈𝑈          (42) 

 

and ‘UP’ represents the cell upwind of the face based on 𝐔𝐔α ∙ 𝐀𝐀. For second-order transport a TVD scheme is used 

 

 𝜙𝜙𝛼𝛼,𝑓𝑓 = 𝜙𝜙𝛼𝛼,𝑈𝑈𝑈𝑈 + 1
2
𝜓𝜓(𝜌𝜌)(𝜙𝜙𝛼𝛼,𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 − 𝜙𝜙𝛼𝛼,𝑈𝑈𝑈𝑈)       (43) 

 𝜌𝜌 = 𝜙𝜙𝛼𝛼,𝑈𝑈𝑈𝑈2−𝜙𝜙𝛼𝛼,𝑈𝑈𝑈𝑈
𝜙𝜙𝛼𝛼,𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷−𝜙𝜙𝛼𝛼,𝑈𝑈𝑈𝑈

         (44) 

 

‘UP2’ represents the cell upwind of the upwind cell. The limiter function 𝜓𝜓(𝜌𝜌) needs to be specified and the second-

order numerical schemes here uses Superbee which is tested and recommended by Desjardins [21].  
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 𝜓𝜓(𝜌𝜌) = max�0, min(2𝜌𝜌, 1), min(𝜌𝜌, 2)�       (45) 

 

 

3.2. Boundary Conditions 

To give the desired surface bouncing behaviour it is necessary to specify appropriate boundary conditions for the 

dispersed phase. Here we achieve this by using ‘ghost cells’ at the edge of the domain (seen in Figure 2) for which the 

two weighted velocity fields are found from the values in the first real cell according to 

 

 �

𝑛𝑛𝛼𝛼
𝑈𝑈𝛼𝛼𝛼𝛼
𝑈𝑈𝛼𝛼𝛼𝛼
𝑈𝑈𝛼𝛼𝛼𝛼

�

𝑔𝑔𝑔𝑔

= �

𝑛𝑛𝛼𝛼/𝑒𝑒𝑇𝑇
𝑒𝑒𝑖𝑖𝑈𝑈𝛼𝛼𝛼𝛼
𝑒𝑒𝑗𝑗𝑈𝑈𝛼𝛼𝛼𝛼
𝑒𝑒𝑘𝑘𝑈𝑈𝛼𝛼𝛼𝛼

�

1

          (46) 

 

where 𝑒𝑒𝑖𝑖, 𝑒𝑒𝑗𝑗  and 𝑒𝑒𝑘𝑘 are the coefficients of restitution in the three directions between the particle and wall. They are 

specified separately here for completeness in cases, such as those involving erosion, where the normal and tangential 

restitution coefficients are important. The total velocity coefficient of restitution 𝑒𝑒𝑇𝑇 is defined as 

 

 𝑒𝑒𝑇𝑇 =
�(𝑒𝑒𝑖𝑖𝑈𝑈𝑖𝑖)2+�𝑒𝑒𝑗𝑗𝑈𝑈𝑗𝑗�

2
+(𝑒𝑒𝑘𝑘𝑈𝑈𝑘𝑘)2

�(𝑈𝑈𝑖𝑖)2+�𝑈𝑈𝑗𝑗�
2
+(𝑈𝑈𝑘𝑘)2

         (47) 

In the case of perfectly elastic collisions off a surface normal to the i-direction it should be noted that 𝑒𝑒𝑖𝑖 = 1, 𝑒𝑒𝑗𝑗 = −1 

and 𝑒𝑒𝑘𝑘 = 1. 

 
Figure 2. Scheme for boundary conditions 

 

 

4. Test cases for crossing-trajectory and wall-rebounding particle flows 

In this section, the two-node 13 moment QMOM model is used to simulate non-equilibrium dilute fluid-particle 

flows to test the general performance of the model in predicting trajectory crossing and wall-rebounding particle flows. 

ghost cell 

1st cell wall 
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Initially this is done in the infinite Stokes number limit, to demonstrate the purely inertial behaviour of the particle 

streams, before moving on to demonstrate the capability to incorporate drag forces due to a carrier phase into the model. 

 

4.1. Crossing Dilute, Infinite Stokes Number, Particle Jets 

Here the improvement for crossing problems given by using cross-moments is demonstrated by a simple 2D two-

stream problem. The flow domain has a non-dimensional size of 1×1. One particle stream is injected from the bottom 

wall of the domain, with the velocity at u1i =0, u1j =1, and the number density at n1=1. The other particle stream is 

[n2,u2i,u2j] = [1,1,0]. 

The advantage of the 13-moment method proposed here (again, for this 2D case, only 8 moments are required) is 

that the correct combination of ε values can always be found. This is demonstrated in Figure 3 in which the two streams 

are seen to approach and then cross without interfering with each other. The result seen in Figure 1(b) where [n1,u1i,u1j] 

= [1,0,0] and [n2,u2i,u2j] = [1,1,1] in the crossing zone is a valid solution to the set of moments produced in that location. 

The desired crossing behaviour is also a valid solution to the eight moments but there is not enough information 

contained within the moments to choose between the solutions. By forcing the velocity nodes to conform to extra 

moments (particularly cross-moments) it is possible to obtain the correct crossing solution such as [n1,u1i,u1j] = [1,0,1] 

and [n2,u2i,u2j] = [1,1,0] without further assumption. 
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(a) t = 0.3     (b) t = 0.5 

 

(c) t = 0.7     (d) t = 0.9 

Figure 3. Temporal evolution of contours of particle number density for two dilute jets with boundary conditions 

[n1,U1i,U1j] = [1,0,1] and [n2,U2i,U2j] = [1,1,0] simulated using the two-node 13-moment method. 

The addition of cross-moments alone does not guarantee correct recovery of the velocity fields and weights in all 

cases without the extra third moments, 𝑀𝑀𝑖𝑖𝑖𝑖𝑖𝑖
3 , (𝑖𝑖 = 𝑖𝑖, 𝑗𝑗, 𝑘𝑘). Figure 5 shows the effect of using cross moments to find the ε 

values, but using the sum of the third order moments 𝑄𝑄 = ∑ 𝑀𝑀𝑖𝑖𝑖𝑖𝑖𝑖
3𝑑𝑑

𝑖𝑖=1  rather than the individual values, 𝑀𝑀𝑖𝑖𝑖𝑖𝑖𝑖
3 , (𝑖𝑖 = 𝑖𝑖, 𝑗𝑗, 𝑘𝑘). 

We see once again that in Figure 4(a) the original six moments fail to give the correct crossing behaviour, however, in 

Figure 4(b) we see that even with the cross moments used the correct behaviour is not recovered. The summation of the 

normal third order moment 𝑄𝑄 used in the two-node QMOM fails to identify some cases where 𝑞𝑞𝑝𝑝 = ∑ 𝑎𝑎𝑖𝑖𝑖𝑖𝑖𝑖𝑑𝑑
𝑖𝑖=1 = 0 and 

a𝑖𝑖𝑖𝑖𝑖𝑖 ≠ 0. For example, in Figure 4, if the initial two node sequences are [n1,U1i,U1j]  = [1.5,0,1] and [n2,U2i,U2j] = 

[0.5,1,0], then from the two-node closure approach 𝑞𝑞𝑝𝑝 = 0. This means that the number density of the two nodes will be 

calculated to be equal. By calculating a𝑖𝑖𝑖𝑖𝑖𝑖 separately this condition can be avoided. 

Figure 5 shows the result of crossing particle jets by the two-node, 13 moment QMOM when the boundary 

condition is [n1,U1i,U1j]  = [1.5,0,1] and [n2,U2i,U2j] = [0.5,1,0]. The number densities at t = 0.3 before crossing and t = 
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0.9 after crossing are shown and the crossing trajectories of the two particle jets are correctly predicted. In the region 

that the two jets cross, the lateral third-order moment of velocity deviation is negative, aiii =-0.08, while the vertical 

third-order moment is positive, 𝑎𝑎𝑗𝑗𝑗𝑗𝑗𝑗  = 0.08. Using the two-node thirteen-moment quadrature closure, |𝑥𝑥| = 0.25, from 

which the number density of two nodes can be calculated correctly as  n1 = 1.5 and n2 = 0.5. If the summation of the 

third-order moment is used, as in [21], then 𝑞𝑞 = 𝑎𝑎𝑖𝑖𝑖𝑖𝑖𝑖 + 𝑎𝑎𝑗𝑗𝑗𝑗𝑗𝑗 = 0 and 𝑥𝑥 =  0, which leads to the mistaken result that n 1= 

n2 = 1.0 as seen in Figure 4b. Thus, three third-order normal moments of particle velocity are necessary for the crossing 

jets with any particle flow rates. 

 

 

(a) Two-node, 8-moment QMOM                  (b) two-node, 11 moment QMOM  

Figure 4. Particle number density for crossing trajectory jets ([n1,U1i,U1j]  = [1.5,0,1] and [n2,U2i,U2j] = [0.5,1,0] ), 

(a) shows result using original six moment set from [21] and (b) shows result using additional cross-moments but not 

individual third moments. 

 

(a) 𝑀𝑀0 at t = 0.3                          (b) 𝑀𝑀0 at t = 0.9 

Figure 5. Crossing particle jets with boundary conditions [n1,U1i,U1j]  = [1.5,0,1] and [n2,U2i,U2j] = [0.5,1,0]. Contour 

plots of total number density at t=0.3 (a) and t=0.9(b).  
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4.2. Crossing Dilute, Infinite Stokes Number, Particle Jets at Arbitrary Angles 

In this section, the general validity of the two-node, 13-moment is tested. Arbitrary angles between walls and 

oncoming streams can be represented by various injection angles and crossing angles of particle jets. The results 

obtained using the two-node eight-moment method [21] are shown in Figure 6. Note, in particular the failed cases 

observed in Figure 6(f) & (g) for which the assumption that 𝑈𝑈2𝑗𝑗 > 𝑈𝑈1j and  𝑈𝑈2𝑖𝑖 > 𝑈𝑈1i in the conversion from moments 

to velocities means that the correct velocity combination is not associated with each node. The same tests with the two-

node, 13-moment QMOM are shown in Figure 7. It can be seen that the correct behaviour, with dilute jets crossing 

without interference, can be seen for all eight cases. 

 

  

(a) [n1,U1i,U1j] = [1,1,-1], [n2,U2i,U2j] = [1, 1,1]                (c) [n1,U1i,U1j] = [1,1,0], [n2,U2i,U2j] = [1,1, 1] 
(b) [n1,U1i,U1j] = [1,1, 1], [n2,U2i,U2j] = [1,-1,1]                (d) [n1,U1i,U1j] = [1,1,0], [n2,U2i,U2j] = [1,1,-1] 

  

(e) [n1,U1i,U1j] = [1,1,0], [n2,U2i,U2j] = [1,0,-1]                (g) [n1,U1i,U1j] = [1,1,0], [n2,U2i,U2j] = [1,-1, 1] 
(f) [n1,U1i,U1j] = [1,1,0], [n2,U2i,U2j] = [1,0, 1]                (h) [n1,U1i,U1j] = [1,1,0], [n2,U2i,U2j] = [1,-1,-1] 

Figure 6. Contour plots showing particle number densities for crossing dilute jets with QMOM method of [21].  

 

 

 

(f) 

(a) (b) (c) (d) 

(e) 

(f) 

(g) 

(h) 
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(a) [n1,U1i,U1j] = [1,1,-1], [n2,U2i,U2j] = [1, 1,1]                (c) [n1,U1i,U1j] = [1,1,0], [n2,U2i,U2j] = [1,1, 1] 
(b) [n1,U1i,U1j] = [1,1, 1], [n2,U2i,U2j] = [1,-1,1]                (d) [n1,U1i,U1j] = [1,1,0], [n2,U2i,U2j] = [1,1,-1] 

  

(e) [n1,U1i,U1j] = [1,1,0], [n2,U2i,U2j] = [1,0,-1]                (g) [n1,U1i,U1j] = [1,1,0], [n2,U2i,U2j] = [1,-1, 1] 

(f) [n1,U1i,U1j] = [1,1,0], [n2,U2i,U2j] = [1,0, 1]                (h) [n1,U1i,U1j] = [1,1,0], [n2,U2i,U2j] = [1,-1,-1] 

Figure 7. Contour plots showing particle number densities for crossing dilute jets with new two-node, 13-moment 

QMOM presented in this work.  

 

4.3. Wall Bouncing of Dilute, Infinite Stokes Number, Particle Jets  

Figure 8 shows the prediction of particle wall rebounding. One particle flow stream ([n1,U1i,U1j] = [1,1,-1]) is 

injected into the flow field towards the bottom wall (note that the left hand boundary condition is n2=0). At t=0.5, the 

particles collide with the wall, and then bounce off the wall. Near the wall, the number density of particles is doubled 

resulting from the overlap of injecting and rebounding particles, which means that two flow streams are crossing at the 

wall. For this elastic and smooth wall where ej = -1, the two node values become  [n1,U1i,U1j]  = [1,1,-1] and [n2,U2i,U2j]  

= [1,1,1] at the collision point. 

 

( ( ( (

( ( (
(

(a) (b) (c) (d) 

(e) (f) (g) 

(h) 
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(a) t = 0.3     (b) t = 0.5 

 

(c) t = 0.7     (d) t = 0.9 

Figure 8.Time evolution of particle number density for wall rebounded particle flow. 

It can be seen that the wall rebounding problem can be considered equivalent to a crossing-trajectory problem. 

Taking the injecting flow as one stream, the rebounding flow can be taken as the other. The collision point at the wall is 

the pseudo trajectory-crossing point. Figure 2 illustrates the relationship between the injecting jet and the rebounding jet 

visually. The particles below the wall are considered as the pseudo particles, which can supply the particle source of the 

rebounding jet and absorb the injecting particles.  

The strategy of the two-node QMOM is to separate the main flow into two streams by means of the reassociated 

velocity fields. The distribution of moment of particle velocity and velocity deviation are plotted in Figure 8. At the 

collision point, n1=n2, u1=u2, and v1= - v2. Normal moments of particle velocities are calculated as  𝑀𝑀𝑖𝑖𝑖𝑖
2 = 𝑛𝑛1(𝑈𝑈1𝑖𝑖)2 +

𝑛𝑛2(𝑈𝑈2𝑖𝑖)2, hence the two normal second-order moments are the same. Whereas the moments of velocity deviation, 

calculated by  𝑎𝑎𝑖𝑖𝑖𝑖 = 𝑀𝑀𝑖𝑖𝑖𝑖
2/𝑀𝑀0 − �𝑈𝑈p𝑖𝑖�

2
, represent the magnitude of the deviation of particle velocities between the two 

nodes. In the i direction, velocity deviation ci = 0, then aii =0, as shown in Figure 8(a). But in the j direction, ajj ≠0 , then 

c1 and c2 can be calculated from ajj with the quadrature approach mentioned in section 2. Even though, at the particle-
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wall collision point, the averaged normal velocity in the normal direction j is zero, the velocity deviation is non-zero 

calculated by the velocity moment and mean velocity. In this way, the two stream flows are separated by the QMOM 

method. 

 

 

(a) 𝑀𝑀𝑖𝑖𝑖𝑖
2     (b) aii 

 

(c) 𝑀𝑀𝑗𝑗𝑗𝑗
2      (d) ajj 

Figure 2. Distributions of moments of particle velocity and velocity deviation 

 

5. Particle Motion For Finite Stokes Number 

In this section we demonstrate the ability of the two-node, 13-moment QMOM to predict behaviour seen in real 

world dilute gas-particle flows. We consider particle streams in a continuous gas carrier phase using a range of Stokes 

numbers, this demonstrates that the drag terms are included correctly in the moment equations, including the cross-

moment terms, before  moving on to the more complex Taylor-Green test case. 

 

5.1. Effect of Varying Stokes Number 

Depending on its inertia a particle’s trajectory will be influenced by the drag force imparted by the carrier fluid. For 

Stokes number St << 1, particles follow the streamlines closely, while for St >>1 the particle response time is larger 

than the smallest time scale of the flow and the particle will follow a ballistic trajectory. We have already seen 

simulations of particles with infinite Stokes number in the previous sections. The effect of different Stokes number is 

tested in this study, which is the ratio of the characteristic time of a particle to the characteristic time of the flow, 

 

𝑆𝑆𝑆𝑆 = 𝜌𝜌𝑝𝑝�𝑑𝑑𝑝𝑝�
2

18𝜇𝜇𝑓𝑓𝐷𝐷
|𝐔𝐔𝐟𝐟 − 𝐮𝐮|         (48) 
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Simulations are carried out in a 2-D straight channel, where the flow domain is 0.2m×1 m. The grid cell size is 

0.01m×0.01 m. The carrier gas enters the pipe from the left inlet and leaves via the right outlet boundary. The top and 

bottom walls both give elastic collisions for the particles. Two streams of particles are injected from the left inlet of the 

pipe. The inlet conditions for the two particle jets are [n1,u1i,u1j] = [1,1,1] and [n2,u2i,u2j] = [1,1,-1]. The particle density 

is 2400kg/m3, and three types of particle diameters are tested 0.08mm, 0.15mm and 0.25mm. One way coupling of fluid 

and particle momentum transportation is used in this simulation. Air at 1 atm and ambient temperature is used as the 

fluid phase with uniform velocity [ugi,ugj] = [1.2, 0] in the flow domain.  

 

       
(a) QMOM     (b) Lagrangian model 

Figure 9. Dilute particle jets under the influence of drag from a carrier phase at different Stokes number. (a) Contour 

plots of particle number density using the proposed QMOM method. (b) Particle tracks from Lagrangian DPM model 

[28].  (St ≈ 2.78 (top), 1.00 (middle) and 0.28 (bottom)) 

 

Figure 9 shows the number densities of particles for the three Stokes number cases. To provide validation data the 

same case is recreated using a Lagrangian method. The Lagrangian results were produced using the DPM solver in 

ANSYS Fluent [28]. The DPM model is used to trace the path of the particles, without collisions between particles and 

without two-way coupling between phases. The mass flow rates of inlet particles are calculated from the volume 

fractions and particle density as mentioned above. Near the particle jet inlets, the initial Stokes numbers of the three 

particle diameters are approximately 2.78 for the 0.25mm particle, 1.00 for 0.15mm and 0.28 for 0.08mm. In all three 

cases the drag force causes the particle streams to be swept downstream. For the largest particles (and hence highest 

inertia) we see that the particle streams cross before colliding with the opposite wall and being reflected. As particle 

size is reduced, the particles are swept more strongly downstream with the 0.15 mm particles still crossing each other 

but not reaching the opposite wall. For the 0.08 mm particles their inertia is so small that the streams never meet each 

other as they are swept very quickly downstream. We have already seen particle flows with infinite Stokes number and 

for Stokes numbers approaching zero the particle will be coupled strongly with the carrier flow. Hence, we can be 
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confident that the method used here is capable of predicting flow under a range of Stokes number in flows found in 

chemical engineering or turbomachinery applications.  

 

5.2. Taylor-Green Flow 

Results using the 2D Taylor-Green vortex flow test are presented here to test the capability of our method to predict 

the development of a more complex dilute particle flow field. This test case has previously been used in [15] to 

demonstrate the ability of a four-node QMOM method to predict the development of particle concentration in a fixed 

continuous phase flow field. This flow consists of four periodic vortices, defined as, 

 

𝑢𝑢𝑔𝑔𝑔𝑔 =     sin(2𝜋𝜋𝜋𝜋) cos (2𝜋𝜋𝜋𝜋)                           (49) 

𝑢𝑢𝑔𝑔𝑔𝑔 = − sin(2𝜋𝜋𝜋𝜋) cos (2𝜋𝜋𝜋𝜋)                        (50) 

 

where the subscript 𝑔𝑔 indicates that this is the gas flow field. The non-dimensional gas maximum velocity is 1, and the 

vector field is shown in Figure 10(a). The non-dimensional 2-D flow domain size is 1 × 1 with 200 × 200 grid cells, and 

periodic boundaries are used at the edge of the domain. The initial number density of particles is uniform in the flow 

domain. As a benchmark Figure 10(b) shows the particle number densities predicted by Le Lostec et al [29] with the 

Lagrangian method, where St=1.0 at non-dimensional time t=4. For comparison Figure 10(c) shows the results with the 

original two-node eight-moment QMOM by Desjardins [21]. It can be seen that the pattern seen in the Lagrangian 

results is not reproduced as the 2-node 8-moment QMOM fails to produce the rotationally repeating characteristic of the 

particle distribution. This is due to the assumption made in the quadrature approach that (u1i-u2i)(u1j-u2j)<0. Streaks of 

high particle density similar to those seen in the failed verification tests of Figure 6(f) & (g) can be observed. 

The particle crossing trajectories in the vortices in Figure 10(d) are predicted with the new two-node QMOM model. 

The high density particle belts are successfully predicted. Low particle density in the centre of the domain and near the 

centre of the edges of the domain are observed in Figure 10 (d), as also seen in Figure 10(b) simulated by the 

Lagrangian method. The result seen in Figure 10(d) is also very similar to that observed using a higher node method in 

[15]. Therefore, the method presented here has been demonstrated to predict the correct development of a dilute particle 

flow field under a complex 2D flow field with flow curvature and finite Stokes number. This is an important test as 

these conditions will be encountered in real applications, such as those found in gas turbines for example.  To 

investigate the computational advantage of using a two-node over a higher order method we also implemented the 

method used in [15] into our own code which was found to give similar results to theose reported in [15]. The relative 

run times of the orginal method of [21], our proposed method and the higher order method from [15] were then 

compared using a single processor. Relative to the run times for our proposed method the method of [21] was found to 

take 0.69 of our method and the higher order method was found to take 1.52. A 33% reduction in computing time 
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compared to the high order method could be significant in a large calculation and it should be kept in mind that the 

difference in nodes and moments (and hence cost) would be even greater for a three dimensional case. This gives 

confidence in our method’s capabilities for future practical engineering test cases.       

      

                                         (a) Taylor green vortices                            (b) Lagrangian simulation [29]    

       

                        (c) 2-node 8-moment QMOM [21]                   (d) 2-node, 13-moment QMOM 

Figure 30. Particle number densities in Taylor-Green flow where St =1, t=4 

 

6. Conclusions  

A new two-node, 13-moment quadrature method of moments QMOM has been developed to allow robust 

calculation of crossing and bouncing trajectory dilute gas-particle flows at high Knudsen number with a relatively low 

computational cost. The method builds on the existing two-node, eight-moment QMOM [21] but uses additional third-

order moments and second-order cross-moments. Without the extra moments it was necessary to make choices between 

equally valid solutions of the moment to velocity conversion step, based arbitrarily on the reference frame. By requiring 

the two weighted velocity fields to conform to these extra moments it is possible to ensure that the velocities recovered 

from the set of moments are those that give the correct stream crossing behaviour for any crossing angle without any 

arbitrary decisions. The extra moments, particularly the cross moments, are needed to ensure that sufficient physical 
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information is contained in the set of moments. While any moment of velocity can be found from two or more weighted 

velocity fields, it is important to make sure that the set of moments chosen can be converted back to the velocity fields 

in all cases. This also highlights the importance of using a thorough set of verification tests, for which a solution is 

known, when constructing QMOM schemes. 

For cases with large or complex geometries, such as those found in turbomachinery, the full detail of the existing 

third-order QMOM [14] may not be required and solving for 20 moments and eight weighted velocity fields (in 3D) 

will be undesirably expensive. The method proposed here only needs 13 moments and two weighted velocity fields.  

This reduces both computation and memory storage overheads.  

To demonstrate the method, 2-D particle flows have been simulated using the new model. Arbitrary crossing-

trajectory and wall rebounding particle flows have been tested. The results show the correct behaviour for all cases 

tested, and, the model is shown to be able to handle non-equilibrium particle flows. The new method has been extended 

to include drag terms to demonstrate that it is capable of producing results with a range of Stokes numbers. The method 

has also been tested for a complex 2D dilute particle flow by simulating the development of particle number density in 

Taylor-Green vortex flow. The results are seen to be in good agreement with those found using a Lagrangian method 

and higher node QMOM methods. The results are superior to those produced with the pre-existing two-node method. 

The excellent performance in the Taylor-Green test case gives confidence that the method can be applied to cases with 

finite Stokes numbers and flow curvature as would be found in practical engineering applications. Future work will be 

aimed at applying the method to cases such as the ingestion of particles into the inlet of gas turbine aircraft engines. 
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