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Abstract

We consider a simple pendulum whose suspension point undergoes fast vibrations
in the plane of motion of the pendulum. The averaged over the fast vibrations system
is a Hamiltonian system with one degree of freedom depending on two parameters. We
give a complete description of bifurcations of phase portraits of this averaged system.

1 Introduction

A simple pendulum with vibrating suspension point is a classical problem of perturbation
theory. The phenomenon of stabilisation of the upper vertical position of the pendulum
by fast vertical vibrations of the suspension point was discovered by A. Stephenson [1, 2].
In these papers the linearisation and reduction to the Mathieu equation is used. The case
of inclined vibrations of the suspension point is considered as well. Nonlinear theory was
developed by N.N.Bogolyubov [3], who used the averaging method, and by P.L.Kapitsa, who
has developed a method of separation of slow and fast motions for this [4, 5] (see also [6]).
Different aspects of this problem were discussed in many publications (see, e.g., [7] for a
discussion of geometric aspects, [8] for the case of arbitrary frequencies of vibrations, [9] for
the case of random vibrations). Generalisations to double- and multiple-link pendulums are
contained in [11, 12, 13]. It is noted in [10] that the problem is simplified by using averaging
in Hamiltonian form. Such an approach is used, e.g., in [14, 15]. In [14] bifurcations of
the phase portraits of the averaged problem for a vertically vibrating suspension point are
described.
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We consider the case of arbitrary planar vibrations of the suspension point. We use the
Hamiltonian approach of [10] to construct the averaged system and give a complete descrip-
tion of bifurcations of its phase portraits. Equations for equilibria of the averaged system in
this case are obtained in [16].

2 Hamiltonian of the problem

Consider a simple pendulum, Fig. 1, whose suspension point moves in the vertical plane
where the pendulum moves. Let l,m be length of the massless rod and mass of the bob for
this pendulum. Let ξ, η be horizontal and vertical Cartesian coordinates of the suspension
point. It is assumed that ξ, η are some given functions of time. Denote by ϕ the angle
between the pendulum rod and the vertical line straight down.	  
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Figure 1. A pendulum with vibrating suspension point.

Then the kinetic and potential energies of the bob are

T =
1

2

[
l2ϕ̇2 + 2lϕ̇(ξ̇ cosϕ+ η̇ sinϕ) + (ξ̇2 + η̇2)

]
, V = mg(η − l cosϕ) .

Here g is the gravity acceleration. The generalised momentum conjugate to ϕ is

p = ∂T/∂ϕ̇ = ml2ϕ̇+ml(ξ̇ cosϕ+ η̇ sinϕ) .

Thus

ϕ̇ =
p

ml2
− (ξ̇ cosϕ+ η̇ sinϕ)

l
.

In order to obtain the Hamiltonian of the problem we should substitute this expression into
T + V and subtract terms which do not depend on p. Thus we get the Hamiltonian

H =
1

2

(
p2

ml2
− 2

p(ξ̇ cosϕ+ η̇ sinϕ)

l
+m(ξ̇ cosϕ+ η̇ sinϕ)2

)
−mgl cosϕ .
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3 Averaged Hamiltonian

Assume that ξ = εξ̃(ωt/ε), η = εη̃(ωt/ε), where ε is a small parameter, ξ̃(·), η̃(·) are 2π-
periodic functions with zero average. Then ξ̇, η̇ are values of order 1. In the system of
Hamilton’s equations

ϕ̇ = ∂H/∂p, ṗ = −∂H/∂ϕ .

the right hand side is a fast oscillating function of time. In line with the averaging method
[17], for an approximate description of dynamics of variables ϕ, p we average the Hamiltonian

H with respect to time t. Denote by A,B,C the averages of ξ̇2

2
, η̇

2

2
, and ξ̇η̇, respectively.

Then the averaged Hamiltonian up to an additive constant is

H̄ =
1

2

p2

ml2
+ V̄ (ϕ), V̄ = V̄ (ϕ) =

m

2
[(A−B) cos 2ϕ+ C sin 2ϕ]−mgl cosϕ .

The type of the phase portrait of H is determined by the extrema of V̄ . Effectively, it
depends on two parameters, (B − A)/(gl) and C/(gl). Our goal is to draw the bifurcation
diagram of the problem. We have to determine a partition of the plane of parameters by
curves into domains such that the type of the phase portrait changes only across these curves.

The function V̄ is invariant under the transformation C → −C,ϕ → −ϕ. Thus, without
loss of generality, in calculations below we assume that C ≥ 0.

4 Particular cases

4.1 Case C = 0

This is the case considered by Stephenson, Bogolyubov, and Kapitsa under an additional
assumption that A = 0. Phase portraits for this case are presented in [14] (for A = 0).

If |2(B−A)
gl
| < 1, then V̄ has a minimum at ϕ = 0 and a maximum at ϕ = π. The phase

portrait is shown in Fig. 2.

If 2(B−A)
gl

> 1, then V̄ has minima at ϕ = 0 and ϕ = π, and maxima at ϕ = ± arccos gl
2(A−B)

.

The phase portrait is shown in Fig. 3. In this case both the upper and lower vertical
equilibria of the pendulum are stable.

If 2(B−A)
gl

< −1, then V̄ has maxima at ϕ = 0 and ϕ = π, and minima at ϕ = ± arccos gl
2(A−B)

.
The phase portrait is shown in Fig. 4. In this case both the lower and upper vertical equilibria
of the pendulum are unstable.
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Figure 2. |2(B−A)
gl
| < 1 .

Figure 3. 2(B−A)
gl

> 1 .

Figure 4. 2(B−A)
gl

< −1 .
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We observe a coalescence of two maxima and a minimum of the potential V̄ at 2(B−A)
gl

= 1

and that of two minima and a maximum of V̄ at 2(B−A)
gl

= −1.

4.2 Case A = B

The equation for extrema of V̄ is

∂V̄ /∂ϕ = m(C cos 2ϕ+ gl sinϕ) = 0

which implies

sinϕ =
gl ±

√
g2l2 + 8C2

4C
. (1)

For the sign “−” in this formula and C > 0 the value in the right hand side is in the interval
(−1, 0). Thus we have two solutions

ϕ−,1 = arcsin

(
gl −

√
g2l2 + 8C2

4C

)
, ϕ−,2 = π − ϕ−,1 .

They correspond to a minimum and a maximum of V̄ , respectively.

If C > lg then for the sign “+” in (1) the value in the right hand side is in the interval
(0, 1). In this case we have two additional solutions

ϕ+,1 = arcsin

(
gl +

√
g2l2 + 8C2

4C

)
, ϕ+,2 = π − ϕ+,1 .

They correspond to a maximum and a minimum of V̄ , respectively.

The phase portrait for the case −lg < C < lg has the form shown in Fig. 2 (but it is in
general not symmetric with respect to the axis ϕ = 0, cf. Fig. 8). Phase portraits for the
cases C > lg and C < −lg are shown in Fig. 5 and Fig. 6, respectively.

5 General case

We will build a partition of the parameter plane of the problem into domains corresponding
to different types of phase portraits of the averaged system. The boundaries of these domains
are critical curves. There are two types of critical curves:
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Figure 5. C > lg .

Figure 6. C < −lg .
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• Curves corresponding to degenerate equilibria: first and second derivatives of V̄ vanish
for parameters on these curves. The number of equilibria changes at crossing such a curve
in the plane of parameters.

• Curves such that the function V̄ has the same value at two different saddle equilibria for
parameters on these curves. The number of equilibria remains the same at crossing such a
curve in the plane of parameters. Curves of the second type locally separate adjacent regions
with different behavior of separatrices.

5.1 Critical curves corresponding to degenerate equilibria

These curves correspond to values of parameters such that

∂V̄ /∂ϕ = m [(B − A) sin 2ϕ+ C cos 2ϕ+ gl sinϕ] = 0 ,

∂2V̄ /∂ϕ2 = m [2(B − A) cos 2ϕ− 2C sin 2ϕ+ gl cosϕ] = 0

which is equivalent to

B − A
gl

sin 2ϕ+
C

gl
cos 2ϕ+ sinϕ = 0 , (2)

2(B − A)

gl
cos 2ϕ− 2C

gl
sin 2ϕ+ cosϕ = 0 .

This system is invariant with respect to the change B −A→ −(B −A), ϕ→ π − ϕ. Thus,
without loss of generality, in this subsection we assume that B − A ≥ 0. As agreed earlier,
we also assume that C > 0.

The system (2) can be considered as a system of two linear equations for unknown (B − A)/(gl)
and C/(gl). Solving it for these unknown we get

B − A
gl

= − sinϕ sin 2ϕ− 1

2
cosϕ cos 2ϕ,

C

gl
= − sinϕ cos 2ϕ+

1

2
cosϕ sin 2ϕ .

An a bit more compact form of these relations is

B − A
gl

= cos3 ϕ− 3

2
cosϕ, (3)

C

gl
= sin3 ϕ .

These relations give a parametric representation with the parameter ϕ of the critical curve
Γ corresponding to degenerate equilibria. This curve is shown in Fig. 7.
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Figure 7. Bifurcation curve corresponding to degenerate equilibria.

Figure 8. Phase portrait for domain I.
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The pendulum has 2 equilibria if parameters are in domain I (Fig. 8), and 4 equilibria if
parameters are in domain II (Figs. 9, 10).

Figure 9. Phase portrait for domain II, C > 0.

Figure 10. Phase portrait for domain II, C < 0.

The curve Γ has two cusp points. Regular points of Γ correspond to centre-saddle bifurca-
tions: centre and saddle equilibria coalesce and disappear. Let us prove that these bifurca-
tions are not degenerate, i.e., at regular points of Γ, (a) ∂3V̄ /∂ϕ3 6= 0 and (b) the derivative
of ∂V̄ /∂ϕ along a direction transversal to Γ is different from 0 (after calculation of derivatives
one should substitute the equilibrium value of ϕ from (2) into obtained expressions).
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For (a), we have

1

mgl

∂3V̄

∂ϕ3
= −4(B − A)

gl
sin 2ϕ− 4C

gl
cos 2ϕ− sinϕ = 3 sinϕ 6= 0

at regular points of Γ (we used the first equality in (2) here).

For (b), we note that the parametric representation (3) of Γ implies that the vector

u = (−3 cos2 ϕ sinϕ+
3

2
sinϕ, 3 sin2 ϕ cosϕ) .

is tangent to Γ. Then

u⊥ = (3 sin2 ϕ cosϕ, 3 cos2 ϕ sinϕ− 3

2
sinϕ) .

is a vector transversal to Γ. For the directional derivative of ∂V̄ /∂ϕ along u⊥ we get

1

mgl
∇u⊥

(
∂V̄

∂ϕ

)
= 3 sin2 ϕ cosϕ sin 2ϕ+ (3 cos2 ϕ sinϕ− 3

2
sinϕ) cos 2ϕ

=
3

2
sinϕ

(
2 sinϕ cosϕ sin 2ϕ+ (2 cos2 ϕ− 1) cos 2ϕ

)
=

3

2
sinϕ 6= 0

at regular points of Γ. Thus, bifurcations at regular points of Γ are not degenerate.

At the cusp points of Γ we have ∂V̄ /∂ϕ = ∂2V̄ /∂ϕ2 = ∂3V̄ /∂ϕ3 = 0, ∂4V̄ /∂ϕ4 = ±3mgl 6= 0
at the equilibria (± for the left and right cusp points, respectively). Near cusp points the
curve Γ has the standard form a of semi-cubic parabola:

B − A
gl

= −1

2
− 3

4
ϕ2 + . . .

C

gl
= ϕ3 + . . .

or


B − A
gl

=
1

2
+

3

4
(ϕ− π)2 + . . .

C

gl
= −(ϕ− π)3 + . . .

for the left and the right cusp points, respectively. This implies that the normal forms of
the Hamiltonian near the cusp points are of a generic form presented, e.g., in [18], example
2.6, and thus the bifurcations at cusp points are not degenerate.

5.2 Critical curves corresponding to saddle equilibria with equal
values of potential energy

Let ϕ1 and ϕ2 be coordinates of such equilibria, ϕ1 6= ϕ2 mod 2π. We should have

∂V̄ (ϕ1)/∂ϕ = 0, ∂V̄ (ϕ2)/∂ϕ = 0, V̄ (ϕ1) = V̄ (ϕ2)
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or, in the explicit form,

B − A
gl

sin 2ϕ1 +
C

gl
cos 2ϕ1 + sinϕ1 = 0 , (4)

B − A
gl

sin 2ϕ2 +
C

gl
cos 2ϕ2 + sinϕ2 = 0 ,

−B − A
gl

(cos 2ϕ1 − cos 2ϕ2) +
C

gl
(sin 2ϕ1 − sin 2ϕ2)− 2(cosϕ1 − cosϕ2) = 0 .

As ϕ1 6= ϕ2 mod 2π, we can divide the last equation by 4 sin ϕ1−ϕ2

2
. It reduces to

B − A
gl

sin(ϕ1 + ϕ2) cos
ϕ1 − ϕ2

2
+
C

gl
cos

ϕ1 − ϕ2

2
cos(ϕ1 + ϕ2) + sin

ϕ1 + ϕ2

2
= 0 . (5)

The first two equations in (4) can be considered as a system of two linear equations for
unknown (B − A)/(gl) and C/(gl). The determinant of this system is

D = sin 2(ϕ1 − ϕ2) .

We should consider two cases: D = 0 and D 6= 0.

In the case D 6= 0 we solve first two equations in (4) for (B − A)/(gl) and C/(gl) and get

B − A
gl

=
− sinϕ1 cos 2ϕ2 + sinϕ2 cos 2ϕ1

sin 2(ϕ1 − ϕ2)
,

C

gl
=

sinϕ1 sin 2ϕ2 − sinϕ2 sin 2ϕ1

sin 2(ϕ1 − ϕ2)
.

These relations can be rewritten in the form

B − A
gl

=
2 sin ϕ1−ϕ2

2
cos ϕ1+ϕ2

2
(cos(ϕ1 + ϕ2)− cos(ϕ1 − ϕ2)− 1)

sin 2(ϕ1 − ϕ2)
,

C

gl
=

2 sin ϕ1−ϕ2

2
sin ϕ1+ϕ2

2
(− cos(ϕ1 + ϕ2) + cos(ϕ1 − ϕ2))

sin 2(ϕ1 − ϕ2)

or, after a cancellation, in the form

B − A
gl

=
cos ϕ1+ϕ2

2
(cos(ϕ1 + ϕ2)− cos(ϕ1 − ϕ2)− 1)

2 cos(ϕ1 − ϕ2) cos ϕ1−ϕ2

2

,

C

gl
=

sin ϕ1+ϕ2

2
(− cos(ϕ1 + ϕ2) + cos(ϕ1 − ϕ2))

2 cos(ϕ1 − ϕ2) cos ϕ1−ϕ2

2

.

Now we substitute these relations into equation (5), and, assuming that ϕ1 6= −ϕ2 mod 2π,
divide the obtained equation by sin ϕ1+ϕ2

2
. We get

cos2 ϕ1+ϕ2

2
(cos(ϕ1 + ϕ2)− cos(ϕ1 − ϕ2)− 1)

cos(ϕ1 − ϕ2)

+
(− cos(ϕ1 + ϕ2) + cos(ϕ1 − ϕ2))

2 cos(ϕ1 − ϕ2)
cos(ϕ1 + ϕ2) + 1 = 0
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which is equivalent to

(1 + cos(ϕ1 + ϕ2)) (cos(ϕ1 + ϕ2)− cos(ϕ1 − ϕ2)− 1)

+ (− cos(ϕ1 + ϕ2) + cos(ϕ1 − ϕ2)) cos(ϕ1 + ϕ2) + 2 cos(ϕ1 − ϕ2) = 0

and then equivalent to
cos(ϕ1 − ϕ2) = 1

which can not be satisfied for ϕ1 6= ϕ2 mod 2π.

Thus, the only remaining possibilities are related to the special cases D = sin 2(ϕ1−ϕ2) = 0
and ϕ1 = −ϕ2 mod 2π. It is easy to check that each of these relations together with relations
(4) implies C = 0. As ϕ1 and ϕ2 should correspond to different saddles, we should consider
the domain were there are four equilibria. Thus, possible bifurcational curves are rays
{C = 0, 2(B−A)

gl
> 1} and {C = 0, 2(B−A)

gl
< −1}. The equilibria with equal values of potential

energy are saddles for the first and centres for the second of these rays (see Figs. 3 and 4).

Thus the only bifurcational curve of the considered type is the ray {C = 0, 2(B−A)
gl

> 1}.

5.3 Bifurcation diagram

The partition of the plane of parameters into domains with qualitatively different phase
portraits is shown in Fig. 11. The pendulum has 2 equilibria if parameters are in domain I
(phase portrait in Fig. 8), and 4 equilibria if parameters are in domain II (phase portrait
in Fig. 4 for C = 0, Fig. 9 for C > 0 and Fig. 10 for C < 0; these phase portraits are
topologically the same. The boundary Γ between these domains is the curve of degenerate
equilibria. The ray {C = 0, 2(B−A)

gl
> 1} corresponds to phase portraits with a heteroclinic

trajectory (Fig. 3). Passage through this ray transforms the phase portrait of Fig. 9 via
that of Fig. 3 to that of Fig. 10. Upon approaching the curve of degenerate equilibria
from the domain II at C > 0 (respectively C < 0), the right (respectively, the left) loop of
eight-shaped separatrix shrinks to a point and disappears.

6 Conclusion

Our study in this paper provides a complete description of bifurcations of phase portraits for
a pendulum with vibrating suspension point in the approximation of the averaging method.
The relation of such a description to dynamics in the exact (not averaged) problem for
high-frequency oscillations is discussed, e.g., in [15], Sect. 6.3.3.B. One should consider the
Poincaré return map for the plane ϕ, p (Poincaré section t = 0 mod 2πε

ω
). Fixed points of this
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Figure 11. Partition of the parameter plane.

map are close to equilibria of the averaged system. The plane ϕ, p is filled by invariant curves
of this map up to a remainder of a measure which is exponentially small in the perturbation
parameter ε. Stable and unstable manifolds of hyperbolic fixed points of the return map are
split, but this splitting is exponentially small. These manifolds are close to separatrices of the
averaged system. Thus, the study of the averaged system provides considerable information
about dynamics of the exact (not averaged) problem.
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