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Abstract 

Current methods of energy restriction are not successful for achieving long-term weight loss 

and maintenance for the majority of individuals. As a result, the prevalence of obesity and 

obesity related diseases continue to increase. This calls for the development of novel lifestyle 

interventions to combat the obesity epidemic.  

Hunger has been highlighted as a major factor influencing the long-term success of weight 

management methods and therefore how a given dietary intervention affects the appetite 

regulatory system may dictate the success of the diet by augmenting long-term adherence. In 

addition, the effect of a given dietary intervention on exercise may determine its suitability 

for exercising individuals and may influence the energy deficit that can be achieved by the 

diet. 

This thesis investigated the acute effects of two novel methods of dietary restriction; 

breakfast omission and severe energy restriction. The main aims for this thesis were to 

determine the effect of these methods of energy restriction on ad-libitum energy intake, 

subjective appetite sensations, and peripheral concentrations of hormones involved in 

appetite regulation. In addition, this thesis also investigated the effects of these methods of 

energy restriction on metabolism and glycaemic control at rest, and performance and 

perceived exertion during exercise.  

This work found that moderate and severe energy deficits induced by breakfast omission and 

24 h of severe energy restriction, respectively, resulted in either no (Chapter VIII) or partial 

(Chapters IV and VII) energy intake compensation over the subsequent 24-48 h. Subjective 

appetite was increased during (Chapters IV, V, VII and VIII) and shortly after (Chapter VII) 

energy restriction, but this effect was transient and was offset after an ad-libitum (Chapters 

IV and VII) or standardised (Chapters V and VIII) meal. In addition, none of the work 

presented in this thesis demonstrated an appetite hormone response to energy restriction that 

was indicative of compensatory eating behaviour.  

Compared to breakfast omission, breakfast consumption resulted in an increased in resting 

energy expenditure and carbohydrate oxidation, with a concurrent reduction in fat oxidation 

during the morning. However, there were no differences after lunch (Chapter V). In response 

to a standardised breakfast, resting energy expenditure was supressed (Chapter VII) or not 
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different (Chapter VIII) the following morning, after 24 h severe energy restriction compared 

to energy balance. Plasma NEFA and fat oxidation was greater, carbohydrate oxidation was 

reduced, and postprandial insulin sensitivity was impaired in the after 24 h severe energy 

restriction (Chapter VI, VII and VIII).    

In Chapter IV, omission of breakfast in the morning was shown to reduce exercise 

performance in evening, even after provision of an ad-libitum lunch 4 h before. However, 

there was no difference in perception of effort during steady state exercise, independent of 

breakfast consumption or omission in the morning (Chapters IV and V).    

Collectively, breakfast omission and 24 h severe energy restriction reduce energy intake and 

promote an appetite regulatory response conducive to maintenance of a negative energy 

balance. Chronic intervention studies are now required to confirm whether these effects 

persist after long-term practise of these dietary interventions.    

 

Key words: obesity, weight management, appetite, energy intake, energy balance, 

metabolism, acylated ghrelin, GLP-17-36, glucose, insulin, NEFA, glycaemic control 
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Chapter I  

Introduction 

Overweight and obesity are defined by a body mass index (BMI) of 25-29.9 kg·m-2 and equal 

to or greater than 30 kg·m-2, respectively. Obesity is further characterised by a body fat 

percentage greater than 25% for males and greater than 35% for females (Romero-Corral et 

al. 2008). Maintenance of a stable body weight is achieved by careful balance between 

energy intake and energy expenditure. In today’s ‘obesogenic’ society, an abundance of food 

and reduced reliance on physical activity for transportation and recreational activities, has led 

to mismanagement of energy balance and consequently weight gain, in a large proportion of 

the population. 

BMI has increased by ~0.5 kg·m-2 per decade (Finucane et al. 2011) and the worldwide 

prevalence of obesity rose 27.5% for adults and 47.1% for children between 1980 and 2013, 

with overweight and obesity estimated to affect ~37 % of adults in 2013 (Ng et al. 2014). 

Obesity is associated with an increase in the prevalence of several chronic diseases, including 

type-2 diabetes, heart disease, hypertension and cancer (Bray 2004). In the UK, these trends 

for increasing obesity predict 11 million more obese adults by 2030, with associated annual 

medical costs of ~£2 billion (Wang et al. 2011). 

For obese individuals, weight loss of as little as 5% of initial body mass is sufficient to reduce 

the risk factors of obesity-related disease (Anderson and Fernandez 2013). Whilst this 

appears to be achievable for a large number of individuals, part of the obesity problem stems 

from poor long-term maintenance of a reduced body mass (Anderson et al. 1999). Whether 

weight loss is achieved via dietary restriction, increased exercise or a combination of both, a 

fundamental obstacle in the attainment of a lower body mass is control of appetite. Appetite 

control has been identified as a major factor contributing to poor long-term dietary adherence, 

contributing to weight regain (Vogels and Westerterp-Plantenga 2005). 

Traditional dietary restriction methods involve continuous energy restriction, achieved by 

reducing each meal by ~25%, to induce a moderate daily energy deficit. However, the 

requirement for constant restriction of food intake in order to create a sufficiently large 

energy deficit to induce weight loss may contribute to poor long-term adherence to this 
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method of energy restriction. Recently, time-restricted eating has been proposed as a method 

of dietary restriction, popularised in the media as ‘intermittent fasting’. This style of dieting 

requires abstinence from food (or consumption of a very-low energy diet) for distinct periods 

of time and facilitates unrestricted consumption outside of these ‘food restriction windows’. 

Current weight management programmes appear to be unsuccessful in achieving and 

sustaining weight loss, highlighting a need for the development of novel and effective weight 

management programmes that encourage long-term adherence. How a given method of 

dietary restriction affects the appetite regulatory system may be a central factor governing 

dietary adherence and may also determine its suitability as a long-term weight management 

programme. 
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Chapter II  

Literature Review 

Energy Balance 
The first law of thermodynamics states that energy cannot be created or destroyed, but can be 

transferred from one state to another. Therefore, in a closed system, the total amount of 

energy is constant. In the context of human physiology, energy is present in three forms; 

energy intake, energy expenditure and stored energy. If the amount of energy consumed is 

greater than the amount of energy expended, the surplus energy is stored as potential energy 

in the body.  

Carbohydrate and fat, and to a lesser extent protein, are responsible for the regeneration of 

adenosine triphosphate (ATP) to fuel metabolic activities. When energy intake exceeds 

energy expenditure, excess energy will be stored for future use as either glycogen 

(carbohydrate) or triglycerides (fat).  Glycogen is stored in the liver and muscle and is 

hydrophilic in nature, with ~3 g of water stored per gram of glycogen. This imposes finite 

limits on the amount of energy that can be stored as glycogen. Total glycogen stores in adults 

are estimated to be ~200-500 g, but this varies dependant on body size, carbohydrate 

consumption, and patterns of energy intake and energy expenditure (Flatt 1995). In contrast, 

fat can be stored with only ~10 % water (Sawka et al. 1990) in adipocytes located throughout 

the body. For example, a 70 kg lean male with 15% body fat would have ~81,000 kcal 

(340,000 kJ) of stored energy, contained within ~35 billion adipocytes, each with ~0.4-0.6 µg 

triglycerides (Hall et al. 2012). These adipocytes can shrink, expand and even multiply, 

essentially providing infinite energy storage capacity (Flatt 1995). Due to the limited storage 

capacity for energy as carbohydrate and protein, a net positive energy balance will be 

reflected in an increase in adiposity (Schrauwen 2007).         

Energy intake is determined by macronutrient composition and amount of food consumed. 

The amount of energy in food that is available for metabolism is dependent on several factors, 

including gut flora, food preparation and the chemical composition of the food (Hall et al. 

2012). The energy density of different macronutrients varies and is typically reported in the 

literature as 4 kcal·g-1 (17 kJ·g-1) for carbohydrate and protein; 9 kcal·g-1 (38 kJ·g-1) for fat; 2 

kcal·g-1 (8 kJ·g-1) for fibre; and 7 kcal·g-1 (29 kJ·g-1) for alcohol (Hall et al. 2012). Therefore 



4 
 

a typical adult male diet, consistent with UK guidelines, containing 2500 kcal (10460 kJ) and 

with 50, 35 and 15 % of energy as carbohydrate, fat and protein, respectively, will provide 

~313 g of carbohydrate, ~97 g of fat and ~94 g of protein. 

Absorbed carbohydrate, fat and protein are converted into substrates that can be used to fuel 

metabolic processes. Total energy expenditure is comprised of three primary components; 

resting energy expenditure (REE), dietary induced thermogenesis (DIT) and physical activity 

energy expenditure (PAEE).  

REE is the energy required for basic survival processes, such as breathing, circulating blood 

and cell renewal. For the average individual, REE accounts for approximately two-thirds of 

total energy expenditure, and varies dependant on body size and composition (Johnstone et al. 

2005). Energy imbalance has also been shown to affect REE, with hypocaloric dieting 

reducing REE to a greater extent than predicted by the reduction in body size (i.e. weight loss) 

(Doucet et al. 2001).   

DIT is the energy required for digestion and absorption of food and represents the smallest 

component of energy expenditure. The proportion of ingested energy required for digestion 

and absorption varies dependant on macronutrient content. DIT is 20-30% (of energy 

consumed) after protein ingestion, 5-15% after carbohydrate ingestion, and 0-3% after fat 

ingestion (Westerterp et al. 1999). Whist DIT varies dependant on the energetic load and 

macronutrient content of a meal, when an individual is in energy balance, DIT typically 

accounts for 10% of daily energy expenditure (Westerterp 2004). 

REE and DIT varies little day-to-day within an individual, but the most malleable component 

of energy expenditure is physical activity. As a result, this component of energy expenditure 

varies substantially person to person. For a sedentary individual, ~20% of daily energy 

expenditure occurs through physical activity, but PAEE could account for up to 75% of total 

energy expenditure, during periods of heavy sustained exercise (Westerterp and Saris 1991).   

From conception, stored energy is net positive which enables growth and development, 

reflected by an increase in body weight throughout childhood. As an adult, if weight is 

maintained over time, stored energy approaches zero and an approximate state of energy 

balance is present (Hall et al. 2012). A typical person eats several meals during the day with 

energy balance is strongly positive after each meal. Energy expenditure is continuous, but is 

elevated during periods of physical activity and reduced during sleep. Therefore, energy 
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balance constantly fluctuates within and between days and this variability is reflected in 

dynamic changes in stored energy (Hall et al. 2012). The development of obesity is the result 

of net positive energy balance maintained over a prolonged period of time, above that 

required for normal growth and development. Counter to this, maintenance of a negative 

energy balance over time will lead to weight loss. For example, in the absence of behavioural 

change, an acute reduction in energy intake will lead to weight loss. However, over time, 

alterations in REE, DIT and PAEE will gradually reduce energy expenditure as weight is lost, 

leading to restoration of a new steady state at a lower body weight. The same is true after 

weight gain, therefore weight-stable overweight/ obese individuals are in energy balance, but 

this balance is achieved with a higher amount of body fat (Hall et al. 2012). To remain 

weight stable within 1 kg of body weight, energy balance must be maintained on average 

within ~24 kcal·d-1, which demonstrates the remarkable precision required for weight 

maintenance (Hall et al. 2011).  

 

Methods of Assessing Energy Balance 
With a constant of time, energy balance can be assessed during scientific investigation. There 

are several methods of assessment that can be used to determine energy intake and energy 

expenditure, and these vary in terms of accuracy and reliability.  

 

Energy intake 

Eating behaviour is a complex and multifaceted phenomenon which is likely influenced by 

physiological, cognitive and hedonic factors, in addition to learned behaviours. Therefore, the 

optimal protocol for measuring food intake is likely to remain elusive and inevitably 

compromises between external and internal validity have to be made (Blundell et al. 2010). 

Laboratory controlled studies often utilise an ad-libitum meal paradigm, which enables 

accurate quantification of energy intake by weighing food items before and after consumption. 

The internal validity for this method of energy intake assessment is high, as long as one 

factor (i.e. the intervention) is varied, whilst holding all other important factors constant. 

There are two main options available to researchers for assessing ad-libitum energy intake in 

the laboratory; either a single-item or multi-item buffet meal, with each of these approaches 

having various strengths and limitations. 
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The single item approach involves provision of a homogenous meal, often comprising of 

several ingredients, and each gram of food consumed is considered to have identical energy 

and macronutrient content. Consequently, this method only assesses energy intake and cannot 

determine food preference (Blundell et al. 2010). Care should be taken to ensure that the 

suitability of the meal selected is consistent with cultural ideals. In the UK, pasta with tomato 

sauce, sometimes with the addition of cheese and/or olive oil, is a frequently used example of 

a single-item ad-libitum meal (Deighton et al. 2013a; Gonzalez et al. 2013; James et al. 2015; 

Chowdhury et al. 2015a; Chowdhury et al. 2015b). With this type of energy intake 

assessment, the properties of the meal should be matched as closely as possible between trials 

to avoid any alterations in the sensory properties of the food, as this can independently affect 

amount consumed (Weenen et al. 2005). Care should be taken to ensure that the water 

content (e.g. water absorbed by the pasta during cooking), and therefore energy density of the 

meal, is consistent between trials, as this may influence the amount of food consumed (Bell et 

al. 2003). In addition, visual satiety cues should also be minimised. For example, it has been 

previously reported that humans will usually consume the entirety of the food on their plate 

(de Graaf et al. 2005), therefore when assessing ad-libitum energy intake, this visual satiety 

cue should be avoided. A caveat with the single-item ad-libitum energy intake assessment is 

the potential for boredom of taste, as opposed to satiation, causing the termination of eating 

(Blundell et al. 2010). 

An alternative to the single-item food intake assessment is the multi-item ad-libitum buffet 

paradigm, which has also been used extensively in the literature (King et al. 2010; King et al. 

2011; Deighton et al. 2013b; Corney et al. 2015; Douglas et al. 2015). The principles of the 

multi-item buffet are similar to the single item and it is essential that identical food options 

are provided between trials and that food is provided in excess of expected consumption. An 

advantage of the multi-item buffet is that it allows researchers to gauge food preferences (i.e. 

macronutrient selection) in addition to energy intake. However, it has been suggested that a 

free-selection buffet is an unreliable method of measuring food preference (Blundell et al. 

2010). This is because of difficulty in controlling the sensory properties of foods, which 

inevitably means subjects are likely to opt for familiar and palatable foods, as opposed to 

having a specific desire for a particular food type. Whilst it is also likely that an increase in 

food choices will delay satiety and lead to elevated energy intake (Rolls et al. 1981), single 

and multi-item ad-libitum energy intake assessments can reliably assess food intake (Blundell 

et al. 2010) with a similar degree of sensitivity (Wiessing et al. 2012). However, a common 
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limitation between both these methods of energy intake assessment is the low external 

validity, as the contrived environment for food intake assessment is unlikely to reflect a 

habitual environment and this may influence eating behaviour (Blundell et al. 2010).           

In contrast to the laboratory, free-living assessments of energy intake have greater external 

validity, but internal validity is generally poor (Blundell et al. 2010). There are two main 

methods of determining free-living energy intake; concurrent recording of food and drink 

intake at time of consumption (via food records) or retrospective recall of food and drink 

intake (via experimenter questioning). Retrospective recall requires subjects to remember 

exactly their eating habits and this method is likely to result in underestimated energy intake 

compared to concurrent reporting (Martin et al. 2002). In extension to this, completing a 

weighed food record, where each item is weighed and recorded at the time of consumption, 

may increase accuracy by reducing potential errors in estimating portion size (Gittelsohn et al. 

1994). However, these methods of reporting energy intake are prone to bias and/or 

misreporting. Aside from technical errors in reporting food intake, such as inaccurate 

weighing and incomplete descriptions of food (Whybrow et al. 2016), error can be introduced 

via two main avenues. Firstly, subjects may alter eating behaviour to report a diet that is 

closer to their perceptions of social norms, or for convenience as some foods are easier to 

weigh than others (Macdiarmid and Blundell 1997). Secondly, subjects may, either accidently 

or intentionally, omit some food items from their food record (Stubbs et al. 2014). As a result, 

self-reported energy intake from food records tends to be underreported (Livingstone and 

Black 2003; Whybrow et al. 2016), and it has been suggested that self-reported energy intake 

should not be used as a basis of scientific conclusions (Dhurandhar et al. 2015). However, 

these sources of error can be minimised by ensuring subjects are properly instructed and 

motivated to produce accurate food records (de Castro 1994). It is also important that the 

duration required to complete food diaries is short because reported energy intake has been 

shown to decrease as duration increases, indicative of inaccuracy (Gersovitz et al. 1978).   

Whilst there are inherent limitations in the measurement of self-reported energy intake, 

measurement error in a within-subjects study design should be similar between trials. Due to 

the likelihood of underreporting (Livingstone and Black 2003; Whybrow et al. 2016), self-

reported energy intake should not be used to evaluate energy balance (Subar et al. 2015), but 

can provide valuable information about whether energy intake is altered during or after an 

intervention (de Costa 1994; Subar et al. 2015).   
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Energy expenditure 

The interaction between dietary intake and energy expenditure will determine overall energy 

balance, and by virtue weight management, so an appreciation of energy expenditure is 

crucial.  

A simple method to calculate total energy expenditure is using predictive equations. 

Examples of these include the Mifflin-St Jeor (Mifflin et al. 1991), the Harris-Benedict 

(Harris and Benedict, 1919), the Owen (Owen et al. 1986; Owen et al. 1987) and the 

Schofield (Schofield, 1985) equations. The Mifflin-St Jeor equation, which uses weight, 

height, age and gender to estimate resting metabolic rate (RMR), is thought to be the most 

accurate (Frankenfield et al. 2005). Once calculated, RMR can be multiplied by a physical 

activity level, which is determined individually dependent on subjects’ habitual activity level, 

with 1.40-1.69 representative of a sedentary lifestyle, 1.70-1.99 for a moderately active to 

active lifestyle, and 2.00-2.40 for a vigorously active lifestyle (FAO/WHO/UNU, 2004). 

These values have been generated from doubly labelled water assessment, which is 

considered the ‘gold standard’ method for measuring total energy expenditure (Schoeller and 

Van Santen, 1982). The doubly labelled water technique is considered to be 93-99% accurate 

(Bluck, 2008), but the cost, practicalities and inability to determine individual components of 

energy expenditure (i.e. REE, DIT and PAEE) limit the wider usage of this method in 

research.  

In a laboratory, RMR can be determined by indirect calorimetry, whereby changes in volume 

and composition between inspired air and expired gas (in a specific time frame), can be used 

to calculate energy expenditure and substrate oxidation using the stoichiometric equations 

described by Frayn (1983). This method can accurately and reliably determine RMR 

provided certain conditions are met, including accurate calibration of equipment, subjects are 

in a rested steady state and that laboratory conditions remain similar measurement to 

measurement (Compher et al. 2006; Betts and Thompson 2012). Ideally, RMR should also be 

determined in the fasted state, but if the conditions described above are met, a postprandial 

elevation above fasted values can be attributed to DIT (Westerterp 2004).  

For a laboratory investigation, measurement of PAEE may not be a true representation of 

PAEE, as the confines of the laboratory are likely to restrict this aspect of energy expenditure. 

But in a free-living environment, PAEE is likely to be the most malleable component of 

energy expenditure. Previous research has attempted to measure free-living physical activity 
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using wearable devices, such as accelerometers, but an accurate determination of PAEE is 

difficult (Dhurandhar et al. 2015). Accelerometry is limited by the possibility for a high level 

of energy expenditure in the absence of acceleration (for example, running on a treadmill). 

This source of error can be countered by measuring heart rate, but this can vary 

independently of energy expenditure through stress or high-individual variability (Rennie et 

al. 2000). Actiheart monitors have enabled more accurate estimates of free-living energy 

expenditure to be achieved through combining accelerometry with heart rate (Rennie et al. 

2000). These devices have been recently used to investigate the effect of chronic energy 

restriction on energy expenditure (Betts et al. 2014; Chowdhuy et al. 2016). However, due to 

the extended time that subjects were required to remain in the laboratory and the acute 

monitoring period, free-living energy expenditure was not determined in the studies presented 

in this thesis.     

 

Appetite Regulation 
The appetite regulatory system affects energy balance by modulating energy intake. For the 

average individual, alterations in energy intake has a higher magnitude of impact on energy 

balance than alterations in energy expenditure (Thomas et al. 2012). In addition, a recent 

paper found that for every kilogram of body mass loss, energy intake was upregulated by 

~100 kcal·d-1, which is several fold greater than any energy expenditure adaptation to weight 

loss (Polidori et al. 2016). Therefore, understanding how the appetite regulatory system 

responds to an intervention may have a profound influence on whether the intervention can 

assist with long-term weight loss and management.  

Food intake is controlled by both satiation (the process that terminates an eating occasion) 

and satiety (the process that inhibits subsequent eating). The appetite regulatory system 

controls both satiation and satiety, but these are complex phenomenon, likely influenced by 

homeostatic, hedonic and behavioural cues (Figure 2.1). 
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Figure 2.1.  The “satiety cascade”, first constructed by Blundell et al. and subsequently 

modified by Mela (2006).  

 

Central regulation of appetite 

The hypothalamus is the key brain area that regulates energy homeostasis. Within the 

hypothalamus, the ventromedial hypothalamus is the appetite supressing (anorexigenic) 

centre and lateral hypothalamic area is the appetite stimulating (orexigenic) centre (Sohn 

2015). These brain regions are responsible for the integration and interpretation of several 

physiological and hedonic stimuli. 

The arcuate nucleus of the hypothalamus (ARC) contains two distinct neuronal pathways that 

have opposite effects on eating behaviour; the anorexigenic pro-opiomelanocortin (POMC) 

and the orexigneic neuropeptide Y/ agouti-related peptide (NPY/AgRP) neurons. POMC 

neurons suppress feeding by releasing α-melanocyte-stimulating hormone (α-MSH), which 

exerts an agonistic effect on the melanocortin-4 receptors (MC4R), a key anorexigenic 

pathway in the central nervous system. In contrast, AgRP produces an orexigenic effect by 

blocking α-MSH, exerting an antagonistic effect on MC4R (Sohn 2015), and NPY stimulates 
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food intake through activation of neuropeptide Y1 and Y5 receptors (Neary et al. 2004). The 

neurotransmitter gamma-aminobutyric acid (GABA) may also mediate orexigenic pathways 

involving GABAergic input from NPY/AgRP neurons, which inhibits POMC neurons to 

form an appetite regulatory circuit within the central nervous system (Sohn 2015).   

These neuropeptides are regulated in response to hormonal inputs from the circulation and 

neural inputs from the vagus nerve, which has nerve endings located in the gastrointestinal 

tract (Neary et al. 2004). The ARC is ideally positioned, with a rich blood supply due to close 

proximity to the median eminence and receives neural input from multiple parts of the central 

nervous system, including the nucleus of the solitary tract (NTS) in the brainstem (Sohn 

2015). Stimulation of ARC and NTS neurons induces neurotransmission to multiple parts of 

the hypothalamus, particularly the paraventricular nucleus (PVN). The PVN integrates these 

signals and initiates a coordinated behavioural response (Figure 2.2). 

  

https://en.wikipedia.org/wiki/Neurotransmitter
https://en.wikipedia.org/wiki/Gamma-aminobutyric_acid
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Figure 2.2. Action of peripheral appetite-regulatory signals on neural pathways to influence 

eating behaviour. Adapted from Neary et al. 2004, Wynne et al. 2005 and Murphy and 

Bloom 2006. INS, insulin; PP, pancreatic peptide; GHR, ghrelin; GLP-1, glucagon-like 

peptide-1; PYY, peptide YY; CCK, cholecystokinin; LEP, leptin; NPY, neuropeptide Y; 

AgRP, agouti-related peptide; POMC, pro-opiomelanocotin; NTS, nucleus of the solitary 

tract; PVN, paraventricular nucleus. Solid lines indicate a stimulatory effect and dashed lines 

indicate an inhibitory effect. 

 

Peripheral regulation of appetite 

As illustrated in figure 2.2, there are several tonic and episodic hormones that have been 

implicated in the regulation of appetite and help to maintain energy balance homeostasis. 

Tonic hormones are altered in response to long-term changes in energy balance, whereas 

episodic hormones are thought to respond to short term fluctuations in fasting and feeding 

cycles. 
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Tonic signals   

Kennedy (1953) postulated that hypothalamic regulation of food intake was determined by a 

circulating factor that responds to changes in adipose tissue mass to achieve long-term weight 

stability.  Leptin, primarily secreted by adipose cells in concentrations proportional to fat 

mass (Zhang et al. 1994; Considine et al. 1996), has been identified as a candidate for this 

role. As concentrations of leptin increase, leptin exerts an anorexigenic action through 

inhibition of the NPY/AgRP neurons and stimulation of the POMC neurons (Cowley et al. 

2001). Leptin increases after several days of overfeeding (Kolaczynski et al. 1996) and falls 

dramatically during periods of energy restriction (Weigle et al. 1997). The magnitude of this 

response to energy restriction is disproportionate to fat-mass loss, suggesting that leptin may 

prompt an increase in energy intake prior to body mass loss, to stabilise body mass (Neary et 

al. 2004). The importance of leptin in energy homeostasis has been shown in leptin-deficient, 

hyperphagic obese children, with recombinant leptin reducing hyperphagia and fat mass 

(Farooqi et al. 2002). However, plasma leptin concentrations are elevated in obese 

individuals (Considine et al. 1996), reflecting their high fat mass, but also indicating 

resistance to the anorexigneic effects of leptin may occur with obesity. 

Insulin also fits the criteria described by Kennedy (1953), as insulin increases in response to 

nutrient intake and greater plasma concentrations tend to be present in overweight and obese 

individuals (Porte et al. 2002). Insulin is secreted from the pancreas and has a central role in 

metabolism. Once insulin penetrates the blood-brain barrier, it produces an anorexigneic 

effect through inhibition of the NPY/AgRP pathways and stimulation of the POMC pathways 

(Wynne et al. 2005). In line with leptin, fasted and postprandial concentrations of plasma 

insulin increase with adiposity, and the development of peripheral insulin resistance appears 

to coincide with hypothalamic insulin resistance, which reduces the anorexigenic effects of 

the hormone (De Souza et al. 2005).      

 

Episodic signals   

Whilst alterations in fasting and postprandial leptin and insulin concentrations tend to occur 

over long periods of time, there are several hormones that have been implicated in the short 

term regulation of food intake. These hormones are primarily secreted from the 

gastrointestinal tract in response to nutrient intake and may be involved in satiation and 

satiety. After food intake, mechanoreceptors in the stomach respond to gastric distention, 
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sending anorexigenic signals via the vagus nerve to the NTS (Janssen et al. 2011). 

Concurrently, an array of appetite mediating gut peptides are secreted, which influence 

appetite regulation and energy homeostasis through various pathways.  

Ghrelin   

Ghrelin is a 28-chain amino-acid peptide, secreted primarily from the oxyntic cells in the 

stomach (Kojima et al. 1999). Ghrelin is unique as it is the only peripherally circulating 

peptide understood to stimulate the NYP/AgRP orexigenic pathway (Wynne et al. 2005). 

Plasma concentrations are highly responsive to feeding, with high concentrations in the fasted 

state which are rapidly suppressed after feeding (Cummings et al. 2001). Intravenous 

administration of ghrelin increased food intake 28% compared to saline infusion (Wren et al. 

2001) and concentrations of ghrelin also correlate with perception of hunger (Cummings et al. 

2004), suggesting a central role for ghrelin in short term appetite regulation. However, in the 

study of Wren et al. (2001), it should be noted that the intravenous infusion of ghrelin (5 

pmol·kg-1·min-1) produced supraphysiological plasma ghrelin concentrations in order to 

suppress food intake. In a more recent study, ghrelin was intravenously infused at a far lower, 

but still supraphysiological, concentration (0.3 pmol·kg-1·min-1), and there was no effect on 

appetite perceptions (Lippl et al. 2012). Therefore caution is necessary when interpreting 

intravenous infusion studies. Ghrelin also appears to be involved in chronic energy 

homeostasis, as plasma concentrations of ghrelin are lower in obese individuals and higher in 

anorexia nervosa patients (Tschop et al. 2001).  

In order to exert its biological function, ghrelin requires acylation with n-octanoic acid, by the 

enzyme ghrelin O-acyl transferase (GOAT) (Yang et al. 2008). Acylated ghrelin is therefore 

orexigenic, with desacylated ghrelin a by-product of its degradation, although recent work 

suggests desacylated ghrelin may have a distinct biological action (Delhanty et al. 2012). 

Ghrelin is an endogenous agonist of the growth hormone secretagogue receptor (GHS-R) and 

stimulates the release of growth hormone through the type 1a receptor in the hypothalamus 

(Wynne et al. 2005). However, the orexigenic effects of ghrelin are independent to the effects 

on growth hormone. Ghrelin stimulates the NPY/AgRP pathways and inhibits the POMC 

pathways (Cowley et al. 2003), with GHS-R also located on the vagus nerve (Date et al. 

2002), suggesting that ghrelin may effect both the ARC and NTS to stimulate an orexigenic 

action. 
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Glucagon-like peptide-1 (GLP-1) 

GLP-1 is secreted from the intestinal L-cells in response to nutrient intake and exerts an 

anorexigenic action, in addition to its role in insulin secretion (Holst 2007). Peripheral 

administration of GLP-1 reduces food intake in a dose dependant manner in lean and obese 

individuals (Verdich et al. 2001), although at a physiological concentration these effects were 

attenuated (Flint et al. 2001). Plasma concentrations of GLP-1 are also reduced after weight 

loss (Adam et al. 2005; Adam et al. 2006) and GLP-1 has been shown to reduce the rate of 

gastric emptying (Nauck et al. 1997). GLP-1 is primarily present in two forms; GLP-17-36 (the 

biologically active form) and GLP9-37 (the inactive form). Upon release, GLP7-36 is rapidly 

degraded into its inactive form by the enzyme dipeptidyl peptidase-IV (DPP-IV) (Holst 2007). 

Therefore, concentrations of GLP7-36 detected peripherally may not accurately represent 

GLP7-36 secreted from the intestine. 

Anorexigenic effects appear to be mediated primarily by GLP-1 receptors located in the ARC 

and NTS (Neary et al. 2004). Receptors in the NTS are activated (show c-fos expression) by 

distension of the stomach via afferent feedback from the vagus nerve (Vrang et al. 2003). The 

effect of GLP-1 on gastric emptying may also contribute the anorexigenic effect, by 

increasing satiation and satiety (Nauck 2009).  

Peptide YY (PYY) 

PYY is a member of the NPY family and is co-secreted with GLP-1 from the intestinal L-

cells (Habib et al. 2013). Plasma concentrations of PYY are low in the fasted state 

(Batterham et al. 2007) and increase rapidly after food intake (Adrian et al. 1985). Like GLP-

1, PYY is present peripherally in two forms. PYY3-36 is the most abundant and bioactive form 

and is produced by cleavage of the N-terminal from the biologically inactive PYY1-36, by the 

enzyme DPP-IV (Karra et al. 2009). The anorexigneic effect of this peptide was 

demonstrated with peripheral administration of PYY3-36, which reduced food intake in lean 

and obese individuals (Batterham et al. 2003). However, this study induced 

supraphysiological concentrations of PYY3-36 to see this effect. Infusion of PYY3-36 to induce 

a physiological increase in plasma PYY3-36 does not inhibit food intake (Degen et al. 2005), 

suggesting that pharmacologic doses of exogenous PYY3-36 are required to inhibit food intake 

in humans.  The anorexigenic action of PYY3-36 appears to be due to high affinity with the Y2 

receptor, which produces inhibitory expression on NPY neurons (Wynne et al. 2005).  
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Cholecystokinin (CCK) 

CCK is an anorexigenic hormone, released from intestinal I cells in response to nutrient 

intake, peaking approximately 25 min after eating (Harrold et al. 2012). CCK has been 

suggested to be important for satiation, as pre-meal peripheral administration of CCK has 

been shown to reduce food intake via earlier meal termination (Kissileff et al. 1981), but has 

little effect on satiety, possibly due to its short half-life (1-2 min) (Wynne et al. 2005). 

Consequently, meal frequency has been shown to increase with pre-meal peripheral 

administration of CCK in animals (West et al. 1984). CCK exerts an anorexigenic effect 

through the NTS, via activation of CCK1 receptors on the vagus nerve (Wynne et al. 2005).      

Pancreatic Peptide (PP) 

PP is produced by pancreatic islet cells in response to gastric distension (Wynne et al. 2005). 

PP binds with greatest affinity to Y4 and Y5 receptors but cannot cross the blood brain 

barrier (Wynne et al. 2005). Therefore PP is likely to exert an anorexigenic influence through 

the vagus nerve and may modulate the action of other gut hormones, such as ghrelin (Wynne 

et al. 2005).  

 

Measurement of subjective appetite  

As well as interpreting the hormonal regulators of appetite, it is important to understand that 

subjective sensations of appetite, such as hunger, fullness, desire to eat and prospective food 

consumption, are likely to have an important role in determining energy intake at a single 

meal, and also subsequent meal initiation. In research, these subjective responses are 

typically quantified using visual analogue scales (Blundell et al. 2010).  

It is important to note that the validity of these scales are not dependant on the outcome 

measure (i.e. energy intake), as there are times when humans will eat without the sensation of 

hunger, and conversely can avoid eating when hungry (Mattes, 1990). Instead, these 

subjective measures should be considered an indicator of subject’s susceptibility to be 

influenced (e.g. by external stimuli) to consume food. When conducted appropriately, visual 

analogue scales can produce valid and reproducible results (Blundell et al. 2010). Using a 

100 mm visual analogue scale to assess hunger, satiety, fullness, prospective food 

consumption, desire to eat and sensory variables, Flint et al. (2000) found good test-retest 

reliability in fasting and mean postprandial appetite sensations. In addition, this study also 
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determined that differences between subjective appetite sensations in a paired research design 

could be detected in 8-11 subjects. Therefore, when sufficiently powered, visual analogue 

scales can be used as a surrogate measure for determining subjective appetite sensations in 

research.  

 

Eating behaviour 

Fundamentally, eating is a rewarding and pleasurable process, intrinsically linked to mood 

and emotions, which can challenge homeostatic regulation of energy intake (Meule and 

Vogele 2013). For our ancestors, this emotional attachment to food led to the engagement in 

food seeking behaviour, which was essential for our survival as a species. Whilst this 

pleasurable attachment to food remains important to our survival, the abundance of food and 

omnipresence of food related cues in today’s society often means these tendencies are 

counterproductive for the regulation of a healthy body weight. Dietary restraint and 

disinhibition are two counteracting eating behaviours that form the basis for regulating 

energy intake. Whilst many individuals are able to balance restraint and disinhibition, others 

exhibit overexpression of one or both of these tendencies, which can lead to disorders such as 

anorexia, bulimia, or obesity (Meule and Vogele 2013).   

Numerous factors are thought to determine or guide eating behaviour. Social interaction 

(Higgs and Thomas 2016) and environmental cues (such as packaging, portion size and 

advertising) (Cohen and Babey 2012) have been shown to increase energy intake, as it is 

thought that these factors override the cognitive effort required to successfully practise 

dietary restraint (Mitchell and Brunstrom 2005). In addition, conforming to the behaviour of 

others is adaptive and rewarding, which is often why ‘social-facilitation’ leads to increased 

energy intake (Higgs and Thomas 2016). 

In a laboratory environment efforts are made to limit these influences. For example, subjects 

consume food at distinct meal times, in an isolated booth to avoid any effect of meal planning 

or social interaction on energy intake. In addition, individuals exhibiting high levels of 

dietary restraint or disinhibition, determined using the three-factor eating questionnaire 

(Stunkard and Messick 1985), are excluded from these studies, allowing results to be 

generalised to a greater proportion of the population. However, in a free-living environment, 

it is likely that eating behaviours and tendencies will play a role in governing energy intake.          
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Insulin Sensitivity 
Despite constantly cycling between periods of fasting and feeding, plasma glucose 

concentrations are consistently maintained within a narrow range of ~4-10 mmol·L-1. This is 

achieved by regulation of glucose absorbance from the intestine, glucose production from the 

liver, and uptake and metabolism of glucose primarily in the body’s peripheral tissues (Saltiel 

and Kahn 2001). Insulin is the key hormone at the centre of this regulatory process with 

concentrations of plasma insulin directly affecting endogenous production and exogenous 

glucose delivery. In the fasted state, low concentrations of insulin (and increased 

concentrations of glucagon), which will promote hepatic glucose production and reduce 

uptake of glucose into the peripheral tissues After feeding, insulin is released from the 

pancreas, signalling glucose uptake in muscle and fat for metabolism and storage, inhibiting 

hepatic glucose production. (Saltiel and Kahn 2001). This ability to balance the utilisation 

and storage of glucose has enabled humans to cope with prolonged periods of food scarcity, 

but can become counter expedient in a sedentary society with an abundant food supply 

(Samuel and Shulman 2012). Excess food intake and lack of exercise can lead to the 

development of insulin resistance, essentially dampening the body’s response to insulin, 

requiring greater concentrations to elicit the same response. Typically, this results in 

prolonged elevation of plasma glucose, which causes oxidative stress and damage to several 

organs and tissues (Kawahito et al. 2009). Prolonged resistance to insulin can lead to the 

development of type-2 diabetes, a condition characterised by prolonged periods of 

hyperglycaemia, due to almost complete resistance to the action of insulin and/or dysfunction 

of the insulin secreting pancreatic β-cells (Kahn 2003).  

Insulin increases glucose uptake in cells via translocation of glucose transporter type 4 

(GLUT4) from intracellular to cell surface (Saltiel and Kahn 2001). The skeletal muscle is 

the primary site of insulin-dependent glucose uptake, with a small amount insulin-dependent 

uptake in adipose tissue (Klip and Paquet 1990). Although insulin does not directly stimulate 

hepatic glucose uptake, insulin does block glycogenolysis and gluconeogenesis and 

stimulates glycogen synthesis, thereby maintaining normal plasma glucose concentrations 

(Saltiel and Kahn 2001; Figure 2.3). 
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Figure 2.3. Role of insulin in the regulation of glucose homeostasis. Exogenous glucose from 

the digestive absorption of nutrients and endogenous hepatic glucose production enter the 

blood. This stimulates pancreatic β-cells to release insulin, which then signals the uptake of 

glucose in skeletal muscle and adipose tissue and inhibits hepatic glucose production. Non-

insulin-dependent glucose uptake occurs in other tissues, including the brain. Adapted from 

Saltiel and Kahn 2001. G, glucose. Solid lines indicate a stimulatory effect and dashed lines 

indicate an inhibitory effect.   

 

Insulin signalling pathways 

A full examination of insulin signalling pathways is beyond the scope of this thesis. 

Interested readers are directed to the following papers for more comprehensive reviews 

(Saltiel and Kahn 2001; Samuel and Shulman 2012).  

After secretion from pancreatic β-cells, insulin activates the insulin receptor (IR) tyrosine 

kinase on the cell membrane. Downstream regulation then requires phosphorylation of insulin 

receptor substrate-1 (IRS1), which then leads to the activation of Akt2, through a series of 

intermediary steps. Akt2 then phosphorylates AS160, which promotes the translocation of 

GLUT4 from the intercellular to the cell surface, allowing glucose to enter the cell. The 
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enzyme glycogen synthase then promotes the storage of glucose as glycogen. This pathway is 

particularly important for glucose uptake in the muscle, which is responsible for 75% of total 

insulin-dependent glucose uptake (Klip and Paquet 1990). Concurrently, Akt also inactivates 

forkhead box protein O1 (FOXO1) to reduce gluconeogenesis, thereby reducing hepatic 

glucose production (Samuel and Shulman 2012). In sum, this pathway regulates blood 

glucose concentration during times of high exogenous glucose availability (i.e. after a meal) 

by increasing glucose uptake in active tissues and reducing hepatic glucose production.  

The accumulation of excess adiposity (particularly visceral adiposity) is associated with the 

development of insulin resistance through dysregulation of insulin signalling (Hardy et al. 

2012). One mechanism of insulin resistance may be due to an increase in metabolically toxic 

fatty acids, such as ceramides and diacylglycerides, which are products of incomplete fatty 

acid oxidation (Hardy et al. 2012). These may impair downstream insulin signalling via 

activation of protein kinase C (PKC) proteins, which impairs Akt activation, thus limiting 

GLUT4 translocation. In addition, impaired Akt activation limits the inactivation of FOXO1, 

which increases gluconeogenesis in liver, resulting in reduced suppression of hepatic glucose 

production (Samuel and Shulman 2012). Consequently, plasma glucose is elevated due to 

reduced glucose uptake and greater hepatic glucose production.  

A second mechanism of impaired insulin action is the release of inflammatory cytokines, 

such as tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6). Visceral adipose tissue has 

a propensity to secrete cytokines that impair insulin signalling and this may contribute to 

insulin resistance (Hardy et al. 2012). Specifically, these cytokines may activate nuclear 

factor kappa-B kinase (IKK) and c-Jun N-terminal kinases (JNK1), which impact insulin 

signalling via ceramide synthesis and via reduced serine phosphorylation of IRS1, 

respectively (Samuel and Shulman 2012; Figure 2.4.).         

Therefore the accumulation of body fat (particularly visceral fat) with obesity may increase 

the risk of insulin resistance, potentially progressing to type-2 diabetes, through dysregulation 

of the insulin signalling cascade. Therefore, methods to prevent the accumulation of body fat 

are of critical importance.    
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Figure 2.4. Simplified insulin signalling cascade and pathways involved in dysregulation of 

insulin signalling. Adapted from Samuel and Shulman (2012). INS, insulin; TAG, 

triglycerides; NEFA, non-esterified fatty-acid; G, glucose; IR, insulin receptor; IRS1, insulin 

receptor substrate 1; GLUT4, glucose transporter type 4; LPL, lipoprotein lipase; CD36, 

cluster of differentiation 36; PKC, protein kinase C;  PP2A, protein phosphatase 2A; DAG, 

diacylglycerol; CER, ceramide; IKK, inhibitor of nuclear factor kappa-B kinase; JNK1, c-Jun 

N-terminal kinases; IL-6, interkeukin-6; TNF-α, tumor necrosis factor alpha. Solid lines 

indicate a stimulatory effect and dashed lines indicate a pathway of dysregulation.     

 

The ‘incretin effect’ 

The ‘incretin effect’ was first recognised when it was observed that the insulinemic response 

to a glucose load was greater when ingested orally compared to when administered 

intravenously (Nauck et al. 1986). This postprandial elevation in insulin secretion is 

potentiated by two gut hormones, GLP-1 and glucose-dependant insulinotropic peptide (GIP), 
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which are released in response to glucose consumption (i.e. prior to absorption), and thought 

to account for up to 70% of total insulin secretion in healthy individuals (Baggio and Drucker 

2007).  

GIP is released in its active form (GIP1-42) from the intestinal K-cells in the proximal intestine 

and the insulinotropic action of GIP is mediated by G-protein-coupled receptors located on 

islet β-cells (Baggio and Drucker 2007). Due to its proximal location in the intestine, it is 

thought that GIP is primarily responsible for first-phase insulin secretion. In diabetic 

individuals GIP may be hypersecreted, but sensitivity to the insulinotropic action is largely 

lost. This may be due to reduced expression of GIP-receptors or reduced β-cell sensitivity 

(Nauck 2009).  

In contrast, GLP-17-36 is secreted from intestinal L-cells located in the distal intestine (Baggio 

and Drucker 2007), but GLP-1 exerts an effect on both first and second phase insulin 

secretion. Like GIP, GLP-17-36 binds to receptors on islet β-cells, directly stimulating insulin 

secretion. However, GLP-1 also mediates postprandial glycaemia by delaying gastric 

emptying, thus slowing the delivery of nutrients into the circulation (Nauck et al. 1997). This 

likely occurs via effects on vagal neurotransmission (Nauck et al. 1997). GLP-1 also inhibits 

the release of glucagon from pancreatic α-cells, which subsequently suppresses hepatic 

glucose production (Baggio and Drucker 2007) 

Upon release, GLP-17-36 and GIP1-42 are rapidly degraded into GLP-19-36 and GIP3-42 by DPP-

IV within 2-7 min, after which they can no longer exert their biological effect (Nauck 2009).  

 

Energy Restriction 
As previously discussed, the accumulation of excess adiposity is associated with development 

of several chronic diseases (Bray 2004) and even a modest (~5%) reduction in weight can 

reduce risk factors of these diseases significantly (Anderson et al. 1999). In reference to the 

laws of thermodynamics, interventions either decreasing energy intake or increasing energy 

expenditure should have equal effects on energy balance and weight loss. However, these two 

methods of inducing an energy deficit appear to have disparate effects on appetite regulation 

and energy intake (King et al. 2011; Cameron et al. 2016). In the short term, energy intake 

appears to be unaffected by exercise (King et al. 2011; King et al. 2010; Deighton et al. 
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2013a), whereas energy restriction has been shown to markedly increase hunger and energy 

intake (King et al. 2011; Hubert et al. 1998; Cameron et al. 2016).  

Despite this, in a free-living environment, weight-loss interventions utilising energy 

restriction or a combination of energy restriction and exercise, achieve far superior weight 

loss, compared to interventions utilising exercise alone (Miller et al. 1997). One reason for 

this could be that even modest energy restriction has the potential to exert a profound effect 

on energy balance. For example, typical energy restriction diets aim to reduce daily energy 

intake by about 25% (~2615 kJ), which would require approximately 60 min of moderate 

intensity exercise each day (65 % VO2max), to achieve a comparable energy deficit with 

exercise alone (Deighton et al. 2013a).    

Independent of this, long-term weight loss maintenance after a weight-loss intervention is 

poor, with only 30-40% of individuals able to maintain a 5% reduction in body mass 

(Anderson et al. 1999; Greenberg et al. 2009; Sacks et al. 2009). This demonstrates an 

outstanding need for the development of novel, effective dietary programmes that can assist 

with long-term weight management.  

 

Time-restricted eating 

Traditional weight management programmes involve continuous energy restriction to induce 

a moderate daily energy deficit. However, one problem with this style of dieting might be the 

requirement for constant adherence to the diet in order to create a sufficiently large energy 

deficit to induce weight loss. Recently, restricting ‘time to eat’ as oppose to ‘amount to eat’ 

has emerged as an alternative method of energy restriction. The basic premise behind this 

style of dieting is that individuals abstain from food during distinct periods of time, which 

then permits an ad-libitum approach to eating outside of these windows of complete energy 

restriction. This negates some of the arduous characteristics of continuous energy restriction 

diets, such as the requirement for practising continuous dietary restraint and ‘counting 

calories’. Examples of this style of dieting include breakfast omission (Betts et al. 2011) and 

intermittent fasting (Heilbronn et al. 2005).  

An extension of time-restricted eating is intermittent severe energy restriction. This method 

of dieting permit the consumption of a very-low energy diet on 1-4 days in the week, with ad-

libitum or adequate energy intake permitted on other days. In tightly controlled dietary 
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intervention studies, intermittent severe energy restriction has been shown to achieve 

considerable weight loss (Varady et al. 2009, Varady et al. 2011, Varady et al. 2013; Harvie 

et al. 2011, Harvie et al. 2013).     

Diet composition manipulation 

Manipulating the composition of the diet can also have an indirect effect on food intake, 

through modulation of appetite. Gram-for-gram, protein is thought to be a more satiating 

macronutrient than carbohydrate or fat, potentially mediated by promotion of anorexigenic 

and suppression of orexigenic hormones (Leidy et al. 2015). In addition to the satiating 

properties of protein, DIT is greater after protein ingestion compared to carbohydrate and fat, 

and consequently may potentiate an energy deficit by increasing energy expenditure 

(Westerterp 2004).   

During energy restriction, reductions in fat-free mass account for ~20% of overall weight loss 

(Krieger et al. 2006). In particular, reducing skeletal muscle during weight loss is likely to be 

counter-productive to long-term weight management and health, as skeletal muscle increases 

energy expenditure via REE (Ravussin et al. 1986) and is also the body’s primary site for 

glucose uptake (DeFronzo et al. 1985). Evidence suggests that increasing protein intake 

during energy restriction can attenuate fat-free mass loss and may also increase fat mass loss 

(Wycherley et al. 2012).  

Therefore, ensuring adequate (≥0.8 g·kg-1 body mass·d-1) protein intake during energy 

restriction may facilitate fat mass loss through preservation of fat-free mass and modulation 

of appetite (Leidy et al. 2015).     

 

Diet and exercise interactions 

Weight management interventions combining energy restriction and exercise have been 

shown to be more effective for sustaining long-term weight loss and maintenance (Franz et al. 

2007), and there is overwhelming evidence that physical activity can reduce the risk of 

developing numerous chronic diseases (Roberts and Bernard 2005). Therefore, if energy 

restriction was to affect compliance to exercise, or vice-versa, this could have large 

implications for the success of these interventions in achieving and sustaining weight loss. 

This also applies to individuals engaged in sports of which reducing body weight might 

benefit performance. Many of these individuals may consume a hypoenergetic diet to attain a 
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lower body mass, whilst also striving to achieve optimal exercise performance and training 

adaptation. 

It is generally considered that energy restriction reduces exercise performance (Maughan et al. 

2010). In the extreme, complete abstinence from food for 24-48 h, severely reduces exercise 

performance (Loy et al. 1986; Maughan and Gleeson 1988), although this scenario would be 

rare for the majority of individuals. However, athletes often experiment with popular dietary 

‘trends’ (Rosenbloom 2014), but in the majority of cases, the effects of these diets on 

exercise are relatively unknown.  

Therefore, an improved understanding of the interaction between novel methods of energy 

restriction and exercise will help inform whether these diets can be used effectively in 

combination with exercise, with implications for individuals concerned with weight 

management and/or exercise performance.  

The previous sections have sought to introduce the overarching themes assessed and 

discussed in the experimental chapters of this thesis. The subsequent sections will address the 

current literature related to the specific dietary interventions investigated; breakfast omission 

and severe energy restriction.   
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Breakfast 
Breakfast has long been considered an integral part of a ‘healthy balanced diet’ (Marangoni et 

al. 2009). This is partly due to associations in the literature that show individuals who 

regularly omit breakfast have a higher BMI (Cho et al. 2003; Purslow et al. 2008) and 

increased prevalence of obesity related chronic diseases (Timlin and Pereira 2007), including 

type-2 diabetes (Mekary et al. 2012) and coronary heart disease (Cahill et al. 2013). Despite 

this, breakfast omission is becoming more common in western society (Haines et al. 1996) 

and it was recently reported that 36% of the UK population either ‘sometimes’ or ‘always’ 

omit breakfast (Reeves et al. 2013). Interestingly, a major reason given for omitting breakfast 

is weight management, which would appear to contradict a proportion of the scientific 

evidence (Zullig et al. 2006). A particular problem when determining breakfast habits on a 

large scale is how ‘breakfast’ is defined. Individual perceptions of what is considered 

‘breakfast’ may be contingent on the time of the day the meal is consumed or the types of 

food that are consumed. This is a major problem when reviewing research on breakfast habits, 

particularly epidemiological research, as subjects may be permitted to define breakfast 

themselves and this definition may differ person to person. In research, breakfast is typically 

defined as the first meal of the day, consumed within 2 h of waking, before commencing 

daily activities, and has been suggested to contain 20-35% of daily EER (Timlin and Pereira 

2007). 

Whilst the efficacy of controlling energy intake via breakfast omission appears to contradict a 

portion of the scientific evidence, individuals who regularly consume breakfast often exhibit 

other healthy lifestyle factors, such as increased physical activity (Wyatt et al. 2002), 

improved dietary profiles (Galvin et al. 2003) and reduced consumption of snacks (O’Connor 

et al. 2009). Therefore, it is difficult to determine whether improved weight control is 

mediated through breakfast consumption per-se, or whether this may be the result of other 

lifestyle factors. A recent study also found that presumptions and beliefs about the 

importance of breakfast on health may predispose studies to biased reporting, further 

confounding the matter (Brown et al. 2013). This demonstrates a need for causal data from 

randomised controlled trials, and a number of studies have recently been performed, helping 

to elucidate causal links between breakfast and energy balance.  
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Effect of breakfast on energy intake 

Single exposure studies 

The association of regular breakfast omission with a higher BMI (Cho et al. 2003; Purslow et 

al. 2008) has led to the wide spread belief that breakfast omission causes overeating at 

subsequent meals and greater daily energy intake (Pereira et al. 2011). However, the weight 

of evidence from well controlled laboratory intervention studies (Table 2.1.) does not support 

this belief (Levitsky and Pacanowski 2013; Gonzalez et al. 2013; Chowdhury et al. 2015a; 

Chowdhury et al. 2015b; Hubert et al. 1998). The majority of single exposure studies have 

reported either no difference (Levitsky and Pacanowski 2013; Gonzalez et al. 2013; 

Chowdhury et al. 2015b), or an increase (Astbury et al. 2011; Levitsky and Pacanowski 2013; 

Chowdhury et al. 2015a; Hubert et al. 1998) in energy intake, at the first meal consumed 

after breaking the fast (i.e. lunch). However, with the exception of one study (Astbury et al. 

2011) the increase in energy intake at lunch was not sufficient to fully compensate for the 

energy omitted at breakfast, resulting in a reduced gross energy intake (i.e. breakfast + lunch 

energy intake) (Levitsky and Pacanowski 2013; Gonzalez et al. 2013; Chowdhury et al. 

2015a; Chowdhury et al. 2015b; Hubert et al. 1998). With the exception of Astbury et al. 

(2011), who reported 78% compensation at lunch for the energy omitted at breakfast, studies 

have generally reported compensation in the range 0-35% (Levitsky and Pacanowski 2013; 

Gonzalez et al. 2013; Chowdhury et al. 2015a; Chowdhury et al. 2015b; Hubert et al. 1998). 

The amount of compensation observed at lunch might, in part, be related to the energy 

content of the breakfast provided. Consuming a low energy breakfast has been shown to be 

more accurately compensated for at subsequent meals (Schusdziarra et al. 2011) and might 

explain why Astbury et al. (2011) observed almost complete compensation, whilst others 

reported much less compensation (Levitsky and Pacanowski 2013; Gonzalez et al. 2013; 

Chowdhury et al. 2015a; Chowdhury et al. 2015b; Hubert et al. 1998). Whilst it may be 

possible to increase food intake to compensate for a small energy deficit, a certain threshold 

may exist, above which complete energetic compensation at a subsequent meal (or meals) is 

unlikely. 

Levitsky and Pacanowski (2013) also assessed energy intake beyond a single meal (Table 

2.1). Consistent with other findings, an increase in energy intake was observed at lunch 

following the omission of breakfast. However, no additional energetic compensation occurred 

at subsequent eating occasions and therefore gross energy intake (including breakfast) was 

reduced by 1885 kJ following breakfast omission. Similarly, Thomas et al. (2015) also 
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reported no difference in energy intake at an ad-libitum dinner, provided 5 h after a 

standardised lunch, independent of breakfast consumption in the morning. In this study gross 

energy intake was reduced by ~710 kJ when breakfast was omitted, but this did not reach 

statistical significance. These studies suggest that energy intake is not accurately regulated in 

the short term (Levitsky 2005) and that omission of a single breakfast meal is unlikely to lead 

to compensation later in the day.  

  



29 
 

Table 2.1. Intervention studies assessing energy intake after a single breakfast omission 

Reference Subjects Breakfast Study Design Results 

Hubert et al. 

(1998)* 

n=11 (all F); 23 y; 

22 kg·m-2; 23% 

BF; active 

BC: 2090 (175) kJ 

BO: 270 (30) kJ 

EI assessed at AL lunch 4 h 

post BO/BC 

 

EI at lunch  ~655 kJ greater during BO (P<0.05) 

Gross EI ~1165 kJ greater during BC (P<0.05) 

Astbury et al. 

(2011) 

n=12 (all M); 23 

y; 25 kg·m-2; 

100% RBC 

BC: ~1080 kJ 

BO: 0 kJ 

EI assessed at AL lunch 4.5 h 

post BO/BC 

EI at lunch ~860 kJ greater during BO (P<0.01) 

Gross EI not different between trials (P>0.05) 

Levitsky et 

al. (2013) 

n=24 (19 F); 22 y; 

21 kg·m-2; 75% 

RBC 

BC (high CHO): 

1400 kJ 

BC (high fibre): 

1415 kJ 

BO: 0 kJ 

EI assessed at AL lunch 3.5 h 

post BO/BC 

EI at lunch not different between trails (P>0.05) 

Gross EI ~1435 kJ greater during BC (P<0.05)  

Levitsky et 

al. (2013) 

n=16 (13 F); 24 y; 

24 kg·m-2; 61% 

RBC 

BC: 2610 (300) kJ 

BO: 0 kJ 

EI assessed at AL lunch 3 h 

post BO/BC, and at afternoon 

snack, dinner and evening 

snack. 

EI at lunch ~730 kJ greater during BO (P<0.05) 

No difference at other AL meals (P>0.05) 

Gross EI ~1885 kJ greater during BC (P<0.01)   
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Gonzalez et 

al.(2013) 

n=12 (all M); 23 

y; 25 kg·m-2; 

active 

BC: 1859 kJ 

BO: 0 kJ 

EI assessed at AL lunch 4.5 h 

post BO/BC 

EI at lunch not different between trails (P=0.78) 

Gross EI ~1393 kJ greater during BC (P<0.001) 

Chowdhury 

et al. (2015a) 

n=35 (21 F); 36 y; 

23 kg·m-2; 24% 

BF; 77% RBC 

BC: 1963 (238) kJ 

BO: 0 kJ 

EI assessed at AL lunch 3 h 

post BO/BC 

EI at lunch ~640 kJ greater during BO (P<0.01) 

Gross EI ~1326 kJ greater during BC (P<0.001) 

Chowdhury 

et al. (2015b) 

n=24 (16 F); 44 y; 

34 kg·m-2; 37% 

BF; 58% RBC 

BC: 2183 (393) kJ 

BO: 0 kJ 

EI assessed at AL lunch 3 h 

post BO/BC 

EI at lunch not different between trials (P=0.10) 

Gross EI ~1964 kJ greater during BC (P<0.01) 

Thomas et al. 

(2015) 

n=18 (all F); 29 y; 

30 kg·m-2; 50% 

RBC 

BC: ~2085 kJ 

BO: 0 kJ 

Standardised lunch provided 4 

h post BO/BC. EI assessed at 

AL dinner 5 h post lunch and 

evening snacks.  

No difference in dinner or snack EI (P>0.05) 

Gross EI not different between trials (P>0.05) 

Where available, energy intake at breakfast is presented as mean (SD). Otherwise, mean or absolute intake is presented, as 

appropriate.  

Subjects: n, total number; M, number of males; F, number of females; y, average age; BF, body fat percentage; RBC, percentage of 

regular breakfast consumers in cohort; activity level of subjects given where available.  

BO, breakfast omission; BC, breakfast consumption; EI, energy intake; AL, ad-libitum  

*This study compared a very small with a large breakfast, rather than the complete omission of breakfast 
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Multiple exposure studies 

In a descriptive study, Schusdziarra et al. (2011) measured energy intake of 380 subjects over 

10 days, finding that daily energy intake was associated with the amount of energy consumed 

at breakfast. Specifically, lower energy intake at breakfast was indicative of a reduced daily 

energy intake. A number of intervention studies have investigated breakfast omission over 

longer periods of time, often using food records to estimate daily energy intake (Table 2.2). 

Whilst the results of these studies are slightly more varied, once again the weight of evidence 

suggests that omission of breakfast in the morning will reduce daily energy intake in the 

longer term (Martin et al. 2000; Betts et al. 2014; Reeves et al. 2014). In one of these studies, 

a reduction in energy intake was observed in a 6 week between groups breakfast intervention 

study. Subjects were instructed to consume ≥2930 kJ before 11:00, or abstain from food 

completely until 12:00. Timing, type and quantity of foods ingested after 12:00 were 

unaffected by consumption or omission of breakfast in the morning, resulting in a reduced 

energy intake of approximately 2300 kJ·d-1 when breakfast was omitted (Betts et al. 2014). In 

contrast to this, Halsey et al. (2011) found no difference in daily energy intake, independent 

of consumption or omission of an ad-libitum breakfast.  

In a study designed primarily to investigate glycaemic control, Farshchi et al. (2005) found 

that daily energy intake was increased during 2 weeks of breakfast omission, compared to 

breakfast consumption. In this study, the authors balanced energy intake in both conditions 

by providing cereal and milk at a traditional breakfast time (7:00-8:00; breakfast consumption) 

or later in the day (12:30; breakfast omission). A chocolate covered cookie was also 

consumed at 10:30 on both trials, and therefore subjects only fasted about 2.5 h longer during 

the breakfast omission period.  The study was designed this way to determine whether the 

timing of food intake influenced glycaemic control and energy intake, independent of the 

amount of energy consumed. The experimental design may at least partially explain why the 

results of this study differ from the majority of the literature.   

Surprisingly, there is a sparsity of studies that have investigated breakfast omission in 

overweight or obese individuals. In a repeat of their study in lean individuals, Chowdhury et 

al. (2016) found no difference in daily energy intake in obese individuals consuming or 

omitting breakfast for 6 weeks. One study investigated whether daily meal pattern would 

affect energy intake in obese subjects. Meals were provided as either 6 meals per day 

(constituting 4200 kJ) or, 4 meals per day (constituting 2800 kJ), with the 2 remaining meals 
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omitted during the morning requiring subjects to fast until 12:00. In addition to the provided 

meals, subjects were permitted to eat ad-libitum after 13:00. This study found a non-

significant reduction (~960 kJ) in daily energy intake when daily meals were provided as 4 

meals per day (Taylor and Garrow 2001). Reeves et al. (2014) reported that during 1 week of 

breakfast omission, energy intake was increased between 12:00-18:00 in lean subjects and 

between 12:00-21:00 in overweight subjects, compared to during 1 week of breakfast 

consumption. Furthermore, habitual breakfast omitters consumed more after 21:00 than 

habitual breakfast consumers. Despite differing eating patterns, absolute energy intake was 

reduced by ~670 kJ per day during breakfast omission compared to breakfast consumption.  

Although not directly assessing energy intake, three further studies assessed the impact of 

breakfast on weight loss in overweight and obese subjects (Geliebter et al. 2014; Schlundt et 

al. 1992; Dhurandhar et al. 2014). Schlundt et al. (1992) investigated a prescribed energy 

restricted diet in 2 groups, with equal energy provisions provided in either 2 (breakfast 

omission) or 3 (breakfast consumption) meals per day. Whilst subjects in both groups lost 

weight, no difference in weight loss was observed between groups after 12 weeks. The 

authors also stratified subjects according to their habitual breakfast habits and found that 

subjects who changed their breakfast habits lost more weight than those who maintained their 

breakfast habits. This suggests that the success of a dietary regime might be governed, in part, 

by the degree in which that regime differs to an individual’s normal dietary behaviour. 

However, this study involved a degree of dietary restriction beyond the consumption or 

omission of breakfast in the morning, and as such, may not reflect true alterations in eating 

behaviour. Dhurandhar et al. (2014) investigated the effect of recommendations to consume 

or omit breakfast, in free-living adults attempting to lose weight. Two-hundred and eighty-

three subjects were randomly assigned to either consume or omit breakfast for 16 weeks and 

results were compared to a control group. Although subjects in this study were attempting to 

lose weight, in contrast to Schlundt (1992) this study did not impose any dietary restraint on 

subjects after 11:00. Results found that either consuming or omitting breakfast did not 

significantly affect weight change over a 16 week period (Dhurandhar et al. 2014). In another 

study, Geliebter et al. (2014) found that 4 weeks consuming water in the morning (i.e. 

breakfast omission) reduced body weight to a greater extent than when 1470 kJ high or low 

fibre breakfasts were consumed.  

Overall, these findings do not support the notion that omission of breakfast causes overeating 

at subsequent meals. Indeed several studies have found that energy intake is not sufficiently 
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increased to compensate for omission of breakfast in the morning, therefore at least partially 

preserving the energy deficit achieved by breakfast omission.  
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Table 2.2. Intervention studies assessing energy intake after multiple breakfast omissions 

Reference Subjects Breakfast Duration Study Design Results 

Taylor et al. 

(2001) 

n=8; 39 y; 42 

kg·m-2 

BC: 1400 kJ (2 

meals) 

BO: 0 kcal 

2 days EI assessed at AL meals 

after 12:00.  

 

No difference in daily EI between trials 

(P=0.40) 

Halsey et 

al. (2011) 

n=49 (26 F); 23 

y 

BC: AL 8:00-9:00 

BO: Fasted until 

12:00 

1 week EI assessed from 3 d food 

records. 

No difference in daily EI between trials 

(P=0.131) 

Reeves et 

al. (2014) 

NW: n=21; 30 

y; 21 kg·m-2 

OW: n=19; 36 

y; 30 kg·m-2  

BC: Ate within 1 h 

of waking 

BO: Fasted until 

12:00 

1 week EI assessed from 7 d food 

records.  

Daily EI ~670 kJ greater during BC 

(P<0.05)  

Martin et al. 

(2000)* 

n=10 (all M); 

28 y; 22 kg·m-2 

BC: 2964 (8) kJ 

BO: 464 (8) kJ  

2 weeks EI assessed from food 

records. 

Daily EI ~1483 kJ greater during BC 

(P<0.05) 

Farshchi et 

al. (2005) 

n=10 (all F); 26 

y; 23 kg·m-2; 

25% BF; 100% 

RBC 

BC: 1080 kJ  

BO: Fasted until 

10:30 

2 weeks A 1080 kJ breakfast was 

consumed at 12:00 during 

BO only. EI assessed from 3 

d food records from 12:30. 

Daily EI ~380 kJ greater during BO 

(P<0.01) 
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Betts et al. 

(2014) 

n=32 (21 F); 36 

y; 22 kg·m-2; 

25% BF; 79% 

RBC 

BC: ≥2930 kJ 

before 11:00 

BO: Fasted until 

12:00 

6 weeks EI assessed from food 

records  

Daily EI ~2255 kJ greater during  BC 

(P<0.01) 

Chowdhury 

et al. (2016) 

n=23 (15 F); 44 

y; 34 kg·m-2; 

40% BF; 61% 

RBC 

BC: ≥2930 kJ 

before 11:00 

BO: Fasted until 

12:00 

6 weeks EI assessed from food 

records 

No difference in daily EI between trials 

(P=0.30) 

Where available, energy intake at breakfast is presented as mean (SD). Otherwise, mean or absolute intake is presented, as 

appropriate.  

Subjects: n, total number; M, number of males; F, number of females; y, average age; BF, body fat percentage; RBC, percentage of 

regular breakfast consumers in cohort; NW, normal weight group; OW, overweight group.  

BO, breakfast omission; BC, breakfast consumption; EI, energy intake; AL, ad-libitum  

*This study compared a very small with a large breakfast, rather than the complete omission of breakfast 
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Effect of breakfast on subjective appetite 

It is generally believed that omission of breakfast will increase appetite and cause overeating 

at subsequent meals, resulting in weight gain (Pereira et al. 2011). However as previously 

discussed, in regard to the latter, this does not appear to be the case. As would be expected, a 

well-established pattern of appetite suppression has been observed during the morning when 

breakfast is consumed, compared to when breakfast is omitted (Astbury et al. 2011; Levitsky 

and Pacanowski 2013; Gonzalez et al. 2013; Chowdhury et al. 2015a; Chowdhury et al. 

2015b). However, it is interesting to note that the subjective appetite response to subsequent 

meals appears to be unaffected by prior omission of breakfast, suggesting that consumption 

of breakfast only provides a transient suppression of appetite (Astbury et al. 2011; Levitsky 

and Pacanowski 2013; Chowdhury et al. 2015a; Chowdhury et al. 2015b). Levitsky and 

Pacanowski (2013) found a reduction in appetite throughout the morning when breakfast was 

consumed compared to when breakfast was omitted. However, the consumption of an ad-

libitum lunch meal offset appetite to the same extent, independent of breakfast consumption, 

and this effect persisted throughout the remainder of the day. Similar studies have also 

observed a transient suppression of appetite after breakfast consumption in both lean 

(Chowdhury et al. 2015a) and obese (Chowdhury et al. 2015b) subjects, with subjective 

appetite appearing to be offset after an ad-libitum lunch meal, independent of breakfast 

consumption. Further to this, Allerton et al. (2016) found that breakfast omission caused a 

greater increase in fullness than breakfast consumption, after a standardised lunch was 

consumed. Whilst absolute fullness was not different between trials, this finding suggests a 

more positive perception of this variable after breakfast omission compared to breakfast 

consumption. In sum, results from these studies demonstrate an imprecise regulation of 

appetite in response to an energy deficit.  

 

Effect of breakfast on peripheral appetite hormones 

Astbury et al. (2011) found that anorexigenic hormones (GLP-1; PYY) were greater up to 30 

min after consumption of a 1050 kJ liquid meal 2.5 h after breakfast consumption, compared 

to after breakfast omission. However, no differences in the orexigenic hormone ghrelin were 

observed. Additionally, breakfast omission caused an increase in glucose and insulin 

response to the preload, compared to breakfast consumption. This dampened glycaemic 

response to the second meal of the day, is known as the ‘second meal effect’ which may be 

related to glycogen storage (Jovanovic et al. 2009). Gonzalez et al. (2013) similarly found a 
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tendency for an increased glucose and insulin response to a 1500 kJ liquid meal consumed 3 

h after omission, compared to consumption of breakfast, although active GLP-1 

concentrations were not different between trials. The different GLP-1 findings may be due to 

whether total (Astbury et al. 2011) or active (Gonzalez et al. 2013) GLP-1 was measured. In 

contrast to these studies, Allerton et al. (2016) recently found no difference in the insulin or 

glucose response to a standardised lunch whether subjects had consumed breakfast in the 

morning or not. In addition, this study also found that plasma triglyceride profiles were 

improved after breakfast omission. Thomas et al. (2015) examined whether habitual breakfast 

patterns influence the hormonal regulation of appetite, in response to a standard lunch 

consumed 4 h after breakfast consumption/ omission. Ghrelin concentrations were not 

affected by the omission or consumption of breakfast, but elevated concentrations of PYY 

and GLP-1 were reported when subjects consumed breakfast. Additionally, this study found 

that the glycaemic response to a standardised lunch was attenuated in habitual breakfast 

omitters, suggesting some metabolic adaptation may occur over time. Collectively, these 

studies suggest breakfast minimally affects the orexigenic appetite hormone ghrelin, with 

some evidence that breakfast may increases anorexigenic hormone profiles, in response to 

subsequent standardised feeding. However, breakfast omission may affect eating behaviour, 

and the provision of standardised meals does not allow for appetite hormone profiles to be 

assessed under these circumstances. 

This was investigated as part of the Bath Breakfast Project (Betts et al. 2012). In these studies, 

the glycaemic, orexigenic and anorexigenic hormonal responses 3 h after breakfast 

consumption/ omission and 3 h after an ad-libitum lunch were determined in both lean 

(Chowdhury et al. 2015a) and obese (Chowdhury et al. 2015b) subjects. Consumption of 

breakfast suppressed acylated ghrelin, with concomitant increases in PYY, GLP-1, insulin 

and glucose, compared to breakfast omission, in both lean (Chowdhury et al. 2015a) and 

obese (Chowdhury et al. 2015b). After an ad-libitum lunch, elevated concentrations of PYY 

were maintained although no differences in GLP-1 (measured in lean group only) were 

observed. Paradoxically, acylated ghrelin concentrations were greater in the breakfast 

consumption trial after lunch in both the lean and obese groups. 

Current research suggests that hormonal markers of appetite are transiently suppressed by 

breakfast and appear to be diminished following lunch, which is in line with subjective 

appetite sensations. This results in similar hormone concentrations in the afternoon, 

independent of breakfast consumption. However, there is some evidence of a prolonged 
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anorexigenic response to breakfast, particularly with PYY. Further research is required to 

determine the long term effect of breakfast on the hormonal regulation of appetite. This has 

been partly addressed, with two studies finding evidence for an impairment in postprandial 

insulin sensitivity after 2 (Farshchi et al. 2005) and 6 (Chowdhury et al. 2016) weeks of 

breakfast omission, with another study finding no change in insulin sensitivity (Betts et al. 

2014). In addition, 6 weeks of either consuming or omitting breakfast did not affect fasted 

concentrations of acylated ghrelin, PYY, GLP-1 or leptin in lean (Betts et al. 2014) or obese 

(Chowdhury et al. 2016) individuals. 

Effect of breakfast on energy expenditure 

It is interesting to note that some of the aforementioned longer term breakfast intervention 

studies have failed to observe a reduction in body weight (Betts et al. 2014; Schlundt et al. 

1992), despite observing reductions in energy intake when breakfast is omitted. This may be 

due to underreporting of energy intake as appose to a genuine reduction (Livingstone et al. 

1990), but also could suggest an interaction between breakfast and energy expenditure. The 

intake of food in the morning will inevitably increase morning energy expenditure due to an 

increase in DIT (Westerterp 2004). Consumption of breakfast has been shown to increase 

REE during the morning, compared to when no breakfast was provided (Martin et al. 2000; 

Thomas et al. 2015). Beyond lunch, breakfast does not appear to affect REE (Kobayashi et al. 

2014; Thomas et al. 2015). Previous studies have assessed energy expenditure using a 

calorimetry chamber (Taylor and Garrow 2001; Kobayashi et al. 2014) or indirect 

calorimetry (Martin et al. 2000; Thomas et al. 2015). However, PAEE is likely to be 

underestimated from these studies, as confined testing spaces and experimental control is 

likely to restrict free-living physical activity.  

Wyatt et al. (2002) administered physical activity questionnaires during a cross-sectional 

study and reported an association between breakfast consumption and greater physical 

activity. However, there are very few studies that have directly investigated the effect of 

breakfast on physical activity, particularly in adults. Two studies used pedometers to estimate 

free-living physical activity and found no difference after 1 week of breakfast consumption or 

omission (Reeves et al. 2015; Halsey et al. 2011). Stote et al. (2007) used accelerometers to 

estimate physical activity and similarly found no difference when food was provided as 1 

evening meal or 3 (breakfast/lunch/dinner) meals per day. Verboeket-van der Venne et al. 

(1993) used doubly-labelled water to determine energy expenditure and also found no 

difference in PAEE when energy was provided in 2 or 7 meals per day. Whilst, these studies 
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provide some information about free-living physical activity, the methodology employed in 

the studies limits their interpretation or makes it difficult to apply the findings directly to 

breakfast habits. The measurement tools used in some of these studies (Reeves et al. 2015; 

Halsey et al. 2011; Stote et al. 2007) may lack reliability and sensitivity when applied to free 

living environments (Corder et al. 2008) or these studies have assessed daily meal patterns 

(Stote et al. 2007; Verboeket-van der Venne et al. 1993), as opposed to the consumption or 

omission of breakfast.   

Recently, using a combined heart rate and accelerometer device, one study reported a 

reduction in PAEE in lean individuals during 6 weeks of breakfast omission compared to 

breakfast consumption, which was primarily attributable to a decline in light intensity 

physical activity (Betts et al. 2014). However in this study, this reduction in PAEE (1885 

kJ·d-1) was not sufficient to fully offset the decrease in energy intake (2300 kJ·d-1). 

Contrasting results were reported in obese subjects undergoing the same protocol, as 

breakfast had no effect on daily physical activity, although a decline in physical activity 

during the morning was noted (Chowdhury et al. 2016). Whilst no change in body weight 

occurred during these studies, this does demonstrate a potential causal effect of breakfast on 

PAEE.   

 

Effect of breakfast on exercise performance 

Traditional western breakfasts tend to be high in carbohydrate, and previous studies have 

observed that omission of breakfast alters dietary profiles, primarily through a reduction in 

daily carbohydrate intake (Deshmukh-Taskar et al. 2010; Shriver et al. 2013). Therefore, it 

appears that breakfast could play a crucial role in meeting daily carbohydrate requirements 

and thus maximising carbohydrate availability (Williams and Lamb 2008). Whilst individuals 

concerned purely with weight management may not be overly concerned about carbohydrate 

availability, consuming adequate carbohydrate is of primary importance to individuals 

wanting to maximise athletic performance (Cermak and Van Loon 2013). 

Several studies have demonstrated that consumption of carbohydrate in the morning can 

improve exercise performance compared to performing exercise in the overnight fasted state 

(Neufer et al. 1987; Sherman et al. 1989; Sherman et al. 1991; Wright et al. 1991; Thomas et 

al. 1991; Schabort et al. 1999; Chryssanthopoulos et al. 2002). However, the majority of 

these studies provided carbohydrate drinks, rather than a typical breakfast meal, and therefore 
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may not accurately represent breakfast consumption and omission per se. Chryssanthopoulos 

et al. (2002) demonstrated that consumption of a high carbohydrate breakfast meal 3 h before 

exercise, increased exercise capacity by ~9% compared to when no breakfast was provided. 

This would likely be due to the effect of an overnight fast on glycogen stores. An overnight 

fast results in a substantial (~40%) reduction in liver glycogen (Nilsson and Hultman 1973), 

therefore decreasing endogenous glucose availability. Consumption of a high carbohydrate 

breakfast will replenish liver glycogen content (Hawley and Burke 1997) and has also been 

shown to increase muscle glycogen concentrations by 11-17% (Chryssanthopoulos et al. 

2004; Wee et al. 2005). Therefore, the omission of breakfast may limit glycogen availability 

for muscle metabolism and potentially reduce exercise performance (Coyle et al. 1984). 

This evidence would suggest that individuals performing exercise in the morning should aim 

to consume breakfast between 1-4 h before exercise in order to avoid any decrements in 

exercise performance. However, it has been reported that exercise in the evening may be 

more acceptable and tolerable than exercise in the morning (Maraki et al. 2005), suggesting 

that this may be a more preferable time to exercise for some individuals. However, it is not 

known whether the detrimental effect of breakfast omission on exercise performance is 

exclusive to the morning, or whether these effects continue throughout the day.  

 

Severe Energy Restriction 
The most comprehensive account of long-term severe energy restriction is the classic 

‘Minnesota Experiment’, documenting the physiological and psychological effects of semi-

starvation and refeeding in normal weight subjects (Keys et al. 1950). Thirty-six male 

conscientious objectors were provided a severely hypoenergetic diet (40% EER; ~6500 kJ·d-1) 

for 168 days, reducing body weight by ~24%, to an average BMI of 17.5 kg·m-2. A period of 

ad-libitum eating followed, with subjects exhibiting pronounced hyperphagia, consuming up 

to 27000 kJ·d-1 and ultimately recovering the body weight lost. Further data extracted from 

World War 2 prisoners of war similarly found that 8 weeks of ad-libitum eating resulted in 

substantial energy intake of 25000 kJ·d-1 (McCance and Widdowson 1951). These findings 

led to the hypothesis that weight loss from severe energy restriction will be countered by 

rebound hyperphagia until lean mass is recovered, by which point fat mass has exceeded 

initial levels and consequently body weight is greater than baseline (Johnstone et al. 2015).      
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However, starvation was used during the 1950’s and 1960’s as an inpatients procedure for 

rapid weight loss in ‘gross refractory obesity’ (Johnstone et al. 2015). One study reported a 

382 day ‘therapeutic fast’ in a morbidly obese male (Stewart and Fleming 1973), resulting in 

weight loss of 75% (126 kg) of initial body mass. Furthmore, this individual was weight 

stable within 9% (7 kg) of his newly attained body weight. Several complications are 

associated with prolonged fasting, including ventricular fibrillation and vitamin/electrolyte 

deficiency (Johnstone et al. 2015), but it is important to consider these risks in relation to 

alternative weight loss strategies. Bariatric surgery is one of the most successful treatments 

for obesity, but carries a 13% risk of serious complications and a 0.25% risk of death 

(Sjostrom 2013). However, in both the case of fasting and bariatric surgery, this risk may 

well be worth the long-term benefits to cardiovascular health (Sjostrom 2013). The 

development of effective and sustainable lifestyle interventions, targeting both the prevention 

of weight gain and weight loss, may help to reduce the prevalence of obesity and the need to 

resort to higher risk treatments. 

Novel dietary interventions are currently being researched to determine whether periods of 

fasting can be introduced into weight management programmes. Intermittent fasting and 

intermittent severe energy restriction are examples of these diets, which involve alternation 

between days of complete or severe energy restriction (~25% EER) and days of adequate or 

ad-libitum energy intake. The advantage of ‘intermittent’ energy restriction diets is that 

adherence is only required during distinct periods of time, which allows for ad-libitum eating 

outside of these periods. This avoids some of the arduous characteristics of traditional 

continuous energy restriction diets and permits a more flexible approach to dieting. This area 

of research is still in its infancy in humans, but in animal models intermittent complete/ 

severe energy restriction has been shown to be successful in promoting weight loss, leading 

to improvements in a range of cardiometabolic health indices and improvements in clinical 

end points, such as disease progression (Antoni et al. 2014).  

In human studies, three main methods of intermittent energy restriction have received 

considerable attention. Alternate day fasting (ADF), which involves a day of complete energy 

restriction alternating with a day of ad-libitum energy intake, was one of the first proposed 

methods of intermittent energy restriction. However, whilst this style of dieting could 

successfully induce weight loss (Hill et al. 1989; Heilbronn et al. 2005), subjects experienced 

severely elevated hunger and irritability on fast days that were not attenuated over the course 

of the intervention (Heilbronn et al. 2005). From these early studies, it was determined that 
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ADF may not promote long-term adherence and therefore would likely be unsuccessful as a 

method of weight loss. To address this issue, days of complete energy restriction were 

substituted for severe energy restriction (~25% EER) and became known as alternate day 

modified fasting (ADMF) (Varady et al. 2007). Consumption of a very-low energy diet 

(VLED) on ‘fast’ days provides an opportunity to consume essential micro and macro 

nutrients, which may ultimately improve adherence and long-term success of the diet 

(Johnstone et al. 2015). However, ADMF is an intensive dietary regime, inducing a weekly 

energy deficit of ~20000 kJ, dependant on energetic compensation on non-restricted days. 

Whilst this method of dieting can successfully induce rapid weight loss (Varady et al. 2009; 

Varady et al. 2011; Varady et al. 2013), longevity of such an intensive diet is questionable. 

Reducing the number of weekly episodes of severe energy restriction may resolve this 

problem. In the media, this has become known as ‘5:2 dieting’, the concept of which is to 

consume a VLED (~25% EER) on 2 days of the week and consume adequate energy intake 

(100% EER) during the other 5 days (Harvie et al. 2011; Harvie et al. 2013). However, ad-

libitum eating periods have not been investigated in combination with intermittent severe 

energy restriction, which could improve adherence and long-term weight management, 

dependent on the degree of energy intake compensation incurred on unrestricted days.   

 

Effect of severe energy restriction on energy intake 

Acute studies 

Historical accounts describe a pronounced hyperphagic response to severe energy restriction 

(Keys et al. 1950; McCance and Widdowson 1951), although this may be indicative of the 

circumstances and duration of the energy restriction. A recent study (O’Connor et al. 2016) in 

severely energy restricted male and female soldiers (consumed 10% EER for 2-days) found 

that ad-libitum energy intake over the subsequent 2-days was ~3390 kJ greater after severe 

energy restriction, compared after consuming a 100% EER control diet. However, energy 

intake was only significantly greater in the first 12 h after commencing ad-libitum eating and 

only compensated for ~15% of the energy deficit created during the previous 2-days of severe 

energy restriction (O’Connor et al. 2016). Therefore, whilst a degree of hyperphagia was 

observed in response to acute severe energy restriction, this was insufficient to fully 

compensate for the energy deficit induced.    
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Similarly, Johnstone et al. (2002) completed a 2-day crossover intervention study in lean 

individuals, during which subjects were either completely energy restricted (no energy 

consumed) or consumed a control diet (100% EER consumed) on day 1, and permitted to eat 

ad-libitum on day 2. Although energy intake was ~20% greater after complete energy 

restriction, the majority of the energy deficit achieved by complete energy restriction was 

preserved after day 2. In a similar study, Levitsky and DeRosimo (2010) conducted a 5-day 

crossover intervention study in lean females, to investigate whether compensatory eating 

behaviour occurred up to 4 days (days 2-5) after 1 day (day 1) of either complete energy 

restriction (no energy consumed), moderate energy restriction (~60% EER consumed) or ad-

libitum energy consumption. Interestingly, Levitsky and DeRosimo (2010) reported the 

lowest ad-libitum energy intakes on days 2-5 occurred after complete food restriction on day 

1, which is counter to the anticipated response to energy restriction and previous findings 

(Johnstone et al. 2002; O’Connor et al. 2016). One further study in lean males, restricted 

energy intake to 40% EER for 2-days and assessed ad-libitum energy intake during the 

subsequent 2-days (Mars et al. 2005). This study found that energy intake was 30% greater 

than estimated energy requirements, sufficient to compensate for ~60% of the energy deficit 

induced, but the lack of a control trial in this study makes these findings difficult to interpret.  

Similar to the findings on breakfast omission, these studies demonstrate that energy intake is 

not accurately adjusted, in response to an acutely imposed severe energy deficit in lean 

individuals, suggesting that this may be an effective method of reducing energy intake. 

However, the short-term effects of severe energy restriction on energy intake have not been 

assessed in overweight and obese individuals. 

 

Chronic studies 

Due to difficulties in assessing ad-libitum energy intake during chronic intervention studies, 

this has seldom been done in the literature. Only one study has reported ad-libitum energy 

intake during a chronic ADMF study, finding that mean energy intake on non-restricted days 

was ~7535 kJ·d-1, 5% less than calculated EER (~7933 kJ·d-1) for these subjects (Klempel et 

al. 2010). This data suggests that subjects did not experience hyperphagia on non-restricted 

days, which may have resulted in greater than anticipated overall energy retriction during the 

intervention period. However, this could be attributed to underreporting of energy intake in 

food records, particularly given the nature of the study (i.e. weight loss), characteristics of the 
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subjects (obese; mostly female) and the already considerable subject burden associated with a 

10 week dietary controlled study. For these reasons, the majority of study’s report weight loss 

and changes in body composition to assess energy balance. 

Table 2.3 clearly demonstrates that intermittent severe energy restriction is an effective 

method for weight loss. The smallest reported weight loss was 2.5 kg (4%) after 3 weeks 

ADF (Heilbronn et al. 2005) and the largest weight loss was 8.5 kg (8%) after 8 weeks of 

ADMF involving consumption of ~1465 kJ·d-1 (20% EER) alternated with ad-libitum energy 

intake (Johnson et al. 2007). Typically, ADF and ADMF appear to be successful in reducing 

body weight in obese subjects by 4-8% over a 3-12 week period (Heilbronn et al. 2005; 

Johnson et al. 2007; Varady et al. 2009; Klemple et al. 2012; Hoddy et al. 2014; Varady et al. 

2015; Varady et al. 2011; Varady et al. 2013; Table 2.3). In these studies, weight loss 

occurred primarily from a reduction of fat-mass, however two studies also observed a 

reduction in fat-free mass (Heilbronn et al. 2005; Hoddy et al. 2014).    

In obese female subjects, two studies utilised a VLED (consuming 25% EER) on 2 

consecutive days in the week, and consumed 100% of estimated energy requirements on the 

remaining 5 days. This was compared to an isoenergetic continuous energy restriction diet 

(Harvie et al. 2011; Harvie et al. 2013). After 12-24 weeks, subjects had lost ~5 kg (6%) of 

initial body weight, primarily due a reduction in fat-mass, although fat-free mass also 

decreased concurrently. In these studies, weight, fat and fat free mass losses were comparable 

between intermittent and continuous energy restriction diets (Harvie et al. 2011; Harvie et al. 

2013). In the Harvie et al. (2013) study, a third trial was conducted which permitted the 

consumption of ad-libitum protein and fat on restricted days. Whilst this did not appear to 

affect weight loss, fat-mass decreased to a greater extent in this trial compared to the 

continuous energy restriction trial.       

Collectively, these studies demonstrate that intermittent severe energy restriction may be an 

effective method of energy restriction for weight and fat loss, but does not appear to have any 

greater effect on these two variables, compared to continuous energy restriction.  
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Table 2.3. Intermittent fasting studies assessing weight loss 

Reference Design Subjects Duration Diet Regime WL FML FFML 

Halberg et 

al. (2005) 

ADF n=8 (all M); 25 

y; 26 kg·m-2; 

20% BF 

2 weeks 20 h Complete fast (0 kJ) 

alternating with AL EI 

↔ 0 kg ↔ 0 kg - 

Soeters et 

al. (2009) 

ADF n=8 (all M); 24 

y; 21 kg·m-2; 

15% BF 

2 weeks IER: 20 h Complete fast (0 kJ) 

alternating with AL EI  

↔ 0 kg (IER) ↔ 0 kg (IER) ↔ 0 kg (IER) 

 CON  CON: AL EI ↔ 0 kg (CON) ↔ 0 kg (CON) ↔ 0 kg (CON) 

Heilbronn 

et al. 

(2005) 

ADF n=16 (8 M); 32 

y; 24 kg·m-2; 

24% BF 

3 weeks Complete fast (0 kJ) alternating 

with AL EI 

↓ 1.4 kg (2.5%) ↓ 0.8 kg  ↓ 0.6 kg 

Johnson et 

al. (2007) 

ADMF n=10 (8 F); 

BMI>30 kg·m-2 

8 weeks VLED (20% EER) alternating with 

AL EI 

↓ 8.5 kg (8%) - - 

Bhutani et 

al. (2010) 

ADMF n=16 (12 F); 46 

y; 34 kg·m-2; 

45% BF 

8 weeks VLED (25% EER) alternating with 

AL EI 

↓ 5.7 kg (6%) ↓ 5.4 kg  ↓ 0.1 kg 
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Klempel 

et al. 

(2013) 

ADMF n=32 (all F); 43 

y; 35 kg·m-2; 

47% BF 

8 weeks VLED (25% EER) alternating with 

125% EER.  

↓ 3.9 kg (4%)  ↓ 4.8 kg ↑ 0.9 kg  

Varady et 

al. (2015) 

ADMF n=29 (all F); 43 

y; 35 kg·m-2; 

41% BF 

8 weeks VLED (25% EER) alternating with 

AL EI 

↓ 4.5 kg (5%)  ↓ 2.2 kg - 

Varady et 

al. (2011) 

ADMF n=13 (10 F); 47 

y; 32 kg·m-2 

12 weeks IER: VLED (25% EER) 

alternating with AL EI 

↓ 5% (IER) - - 

Hill et al. 

(1989) 

IER  IER: n=16 (all 

F); 37 y; 31 

kg·m-2; 43% BF 

12 weeks IER: Alternating EI of 2508, 5016, 

7254 kJ·d-1  

↓ 7.5 kg (9%) 

(IER) 

↓ 6 kg (IER) ↓ 1.4 kg (CER) 

 CER CER: n=16 (all 

F); 37 y; 31 

kg·m-2; 44% BF 

 CER: Daily energy restriction 

(5016 kJ·d-1) 

↓ 7.8 kg (9%) 

(CER) 

↓ 6.1 kg (CER) ↓ 1.4 kg (IER)   

Ash et al. 

(2003) 

ADMF n=14 (all M); 54 

y; 31 kg·m-2; 

27% BF; T2D 

12 weeks IER: 4180 kJ·d-1 for 4 d·week-1; 

AL EI for 3 d·week-1 

↓ 6.5 kg (7%) 

(IER) 

↓ 2.3 kg (IER) - 

  n=14 (all M); 54      
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CER y; 31 kg·m-2; 

26% BF; T2D 

CER: Daily energy restriction 

(6900 kJ·d-1) 

↓ 6.5 kg (7%) 

(CER) 

↓ 2.3 kg (CER) - 

Varady et 

al. (2013) 

ADMF ADMF: n=15 

(10 F); 47 y; 26 

kg·m-2; 34% BF 

12 weeks IER: VLED (25% EER) 

alternating with AL EI 

↓ 5.2 kg (6.5%) 

(IER)* 

↓ 3.6 kg (IER)* ↓ 1.6 kg (IER) 

 CON CON: n=15 (12 

F); 48 y; 26 

kg·m-2; 35% BF 

 CON: AL EI ↔ 0 kg (CON) ↔ 0 kg (CON) ↔ 0 kg (CON) 

Bhutani et 

al. (2013) 

ADMF ADMF: n=25 

(24 F); 42 y; 35 

kg·m-2; 46% BF 

12 weeks IER: VLED (25% EER) 

alternating with AL EI 

↓ 3 kg (3%) 

(IER) * 

↓ 2 kg (IER) * ↓ 1 kg (IER) * 

 CON CON: n=16 (15 

F); 49 y; 35 

kg·m-2; 46% BF 

 CON: AL EI ↔ 0 kg (CON) ↔ 0 kg (CON) ↔ 0 kg (CON) 

Harvie et 

al. (2013) 

IER  IER: n=37 (all 

F); 46 y; 30 

kg·m-2; 47% BF 

12 weeks IER: VLED (30% EER) for 2 

d·week-1; restricted EI (100% 

EER) for 5 d·week-1 

↓ 5 kg (6%) 

(IER) 

↓ 3.7 kg (IER)* ↓ 1.8 kg (IER) 

  

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 



48 
 

IER IER+PF: n=38 

(all F); 31 kg·m-

2; 41% BF 

IER+PF: VLED (30% EER) for 2 

d·week-1 (with AL protein and fat); 

restricted EI (100% EER) for 5 

d·week-1 

↓ 4.8 kg (6%) 

(IER+PF) 

↓ 3.8 kg 

(IER+PF)*   

↓ 1.1 kg 

(IER+PF) 

 CER CER: n=40 (all 

F); 48 y; 32 

kg·m-2; 42% BF 

 CER: Daily energy restriction 

(75% EER) 

↓ 3.7 kg (4%) 

(CER) 

↓ 2 kg (CER) ↓ 1.7 kg (CER) 

Harvie et 

al. (2011) 

IER  IER: n=53 (all 

F); 40 y; 31 

kg·m-2; 41% BF 

24 weeks IER: VLED (25% EER) for 2 

d·week-1; restricted EI (100% 

EER) for 5 d·week-1 

↓ 6.1 kg (8%) 

(IER)  

↓ 5.1 kg (IER) ↓ 1.4 kg (IER) 

 CER CER: n=54 (all 

F); 40 y; 31 

kg·m-2; 41% BF 

 CER: Daily energy restriction 

(75% EER) 

↓ 5.7 kg (7%) 

(CER) 

↓ 4.5 kg CER) ↓ 1.2 kg (CER) 

Subjects: n, total number; M, number of males; F, number of females; y, average age; BF, body fat percentage; T2D, subjects were type-2 

diabetics 

Abbreviations: WL, weight loss; FML, fat mass loss; FFML, fat-free mass; Fast, complete fasting; ADF, alternate day fasting; ADMF, 

alternate day modified fasting; IER, intermittent energy restriction; CER, continuous energy restriction; CON, control; IER+PF, intermittent 

energy restriction with ad-libitum protein and fat; AL, ad-libitum; EI, energy intake;  VLED, very-low energy diet; EER, estimated (daily) 

energy requirements; WL, FML and FFML is compared to baseline. *denotes a significant difference between IER and CER/CON. 
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Effect of severe energy restriction on subjective appetite 

Several studies have found that intermittent severe energy restriction can successfully achieve 

weight loss. However, energy intake is tightly controlled and closely monitored in these 

studies, therefore weight loss is a reflection of the dietary induced negative energy balance 

and not entirely unexpected. It is therefore surprising that so few studies have sought to 

determine how severe energy restriction affects appetite, as difficulty managing hunger 

sensations is a key reason for poor dietary adherence (Vogels and Westerterp-Plantenga 2005) 

and may have a bearing on the long-term success of a dietary programme. In regard to this, it 

is interesting to note that a recent review determined that the dropout rate is similar between 

intermittent and continuous energy restriction dietary interventions (Seimon et al. 2015). 

The acute effects of 24 h complete energy restriction followed by 24 h ad-libitum energy 

intake were described by Johnstone et al. (2002). As might be expected, subjective sensations 

of hunger were elevated and satiety reduced, during the 24 h of complete energy restriction. 

Subjective appetite was also elevated the following morning before breakfast, but 

consumption of an ad-libitum breakfast offset appetite to levels comparable with a control 

trial (consuming 1.6 x RMR). In line with these findings, an increase in appetite was 

observed during 48 h of severe energy restriction (consuming 10% EER) (Karl et al. 2016) 

and after 4 days of severe energy restriction (consuming 36% EER) (Mars et al. 2006). 

However, with the exception of Johnstone et al. (2002), the acute effects of severe energy 

restriction on subjective appetite regulation after resumption of unrestricted eating are 

relatively unexplored.  

The chronic effects of intermittent severe energy restriction on subjective appetite are 

similarly unclear. Appetite sensations collected at a single time point, in a non-fasted state, 

indicate that hunger is decreased or unchanged after 3-12 weeks of ADF (Heilbronn et al. 

2005) or ADMF (Johnson et al. 2007; Klempel et al. 2010; Bhutani et al. 2013; Varady et al. 

2013). It is noteworthy that in four of these studies, decreases or lack of change in appetite 

indices occurred despite observing significant weight loss (Johnson et al. 2007; Klempel et al. 

2010; Bhutani et al. 2013; Varady et al. 2013). However, it is unlikely that assessing 

subjective appetite at a single time-point is of relevance.   

Indirect evidence for intermittent severe energy restriction having a positive effect on appetite 

regulation can be gleaned from studies that have attempted to increase energy intake on non-

restricted days. In an ADMF study, subjects were encouraged to consume 125% of EER on 
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non-restricted days. However subjects average energy intake was only ~95% of EER, which 

consequently enlarged the negative energy deficit incurred on restricted days (Klempel et al. 

2010). Similarly, lean individuals were asked to consume 200% of EER on non-restricted 

days during an ADF study, in order to maintain weight, however they were unable to achieve 

this and therefore lost weight (Heilbronn et al. 2005).      

These studies suggest that the acute and chronic effects of severe energy restriction may 

facilitate appetite control and therefore may assist in achieving and maintaining a negative 

energy balance. Whilst not fully understood, this could be mediated by an increase in ketone 

bodies, which are associated with very low energy intake (i.e. a very-low carbohydrate diet) 

and appear to modulate drive to eat during weight loss (Gibson et al. 2015).            

 

Effect of severe energy restriction on peripheral appetite hormones 

Logic would suggest that an episode of severe energy restriction would increase 

concentration of the orexigenic hormone ghrelin and reduce concentrations of anorexigenic 

hormones, such as PYY and GLP-1, as a physiological mechanism to drive food intake and 

correct the negative energy balance (Cummings et al. 2002). Contrary to this hypothesis, 

research has found no effect of 1-4 days of energy restriction of varying severity on fasting 

(Pasiakos et al. 2011; Blom et al. 2006; Douchet et al. 2004) and postprandial (Blom et al. 

2006; Douchet et al. 2004) ghrelin concentrations. Further to this, O’Connor et al. (2016) 

recently found that postprandial concentrations of GLP-1, PP and insulin were increased, and 

acylated ghrelin suppressed, after 48 h of severe energy restriction (consuming 10% EER) in 

male and female soldiers. Whilst unexpected, this may suggest altered sensitivity of the 

NYP/AgRP appetite regulatory pathways. The paradigm for the study of O’Connor et al. 

(2016) was to determine how periods of severe energy restriction affect military personnel, 

undergoing intense physical exertion with limited access to food sources. Therefore, this 

study incorporated meal replacement gels and a large volume of exercise, which might limit 

the translation of these findings into a weight management situation.     

Comprehensive assessment of purported appetite regulatory hormones is lacking in the 

chronic intermittent severe energy restriction literature. Studies that have attempted to 

investigate this have found that leptin concentrations decrease after 8-24 weeks of 

intermittent severe energy restriction (Bhutani et al. 2010; Varady et al. 2013; Klempel et al. 

2013; Klempel et al. 2012; Harvie et al. 2011; Harvie et al. 2013). This again is counter to 
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what might be expected, given the anorexigenic effect of leptin (Cowley et al. 2001), but 

leptin is secreted in proportion to fat mass, so may reflect a reduction in fat mass in these 

studies (Zhang et al. 1994; Considine et al. 1996). Fasting concentrations of total ghrelin 

were unchanged in obese subjects after 8 weeks of ADMF (Johnson et al. 2007) or 24 weeks 

of intermittent severe energy restriction (Harvie et al. 2011). Similarly, fasting and 

postprandial total ghrelin concentrations were unchanged after 3 weeks of ADF in lean 

subjects (Heilbronn et al. 2005).  

Limited data exists on the effects of intermittent severe energy restriction on appetite 

hormone profile and clearly more research is required to determine the effect of this style of 

dieting on appetite regulation. However, these initial findings suggest appetite hormone 

profiles are unchanged, or do not respond in a manner indicative of an up-regulation in 

appetite. This is in contrast to continuous energy restriction, which have generally found 

increased anorexigenic and reduced orexigenic hormone profiles after 3-8% weight loss, 

along with an increase in hunger (Adam et al. 2005; Cummings et al. 2002; Sumithran et al. 

2011). This differential appetite hormone response to severe energy restriction may assist 

with appetite control and facilitate improved dietary adherence outside of rigid experimental 

control.  

 

Effect of severe energy restriction on energy expenditure 

In the short-term (12-72 h), RMR is maintained during and after a period of complete food 

restriction (Bergman et al. 2007; Klein et al. 1993; Horton and Hill 2001). This is achieved 

by an alteration in substrate utilisation, with greater reliance on fat metabolism to utilise the 

bodies abundant energy stores contained in adipose tissue and preserve limited carbohydrate 

stores (Maughan et al. 2010). RMR was also unchanged after 2 weeks of ADF (Heilbronn et 

al. 2005), but as the duration of the dietary intervention is extended, RMR has been shown to 

decline after 8-12 weeks of ADF (Soeters et al. 2008) or ADMF (Hill et al. 1989). Whilst 

part of this decrease is certainly due to a reduction in fat-free mass, research suggests that 

RMR is decreased greater than anticipated from the reduction in body mass, which may be a 

defence mechanism to compensate for the dietary induced energy deficit by reducing energy 

expenditure (Byrne and Hills 2013).  

In regard to PAEE, 2-8 weeks of ADMF or ADF dieting did not appear to affect objective 

measures of physical activity (Halberg et al. 2005; Klempel et al. 2010). However, these 



52 
 

studies used pedometers or daily-average heart rate to assess physical activity, which may 

have lacked the sensitivity required to detect changes. Two other studies used subjective 

methods to determine the effect of intermittent severe energy restriction on ‘energy levels’ 

compared to an isoenergetic continuous energy restricted diet. In one of these studies, 

subjects reported to feel a ‘lack of energy’ during intermittent severe energy restriction 

compared to continuous energy restriction (Harvie et al. 2011); whereas the other study 

reported no difference in ‘fatigue’ between diets (Harvie et al. 2013).  

Currently, research suggests some reduction in RMR after prolonged intermittent severe 

energy restriction, but this is likely due to overall weight loss as opposed to any diet specific 

alterations. Greater accuracy of assessment is required to determine if there are any diet 

specific effects on PAEE. 

 

Effect of severe energy restriction on insulin sensitivity 

In general, fasting concentrations of glucose (Varady et al. 2015; Heilbronn et al. 2005; 

Bhutani et al. 2013; Johnson et al. 2007; Eshghinia and Mohammadzadeh 2013; Klempel et 

al. 2012; Harvie et al. 2011; Harvie et al. 2013) and insulin (Johnson et al. 2007; Heilbronn 

et al. 2005; Bhutani et al. 2013; Harvie et al. 2011; Harvie et al. 2013) have been shown to 

decrease after intermittent severe energy restriction of various methods and durations. By 

virtue of this, a reduction in the homeostatic model of assessment for fasting insulin 

resistance (HOMA-IR) has also been noted (Harvie et al. 2011; Harvie et al. 2013). However, 

a more relevant assessment of insulin sensitivity is the response to consuming nutrients (i.e. 

postprandial), and this has not been determined after chronic intermittent severe energy 

restriction.  

In the short-term 12-72 h of complete energy restriction consistently causes a reduction in 

dynamic insulin sensitivity assessed by intravenous glucose tolerance test or 

hyperinsulinemic-euglycaemic clamp (Johnson et al. 2006; Soeters et al. 2008; Hoeks et al. 

2010; Bergman et al. 2006). Interestingly, this reduction in postprandial insulin sensitivity 

occurs despite an improvement in HOMA-IR after 24 h complete energy restriction (Horne et 

al. 2013).  

Whilst weight loss of 5-7% can improve insulin sensitivity (Anderson and Fernandez 2013), 

whether the methodology employed to achieve weight loss has any independent effects on 
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insulin sensitivity is unknown. Complete energy restriction clearly impairs insulin sensitivity, 

but whether severe energy restriction exerts a similar effect in the short term is unclear. If a 

similar effect exists, the consequences of continuous cycling between states of reduced 

insulin sensitivity on long-term metabolic health would be of critical importance and could 

determine the suitability of intermittent severe energy restriction as an effective weight loss 

method.  

 

Aims 

In light of the reviewed literature, this thesis will investigate novel methods of energy 

restriction on markers of energy balance, metabolism and insulin sensitivity. The dietary 

interventions assessed will be breakfast omission and severe energy restriction; with the 

overall aims of the thesis four fold:  

1. To determine the acute effects of energy restriction on components of energy balance. 

Specifically; 

a. Energy intake by examining compensatory eating behaviour 

b. Energy expenditure by determining the effect on REE 

2. To determine the acute effects of energy restriction on subjective appetite and appetite 

hormone profiles.  

3. To determine the acute effects of energy restriction on fasting and postprandial 

metabolism and glycaemic control.  

4. To determine the effect of energy restriction on metabolism, performance and 

perceived exertion during exercise. 

  



54 
 

Chapter III  

General Methods 

This chapter describes the experimental methods employed throughout this thesis. All studies 

were approved by the Loughborough University’s Ethics Advisory Committee and written 

consent was obtained from all subjects before participation in experiments. 

Recruitment 

Subjects 

Subjects were recruited from Loughborough University and the local area by word of mouth, 

poster, email and social media advertising. Participant information sheets were provided to 

volunteers, explaining the purpose, protocol and demands of the study. After a verbal 

explanation and an opportunity to ask any questions about the study, volunteers provided 

informed consent (Appendix B) and a completed a health screen questionnaire (Appendix C). 

Subject’s physical activity (Appendix D) and eating tendencies (Stunkard and Messick, 1985; 

Appendix E) were assessed. Food preferences were also determined (Appendix F for 

Chapters IV, VII and VIII only) to ensure adherence to standardised diets.  

The inclusion criteria for participation were: 

• Non-smoker 

• Not currently on any weight management diet and been weight stable for 6 months 

• No history of cardiovascular disease, metabolic, digestive or renal disease 

• No severe dislike or intolerance of any study foods 

• Recreationally active (<10 h·week-1) 

• Does not exhibit restrained, disinhibited or hungry eating tendencies 

Pre-trial Measures 

Anthropometry 

Height was measured to the nearest 1 mm (Seca, Birmingham, UK) and body mass measured 

in underwear/ nude to nearest 0.2 kg using a digital scale (Adam Equipment Co Ltd, Milton 

Keynes, UK). Body mass index was subsequently calculated as the weight in kilograms 
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divided by squared height in meters. Subcutaneous body fat was estimated from skinfold 

measurements at four sites (triceps, biceps, suprailliac and subscapular) using callipers 

(Harpenden, West Sussex, UK), with subjects in a standing relaxed position. Measurements 

were made in duplicate, with a third measurement made if previous measurements were not 

within 2 mm of each other. The sum of all four sites was used to estimate body density 

(Durnim and Wormsley 1974) and percentage body fat (Siri 1956).  

Familiarisation trials 

All subjects completed a preliminary trial during which height, weight and body fat was 

assessed as described above. They were also familiarised with all aspects of the study, 

including exercise protocols, ad-libitum meals, assessments of subjective appetite, 

measurements of resting metabolism and blood sampling procedures (described in detail 

below).  

Pre-trial standardisation 

Subjects recorded all dietary intake and physical activity during the 24 h (Chapters VI) or 48 

h (Chapters IV, V, VII and VIII) before the first experimental trial and these patterns were 

replicated in the 24/ 48 h before subsequent trials. Alcohol consumption was not permitted 

during this pre-trial period or during trials. Strenuous exercise was not permitted during this 

pre-trial period, and non-protocol related exercise was not permitted during experimental 

trials. On the morning of experimental trials, subjects arrived at the laboratory having fasted 

for at least 10 h, with the exception of plain water, consumed ad-libitum prior to the first trial 

and replicated prior to subsequent trials. Subjects exerted themselves minimally when 

arriving or leaving the laboratory, travelling via motorised transport when possible.  

 

Standardised Test Meals 

Estimating daily energy requirements (EER) 

Resting energy requirements (RMR) were calculated for each subject using the Mifflin-St 

Jeor equation (Mifflin et al. 1990), as detailed below: 
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RMR (males) = (10 x body mass in kg) + (6.25 x height in cm) – (5 x age in y) + 5 

RMR (female) = (10 x body mass in kg) + (6.25 x height in cm) – (5 x age in y) - 161  

For Chapters IV and V, RMR was multiplied by a physical activity level of 1.7, to account 

for the exercise component of the trial (FAO/WHO/UNU, 2004). For Chapters VI, VII and 

VIII, RMR was multiplied by a physical activity level of 1.4, representing a sedentary day, as 

subjects were asked not to conduct any exercise during these studies.  

Standardised breakfast (Chapter’s IV and V) 

These two chapters investigated the effects of omitting, compared to consuming, a 

standardised breakfast meal. The standardised breakfast consisted of crisped rice cereal, semi-

skimmed milk, bread, margarine, strawberry jam and orange juice and contained 25% of 

subjects estimated energy requirements. On breakfast omission trials, subjects were provided 

with a bolus of water isovolume to that contained within the breakfast provided on the 

breakfast consumption trial. Standardised meals for lunch and dinner meals were also 

provided on both trials during Chapter V. Table 3.1 details the energy and macronutrient 

intake at standard meals during Chapters IV and V.  

 

Table 3.1. Energy and macronutrient intake during Chapters IV and V 

 

 
CHO (g) PRO (g) FAT (g) FIBRE (g) ENERGY (kJ) 

Breakfast 

Chapter IV 130.0 (8.2) 19.5 (1.2) 13.9 (0.9) 4.5 (0.3) 3095 (195) 

Chapter V 130.0 (9.1) 19.5 (1.4) 13.7 (1.0) 4.5 (0.3) 3085 (217) 

Lunch 

Chapter V 118.9 (8.3) 38.6 (2.7) 41.1 (2.9) 12.0 (0.8) 4162 (301) 

Dinner 

Chapter V 150.6 (10.5) 41.2 (2.9) 43.2 (3.0) 6.8 (0.5) 4914 (345) 

Values are means (SD) 
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Twenty-four hour standardised diets (Chapter’s VI, VII and VIII) 

These three Chapters investigated the effects of a 24 h severely energy restricted diet (25% of 

EER), compared to an adequate energy intake diet (100% of EER). Diets were formulated to 

contain palatable, recognisable foods, and in some cases were tailored slightly to suit 

individual preferences (Appendix F).  

The adequate energy diet (energy balance; EB) was distributed into four meals. Breakfast was 

consumed at 08:00, consisted of crisped rice cereal, semi-skimmed milk and orange juice, 

and contained 20% of estimated energy requirements. Lunch was consumed at 12:00, 

consisted of white bread, mayonnaise, chicken, lettuce, tomato, red pepper, balsamic vinegar 

and chocolate-chip cookies, and contained 30% of estimated energy requirements. A mid-

afternoon snack was consumed at 16:00, consisted of yoghurt and cereal bar, and contained 

10% of estimated energy requirements. Dinner was consumed at 19:30, consisted of chicken, 

pasta, Bolognese sauce, olive oil and chocolate-chip cookies, and contained 40% of estimated 

energy requirements.    

The severely energy restricted diet (energy restriction; ER) was distributed into two meals; 

lunch and dinner. Lunch was consumed at 12:00, consisted of chicken, lettuce, tomato, red 

pepper and balsamic vinegar, and contained 34% of energy provision for the day. Dinner was 

consumed at 19:30, consisted of chicken, pasta, Bolognese sauce and olive oil, and contained 

66% of the energy provision for the day. A water-only breakfast was also provided at 08:00, 

isovolume to the water content of the breakfast provided on EB. Due to the beneficial effects 

of dietary protein on satiety and preservation of fat-free mass during energy restriction 

(Wycherley et al. 2012), the ER diet was created by removing/ reducing high carbohydrate 

and high fat foods from the EB diet (i.e. pasta, bread, mayonnaise and snack foods). Daily 

energy and macronutrient intake from these diets are provided in Table 3.2. 

Additional water intake was prescribed at 35 mL·kg-1 body mass and was evening distributed 

throughout the day. Water intake for each chapter is detailed below as mean (SD):  

• Chapter VI: 2853 (329) mL 

• Chapter VII: 2438 (347) mL  

• Chapter VIII: 3661 (606) mL 
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Table 3.2. Day 1 standardised energy and macronutrient intake for each experimental chapter 

Trial Protein (g) Carbohydrate (g) Fat (g) Fibre (g) Energy (kJ) 

Chapter VI 

EB 111 (8) 338 (23) 81 (6) 12 (1) 10742 (728) 

ER 69 (5) 65 (4) 11 (1) 4 (0) 2697 (183) 

Chapter VII 

EB 97 (14) 294 (41) 70 (9) 11 (2) 9321 (1273) 

ER 60 (9) 56 (8) 9 (1) 3 (1) 2340 (320) 

Chapter VIII 

EB 125 (12) 381 (37) 91 (9) 14 (1) 12105 (1174) 

ER 78 (8) 73 (7) 12 (1) 4 (0) 3039 (295) 

EB, energy balance (100% EER); ER, energy restriction (25% EER). Values are means (SD). 

 

Standardised breakfast (Chapter’s VII and VIII) 

On both trials, after consuming a 24 h standardised diet (Day 1), subjects retuned to the 

laboratory after a ≥10 h overnight fast (~08:00) and consumed a standardised breakfast over 

20 min providing 25% of EER. This consisted of crisped rice cereal, semi-skimmed milk, 

white bread, butter and strawberry jam. In Chapter VI, this breakfast provided 2454 (338) kJ; 

16 (2) g protein; 93 (13) g carbohydrate; 16 (2) g fat; and 3 (0) g fibre. In Chapter VIII, this 

breakfast provided 3216 (341) kJ; 21 (3) g protein; 112 (12) g carbohydrate; 20 (2) g fat; and 

4 (1) g fibre. 
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Study Outcomes 

Assessment of subjective appetite sensations 

Subjective appetite sensations of hunger, fullness, desire to eat (DTE) and prospective food 

consumption (PFC) were assessed periodically throughout each experiment presented in this 

thesis, using a validated 100 mm visual analogue scale (Flint et al. 2000; Appendix G). 

Verbal anchors of ‘not at all/ no desire at all/ none at all’ and ‘extremely/ a lot’ were placed at 

0 and 100 mm, respectively. Subjects rated each appetite sensation by placing a mark along 

the 100 mm horizontal line corresponding to the degree they felt each sensation. These were 

then quantified by measuring the distance from the left hand side of the scale to the point 

indicated by the subject.    

 

Assessment of energy intake 

Energy intake was assessed via laboratory-based ad-libitum meals or weighed food records 

during main trials in Chapters IV, VII and VIII. Subjects consumed each ad-libitum meal in a 

custom-made isolated feeding booth to negate any environmental and social influence on 

food consumption. Subjects were given 30 min access to each ad-libitum meal, and were 

explicitly instructed to ‘eat until comfortably full and satisfied’. Subjects indicated satiation 

by leaving the feeding booth and sitting in the adjacent resting laboratory, but remained in 

isolation for the entire 30 min period. The amount consumed at each meal was quantified by 

weighing food before and after consumption, with energy and macronutrient content of food 

ascertained from manufacturer values. Water and/ or sugar-free squash were also provided 

with each ad-libitum meal.  

During Chapters IV, VII and VIII, an ad-libitum multi-item lunch was provided, consisting of 

ready-to-eat foods, including cooked meats, bread, butter, salad, fruit and biscuits (see 

Appendix H for full details). Food items were identically presented prior to each meal and 

were provided in excess of expected consumption, with more food available on request. 

A homogenous pasta meal (see Appendix I for full details), consisting of fusilli pasta, 

Bolognese sauce and olive oil (Tesco, Cheshut, UK), was used to assess energy intake at 

lunch and dinner (Chapters IV, VII and VIII). For each meal, 500 g of dry pasta was cooked 

in 2 L of unsalted water in a microwave at 900 W for 7 min, stirred, and then returned to the 

microwave for a further 7 min. The cooked pasta was then drained and weighed within 1 min. 
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To ensure each batch of pasta was matched as closely as possible for energy density, each 

cooked batch of pasta was required to weigh 1700-1900 g and was standardised between 

trials, with further cooking periods of 0.5-1 min used to achieve this. Once the cooked pasta 

had achieved the desired weight, 490 g of Bolognese sauce was thoroughly mixed through 

the pasta, following which the pasta was allowed to cool, before being refrigerated overnight. 

In Chapters IV, 205 g of cheese was also added to the meal, before the Bolognese sauce. 

Approximately 30 min prior to serving, 40 g of olive oil was thoroughly mixed into the meal. 

The whole meal was then weighed and was distributed into 4 bowls of ~350 g. Immediately 

prior to serving, each bowl was heated for 1.5 min in the microwave and was weighed after 

being allowed to cool for 2 min. Subjects were provided with the first bowl, which was 

replaced with a fresh bowl of pasta once ½ to ¾ of the bowl had been consumed. This 

process was continued until subjects indicated satiation. Fresh bowls were provided at an 

appropriate rate, determined for each subject individually during the familiarisation trial, 

which ensured that warm food was always available and that finishing a bowl did not serve as 

a cue to terminate the meal.           

In Chapter VII, energy intake at breakfast was assessed at an ad-libitum porridge meal. 

Subjects selected their preferred flavour (plain, golden syrup or chocolate) of porridge 

(Ready Brek, Weetabix, Kettering, UK) during the familiarisation trial. Each bowl of 

porridge consisted of 90 g dry porridge oats combined with 434 g of semi-skimmed milk, was 

microwaved for 2.5 min and allowed to stand for 3 min before being served to subjects. As 

above, bowls of porridge were replaced at a rate for each subject that allowed ½ to ¾ of the 

bowl to be consumed before replacement (see Appendix J for full details).      

In Chapters VII and VIII, subjects also completed a weighed food record to enable habitual 

energy intake to be estimated (Appendix K). Subjects were explicitly instructed on how to 

complete accurate and complete food records. To ensure competency, a 24 h food record was 

completed prior to the familiarisation trial, which was assessed and recommendations were 

made on how accuracy could be improved. Subjects were asked to weigh food before and 

after consumption, and include information on cooking methods and brands of food 

consumed. Where possible, energy and macronutrient content were determined from 

manufacturer values, or in instances where brands were not provided or food was fresh, 

NetWisp 4.0 dietary analysis software was used (NetWisp Inc, Chicago, USA).    
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Expired gas sampling and analysis 

Resting expired gas samples were collected after 20 min of supine rest. Subjects breathed 

through a silicone mouth-piece, one-way valve and falconia tube (Hans Rudolf, Oklahoma, 

USA) for 10 min, in accordance to the guidelines described by Compher (2006). The first 5 

min of each sample was discarded with the subsequent 5 min collected into a Douglas Bag 

(Plysu Protection Systems, Milton Keynes, UK). During exercise, 4 min expired gas samples 

were collected, with the first 2 min discarded and the subsequent 2 min collected into a 

Douglas bag.  

Concentrations of oxygen and carbon dioxide were determined using a paramagnetic oxygen 

analyser and an infrared carbon dioxide analyser (1400 Series Servomex, East Sussex, UK). 

The analysers were calibrated prior to sample analysis with certified reference gases (BOC, 

Guildford, UK). The volume (Harvard Dry Gas Meter, Harvard Ltd, Kent, UK) and 

temperature (Edale thermistor, Cambridge, UK) of each expired gas sample were also 

determined. In addition, the atmospheric concentrations of oxygen and carbon dioxide in the 

laboratory were obtained during each expired gas sample collection, to account for any 

variation in ambient air within a confined environment (Betts and Thompson, 2012). 

Laboratory temperature (Omega, Manchester, UK) and barometric pressure (ClimeMET, 

Suffolk, UK), as well as the composition of inspired air (measured within 1 meter of the 

subject) were measured and incorporated into the stoichiometric calculations.  

Expired gas sample volumes were converted to standard temperature and pressure dry (i.e. 

273 K and 760 mmHg; VE (STPD)), and the volume of inspired air (VI) was determined using 

the Haldane Transformation. Oxygen uptake (VO2) and carbon dioxide production (VCO2) 

were calculated from changes between inspired and expired gas sample. Energy expenditure 

and substrate oxidation were then calculated from VO2 and VCO2, using the equations of 

Frayn (1983).     

 

Blood sampling and analysis 

Blood samples were obtained from a superficial forearm vein (typically antecubital vein) via 

either venepuncture (≤4 blood samples per day) or cannula. Cannulas were kept patent by 

flushing with 5 mL non-heparinised saline (0.9% sodium chloride, Baxter Healthcare Ltd, 

Norfolk, UK) after each sample and at regular intervals between sampling. Prior to each 

blood sample, subjects rested in a semi-supine position for >20 min and remained in this 
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position during the collection, to control for any postural changes in plasma volume (Sheriffs 

and Maughan 1994).  

The first 2 mL of each sample drawn was discarded. Blood samples were drawn in 15 mL 

volumes and dispensed into pre-chilled tubes containing 1.75 mg·mL-1 K2EDTA (Sarstedt, 

Leicester, UK). A 5 mL aliquot of EDTA treated blood was used for determination of insulin, 

glucose and NEFA. A 5 mL aliquot of blood was immediately mixed with 50 µL of 

dipeptidyl-peptidase 4 inhibitor (Merck Millipore, Watford, UK) and dispensed into an 

EDTA tube, to prevent the degradation of GLP-17-36 and GIP1-42 (Chapter VIII only). A 2.5 

mL aliquot of blood was dispensed into an EDTA tube containing 25 µL (10 µL·mL-1 of 

whole blood) of a potassium phosphate buffer (PBS; 0.05 M), P-hydroxymercuribenzonic 

acid (PHMB; 0.05 M) and sodium hydroxide (NaOH; 0.006 M) solution, to prevent the 

degradation of acylated ghrelin. 

All samples were centrifuged at 1750g for a total of 15 min in a refrigerated (4°C) centrifuge 

(Thermo Fisher Scientific, Massachusetts, USA). After 10 min centrifugation, the supernatant 

(1 mL) of the PHMB/PBS/NaOH treated blood was mixed with 100 µL of hydrochloric acid 

(HCl; 1 M), and all samples were then centrifuged for a further 5 min. The supernatant of 

each sample was then removed, separated into 0.5 mL aliquots (Fisher Scientific, 

Loughborough, UK) and stored at -20°C until frozen and then transferred to -80°C for later 

analysis. 

In Chapter VI, 12 mL volumes of blood were drawn, with 5 mL dispensed into an untreated 

EDTA tube and treated as above, and 5 mL dispensed into a tube containing a clotting 

catalyst (Sarstedt, Leicester, UK) and stored for 15 min at room temperature until completely 

clotted. Tubes were then centrifuged (as above) and the plasma/ serum supernatant separated 

and stored (as above). In this study, serum was used for determination of insulin, glucose and 

NEFA, and plasma was used for determination of total GLP-1 and total GIP. 

At each sampling point, 2 mL of EDTA treated whole blood was used for determination of 

haemoglobin and haematocrit concentration. Haemoglobin was measured in duplicate by the 

cyanmethaemoglobin method using a spectrophotometer (Shimadzu, Milton Keynes, UK), 

and haematocrit was measured in triplicate using a micro-centrifuge (Hawksley, Sussex, UK). 

Haematocrit and haemoglobin concentrations were used to estimate plasma volume change 

relative to baseline (Dill and Costill 1974), enabling plasma concentration of hormones to be 

adjusted to account for changes in plasma volume.    
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Plasma/ serum concentrations of insulin (Immunodiagnostic systems, Boldon, UK) acylated 

ghrelin (Bioquote Ltd, York, UK), GLP-17-36 (Merck Millipore, Watford, UK), GIP1-42 

(Chapter VIII only; Immuno-Biological Laboratories Ltd, Minneapolis, USA), total GLP-1 

(Chapter VI only; Merck Millipore, Watford, UK) and total GIP (Chapter VI only; Merck 

Millipore, Watford, UK) were measured by ELISA. In Chapter VIII, plasma insulin 

concentrations were measured using an alternative ELISA (Mercodia, Uppsala, Sweden), as 

several subjects in this study exhibited high concentrations of insulin, necessitating the use of 

an insulin ELISA with a greater range. Plasma/ serum concentrations of glucose (Horiba, 

Montpellier, France) and NEFA (Randox Laboratories Ltd, Crumlin, UK) were determined 

by enzymatic colorimetric assay using a benchtop analyser (Pentra 400, Horiba, Montpellier, 

France). For each variable (with the exception of haemoglobin and haematocrit), all samples 

for an individual subject were analysed on the same ELISA plate, or during the same analysis 

cycle on the Pentra. Intra assay coefficients of variation are presented in Table 3.4. 

 

Table 3.3. Intra assay coefficient of variation for each assay conducted 

Variable Chapters Intra-Assay CV 

Glucose IV, V, VI, VII, VIII 0.5 (0.3-1.2) % 

NEFA VI, VII, VIII 1.3 (0.0-2.9) % 

Insulin (IDS) IV, V, VI, VII 4.7 (2.2-10.3) % 

Insulin (Mercodia) VIII 6.9 (1.9-14.9) % 

Acylated ghrelin IV, V, VII, VIII 5.8 (1.4-14.5) % 

GLP-17-36 IV, V, VII, VIII 4.2 (1.0-8.9) % 

Total GLP-1 VI 7.9 (5.2-10.6) % 

GIP1-42 VIII 2.9 (2.7-3.0) % 

Total GIP VI 6.1 (5.7-6.5) % 

     CV data is presented as mean (range). 
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Exercise Testing (Chapters IV and V) 

Preliminary fitness testing 

Subjects completed a discontinuous incremental exercise test on an electrically braked cycle 

ergometer (Lode Corival, Groningen Holland) to determine peak oxygen consumption 

(VO2peak). The initial workload was set between 50-100 W, dependant on the fitness level of 

each subject, and was increased 50-100 W during each increment. Increments lasted for 4 

min, were separated by ~5 min rest and workload increased until volitional exhaustion. VO2 

was determined from expired gas samples collected during the last minute of each increment 

and during the final minute of the test. VO2peak was defined as the highest VO2 measured. 

Verbal encouragement was provided throughout. VO2 was plotted against work load at each 

stage to determine the work rate-oxygen consumption relationship. Linear regression was 

used to determine the work rate required to elicit the desired percentage of oxygen uptake 

during exercise for subsequent trials (60% in Chapter IV and 50% in Chapter V; 60%). This 

work load was used for the familiarisation trial, but adjustments were made for main trials if 

necessary.        

Heart rate measurement 

Heart rate was recorded during exercise using short-range radio telemetry (Polar beat, 

Kempele, Finland). Heart rate was recorded at the end of each increment during the VO2peak 

test. 

Rating of perceived exertion (RPE) 

Subject’s level of exertion during exercise was ascertained using the Borg scale (Borg 1973), 

ranging from six (no exertion) to 20 (maximal exertion). RPE was assessed at the end of each 

increment during the VO2peak test. 

 

Statistical Analysis 

Data were analysed using SPSS 21.0 (Somers, NY, USA). Correction of hormone 

concentrations for plasma volume changes did not alter the interpretation of the results in any 

of the Chapters presented in this thesis, therefore the unadjusted values are presented 

throughout. All data was checked for normality of distribution using a Shapiro-Wilk test. All 
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area under the curve (AUC) values were calculated using the trapezoidal method and were 

analysed using a t-test (normally distributed) or a Wilcoxon signed-rank test (non-normally 

distributed), as appropriate. AUC were calculated for plasma/ serum concentrations of 

hormones/ substrates, appetite sensations, energy expenditure and substrate oxidation, and 

divided into specific time periods (Chapters VI, VII, VIII). Data containing one factor (e.g. 

energy intake at individual meals) were analysed using a t-test or Wilcoxon signed-rank test, 

as appropriate. Two-way repeated measures ANOVA were used to examine differences 

between trials over time for appetite sensations, plasma/ serum hormone concentrations 

(Chapters IV, V, VI, VII, VIII), plasma/ serum substrate concentrations (Chapters IV, V, VI, 

VII, VIII) and resting metabolism (Chapters V, VII, VIII). Assumptions of sphericity of the 

ANOVA were checked and adjustments for the degrees of freedom were made using the 

Greenhouse-Geiser correction, where appropriate. Post-hoc paired t-tests or Wilcoxon 

signed-rank tests were used to identify any time, trial or interaction effects. Where significant 

effects were observed, the Bonferroni (Chapters IV and V) or the Holm-Bonferroni (Chapters 

VI, VII, VIII) correction was used to control the familywise error rate. Data sets were 

determined to be significantly different when P<0.05. Data are presented as mean (standard 

deviation) unless otherwise stated. 
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Chapter IV  

Breakfast omission reduces 24 h energy intake and evening exercise 

performance in lean males 

Abstract 
Breakfast omission may reduce daily energy intake. Exercising fasted impairs performance 

compared to exercising after breakfast, but the effect breakfast omission has on evening 

exercise performance is unknown. This study assessed the impact of omitting breakfast on 

evening exercise performance, as well as within-day energy intake. Ten male, habitual 

breakfast eaters completed two trials, in randomised, counterbalanced order. Subjects arrived 

at the laboratory overnight fasted and either consumed (3095 (195) kJ) (BC) or omitted (BO) 

breakfast. Ad-libitum energy intake was assessed at 4.5 h (lunch) and 11 h (dinner). At 9 h 

subjects completed 30 min cycling exercise at ~60% VO2peak, followed by a 30 min 

maximal cycling performance test. Food was not permitted for subjects once they left the 

laboratory after dinner until 08:00 the following morning. Acylated ghrelin, GLP-17-36, 

glucose and insulin were assessed at 0, 4.5 and 9 h. Subjective appetite sensations were 

recorded throughout. Energy intake was greater (P<0.01) at lunch during BO than BC (5678 

(1878) vs. 4970 (1987) kJ) and tended to be greater at dinner during BC (P=0.052). 

Consequently, total ad-libitum energy intake was similar between trials (P=0.357), with 24 h 

energy intake (including breakfast in BC) 20 (5) % greater during BC than BO (P<0.001). 

Total work completed during the exercise performance test was greater during BC than BO 

(314 (53) kJ vs. 300 (56) kJ; P<0.05). Insulin was greater during BC at 4.5 h (P<0.05), with 

no other interaction effect for hormone concentrations. In conclusion, breakfast omission 

might be an effective means of reducing daily energy intake, may impair performance later 

that day, even after consuming lunch. 

 

Introduction 
Regular breakfast consumption has been recommended as part of a “healthy balanced diet” 

(Marangoni et al. 2009) and individuals who regularly consume breakfast tend to have a 

lower BMI (Cho et al. 2003) and reduced prevalence of several chronic diseases including 

type-2 diabetes (Mekary et al. 2012). Traditionally, recommendations for regular breakfast 

consumption have been based on correlational studies that associate a lower BMI with 
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regular breakfast consumption (Cho et al. 2003). However, these findings do not infer 

causality as individuals who regularly consume breakfast have often been shown to exhibit 

healthy lifestyle factors, such as increased physical activity (Cohen et al. 2003) and improved 

dietary profiles (Galvin et al. 2003). Therefore it is difficult to determine whether improved 

weight control is mediated by breakfast consumption per-se. 

Acute intervention studies have generally found that the omission of breakfast induces 

increased feelings of hunger over the morning, leading to greater energy intake in the first 

meal following breakfast omission (Hubert et al. 1998; Levitsky and Pacanowski 2013). 

However, energy intake over the course of the day rarely results in complete compensation 

for the energy omitted at breakfast, consequently reducing daily energy intake (Betts et al. 

2014; Hubert et al. 1998; Levitsky and Pacanowski 2013; Martin et al. 2000; Reeves et al. 

2014). Although this is not a universal finding as Astbury et al. (2011) found that energy 

omitted at breakfast was fully compensated for at an ad-libitum lunch meal, and Farshchi et 

al. (2005) found energy intake to be greater following breakfast omission compared to 

breakfast consumption. 

Lifestyle interventions that combine both dietary restriction and exercise have been shown to 

be more effective for long term sustainable weight loss and maintenance (Franz et al. 2007). 

Therefore it is important to consider the effect that a given dietary intervention has on 

physical activity and the ability to perform exercise, as this will influence the magnitude of 

energy deficit that can be achieved. Recently it was reported that daily energy intake was 

reduced by approximately 2250 kJ during a 6 week period of breakfast omission, however 

this deficit was countered by concomitant decreases in habitual energy expenditure of 

approximately 1850 kJ (Betts et al. 2014). The incorporation of structured exercise into 

weight management programs may have the potential to offset this decline in habitual energy 

expenditure somewhat, if exercise performance and/or adherence are not affected as a result 

of breakfast omission.  

A working lifestyle may restrict time for exercise to early mornings or evenings. Evening 

exercise classes have been associated with increased alertness, enthusiasm and reduced effort 

compared to morning classes (Maraki et al. 2005), suggesting that evening exercise may be 

the more acceptable option and may improve long-term adherence to an exercise program. 

Furthermore, some athletes have been reported to compete or train without the consumption 

of breakfast (Shriver et al. 2013) and it is important to consider what the effects of breakfast 
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omission are for individuals aiming to achieve peak exercise performance. Whilst it is well 

established that exercise performance is compromised in the fasted compared to postprandial 

state (Sherman et al. 1989; Sherman et al. 1991), no study has attempted to determine 

whether exercise performed later in the day is affected by the prior omission of breakfast.  

Therefore the aim of this investigation was to examine the impact of breakfast omission/ 

consumption on subsequent energy intake and evening exercise performance 4 h after 

provision of an ad-libitum lunch. We hypothesised that total 24 h energy intake (including 

breakfast) would be reduced by breakfast omission and that exercise performance would not 

be different between trials 

 

Methods 
Subjects 

Subjects were ten healthy, weight stable, recreationally active males (age: 22 (3) y; weight: 

73.1 (9.7) kg; height: 1.76 (0.05) m; BMI: 23.5 (3.2) kg·m-2; body fat: 17 (6) %; VO2peak: 

45.9 (6.1) mL·kg-1). Subjects regularly consumed breakfast and were not restrained, 

disinhibited or hungry eaters.   

Preliminary trials 

Subjects completed three preliminary trials. During the first trial, height, weight and body fat 

percentage were measured. A discontinuous incremental exercise test was also performed on 

an electrically braked cycle ergometer to determine VO2peak. During the second preliminary 

trial, subjects were fully familiarised with the experimental protocol (described below), with 

the exception that subjects could come and go from the laboratory between feeding periods 

and the exercise protocol. On the third preliminary trial, subjects completed the exercise 

protocol for a second time.  

Protocol 

Subjects completed two experimental trials; breakfast consumption (BC) and breakfast 

omission (BO). Trials were separated by at least 7 days, conducted at the same time of day, 

on the same day of the week and were administered in a randomised, counterbalanced order.  
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Subjects arrived at the laboratory at ~07:30, were weighed and a fasted blood sample was 

collected by venepuncture of an antecubital vein, after a 30 min period of supine rest (0 h). 

Baseline measures of subjective appetite sensations on a visual analogue scale were obtained 

before participants received either a standardised breakfast containing 25% of estimated 

energy requirements (BC) or a bolus of water equal to the water contained in the breakfast 

provided on BC (BO; Table 4.1). After breakfast (0.5 h) subjects rested quietly in the 

laboratory. A second blood sample was drawn at 12:30 (4.5 h), following which a multi-item 

ad-libitum lunch buffet was served consisting of cold, ready-to-eat foods (Appendix H). 

Upon termination of the meal, subjects again rested in the laboratory. At 17:00 (9 h) a blood 

sample was drawn before subjects began the exercise protocol (described below). One hour 

after completion of the performance test (11 h), an ad-libitum homogenous pasta meal (8.01 

(0.04) kJ·g-1) was served (Appendix I). Following the test meal (11.5 h), subjects were 

transported home and instructed not to eat or drink anything other than plain water. Subjects 

returned to the laboratory the following morning at 08:00 (24 h) by motorised transport for 

body mass measurement and to complete a subjective appetite sensations questionnaire. Ad-

libitum water and sugar-free squash was available on request throughout the study period and 

was provided with each buffet meal.   

Exercise performance 

Subjects began exercise at 17:00 (9 h) and initially performed 30 min steady state cycling at a 

workload of ~60% VO2peak. After 30 min, subjects completed a performance test, during 

which they were instructed to complete as much work as possible in 30 min. The workload 

was set at 75% VO2peak and subjects were able to manipulate the workload by pressing up or 

down on the bikes control unit. The control unit was completely covered, so that subjects 

received no feedback related to the workload completed and subjects were not provided any 

encouragement, although they were able to see the time remaining. During the steady state 

exercise, expired gas was collected between 14-15 and 29-30 min, and heart rate and RPE 

was obtained at the end of each collection. During the performance test, workload and heart 

rate were recorded every 5 min and RPE every 10 min. Energy expenditure and substrate 

utilisation were calculated from VO2 and VCO2 values using stoichiometric equations (Frayn 

1983).  
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Subjective appetite sensations 

Subjects rated their hunger, fullness, desire to eat (DTE) and prospective food consumption 

(PFC) at 0, 0.5, 2.5, 4.5, 5, 7, 9, 11, 11.5, 13 and 24 h. 

Blood sampling 

Blood samples (12 mL) were drawn after 30 min supine rest at 0, 4.5 and 9 h, and were 

treated and analysed for acylated ghrelin, GLP-17-36, glucose and insulin concentrations, as 

described in Chapter III.  

Statistical analysis 

Area under the curve (AUC) was calculated for subjective appetite using the trapezoidal 

method. Subjective appetite sensations were separated in three periods (0-4 h, 5-10.5 h and 

11-24 h). Data was analysed using the methods described in Chapter III. 

Results 
Baseline measurements 

Baseline body mass (P=0.831), subjective appetite sensations (P>0.418), plasma glucose 

(P=0.113), insulin (P=0.183), acylated ghrelin (P=0.124) and GLP-17-36 (P=0.131) were not 

different between trials.  

Energy and macronutrient intake 

A breakfast of 3095 (195) kJ was provided during BC. Subsequent total ad-libitum energy 

intake was 11560 (1979) kJ compared to 11329 (2117) kJ, for BO and BC, respectively 

(P=0.357). At lunch, energy intake was greater during BO (5678 (1878) kJ) than BC (4970 

(1987) kJ; P<0.01), whereas at dinner, there was a tendency for greater energy intake during 

BC (6359 (1631) kJ) than BO (5882 (1443) kJ; P=0.052). Including breakfast, total energy 

intake was 20 (5) % greater during BC (14424 (2255) kJ) than BO (11560 (1979) kJ) (Figure. 

4.1).  

Carbohydrate intake was significantly higher at lunch during BO compared to BC (P<0.05), 

but there was no difference in fat (P=0.097), protein (P=0.145) or fibre (P=0.314) intake. The 

dinner meal was homogenous in nature; therefore macronutrient selection could not be 

gauged from this meal. Including breakfast, total carbohydrate, fat, protein and fibre intake 

were all greater during BC compared to BO (all P<0.01; Table 4.1).   
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Table 4.1. Carbohydrate (CHO), protein (PRO), fat, fibre and water intake over the course of 

the each trial.  

 

 
CHO (g) PRO (g) Fat (g) Fibre (g) Water (ml) 

Breakfast 

BC 130.3 (8.2) 19.5 (1.2) 13.9 (0.9) 4.5 (0.3) 625 (39) 

BO 0 † 0 † 0 † 0 † 625 (39) 

Lunch 

BC 128.5 (69.0) 44.3 (22.8) 52.7 (20.2) 10.2 (4.5) 814 (211) 

BO 148.1 (65.1) † 50.2 (22.2) 60.0 (27.6) 11.1 (4.2) 898 (208) 

Dinner 

BC 194.2 (49.8) 53.6 (13.7) 55.9 (14.3) 9.7 (2.5) 477 (121) 

BO 179.6 (44.1) 49.5 (12.2) 51.7 (12.7) 9.0 (2.2) 443 (108) 

Total 

BC 453.0 (80.9) 117.4 (24.9) 122.5 (9.7) 24.4 (5.5) 3395 (627) 

BO 327.7 (78.3) † 99.7 (25.1) † 111.7 (22.9) † 20.1 (5.5) † 3334 (490) 
      

Data are means (standard deviations). † indicates values significantly different to BC (P<0.05) 
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Figure 4.1. Energy intake (kJ) at each test meal and over the total 24 h during BC (■) and 

BO (□). Values are means with vertical error bars representing standard deviation. † indicates 

values are different to BC (P<0.05).  

 

Subjective appetite sensations 

Subjective sensations of hunger, fullness, DTE and PFC showed a main effect of trial 

(P<0.05), time (P<0.001) and an interaction effect (P<0.001; Figure 4.2.). Subjects reported 

increased hunger, DTE and PFC, as well as lower fullness, in the post-breakfast period (0.5-

4.5 h) during BO compared to BC (P<0.01). Subjects also reported increased fullness at 7 h 

during BO compared to BC (P<0.05). For AUC analysis, data was divided into 3 sections; 

breakfast to lunch (0-4.5 h), lunch to dinner (5-11 h) and post dinner (11.5-24 h). These 

analyses revealed differences between trials for all subjective appetite variables between 
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breakfast and lunch (P<0.01). Fullness was also increased between lunch and dinner during 

BO compared to BC (P<0.05; Table 4.2).      

 

 

Figure 4.2. Subjective sensations of hunger (A), fullness (B), desire to eat (DTE) (C) and 

prospective food consumption (PFC) (D) during BC (■) and BO (○). Data points are means 

with vertical error bars representing standard error of the mean. White rectangle indicates 

standard meal feeding, vertical hatched rectangles indicate an ad-libitum meal and black 

rectangle indicates exercise period. All appetite variables showed a main effect of time. † 

indicates values are significantly different between trials (P<0.05).  
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Table 4.2. Area under the curve for each appetite variable. 

Data are means (standard deviations). † values are significantly different to BC (P<0.05). 

 

Steady state exercise and performance test  

Total work completed during the performance test was greater during BC (314 (53) kJ) than 

BO (300 (56) kJ; P<0.05; Figure. 4.3). There was no effect of trial order on exercise 

performance (P=0.297). During the 30 min steady state period, energy expenditure was 

greater during BO (1407 (210) kJ) than BC (1330 (191) kJ; P<0.05). Fat oxidation was also 

greater during BO compared to BC (P<0.05), but there was no difference in carbohydrate 

oxidation between trials (P=0.126). Average heart rate was higher during BO (155 (9) bpm) 

than BC (151 (8) bpm; P<0.001) during steady state, but was not different during the 

performance test (P=0.397). There was no difference in RPE at 15 (12 (2) vs. 12 (2); P=0.381) 

or 30 (13 (2) vs. 13 (2); P=0.763) min during steady state exercise, or at 10 (16 (1) vs. 16 (1); 

P=0.826), 20 (18 (1) vs. 18 (1); P=0.685) or 30 (20 (1) vs. 20 (1); P=0.598) min during the 

performance test.  

 

 

Post breakfast  

(0-4 h) 

Post   lunch      

(5-10.5 h) 

Post dinner   

(11-24 h) 

 Hunger (mm) 

BC 173 (65) 212 (72) 576 (201) 

BO 325 (76) † 193 (90) 480 (180) 

 Fullness (mm) 

BC 210 (60) 305 (73) 633 (215) 

BO 54 (41) † 341 (67) † 603 (192) 

 DTE (mm) 

BC 203 (80) 223 (69) 536 (189) 

BO 340 (93) † 195 (87) 495 (143) 

 PFC (mm) 

BC 211 (70) 240 (66) 565 (165) 

BO 319 (90) † 235 (73) 519 (195) 
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Figure 4.3. Work completed (kJ) during the exercise performance test. Left panel displays 

mean work completed during BC (■) and BO (□) with vertical error bars representing 

standard deviation. Right panel displays individual subject’s performance during BC (■) and 

BO (○). † indicates values are significantly different to BC (P<0.05).  

 

Blood parameters  

Plasma glucose (P<0.05), insulin (P<0.001), acylated ghrelin (P<0.001) and GLP-17-36 

(P<0.05) all showed a main effect of time. There were no main effects of trial or interaction 

effects for plasma glucose (P≥0.201), acylated ghrelin (P≥0.189) or GLP-17-36 (P≥0.056). 

There was a time x trial interaction effect for insulin (P<0.01), with higher insulin 

concentrations at 4.5 h during BC than BO (P<0.01), while insulin concentrations tended to 

be higher at 9 h during BO compared to BC (P=0.073; Table 4.3). 
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Table 4.3. Plasma concentrations of glucose, insulin, acylated ghrelin and GLP-17-36 over the 

course of the trial during BC and BO. 

For consistency, all data are presented as means (standard deviations). † indicates values are 

significantly different to BC; * indicates values are significantly different compared to 

baseline (P<0.05). 

 

Discussion 
The primary aim of this investigation was to determine the effect of breakfast omission/ 

consumption on subsequent energy intake and evening exercise performance. It was found 

that total work completed over a 30 min cycling performance test was reduced by 

approximately 4.5% following breakfast omission. This study also observed no difference in 

subsequent ad-libitum energy intake between trials, meaning total 24 h energy intake was 

reduced after breakfast omission. From a weight management perspective, occasional 

breakfast omission could be used as a viable means of energy restriction in habitual breakfast 

consumers, although this may slightly impair exercise performance. Further study is required 

 

 
Pre-breakfast (0 h) Pre-lunch (4.5 h) Pre-exercise (9 h) 

 Glucose (mmol·L-1) 

BC 5.33 (0.18) 4.89 (0.42) * 5.27 (0.39) 

BO 5.18 (0.25) 4.91 (0.33) * 5.13 (0.67) 

 Insulin (µlU·mL-1) 

BC 15.0 (4.4) 16.1 (5.8) 24.2 (6.8) * 

BO 13.9 (3.5) 10.7 (4.1) † * 30.7 (11.5) * 

 Acylated Ghrelin (pg·mL-1) 

BC 108 (114) 115 (65) 92 (90) 

BO 97 (99) 118 (121) * 71 (94) * 

 GLP-17-36 (pM) 

BC 7.22 (6.06)  9.85 (9.30)  8.51 (7.29)  

BO 6.61 (6.41)  6.55 (6.82)  12.99 (12.26) * 
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to determine whether breakfast omission can be used chronically to assist with long term 

weight management.  

The global increase in the prevalence of obesity has coincided with a gradual decline in 

breakfast consumption (Haines et al. 1996), with epidemiological evidence suggesting that 

those who regularly omit breakfast have a higher BMI than those who regularly consume 

breakfast (Cho et al. 2003). However, due to a number of confounding factors, including 

variations in activity patterns (Cohen et al. 2003) and dietary profiles (Galvin et al. 2003), 

there is a lack of causal data linking breakfast eating behaviour with energy balance. The 

results of the current investigation in young lean males, demonstrate that the total energy 

restricted at breakfast is not accurately compensated for over an acute 24 h period, resulting 

in a net energy deficit of 2864 kJ. These findings are comparable with those of Levitsky and 

Pacanowski (2013), who found total energy intake was reduced by approximately 1883 kJ 

following the omission of an ad-libitum breakfast meal. Similarly, 7 days consecutive 

breakfast omission was found to reduce energy intake by 670 kJ·d-1 on average compared to 

7-days consecutive breakfast consumption (Reeves et al. 2014). Taken collectively, data from 

these acute investigations suggest that, contrary to popular belief, breakfast omission does not 

lead to elevated energy intakes over the course of the day. As such, there is potential for 

breakfast omission to be used in successful weight management programmes.  

Consistent with previous findings, energy intake at lunch was greater during BO than BC 

(Astbury et al. 2011; Hubert et al. 1998; Levitsky and Pacanowsky 2013; Reeves et al. 2014). 

Following the omission of breakfast, subjective appetite sensations were elevated throughout 

the morning compared to when breakfast was consumed (Figure 4.2), and accordingly energy 

intake at lunch was increased by approximately 17%. However, this modest increase in 

energy intake (708 (667) kJ) only partially compensated for the energy deficit created by the 

omission of the breakfast meal (3095 (195) kJ), and as such subjects remained in energy 

deficit throughout the afternoon. Similar to the findings in the current study, Levitsky and 

Pacanowski (2013) reported elevations in hunger following the omission of an ab-libitum 

breakfast meal, leading to increased energy consumption at lunch. Hubert et al. (1998) found 

that reducing breakfast energy intake by 1824 kJ resulted in an average elevation in energy 

intake at lunch of 500 kJ. The average compensation at lunch for breakfast omission is 

remarkably consistent between these studies, with the current investigation revealing 23% 

compensation at lunch, compared to 22% (Levitsky and Pacanowsky 2013) and 26% (Hubert 

et al. 1998) previously reported.  
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Under free-living conditions, the increase in appetite observed throughout the morning period 

may have caused an increase in energy consumption during the time between breakfast and 

lunch, as was found previously (Martin et al. 2000). Although not measured during this 

period, it would be expected that breakfast consumption would cause a decline in acylated 

ghrelin and a concomitant increase in GLP-17-36 (Cummings 2006; Holst 2007). As acylated 

ghrelin and GLP-17-36 were only measured 4 h after breakfast consumption/omission and 

immediately prior to exercise, the dynamic response of these hormones to feeding may have 

been missed. Following lunch, no differences were observed in subjective appetite sensations, 

suggesting that differences in gut hormone concentrations would be similar between trials. 

Accordingly, the appetitive responses to breakfast omission appear to be transient and do not 

influence energy intake following the provision of lunch.  

Whilst there is general agreement in the literature that breakfast omission reduces daily 

energy intake, two investigations contest these findings. Astbury et al. (2011) found that the 

provision of a 1080 kJ breakfast was completely compensated for in the no breakfast 

condition at an ad-libitum lunch meal. This study was designed primarily to investigate the 

effect of breakfast on gastrointestinal hormonal regulation of food intake and incorporated a 

liquid pre-load between breakfast and lunch that may have influenced energy intake at lunch. 

Additionally, the provision of a low energy breakfast (10% of daily energy requirements) has 

previously been shown to be more accurately compensated for at subsequent meals than 

higher energy breakfasts (Schusdziarra et al. 2011). Farshchi et al. (2005) aimed to 

investigate whether the timing of breakfast consumption affected subsequent energy intake. 

Over a 2 week period, subjects either consumed cereal and milk at a traditional breakfast time 

(7-8am) or later in the day (12-12:30pm), which ensured that the energy provided was 

consistent across both interventions. Energy intake was found to be greater following 

breakfast omission compared to breakfast consumption. This was likely due to the 

experimental design, which does not necessarily represent typical practise for those utilising 

breakfast omission as a method of weight management.       

The current investigation found that exercise performance in the evening was decreased by 

4.5% following breakfast omission. Breakfast consumption is highly encouraged to maximise 

carbohydrate stores prior to competition (Williams and Serratosa 2006). It is also well 

documented that exercise performance is compromised after an overnight fast compared to in 

a postprandial state (Sherman et al. 1989; Sherman et al. 1991), with glucose availability a 

potentially limiting factor due to glycogen depletion (Coyle and Coggan 1984). In particular, 
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liver glycogen stores, which are important for blood glucose maintenance during exercise, 

have been shown to decrease by ~40% following an overnight fast (Taylor et al. 1996). 

Provision of a high carbohydrate breakfast will help replenish liver glycogen (Hawley and 

Burke 1997) and has been shown to increase muscle glycogen concentrations in the vastus 

lateralis by 11-17% (Chryssanthopoulos et al. 2004; Wee et al. 2005). A recent study 

reported that 73% of female college athletes regularly omitted breakfast, resulting in 

suboptimal daily carbohydrate and energy intakes (Shriver et al. 2013). This was also shown 

in the present study, as carbohydrate intake prior to exercise was reduced during BO 

compared to BC (148 (65) vs. 259 (73) g), which may have influenced glucose availability 

and reduced exercise performance. It appears breakfast may play a central role in meeting 

daily carbohydrate requirements for exercising individuals and that consumption of breakfast 

might be important in order to maximise exercise performance thought the whole day. 

Fat oxidation was greater during the 30 min steady state exercise period on BO. Increasing fat 

oxidation has been suggested to be beneficial for reducing fat mass and may also promote 

carbohydrate sparing, potentially improving performance (Jeukendrup and Achten 2001). 

However, there was no difference in carbohydrate oxidation between trials therefore it is 

unlikely that glycogen sparing occurred during BO. Accordingly, energy expenditure was 

greater during BO, which may be attributable to an increase in dietary induced thermogenesis 

induced by greater energy intake at the previous ad-libitum lunch meal. An increased 

contribution of dietary induced thermogenesis to energy expenditure may also explain the 

higher heart rate observed during BO. Following food intake, the splanchnic tissues require 

an increase in blood supply to assist with the digestion and absorption of nutrients. Therefore, 

during sub-maximal exercise, an increase in cardiac output is required to meet the oxygen 

requirements of both the skeletal muscle and splanchnic tissues (Yi et al. 1990). Another 

indicator of sympathetic nervous activity is noradrenaline, which has been shown to peak 

after breakfast, with an attenuated response at subsequent feeding periods (Panev et al. 2005). 

Following the omission of breakfast, lunch becomes the first meal of the day. It could be 

considered that the sympathetic nervous response to feeding was greater following lunch 

during BO compared to BC, thus heart rate was increased to a greater extent during steady 

state exercise. Noradrenaline also increases lipolysis (Klein et al. 1989) and may explain the 

elevation in fat oxidation during the steady state exercise on BO.     

A limitation with any research that investigates breakfast omission is the difficulty in 

blinding subjects to the study intervention. In the multifactorial ‘central governor theory’ 
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model of fatigue described by Noakes (2012), subject awareness of the study intervention 

may lead to an expectation in regard to exercise performance and performance may decline as 

a result. This may be particularly pertinent with the current study as all subjects were habitual 

breakfast consumers, so the withdrawal of breakfast in the morning may have produced a 

particularly strong expectation of reduced performance. Prior knowledge of the performance 

test in this study may have also influenced feeding behaviour at lunch, as subjects may have 

expectations in regard to pre-exercise carbohydrate requirements. Future research should 

investigate this effect in habitual breakfast omitters and also attempt to blind subjects to the 

treatment. 

It has recently been shown that the omission of breakfast over a 6 week period has a negative 

effect on physical activity levels, reducing habitual physical activity thermogenesis on 

average by 1850 kJ·d-1 compared to when breakfast was consumed (Betts et al. 2014). 

Physical activity of this nature is difficult to manipulate or avoid as the nutritional 

intervention seemingly imposes a sub-conscious restriction on energy expenditure. 

Incorporating structured exercise into weight management programs may offset the 

magnitude of this deficit somewhat, provided adherence to exercise isn’t affected. Whilst 

exercise performance might be important to maximise energy expenditure, the difference in 

exercise performance observed in the current study had a negligible influence on energy 

balance. Assuming a cycling efficiency of 20% (Hopker et al. 2007), estimated energy 

expenditure was ~70 kJ greater during BC.   

The results from this study suggest that occasionally omitting breakfast may be an effective 

way to reduce energy intake. Whether breakfast omission can be used chronically to assist 

with the restriction of energy intake is beyond the scope of this investigation. However, the 

few studies that have attempted to investigate this have reported promising results. Two 

weeks of consuming a very low energy breakfast (418 kJ) or a high energy (2920 kJ) 

breakfast resulted in marginally increased mid-morning snack intake in the very low energy 

breakfast trial with no additional elevation in energy intake throughout the rest of the day 

(Martin et al. 2000). Therefore, energy intake was significantly decreased in the low energy 

breakfast condition. Over a 6 week period, subjects who consumed at least 2930 kJ before 

11am consumed more energy per day than subjects that abstained from food until 12pm 

(Betts et al. 2014). Collectively, the present and previous studies suggest that the energy 

deficit achieved by breakfast omission may reduce energy intake. Whilst breakfast omission 

has been shown to have a restrictive influence on energy expenditure, this compensation 
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appears to be incomplete (Betts et al. 2014), and thus breakfast omission may assist with long 

term management of energy balance.  

In conclusion, the results of the present study demonstrate that occasionally omitting 

breakfast may be an effective method of reducing energy intake over a 24 h period in habitual 

breakfast consumers. However, exercise performance in the evening may be compromised 

following the omission of breakfast in the morning. For individuals concerned purely with 

weight management, the reduction in exercise performance is unlikely to be sufficient to 

influence energy balance. However, for those concerned with maximising training and/or 

competition performance, breakfast omission might impair performance or interfere with 

training adaptation. 
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Chapter V  

Effect of breakfast omission on subjective appetite, metabolism, acylated 

ghrelin and GLP-17-36 during exercise and rest 

Abstract 
Breakfast omission induces compensatory eating behaviour at lunch, but often reduces daily 

energy intake. This study investigated the effect of breakfast omission on within-day 

subjective appetite, energy expenditure, substrate utilisation and appetite hormone profiles, in 

response to standardised feeding and exercise. Eight male, habitual breakfast eaters 

completed two randomised trials. Subjects arrived overnight fasted (0 h) and either consumed 

(BC) or omitted (BO) a standardised breakfast (3085 (217) kJ). Lunch (4162 (510) kJ) and 

dinner (4914 (345) kJ) were provided at 4.5 and 10 h, respectively and subjects performed 60 

min fixed-intensity cycling (50% VO2peak) at 8 h. Blood samples were collected at 0, 4.5, 6 

and 8 h, with expired gas and subjective appetite sensations (hunger, fullness, desire to eat 

(DTE) and prospective food consumption (PFC)) collected throughout. Heart rate and 

perceived exertion were measured during exercise. Hunger, DTE and PFC were greater and 

fullness lower during BO between breakfast and lunch (P<0.05), with no differences after 

lunch (P>0.193). Resting energy expenditure was greater at 2.5 h during BC (P<0.05) with 

no other differences between trials (P>0.156). GLP-17-36 was greater (P<0.05) and acylated 

ghrelin tended to be greater (P=0.078) at 4.5 h during BC. Heart rate was greater on BO 

(P<0.05) during exercise. The results of this laboratory-based study suggest that the effects of 

breakfast omission are transient and do not extend beyond lunch, even when the negative 

energy balance created by breakfast omission is sustained via standardised feeding and 

exercise. 

 

Introduction 
In the absence of behavioural compensation, refraining from eating at a prescribed mealtime, 

such as breakfast, will create an energy deficit. It is thought that the appetite regulatory 

system will counter perturbations in energy balance, with metabolic and behavioural 

compensatory responses that target both energy intake and expenditure (Martin et al. 2000). 

However, the previous chapter demonstrated incomplete energy intake compensation over a 
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24 h period, with compensatory eating behaviour only exhibited at lunch, which is in line 

with previous studies (Hubert et al. 1998; Martin et al. 2000; Levitsky and Pacanowski 2013). 

However, it is currently unclear whether the increase in energy intake at this meal suppresses 

further energy intake through the remainder of the day, or whether the appetitive effects of 

breakfast omission are diminished after the initial stimulation of food intake. It would 

therefore be of interest to determine how the appetite regulatory system responds after lunch, 

as this may dictate feeding behaviour outside of rigid experimental control.  

Energy expenditure may also be altered in response to fluxes in energy balance due to 

breakfast omission. In one study energy expenditure was shown to decrease in the morning in 

response to breakfast omission, but was not different over a 24 h period (Kobayashi et al. 

2014). In this study, energy intake at lunch and dinner was increased to account for the 

energy omitted at breakfast, but complete energy intake compensation rarely occurs in 

response to acute breakfast omission (Levitsky 2014). Low intensity physical activity has 

been shown to reduce after chronic breakfast omission (Betts et al. 2014). An exercise 

intervention may have the potential to offset this decrement somewhat, provided the 

subjective response to exercise and/or adherence is not affected by breakfast omission. 

Lifestyle interventions that combine both dietary restriction and exercise have been shown to 

be more effective for weight management in the long-term (Franz et al. 2007); therefore it is 

important to consider the effect that a given dietary intervention has on physical activity.  

This study was designed to investigate the appetite and metabolic responses to breakfast 

omission, with energy intake at lunch and dinner held constant, which has not been 

previously investigated. The aim of this study was to investigate the effect of breakfast 

omission on subjective appetite sensations and metabolism in response to standardised 

feeding and sub-maximal exercise. 

 

Methods 
Subjects  

Subjects were eight healthy, recreationally active, regular breakfast consuming males (age: 

27 (6) y; weight: 75 (8.1) kg; height: 1.74 (0.07) m; BMI: 25 (2) kg·m-2; body fat: 18 (3) %; 

VO2peak: 53.4 (5.1) mL·kg-1). 
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Preliminary trial 

Subjects height, weight and body fat percentage were determined, before completing a 

discontinuous incremental exercise test on an electrically braked cycle ergometer to 

determine VO2peak. 

Protocol 

Subjects completed two experimental trials; breakfast consumption (BC) and breakfast 

omission (BO). Trials were separated by at least 7 days, conducted at the same time of day, 

on the same day of the week and administered in a randomised, counterbalanced order.  

Subjects travelled to the laboratory via motorised transport arriving at approximately 08:00, 

following at least a 10 h fast and were weighed nude. After 30 min supine rest (0 h), blood 

and expired gas samples were collected. Subjective appetite sensations were then assessed on 

a visual analogue scale (VAS) before subjects consumed either a standardised breakfast (BC) 

or no breakfast (BO). Subjects then rested quietly in the laboratory. At 4.5 h, a blood sample 

was collected, before a standardised lunch was consumed. Subjects again rested in the 

laboratory with blood samples collected at 6 h and 8 h. Subjects then completed 60 min 

cycling at 50% VO2peak (8-9 h). Heart rate and RPE were recorded after 20, 40 and 60 min 

of exercise. One hour after exercise (10 h) a standardised dinner meal was consumed. 

Subjects then left the laboratory, but were not permitted to eat until the following morning, 

completing VAS scales at 12, 13.5 and 24 h. 

Standardised meals 

During BC subjects were provided with a standardised breakfast containing 25% of estimated 

energy requirements (EER), and this was replaced during BO with a bolus of water 

isovolume to the water contained in the breakfast provided during BC (624 (44) mL). 

Subjects were provided the same lunch and dinner on both trials. Lunch consisted of ham 

sandwiches, crisps and yoghurt (35% EER) and dinner consisted of pasta, Bolognese sauce, 

cheese and olive oil (40% EER). Subjects consumed each meal gradually over a 30 min 

period (Table 5.1).  

After breakfast, subjects ingested 45 mL·kg-1 body mass of water throughout the day on each 

trial (2318 (284) mL). This water was distributed so that 100 mL was provided every 20 min 
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during exercise. Of the remaining water, 25% was ingested at lunch and dinner, and 12.5% at 

2.5, 7, 12 and 13.5 h.  

Table 5.1. Energy and macronutrient intake.  

 

 
CHO (g) PRO (g) Fat (g) Fibre (g) Energy (kJ) 

Breakfast  

BC 130.0 (9.1) 19.5 (1.4) 13.7 (1.0) 4.5 (0.3) 3085 (217) 

BO 0  0 0 0 0 

Lunch 

BC 
118.9 (8.3) 38.6 (2.7) 41.1 (2.9) 12.0 (0.8) 4162 (301) 

BO 

Dinner 

BC 
150.6 (10.5) 41.2 (2.9) 43.2 (3.0) 6.8 (0.5) 4914 (345) 

BO 

Total 

BC 399.6 (28.0) 99.4 (7.0) 94.4 (13.0) 23.2 (1.6) 12162 (988) 

BO 270.0 (18.9) 79.9 (5.6) 80.7 (12.3) 18.8 (1.3) 9077 (789) 
      

Values are mean (SD). 

 

Subjective appetite sensations 

Hunger, fullness, desire to eat (DTE) and prospective food consumption (PFC) were assessed 

at 0, 0.5, 1.5, 2.5, 3.5, 4.5, 5, 6, 7, 8, 9, 10, 10.5, 12, 13.5 and 24 h.  

Expired gas samples 

Rested expired gas samples were collected at 0, 2.5, 4.5, 6, 8 and 10 h, with additional 

samples collected after 20, 40 and 60 min of exercise. Expired gas samples were collected 

and analysed as described in Chapter III. 
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Blood sampling 

Blood samples (12 mL) were drawn after 30 min supine rest at 0, 4.5, 6 and 8 h, and were 

treated and analysed for determination of acylated ghrelin, GLP-17-36, glucose and insulin 

concentrations, as described in Chapter III.    

Statistical analysis 

Area under the curve (AUC) was calculated using the trapezoidal method and averaged over 

time. Subjective appetite sensations were separated in three periods (0-4.5 h, 5-10 h and 10.5-

24 h) and energy expenditure presented as total (0-10 h) and also separated into two periods 

(0-4.5 h and 5-10 h). Data was analysed using the methods described in Chapter III.     

 

Results 
Pre-trial values 

Pre-trial body mass (P=0.155), subjective appetite sensations (all P>0.346), RMR (P=0.393), 

carbohydrate oxidation (P=0.815) and fat oxidation (P=0.290) were not different between 

trials. Plasma concentrations of glucose (P=0.512), insulin (P=0.488), acylated ghrelin 

(P=0.526) and GLP-17-36 (P=0.636) were also not different between trials at baseline.  

Subjective appetite sensations 

All subjective appetite sensations showed an interaction effect (P<0.001). Sensations of 

fullness were lower concurrent with greater hunger, DTE (all P<0.01) and a tendency for 

greater PFC (P=0.078) at 0.5 h during BO compared to BC. Between 1.5 and 3.5 h, lower 

fullness and greater hunger, DTE and PFC (all P<0.05) was observed during BO compared to 

BC. Lower hunger (P<0.01), PFC (P<0.05) and a tendency for lower DTE (P=0.078) was 

found immediately prior to lunch (4.5 h) during BC compared to BO, but there was no 

difference between trials for fullness (P=0.234). After lunch there were no differences 

between trials for any appetite variables (5.5-24 h) (P>0.125; Figure 5.1).  

Data was divided into 3 sections for AUC analysis; baseline to lunch (0-4.5 h), post-lunch to 

dinner (5-10 h) and post-dinner (10.5-24 h). These analyses revealed differences between 

trials for all appetite variables between baseline and lunch (all P<0.05), with no further 

differences between trials (all P>0.719; Figure 5.1).    
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Figure 5.1. Subjective feelings of hunger (A), fullness (B), desire to eat (C) and prospective 

food consumption (D) (left panel) and AUC analysis (right panel) during BC (■) and BO (□) . 

Data are mean (SE) for the left panel and mean (SD) right panel. White rectangle indicates 

breakfast, hatched rectangles indicate standard meals, black rectangle represents exercise. † 

Significantly different to BC (P<0.05).  
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Energy expenditure and substrate oxidation 

Due to a fault with the gas collection equipment during one trial for one subject, this subjects 

gas samples were removed from the analysis. Therefore data from 7 subjects is presented. 

Respiratory exchange ratio (RER) showed an interaction effect (P<0.05) and was greater at 

2.5 (P<0.01), 4.5 (P<0.05) and 10 h (P<0.05) during BC compared to BO (Figure 5.2a). 

Carbohydrate oxidation was greater at 2.5 (P<0.001) and 4.5 h (P<0.05) during BC, but fat 

oxidation was not different between trials (P=0.413).  

There was an interaction effect for energy expenditure (P<0.01), with greater energy 

expenditure at 2.5 h during BC (P<0.05) compared to BO, with no other differences between 

trials (P>0.156; Figure 5.2b). AUC analyses revealed a tendency for increased energy 

expenditure at 0-4.5 h (P=0.066) during BC, but no difference at 5-10 h (P=0.523) or total 

(P=0.193). 

Blood parameters 

Plasma acylated ghrelin concentrations showed a main effect of time (P<0.001), but no 

interaction effect (P=0.238). Bloxplot analysis revealed one consistently outlying subject 

within the data set, exhibiting acylated ghrelin concentrations ~11 standard deviations greater 

than the mean of the 7 other subjects. Therefore, this subject was removed from the analysis. 

After removal, an interaction effect was identified (P<0.05). Acylated ghrelin tended to be 

higher during BC compared to BO at 4.5 h (P=0.078). Compared to 0 h, acylated ghrelin was 

greater at 4.5 h during BC (P<0.05) and reduced at 6 h during BO (P<0.05) (Table 5.2). 

An interaction effect (P<0.05) was identified for GLP-17-36, with greater concentrations at 4.5 

h during BC compared to BO (P<0.05). Compared to baseline, GLP-17-36 was greater at 6 and 

8 h during BC and at 8 h during BO (P<0.05; Table 5.2) 

Plasma insulin showed a main effect of time (P<0.001) and was greater than baseline at 6 h 

during BC (P<0.05) as well as at 6 and 8 h during BO (P<0.05). No interaction effect was 

observed for plasma insulin (P=0.468) or glucose (P=0.067) concentration (Table 5.2). 
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Figure 5.2. Resting energy expenditure during BC (■) and BO (□) (A); and resting energy 

expenditure AUC (B) . Data are mean (SD). On x-axis, white rectangle indicates breakfast, 

hatched rectangle indicates standard meal, black rectangle represents exercise. † Significantly 

different to BC (P<0.05); * Significantly different to baseline (P<0.05). 
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Table 5.2. Plasma concentrations of acylated ghrelin, GLP-17-36, insulin and glucose.  

 

 
0 h 4.5 h 6 h 8 h 

Acylated Ghrelin (pg·mL-1)  

BC 162 (132) 213 (147)* 114 (132) 156 (150) 

BO 168 (150) 178 (171) 111 (148)* 150 (165) 

GLP-17-36 (pM) 

BC 9.67 (8.49) 10.13 (8.22) 12.34 (7.67)* 11.72 (8.32)* 

BO 9.92 (9.78) 8.52 (8.83)† 13.01 (7.92)  12.85 (8.88)* 

Insulin (µlU·mL-1) 

BC 9.56 (4.29) 7.03 (3.98) 30.09 (11.68)* 18.49 (8.67) 

BO 8.74 (3.90) 7.56 (3.35) 34.90 (15.86)* 15.58 (3.78)* 

Glucose (mmol·L-1) 

BC 5.33 (0.22) 4.77 (0.42) 5.28 (0.79) 5.17 (0.45) 
BO 5.35 (0.23) 5.26 (0.47) 5.69 (0.88) 4.88 (0.56) 

      
Data are mean (SD). † Significantly different to BC; * Significantly different to baseline 

(P<0.05) 

 

Exercise responses 

There was a main effect of trial for heart rate (P<0.05), which was elevated at 60 min during 

BO compared to BC (P<0.05), and tended to be elevated at 40 min (P=0.068). VO2 

(P=0.503), RER (P=0.135), carbohydrate oxidation (P=0.143), fat oxidation (P=0.143), 

energy expenditure (P=0.289) and RPE (P=0.129) were not different between trials (Table 

5.3). 
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Table 5.3. Variables collected during exercise.  

 BC BO P-value 

VO2 (L·min-1) 1.95 (0.25) 1.92 (0.26) 0.503 

RER 0.92 (0.03) 0.90 (0.01) 0.107 

Carbohydrate oxidation (g·min-1) 1.93 (0.34) 1.72 (0.14) 0.143 

Fat oxidation (g·min-1) 0.25 (0.14) 0.31 (0.08) 0.143 

Energy Expenditure (kJ·min-1) 42.05 (5.01) 40.78 (5.16) 0.289 

Heart rate (beats·min-1) 130 (5) 134 (6)† 0.032 

RPE 11 (1) 12 (1) 0.129 

Data are mean (SD). † Significantly different to BC (P<0.05). 

 

Discussion 
This investigation found that subjective appetite sensations, appetite hormones and energy 

expenditure were not different after lunch, regardless of whether the subject consumed or 

omitted breakfast. Therefore, it appears that the appetitive and metabolic effects of breakfast 

omission are transient and might be offset by a standardised lunch. Breakfast omission also 

does not influence perception of effort or energy expenditure during 60 min of steady-state 

cycling exercise performed 3 h after lunch. This data suggests that occasional breakfast 

omission may not stimulate appetite and promote energy intake as has been previously 

inferred (Cho et al. 2003). 

Irregular consumption of breakfast consumption has been identified as a risk factor for 

obesity, with correlational evidence to suggest that habitual breakfast consumers have a lower 

BMI than breakfast omitters (Cho et al. 2003). However, habitual breakfast consumers also 

tend to exhibit healthy lifestyle practices, such as greater levels of physical activity (Cohen et 

al. 2003) and better dietary profiles (Galvin et al. 2003) than breakfast omitters, making 

causal mechanisms difficult to elucidate. Acute studies that have directly manipulated the 

consumption or omission of breakfast have generally reported that the omission of breakfast 

will increase appetite and induce compensatory eating behaviour at lunch (Levitsky and 
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Pacanowski 2013; Hubert et al. 1998). Whilst one study found that the energy omitted at 

breakfast was fully compensated for at an ad-libitum lunch meal (Astbury et al. 2011), the 

majority of studies have reported that energy intake at a single meal (Levitsky and 

Pacanowski 2013; Hubert et al. 1998; Gonzalez et al. 2013) or over a 24 h period (Martin et 

al. 2000; Levitsky and Pacanowski 2013; Reeves et al. 2014; Betts et al. 2014) is not 

sufficient to fully compensate for the energy omitted at breakfast. In the current investigation, 

the energy consumed at each meal was fixed so an increase in energy intake could not occur. 

These results demonstrate that even when energy consumed at lunch is controlled, there were 

no differences in appetite sensations or concentrations of appetite regulatory hormones 

(acylated ghrelin and GLP-17-36) were observed after lunch.  

The transient suppression of appetite after consumption compared to omission of breakfast 

has previously been observed after an ad-libitum lunch meal, which was used to gauge 

voluntary food intake (Levitsky and Pacanowski 2013; Hubert et al. 1998). However, the 

present investigation has demonstrated that appetite in the post-lunch period can be offset by 

an absolute energetic load, as opposed to subjects eating to satiation. This effect was shown 

to persist throughout the rest of the day, despite subjects consuming ~3000 kJ less during BO. 

Therefore, controlling food intake at subsequent meals does not appear to affect the appetitive 

response to acute breakfast omission, and this could allow greater energy deficits to be 

achieved, compared to when ad-libitum meals are consumed. However, subjective appetite 

sensations do not always accurately predict subsequent food intake (Clayton et al. 2014).  

Energy expenditure increased at 2.5 h during BC, compared to BO. This would be anticipated 

due to dietary induced thermogenesis (DIT). The thermogenesis associated with feeding is 

dependent on the energetic load and the macronutrient content of the meal. When the 

breakfast meal was broken down into its constituents, the estimated DIT of the meal was 

approximately 9.8% of the total energy content of the meal, which is in line with the typically 

reported DIT of a mixed meal of 10% (Westerterp 2004). Taking this into account, it is likely 

that the majority of the post-prandial increase in energy expenditure at 2.5 h was due to an 

increase in DIT. Even including DIT in the morning, AUC analysis did not reveal any 

differences between trials over the 10 h expired gas sampling period. This is in line with the 

finding of Kobayashi et al. (2014) who reported that breakfast consumption increased energy 

expenditure in the morning, compared to breakfast omission, but 24 h energy expenditure 

was not different between trials. In this study, the energy content of the lunch and dinner 

meals were increased in the no breakfast condition to match total daily energy intake between 
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trials. The results of the current study have therefore extended those of Kobayashi et al. 

(2014) and determined that, even in an energy deficient state, energy expenditure is not 

affected by occasional breakfast omission.     

The nature of measuring energy expenditure in a laboratory requires the subject to be at rest 

and therefore changes in habitual activity patterns may have been overlooked. Betts et al. 

(2014) found that over a 6 week period, breakfast omission decreased habitual energy 

expenditure by ~1850 kJ·d-1 compared to when breakfast was consumed. This was attributed 

to a decrease in low intensity physical activity, as opposed to a reduction in exercise 

intensity/duration, which was not measured in the current investigation. It is possible that 

physical activity of this nature is subconsciously affected by breakfast omission. Results of 

the present study show that any reduction in energy expenditure is not due to changes in 

resting metabolism. Therefore the incorporation of exercise into daily routines may help 

offset this reduction in low intensity physical activity, provided that adherence to exercise is 

not affected by the dietary intervention. 

Time constraints of a working lifestyle often restrict time to exercise to the morning or 

evening. Evening exercise classes are associated with increased alertness and enthusiasm, as 

well as being deemed to require less effort than morning classes (Maraki et al. 2005). These 

factors may help improve adherence to an exercise program in the long term. The current 

study implemented a prescribed exercise protocol on both experimental trials and found that 

heart rate was elevated during exercise on BO compared to BC. This suggests that subjects 

were more physiologically challenged during exercise on BO, although this was not reflected 

in RPE, VO2 or energy expenditure. Digestion and absorption of nutrients from the gut is a 

process that requires oxygen to be delivered to the splanchnic tissue, typically achieved via a 

redistribution of blood away from the skeletal muscle or an increase in cardiac output (Yi et 

al. 1990). During exercise, where the skeletal muscle requirements for oxygen are high, an 

increase in heart rate would facilitate meeting the metabolic requirements of skeletal muscle 

activity and digestion and absorption of nutrients. Heart rate may have been increased to a 

greater extent during exercise on BO, as splanchnic blood supply for digestion and absorption 

of nutrients may be prioritised, due to the subjects peripheral fuel supply being reduced 

during BO compared to BC (Van Baak et al. 2005). Noradrenaline is an indicator of 

peripheral sympathetic nervous activity and has been shown to peak after breakfast, and 

progressively decline following lunch and dinner meals (Panev et al. 2005). By removing 
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breakfast during BO, it is possible that the peak sympathetic response occurred after lunch, 

which subsequently increased heart rate to a greater extent during exercise on BO. 

The increase in appetite over the morning period during BO has been suggested to lead to the 

consumption of energy dense snacks (O’Connor et al. 2009), and indeed an increase in 

snacking behaviour has been observed in a previous study (Martin et al. 2000). Elevated 

levels of the appetite stimulating hormone ghrelin and suppression of satiety hormones, such 

as GLP-1, have been suggested as biological mechanisms that stimulate hunger and promote 

food intake (Cummings et al. 2001; Holst 2007). In the present study, GLP-17-36 was 

suppressed immediately prior to lunch in BO compared to BC, which may be linked to 

greater fullness and lower hunger, DTE and PFC in the present study, following breakfast 

consumption. Interestingly, acylated ghrelin tended to be higher prior to lunch during BC 

compared to BO (P=0.078). The reason for this is unclear; however ghrelin has been shown 

to respond diurnally, peaking at anticipated meal times. Extending the overnight fast during 

BO may have affected this diurnal variation, which may be governed primarily by post-

prandial decreases rather than pre-prandial increases (Chan et al. 2004). After lunch, there 

were no differences in acylated ghrelin and GLP-17-36 suggesting, in line with the subjective 

appetite sensations, there was no additional desire to increase food intake after lunch.  

In conclusion, this laboratory-controlled investigation found that subjective appetite 

sensations, acylated ghrelin, GLP-17-36 and resting energy expenditure were not different, 

independent of whether breakfast was consumed or omitted. This was found in spite of 

sustaining the negative energy balance induced by breakfast omission, via standardised lunch 

and dinner feeding and a prescribed exercise protocol.  Consuming breakfast in the morning 

appears to only transiently suppress appetite compared to when breakfast is omitted, and 

appetite can be offset with provision of a standardised lunch meal. This extends findings from 

ad-libitum feeding studies and suggests that a similar effect can be achieved with a 

standardised lunch, which may help enhance the energy deficit that can be achieved. 

Therefore, this study supports occasional breakfast omission as a means to reduce daily 

energy intake.  
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Chapter VI  

Effect of 24 h severe energy restriction on insulin, glucose and incretin 

response 

Abstract 
Obesity is a risk factor for several chronic diseases, including type-2 diabetes, emphasising 

the need for successful weight management programmes. Intermittent severe energy 

restriction can achieve ~6% weight loss in 6 months and improve fasting insulin sensitivity. 

However, prolonged (24-72 h) complete energy restriction has been shown to impair 

postprandial insulin sensitivity. To determine the effects of this style of dieting on metabolic 

health, the effect of intermittent severe energy restriction on markers of insulin sensitivity 

requires investigation. Therefore, the aim of this study was to investigate the acute effects of 

24 h severe energy restriction on indices of insulin sensitivity. In randomised order, eleven 

healthy, lean males consumed a 24 h diet containing 100% (10742 (728) kJ; EB) or 25% 

(2697 (183) kJ; ER) of estimated energy requirements. The following morning, plasma 

glucose, insulin, non-esterified fatty acid (NEFA), glucagon-like peptide-1 (GLP-1) and 

glucose-dependant insulinotropic peptide (GIP) concentrations were determined before and at 

regular intervals up to 2 h after consumption of 75g glucose in 300 mL water. The 

homeostatic model of insulin resistance (HOMA-IR) was used to assess fasting insulin 

resistance and area under the curve (AUC) used to assess postprandial responses. HOMA-IR 

decreased 25% during ER (P<0.05) but was unchanged during EB (P=0.575). AUC for 

plasma glucose (P<0.01) and NEFA (P<0.01) were greater during ER than EB, but AUC for 

plasma insulin (P=0.406), GLP-1 (P=0.419) and GIP (P=0.376) were not different between 

trials. Results demonstrate that acute severe energy restriction improved fasting insulin 

sensitivity, but impaired postprandial glycaemic control. This might have implications for 

individuals using intermittent severe energy restriction diets for weight management and 

therefore the chronic effects of intermittent severe energy restriction on postprandial insulin 

sensitivity warrants further investigation.   
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Introduction 
Obesity is a major risk factor for several chronic diseases, including type-2 diabetes, and has 

become a significant health concern worldwide (Kahn et al. 2006). Evidence suggests that 

weight loss of 5-7% can help improve insulin sensitivity, a significant risk factor for type-2 

diabetes (Anderson and Fernandez 2013). Restricting food intake daily by 20-50% of 

estimated energy requirements (EER) is currently the most widely used weight loss method 

(Omodei and Fontana 2011), but the requirement for daily adherence to the diet in order to 

achieve a sufficiently large energy deficit to induce weight loss, may limit the long term 

success of this diet in some individuals. Data suggests that only 30-40% of individuals 

manage to achieve long term weight loss (Anderson et al. 1999), which has contributed to 

rates of obesity more than doubling between 1980 and 2008 (Finucane et al. 2011).  

Intermittent severe energy restriction has been proposed as an alternative to daily energy 

restriction, and typically involves short periods (24-48 h) of severe energy restriction (~25% 

EER), allowing ad-libitum or adequate (i.e. 100% EER) energy intake on non-restricted days. 

Previous studies have demonstrated weight loss of 4-12%, after 8-24 weeks of severe energy 

restriction (Varady et al. 2009; Varady et al. 2011; Varady et al. 2013; Harvie et al. 2011; 

Harvie et al. 2013). This is comparable with weight loss reported from daily energy 

restriction diets (Varady 2011) and therefore appears to represent a viable alternative method 

of energy restriction.  

Intermittent and daily energy restriction may affect metabolic health via distinct pathways. 

The nutritional stress of acute periods of severe energy restriction may help to repair and 

optimise cellular processes, thereby reducing several risk factors for cardiovascular disease 

(Horne et al. 2015). However, very few studies have quantified the metabolic and 

physiological changes after severe energy restriction. Studies have reported that fasting 

insulin sensitivity (i.e. HOMA-IR) is improved after 4-6 months of intermittent severe energy 

restriction, but the subsequent response to nutrient ingestion was not assessed in these studies 

(Harvie et al. 2011; Harvie et al. 2013). In contrast, short (12-72 h) periods of complete 

energy restriction (i.e. fasting) consistently impairs postprandial insulin sensitivity, assessed 

by an intravenous glucose tolerance test or hyperinsulinemic euglycaemic clamp (Johnson et 

al. 2006; Soeters et al. 2008; Hoeks et al. 2010; Bergman et al. 2007). This contrasts 

conclusions from other studies utilising similar periods of complete energy restriction, 

demonstrating a reduction in HOMA-IR (Horne et al. 2013). Given humans tend to spend the 

majority of their time in the postprandial state, these impairments in insulin sensitivity 
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suggest short periods of complete energy restriction might not represent a suitable long-term 

method of weight management. Postprandial glycaemic control is now also recognised as an 

independent risk factor for cardiovascular disease (Gerich 2003), therefore the effect of 

severe energy restriction on post-prandial glycaemic control requires investigation. 

The aim of the current study was to investigate the effects of 24 h of severe energy restriction 

(25 % of EER) on indices of glycaemic control. 

 

Methods 
Subjects 

Eleven, healthy, recreationally active, weight stable, non-dieting males (age: 24 (4) y; weight: 

81.5 (9.4) kg; height: 1.80 (0.06) m; BMI: 26 (1) kg·m-2; body fat: 17 (4) %) volunteered to 

take part in this study.  

Study design 

Subject’s height, weight and body fat percentage were determined during a preliminary visit 

to the laboratory. Subjects then completed two experimental trials in random order, separated 

by ≥7 days. Each trial consisted of a 24-h dietary intervention where subjects received 100% 

(EB) or 25% (ER) of their estimated energy requirements (EER), followed by an oral glucose 

tolerance test (OGTT).  

Protocol 

For each trial, subjects attended the laboratory on two consecutive mornings, arriving via 

motorised transport at ~07:30 after a ≥10 h fast. On day 1, a blood sample was collected via 

venepuncture of an antecubital vein (-24 h). Subjects were then provided with food and drink 

for the day and instructions on when to consume each item, leaving the laboratory at ~08:15. 

Upon arrival on day 2, a cannula was inserted into an antecubital vein and a fasted blood 

sample was collected (0 h). Subjects then consumed a solution containing 75 g glucose 

dissolved in 250 mL of water, plus an additional 50 mL of water used to rinse the beaker to 

ensure all glucose was consumed. Blood samples were collected 0.25, 0.5, 0.75, 1, 1.5 and 2 

h after ingestion of the solution.  
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Standardised diet preparation  

Diets contained palatable, familiar foods and were tailored to individual preferences to help 

ensure adherence. EER was determined by multiplying estimated resting metabolic rate 

(Mifflin et al. 1990) by a sedentary physical activity level of 1.4. EB provided 100% EER, 

divided between four meals and ER provided 25% EER, divided between two meals (Table 

6.1). Water intake was prescribed at 35 mL·kg-2 of body mass (2853 (329) mL) and was 

evenly distributed throughout the day. On ER, in place of breakfast (08:00), subjects 

consumed a bolus of water equal to the water content of the breakfast provided on EB, which 

was additional to prescribed water. 

Blood sampling 

Blood samples (12 mL) were drawn after 30 min of seated rest at -24, 0, 0.25, 0.5, 0.75, 1, 

1.5 and 2 h, and were analysed for determination of glucose and insulin (from serum), as well 

as NEFA, total GLP-1 and total GIP concentrations (from plasma), as described in Chapter 

III.   

Statistical analysis 

Homeostatic model of insulin resistance assessment (HOMA-IR) was used to determine 

changes in fasting insulin resistance before and after the dietary intervention (Mathews et al. 

1985). Area under the curve (AUC) was calculated using the trapezoidal method and 

averaged over time during the OGTT (0-2 h). Data was analysed using the methods described 

in Chapter III. 
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Table 6.1. Energy and macronutrient intake at each meal (meal time in brackets) during day 

1  

 Energy balance (EB) Energy restriction (ER) 

Breakfast (08:00) 

Foods Cereal, semi-skimmed milk, orange 
juice 

Water 

Protein (g) 14 (1) 0 (0) 
Cho (g) 91 (6) 0 (0) 
Fat (g) 10 (1) 0 (0) 
Fibre (g) 1 (0) 0 (0) 
Energy (kJ) 2157 (146) 0 (0) 

Lunch (12:00) 

Foods White bread, mayonnaise, chicken, 
lettuce, tomato, red pepper, balsamic 

vinegar, chocolate-chip cookies 

Chicken, lettuce, tomato, red 
pepper, balsamic vinegar 

Protein (g) 47 (3) 36 (3) 
Cho (g) 73 (5) 8 (1) 
Fat (g) 31 (2) 4 (0) 
Fibre (g) 4 (0) 1 (0) 
Energy (kJ) 3214 (218) 899 (61) 

Snack (16:00) 

Foods Yoghurt, cereal bar NA 
Protein (g) 5 (0) 0 (0) 
Cho (g) 31 (2) 0 (0) 
Fat (g) 12 (1) 0 (0) 
Fibre (g) 1 (0) 0 (0) 
Energy (kJ) 1069 (72) 0 (0) 

Dinner (19:30) 

Foods Pasta, Bolognese sauce, olive oil, 
chicken, chocolate-chip cookies 

Pasta, Bolognese sauce, chicken, 
olive oil 

Protein (g) 46 (3) 33 (2) 
Cho (g) 142 (10) 56 (4) 
Fat (g) 29 (2) 7 (0) 
Fibre (g) 5 (0) 2 (0) 
Energy (kJ) 4301 (291) 1798 (122) 

Total 

Protein (g) 111 (8) 69 (5) 
Cho (g) 338 (23) 65 (4) 
Fat (g) 81 (6) 11 (1) 
Fibre (g) 12 (1) 4 (0) 
Energy (kJ) 10742 (728) 2697 (183) 
Data are means (SD) 
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Results 
Baseline variables and body weight change 

Body mass (P=0.429), glucose (P=0.230), insulin (P=0.600), GLP-1 (P=0.646) and GIP 

(P=0.253) were not different between trials at -24 h. Body mass decreased between -24 h and 

0 h during both trials (P<0.001), but to a greater extent during ER (EB: 0.53 (0.34) kg; ER: 

1.31 (0.49) kg; P<0.00001). 

Glucose, insulin and NEFA responses 

There were time (P<0.00001), trial (P<0.00001) and interaction (P<0.001) effects for serum 

glucose concentration, with a lower concentration at 0 h (P<0.05) and a greater concentration 

at 1 h (P<0.01) during ER compared to EB. Glucose AUC was greater during ER than EB 

(P<0.01; Figure 6.1). There were time (P<0.00001), trial (P<0.00001) and interaction 

(P<0.001) effects for serum insulin concentration, with a greater insulin concentration at 1.5 

h during ER compared to EB (P<0.05). There was no difference in insulin AUC between 

trials (P=0.406; Figure 6.1). There were time (P<0.01) and trial (P<0.05), and a tendency for 

an interaction (P=0.092) effect for HOMA-IR. HOMA-IR decreased from -24 h to 0 h during 

ER (P<0.05), but did not change during EB (P=0.575; Figure 6.2). There were time 

(P<0.00001), trial (P<0.01) and interaction (P<0.00001) effects for plasma NEFA 

concentration, with a greater concentration at 0 and 0.5 h (P<0.05), and a tendency for a 

greater concentration at 0.75 h (P=0.074) during ER. Plasma NEFA AUC was greater during 

ER than EB (P<0.01; Figure 6.1).  
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Figure 6.1. Serum glucose (A), serum insulin (B) and plasma NEFA (C) concentration 

during EB (■) and ER (○). Data points are means with vertical error bars representing 

standard deviation. Bar charts represent AUC during the OGTT (0-2 h) on EB (■) and ER (□). 

† indicates values are significantly different to EB. 
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Figure 6.2. HOMA-IR at -24 and 0 h during EB (A) and ER (B). Dotted lines represent 

individual data, solid line represent the mean with vertical error bars representing standard 

deviation. * indicates values were significantly different to -24 h within trial (P<0.05). 
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GLP-1 and GIP responses 

There was a main effect of time (P<0.0001) but no trial (P=0.438) or interaction (P=0.361) 

effects for plasma GLP-1 concentration (Figure 6.2). GLP-1 AUC was not different between 

trials (P=0.419). There was a main effect of time (P<0.0001) but no trial (P=0.245) or 

interaction (P=0.625) effects for plasma GIP concentration (Figure 6.2). GIP AUC was not 

different between trials (P<0.376).  

    

Figure 6.3. Plasma GLP-1 (A) and GIP (B) concentration, during EB (■) and ER (○). Data 

points are means with vertical error bars representing standard deviation. Bar charts represent 

AUC during the OGTT (0-2 h) on EB (■) and ER (□). 

 

Discussion 
The aim of this study was to determine the acute effects of 24 h severe energy restriction on 

indices of insulin sensitivity. The results indicate that 24 h of severe energy restriction 

improved fasting, but reduced post-prandial glycaemic control, compared to 24 h of adequate 

energy intake.  
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Intermittent severe energy restriction has been shown to induce comparable weight loss to 

continuous energy restriction (Varady et al. 2011) and may encourage adherence to dieting in 

the long-term (Harvie et al. 2013). Therefore, 1-4 days a week of severe energy restriction in 

combination with ad-libitum or adequate energy intake on other days appears to represent a 

viable alternative weight loss strategy to continuous daily energy restriction. In addition to 

weight loss, significant improvements in fasted insulin sensitivity have also been observed 

after 4-6 months of intermittent severe energy restriction diet 2 days a week (Harvie et al. 

2011; Harvie et al. 2013). In line with this, HOMA-IR was reduced ~25% after 24 h of severe 

energy restriction in the current study. Similarly, a non-significant reduction in HOMA-IR 

has also been observed after 24 h of water only fasting (Horne et al. 2013).   

A short period of complete or severe energy restriction will deplete hepatic glycogen stores 

(Nilsson and Hultman 1973), increase hepatic triglyceride mobilisation (Kirk et al. 2007) and 

reduce glycogenolysis (Rothman et al. 1991). This will suppress endogenous glucose 

production, and as HOMA-IR is calculated from fasting glucose and insulin concentrations 

(Mathews et al. 1985), it is predicable that HOMA-IR will be reduced immediately after 

severe energy restriction. There is evidence that this reduction is transient, as Harvie et al. 

(2011) reported ~29% acute reduction in HOMA-IR immediately after 2-days of severe 

energy restriction, which normalised after 2-days of resuming adequate energy intake. 

Therefore, these results show that a short period of severe energy restriction appears to cause 

an acute improvement in fasting insulin sensitivity but the clinical significance of this is 

unclear. 

The observed improvement in fasting insulin sensitivity appears to be reversed in the post-

prandial state. In the current study, serum glucose AUC was greater after 24 h of severe 

energy restriction, without a concomitant increase in insulin concentration. The origin of the 

observed elevation in glucose cannot be determined by the current study, however these 

findings are consistent with the Randle-cycle hypothesis (Randle et al. 1963), suggesting 

reciprocal rates glucose and fatty acid oxidation, dependant on substrate availability and 

energy balance. During periods of severe or complete energy restriction, a reduction in 

carbohydrate intake/ availability increases lipolysis, to provide substrate for metabolism 

(Maughan et al. 2010). This was reflected in the current study in greater fasting and 

postprandial plasma NEFA concentrations during ER, which would likely increase fat 

oxidation and reduce the oxidation of endogenous glycogen (Fery et al. 1998). In addition, an 

elevated plasma NEFA concentration reduces peripheral insulin sensitivity. Oxidation of 
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NEFA increases mitochondrial ratios of acetyl-coenzyme/ coenzyme and nicotinamide 

adenine dinucleotide + hydrogen/ nicotinamide adenine dinucleotide, leading to an 

accumulation of citrate, which inhibits 6-phosphofructo-1-kinase, a key enzyme involved in 

glycolysis (Hue and Taegtmeyer 2009; Roden et al. 1996; Soeters et al. 2008; Johnson et al. 

2006). Therefore, prolonged postprandial elevation of serum glucose during ER may be due 

to a reduction in peripheral glucose uptake, mediated by elevated NEFA concentrations. 

Alternatively, the prolonged postprandial elevation of serum glucose during ER may have 

occurred due to maintenance of endogenous glucose production, causing an additive serum 

glucose response after feeding. However, Kirk et al. (2007) found that endogenous glucose 

production was decreased after 48 h of energy restriction (~50% EER) providing ~4600 kJ·d-

1. Inducing a similar absolute energy deficit, the current study found that fasted serum 

glucose was reduced, indicative of reduced hepatic glucose production, after 24 h of energy 

restriction (25% EER). Therefore elevated postprandial endogenous glucose production is 

unlikely after an acute period of severe energy restriction. A third potential mechanism would 

involve an alteration is gastro-intestinal motility, consequently affecting the rate of glucose 

appearance in the blood. A short period (96 h) of complete energy restriction has been shown 

to reduce gastric emptying rate, resulting in the delayed appearance of glucose in the blood 

during an OGTT (Corvilain et al. 1995). However this did not appear to occur in the current 

study after 24 h severe energy restriction, as no differences in serum glucose concentration 

were observed between trials until 1 h after feeding. This suggests a similar rate of gastric 

emptying and absorption on both trials.  

Incretin hormones (such as GIP and GLP-1) are secreted rapidly in the intestine in response 

to food ingestion and stimulate insulin release prior to nutrient absorption to assist with the 

disposal of glucose from the blood (Baggio and Drucker 2007). In the current study, GIP was 

elevated from baseline throughout the OGTT, but this was not different between trials. In 

addition, there was no difference in GLP-1 response throughout the experimental protocol. 

As identical glucose loads were ingested on both trials during the OGTT, the similar incretin 

hormone response between trials suggests that alterations in insulin sensitivity were due to 

factors external to the gastrointestinal tract.  

These findings demonstrate that post-prandial glycaemic control is impaired after 24 h of 

severe energy restriction, which may have implications for individuals following intermittent 

severe energy restricted diets. The energy deficit induced in the current study was comparable 
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to the energy deficit achieved during days of severe energy restriction in weight loss trials 

(Varady et al. 2009; Varady et al. 2011; Varady et al. 2013; Harvie et al. 2011; Harvie et al. 

2013). Whilst immediate improvements in HOMA-IR in response to intermittent severe 

energy restriction may be transient (Harvie et al. 2013), whether short-term reductions in 

postprandial glycaemic control are transient, persistent, or additive, after multiple exposures 

to periods of severe energy restriction warrants further investigation. Intermittent severe 

energy restriction diets can achieve considerable weight loss (Varady et al. 2009; Varady et 

al. 2011; Varady et al. 2013; Harvie et al. 2011; Harvie et al. 2013), which in itself has been 

shown to improve postprandial insulin sensitivity (Svendsen et al. 2012; Kirk et al. 2007). 

But the diet-specific effect of intermittent severe energy restriction on postprandial insulin 

sensitivity has not been previously investigated. Further information about the effects of 

intermittent severe energy restriction on insulin sensitivity would be of particular importance 

to individuals utilising this style of dieting for weight maintenance. Results from the current 

study indicate that an acute period of severe energy restriction reduces postprandial insulin 

sensitivity in this population, but the long term effects of repeated exposures to acute periods 

of severe energy restriction, remains to be determined. The specific effects of different 

dietary practises on metabolic health, for both weight loss and weight maintenance will 

facilitate accurate prescription of energy restricted diets for curtailing the prevalence of 

obesity and obesity related disease in the future. 

In conclusion, this study found that an acute 24 h period of severe energy restriction led to an 

increase in fasting, but a decrease in postprandial insulin sensitivity, in a group of healthy 

males. Whether this effect is present after multiple exposures to severe energy restriction is 

currently unknown and warrants further investigation. This will help to determine whether 

intermittent severe energy restriction can promote long term health benefits, particularly in 

individuals where weight maintenance, as oppose to weight loss, is the primary objective. 
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Chapter VII  

Effect of 24 h severe energy restriction on appetite, energy intake and 

metabolism in lean males and females 

Abstract 
How a method of energy restriction on appetite may determine its long term success. 

Intermittent severe energy restriction has been shown to induce weight loss, but the appetite 

regulatory response to severe energy restriction is unknown. The aim of this study was to 

determine the effect of 24 h severe energy restriction on appetite regulation, metabolism and 

energy intake. Eighteen lean males and females completed two 3-day trials, in randomised 

counterbalanced order. On day 1 subjects consumed standardised diets containing 100% 

(9321 (1273) kJ; EB) or 25% (2340 (320) kJ; ER) of estimated energy requirements (EER). 

On day 2, a standardised breakfast was consumed (2454 (338) kJ), with plasma 

concentrations of acylated ghrelin, GLP-17-36, insulin, glucose and NEFA determined for 4 h. 

Ad-libitum energy intake was assessed at lunch and dinner, with subjective appetite and 

resting metabolism assessed throughout. On day 3, ad-libitum energy intake was assessed at 

breakfast and via weighed food records. Energy intake was 7% greater on day 2 (P<0.05) 

during ER, but not different on day 3 (P=0.557). Subjective appetite was greater during ER 

on day 1 (P<0.0001) and during the morning of day 2 (P<0.05), but was not different after 

lunch (P>0.145). Postprandial acylated ghrelin concentration was lower during ER (P<0.05), 

whilst postprandial GLP-17-36 concentration was not different between trials (P=0.784). 

Postprandial glucose (P<0.05) and NEFA (P<0.0001) concentrations were greater during ER, 

whilst insulin concentration tended to be greater (P=0.06). Energy expenditure was lower 

during ER in the morning (P<0.01), but was not different after lunch (P=0.665). In lean 

young adults, 24 h severe energy restriction transiently elevated subjective appetite and 

marginally increased energy intake, but hormonal appetite markers did not respond in a 

manner indicative of hyperphagia. These results suggest intermittent severe energy restriction 

might be useful to attenuate energy intake and control body weight in this population. 
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Introduction 
The majority of weight management research tends to focus on methods to assist obese 

individuals lose weight, but recent research suggests that part of this problem is attributable 

to lean individuals gaining weight throughout adulthood, eventually contributing to 

increasing rates of obesity (Ostbye et al. 2011). This highlights a need for an improved 

understanding of how weight loss programmes translate to weight maintenance programmes, 

therefore helping to curtail the prevalence of obesity in the future.    

Traditional weight management diets involve daily energy restriction to induce a moderate 

energy deficit over time, but more recently, intermittent severe energy restriction has been 

proposed as an alternative to daily energy restriction, capable of inducing comparable weight 

loss (Varady 2011). Studying the acute effects of severe energy restriction may elucidate 

some of the mechanisms of action. Persistent hunger is often cited as a reason for poor 

adherence to weight management regimes (Vogels and Westerterp-Plantenga 2005), 

suggesting that long-term adherence and weight loss may depend on how that dietary 

intervention influences appetite. Orexigenic and anorexigenic hormones may influence 

appetite to correct perturbations in energy balance (Cummings et al. 2002; Holst 2007). 

Ghrelin is an orexigenic hormone that is suppressed after food intake and returns to fasting 

levels between meals (Cummings et al. 2002). This suggests ghrelin’s response to food intake 

may be important in determining post-meal satiety and/ or subsequent meal initiation (Doucet 

and Cameron 2007). However, little is known about how appetite hormone profiles respond 

after short periods of severe energy restriction. Fasting hormone concentrations do not appear 

to change after short periods of severe energy restriction (Pasiakos et al. 2011; Doucet et al. 

2004; Blom et al. 2006).  However, a recent study reported that 48 h of severe energy 

restriction (providing 10% EER) produced a postprandial appetite hormone profile that would 

be expected to suppress, rather than stimulate appetite, in male and female soldiers 

(O’Connor et al. 2016). This study incorporated meal replacement gels, rather than real foods 

and a large amount of exercise (to simulate occupational activities), which possibly limits its 

translation to weight management settings.  

The aim of the current study was to examine the effect of 24 h of severe energy restriction 

(providing 25% of EER) on subjective and hormonal appetite regulation, ad-libitum food 

intake and metabolism, compared to an adequate energy control diet (providing 100% EER).  
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Methods 
Subjects 

Subjects were ten healthy males (mean (SD); age: 24 (2) y; weight: 74.4 (7.2) kg; height: 

1.78 (0.06) m; BMI: 24 (2) kg·m-2; body fat: 14 (4) %) and eight healthy females (age: 22 (2) 

y; weight: 63.8 (8.6) kg; height: 1.61 (0.05) m; BMI: 24 (2) kg·m-2; body fat: 27 (5) %). 

Subjects were not restrained, disinhibited or hungry eaters, had been weight stable for >6 

months and were not currently dieting. Female participants completed a menstrual cycle 

questionnaire, and trials were conducted during the post-menstruation follicular phase (~5-12 

days after start of menstruation). Sample size was estimated to detect a difference in energy 

intake, using energy intake data from a similar study (Johnstone et al. 2002), data from our 

laboratory using similar ad-libitum meals (Chapter IV) and an estimated between group 

correlation of 0.5 (G*Power 3.1.6; Dusseldorf, Germany). Using an α of 0.05 and β of 0.05, it 

was determined at least 16 subjects would be required to reject the null hypothesis. 

Study design  

During a 1-day preliminary trial, height, weight and body fat percentage were determined and 

subjects were familiarised with the ad-libitum meals and blood sampling procedures. Subjects 

then completed two 3-day experimental trials, administered in a crossover, randomised, 

counterbalanced order. Trials were separated by ≥14 days for males and exactly 1 menstrual 

cycle for females. On day 1 of each experimental trial, subjects received either 100% (EB) or 

25% (ER) of EER. On day 2 and 3, food intake, behaviour and metabolic responses to each 

diet were assessed (Figure 7.1). 

Protocol 

For each trial, subjects arrived at the laboratory via motorised transport at ~07:30 on three 

consecutive mornings, after a ≥10 h overnight fast and after voiding, nude body mass was 

measured (Adam Equipment Co, Milton Keynes, UK). On day 1, expired gas and blood (via 

venepuncture) samples were collected and subjective appetite assessed (~08:00; -24 h). 

Subjects left the laboratory at ~08:30, after receiving all food and drink for the day, along 

with instructions on when to consume each item. On day 2, an indwelling cannula was 

inserted and the measurements from day 1 were repeated (~08:00; 0 h). A standardised 

breakfast consisting of cereal, semi-skimmed milk, white bread, butter and jam (2454 (338) 

kJ; 16 (2) g protein; 93 (13) g carbohydrate; 16 (2) g fat; 3 (0) g fibre) and providing 25% 
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EER was then consumed over 20 min. Subjects then rested in the laboratory, with subjective 

appetite sensations, blood and expired gas collected periodically between breakfast and lunch. 

The cannula was removed after the final collection and an ad-libitum multi-item lunch was 

provided (~12:00-12:30; 4-4.5 h). After lunch, subjects rested in the laboratory, with further 

expired gas (5, 7, 9, 11 h) and subjective appetite sensations collected (5, 6, 7, 8, 8.25, 9, 10, 

11 h). A standardised yoghurt and cereal bar snack (862 (118) kJ; 4 (1) g protein; 25 (3) g 

carbohydrate; 10 (1) g fat; 1 (0) g fibre) was consumed at ~16:00 (8 h), and a single-item ad-

libitum dinner was provided at ~19:00-19:30 (11-11.5 h), with subjective appetite assessed 

immediately after dinner (11.5 h). On day 3, blood (via venepuncture) and an expired gas 

sample were collected, subjective appetite assessed (~08:00; 24 h) and an ad-libitum porridge 

breakfast was provided 24-24.5 h. Final subjective appetite sensations were collected at 24.5 

h and subjects completed a weighed record of all food and drink consumed for the remainder 

of the day (24.5-48 h). 

 

 

Figure 7.1. Schematic representation of study protocol 

 

Standardised diet preparation 

Diets were tailored to individual preferences and formulated to contain palatable and 

recognisable foods to ensure adherence. Estimated resting metabolic rate was multiplied by a 

sedentary physical activity level of 1.4 to determine EER for each subject. Details of day 1 

standardised diets are provided in Table 3.2 in Chapter III. 
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Energy intake 

Energy intake was assessed at a multi-item ad-libitum lunch (4-4.5 h; Appendix H), a 

homogenous ad-libitum dinner (11-11.5 h; Appendix I), a homogenous ad-libitum breakfast 

(24-24.5 h; Appendix J) and via habitual food records (24.5-48 h; Appendix K).  

Energy expenditure and substrate oxidation 

Resting expired gas samples were collected pre-breakfast on day 1 (-24 h); at 0, 1, 2, 3, 4, 5, 

7, 9 and 11 h on day 2; and pre-breakfast on day 3 (48 h). Expired gas samples were collected 

and analysed as described in Chapter III. 

Subjective appetite 

Hunger, fullness, desire to eat (DTE) and prospective food consumption (PFC) were assessed 

pre-breakfast (-24 h), post-breakfast (-23.5 h), pre-lunch (-20 h), post-lunch (-19.5 h), pre-

dinner (-13 h) and post-dinner (-12.5 h) on day 1;  pre-breakfast (0 h), post-breakfast (0:20 h) 

and at 1, 2, 3, 4, 4.5, 5, 6, 7, 8, 8.25, 9, 10, 11, 11.5 h on day 2; and pre-breakfast (24 h) and 

post-breakfast (24.5 h) on day 3.     

Blood sampling 

Due to problems with blood sampling, blood samples were only collected for 16 (8 male; 8 

female) of the 18 subjects. Blood samples (15 mL) were drawn after 30 min of supine rest at -

24, 0, 1, 1.5, 2, 3, 4 and 48 h, and were treated and analysed for determination of acylated 

ghrelin, GLP-17-36, insulin, glucose and NEFA, as described in Chapter III. 

Statistical analysis 

Area under the curve (AUC) was calculated using the trapezoidal method and averaged over 

time. AUC for subjective appetite sensations were calculated for day 1 (-24-0 h), in response 

to the standard breakfast (0-4 h), during the afternoon (4.5-11 h) and during the evening/ 

overnight (11.5-24 h) on day 2. AUC for energy expenditure and substrate oxidation were 

calculated in response to the standard breakfast (0-4 h) and during the afternoon (4.5-11 h) on 

day 2. Data was analysed using the methods described in Chapter III. Additionally, gender 

was entered as a between-subjects factor in repeated measures ANOVA to test for gender-by-

trial-by-time interactions, and gender-by-trial interactions (AUC and energy intake).  
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Results 
Gender analysis  

There were main effects of gender for some variables, with plasma NEFA concentration 

greater in females (P<0.05), and ad-libitum energy intake (P<0.001), energy expenditure 

(P<0.001), carbohydrate oxidation (P<0.001) and body mass (P<0.01) greater in males. 

There were no gender-by-trial interaction effects for energy intake at any ad-libitum meal 

(P>0.338) or reported energy intake on day 3 (P=0.469). There was a gender-by-trial 

interaction effect for fullness AUC between lunch and dinner on day 2 (P<0.05), with 

fullness lower in males on ER compared to EB (P<0.05). There were no other gender-by-trial 

(P>0.274) or gender-by-trial-by-time (P>0.342) interaction effects for AUC or raw data, 

respectively. Therefore, male and female data are presented together. 

Energy intake 

On day 2, ad-libitum energy intake was greater at lunch (ER: 4820 (1335) kJ; EB: 4322 

(1538) kJ; P<0.05) and tended to be greater at dinner (ER: 4627 (1219) kJ; EB: 4322 (971) kJ; 

P=0.056) during ER. Therefore, total ad-libitum energy intake on day 2 was 7% greater 

during ER compared to EB (P<0.05). On day 3, ad-libitum energy intake was not different at 

breakfast (EB: 2185 (566) kJ; ER: 2355 (543) kJ; P=0.162) and there was no difference in 

reported energy intake over the remainder of the day (EB: 9034 (2983) kJ; ER: 8532 (2788) 

kJ; P=0.362). Over the 2 day period, the increase in energy intake (471 (2902) kJ) was only 

sufficient to replace ~7% of the energy deficit created on day 1. Therefore energy intake over 

the 3-day trial was 6509 (3308) kJ greater during EB (P<0.00001; Table 7.1).  
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Table 7.1. Energy and macronutrient intake during each day of the experimental trial.  

 Protein (g) Carbohydrate (g) Fat (g) Fibre (g) Energy (kJ) 

Day 1 

EB 97 (14) 294 (41) 70 (9) 11 (2) 9321 (1273) 

ER 60 (9) † 56 (8) † 9 (1) † 3 (1) † 2340 (320) † 

Day 2 

EB 95 (21) 403 (89) 90 (22) 22 (5) 11960 (2419) 

ER 99 (20) 424 (100) 100 (21) † 23 (6) 12763 (2545) † 

Day 3 

EB 117 (43) 336 (96) 90 (36) 26 (7) 11219 (2994) 

ER 115 (45) 316 (98) 90 (31) 27 (10) 10887 (2911) 

Daily averaged intake 

EB 103 (22) 344 (67) 83 (19) 20 (4) 10833 (2050) 

ER 91 (21) † 265 (56) † 66 (12) † 18 (5) † 8663 (1561) † 

† indicates significant difference to EB (P<0.05). Data are mean (SD) 
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Energy expenditure and substrate oxidation 

There was a main effect of time (P<0.0001), but no trial (P=0.153) or interaction (P=0.101) 

effects for energy expenditure (Figure 7.2). Post-breakfast energy expenditure AUC was 

lower during ER (P<0.01) but was not different between trials after lunch (P=0.665) or at 24 

h (P=0.867; Figure 7.2). For carbohydrate and fat oxidation, there were time (P<0.00001), 

trial (P<0.001) and interaction (P<0.001) effects (Figure 7.2). Carbohydrate oxidation was 

lower between 0-4 h (P<0.05) and fat oxidation greater at 0, 1, 3 and 4 h (P<0.05) during ER 

compared to EB. Post-breakfast AUC was lower for carbohydrate oxidation (P<0.00001) and 

greater for fat oxidation (P<0.0001; Figure 7.2) during ER. Furthermore, post-lunch AUC 

was greater for fat oxidation (P<0.05) and lower for carbohydrate oxidation (P<0.05; Figure 

7.2) during ER.    
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Figure 7.2. Energy expenditure (A) and substrate oxidation (B) during EB (■) and ER (○). 

Data points are means with vertical error bars representing standard deviation. Bar charts 

represent energy expenditure (C) and substrate oxidation (D) AUC during EB (■) and ER (□). 

† indicates values are significantly different to EB (P<0.05). 
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Blood parameters 

There were time (P<0.00001), trial (P<0.05) and interaction (P<0.00001) effects for plasma 

glucose concentration (Figure 7.3). Plasma glucose was lower at 0 h and greater between 1-

1.5 h (P<0.05) during ER. Plasma glucose AUC was greater during ER compared to EB 

(P<0.05). For plasma insulin concentration, there was a main effect of time (P<0.0001) but 

no trial (P=0.057) or interaction (P=0.120) effects (Figure 7.3). Plasma insulin AUC tended 

to be greater during ER (P=0.06). There were time (P<0.00001), trial (P<0.0001) and 

interaction (P<0.00001) effects for plasma NEFA concentration (Figure 7.3). Plasma NEFA 

concentration was greater between 0-1 h (P<0.01) and tended to be greater at 1.5 h (P=0.076) 

during ER. Plasma NEFA AUC was also greater during ER (P<0.0001). There were time 

(P<0.00001), trial (P<0.05) and interaction (P<0.01) effects for plasma acylated ghrelin 

concentration (Figure 7.4). Acylated ghrelin concentration was greater at 0 and 3 h during EB 

compared to ER (P<0.05) and acylated ghrelin AUC was greater during EB (P<0.05). There 

was a main effect of time (P<0.001) but no trial (P=0.540) or interaction (P=0.524) effect for 

plasma GLP-17-36 and plasma GLP-17-36 AUC was not different between trials (P=0.784; 

Figure 7.4).  
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Figure 7.3. Plasma glucose (A), insulin (B) and NEFA (C) during EB (■) and ER (○). Data 

points are means with vertical error bars representing standard deviation. Bar charts represent 

post-breakfast AUC during EB (■) and ER (□). † indicates values are significantly different 

to EB (P<0.05). 
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Figure 7.4. Plasma acylated ghrelin (A) and GLP-17-36 (B) during EB (■) and ER (○). Data 

points are means with vertical error bars representing standard deviation. Bar charts represent 

post-breakfast AUC during EB (■) and ER (□). † indicates values are significantly different 

to EB (P<0.05). 

 

Subjective appetite sensations 

AUC for hunger, DTE and PFC were greater, and fullness lower for Day 1 (P<0.00001) and 

post-breakfast on day 2 (P<0.05) on ER compared to EB. There were no differences in post-

lunch (P>0.145) or overnight (P>0.214) AUC for appetite sensations (Figure 7.5). 
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Figure 7.5. AUC for hunger (A), fullness (B), DTE (C) and PFC (D), on day 1, and during 

the morning (0-4 h), afternoon (5-11 h), and evening (11.5-24 h) of day 2, during EB (■) and 

ER (□). Data points are mean with vertical error bars representing standard deviation. † 

indicates values are significantly different to EB (P<0.05). 
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Body mass 

Morning body mass on day 1, 2 and 3, respectively was 69.2 (9.4) kg, 68.9 (9.3) kg and 68.8 

(9.4) kg during EB and 69.5 (9.5) kg, 68.4 (9.2) kg and 68.9 (9.4) kg during ER. There were 

time (P<0.001) and interaction (P<0.001) effects for body mass. Body mass loss from day 1 

to day 2 was greater during ER compared to EB (P<0.001) and body mass on day 2 was 

lower during ER compared to EB (P<0.001). Day 3 body mass was not different between 

trials (P=0.594).  

 

Discussion 
The aim of the current study was to compare the effects of 24 h of adequate (100% EER 

consumed) or severely restricted energy intake (25% EER consumed) on appetite regulation 

and ad-libitum energy intake in the subsequent 48 h. The main findings were that 24 h of 

severe energy restriction caused a transient elevation in subjective appetite and increased ad-

libitum energy intake by ~7% in the first 24 h and by ~2% overall. In addition there was no 

difference in subjective appetite between trials after an ad-libitum lunch and 24 h of severe 

energy restriction did not promote an appetite hormone response indicative of hyperphagia. 

These results suggest that short periods of severe energy restriction may reduce energy intake 

and assist with appetite control in lean males and females.  

Previous studies have reported that lean individuals do not accurately adjust energy intake in 

response to a dietary induced energy deficit (O’Connor et al. 2016; Johnstone et al. 2002; 

Levitsky and DeRosimo 2010; Mars et al. 2005). Consistent with the current study, either no 

compensation (Levitsky and DeRosimo 2010) or only partial compensation (O’Connor et al. 

2016; Johnstone et al. 2002; Mars et al. 2005) in the 1-4 days after an acute (24-48 h) period 

of severe or complete energy restriction has been reported. Consequently, the majority of the 

energy deficit induced by energy restriction in these studies was preserved. Ad-libitum energy 

intake was ~7% greater during ER on day 2, with no difference on day 3, and average energy 

intake over the 3-day study was ~20% (2170 kJ) lower during ER compared to EB. Therefore, 

short-term severe energy restriction appears to represent a viable method of reducing energy 

intake in lean males and females.  

Subjects reported greater hunger, DTE, PFC and lower fullness on day 1 during ER compared 

to EB. This might be expected as a previous study found that subjective appetite in the 
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morning was elevated after 36 h of complete energy restriction, but consumption of an ad-

libitum breakfast normalised subjective appetite to levels comparable to a control trial, in 

which adequate energy intake was consumed in the previous 36 h (Johnstone et al. 2002). 

However in the current study, subjective appetite remained elevated throughout the morning 

during ER after consumption of a standardised breakfast containing 25% EER. This suggests 

that the breakfast used in the current study was not sufficient to offset appetite to the same 

extent as the ad-libitum breakfast provided by Johnstone et al. (2002). However, subjective 

appetite sensations were not different between trials after the ad-libitum lunch meal. This 

suggests subjective appetite can be offset by an ad-libitum meal independent of energetic 

compensation, and thereafter maintenance of the energy deficit might be achieved in the 

absence of elevated subjective appetite.   

Acylated ghrelin is an orexigenic hormone that has been suggested to initiate food intake as 

concentrations increase before and decrease after eating (Cummings et al. 2004). Therefore, 

acylated ghrelin might be expected to increase after energy restriction, as a mechanism to 

restore energy balance homeostasis (Cummings et al. 2002). However, 1-4 days of energy 

restriction of varying severity has shown no effect on fasting and/or postprandial ghrelin 

concentrations (Pasiakos et al. 2011; Doucet et al. 2004; Blom et al. 2006). The current study 

differs from these previous studies, as fasting and postprandial acylated ghrelin 

concentrations were reduced after 24 h of severe energy restriction. The current findings are 

consistent with a recent study, reporting suppressed postprandial acylated ghrelin 

concentration after consumption of a diet providing 10% EER for 2-days and including a 

large component of physical exercise. Intralipid infusion has previously been show to 

suppress acylated ghrelin (Gormsen et al. 2007), potentially via inhibition of ghrelin o-acyl 

transferase (GOAT), the enzyme responsible for the acylation of ghrelin (Liu et al. 2008). 

Therefore elevated plasma NEFA concentrations observed in the current study during ER, 

may explain why acylated ghrelin was suppressed in this, as well as a previous (O’Connor et 

al. 2016) study.     

Intravenous infusion of the anorexigenic hormone GLP-17-36 has been shown to suppress 

appetite and food intake, suggesting a role in meal termination and post-meal satiety (Holst 

2007). Whilst GLP-17-36 concentration has been shown to increase after weight loss (Adam et 

al. 2005; Adam et al. 2006), 24 h severe energy restriction did not affect fasting or 

postprandial GLP-17-36 concentration in the current study, suggesting this might not be an 

important regulator of day-to-day energy balance. GLP-17-36 is also an incretin hormone 
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which responds to ingested nutrients in the stomach and stimulates insulin secretion prior to 

nutrient absorption (Baggio and Drucker 2007). As no between-trial differences in insulin 

concentration were observed, it appears that neither the anorexigenic or insulinotropic actions 

of GLP-17-36 were affected by 24 h of severe energy restriction in the current study. However, 

GLP-17-36 is rapidly degraded into its inactive form (GLP-19-36) by the enzyme dipeptidyl 

peptidase IV upon release from intestinal L-cells (Holst and Deacon 2005). Therefore, GLP-

17-36 could potentially still influence appetite centrally without being detected peripherally. 

Whilst dietary interventions are generally developed to aid weight loss in overweight and 

obese individuals, research suggests that BMI progressively increases throughout adulthood 

(Ostbye et al. 2011). To prevent the progression towards obesity, effective methods to assist 

weight management in lean individuals might be as important as weight loss in overweight/ 

obese individuals. Intermittent severe energy restriction has been shown to effectively reduce 

weight under tightly controlled conditions (Harvie et al. 2011; Harvie et al. 2013; Varady et 

al. 2009; Varady et al. 2011; Varady et al. 2013) and therefore could also be a successful 

method of reducing energy intake for weight maintenance. However, compliance to periods 

of very-low energy intake under free-living conditions has not been fully elucidated. 

Persistent hunger and requirements for daily adherence have been highlighted as reasons for 

poor compliance to diets (Anderson et al. 2001; Vogels and Westerterp-Plantenga 2005) and 

could ultimately dictate long-term success. In the current study, the appetite hormone 

response to severe energy restriction was not indicative of elevated appetite, but 

paradoxically, subjective appetite was increased and energy intake was ~12% greater at lunch. 

This may reveal the complexity of human eating behavior, which is likely governed by 

cognitive and external factors, in addition to physiological cues. However, subjective appetite 

was offset after lunch and there was no further difference in energy intake. Therefore a 

flexible dietary approach permitting ad-libitum eating with intermittent periods of very-low 

energy intake may assist with appetite control and aid long-term dietary compliance.  

A small (~0.2 kJ·min-1), transient reduction in resting energy expenditure was observed 

during ER, but ER and EB were not different over the 24 h assessment period (i.e. day 2). 

Whilst this minor decrement is unlikely to influence energy balance, the laboratory 

procedures utilised in this study are likely to have restricted physical activity energy 

expenditure. Therefore, the effects on energy expenditure cannot be fully determined from 

this study. An increase in fat and reduction in carbohydrate oxidation was observed on day 2 

during ER. This is indicative of altered nutrient supply and/ or endogenous stores after severe 
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energy restriction, and has been reported previously (Bergman et al. 2007; Klein et al. 1993; 

Horton and Hill 2001). Twenty-four hours of complete energy restriction has been shown to 

reduce liver glycogen stores (Nilsson and Hultman 1973). Carbohydrate provision in the 

current study may have been insufficient to meet obligate glucose requirements (Maughan et 

al. 2010), resulting in an increase in lipolysis to provide NEFA for energy metabolism to 

preserve endogenous glycogen (Maughan et al. 2010).          

Glucose AUC was greater and insulin AUC tended to be greater (P=0.06) on ER, suggesting 

glycaemic control was impaired after 24 h severe energy restriction. This has been observed 

after short periods of complete energy restriction (Lundbaek 2006) and could be driven by 

elevated plasma NEFA concentrations, which may reduce the rate of glucose uptake into the 

muscle (Soeters et al. 2008; Johnson et al. 2006). However, the practical relevance of this 

finding is unclear and has not been determined after chronic intermittent severe energy 

restriction. Fasting insulin sensitivity has been shown to improve after 4 months of 

intermittent (2 days per week) severe energy restriction (Harvie et al. 2013), but the effect of 

long term severe energy restriction and refeeding cycles on postprandial insulin sensitivity is 

unknown and warrants further investigation.  

In conclusion, 24 h of severe energy restriction causes a transient increase in subjective 

appetite and a small increase in energy intake during the subsequent 24 h. Hormonal markers 

of appetite were not upregulated after severe energy restriction and did not respond in a 

manner indicative of hyperphagia. Therefore, an acute period of severe energy restriction 

may assist with energy balance management in lean males and females. Future studies should 

aim to examine the chronic effects of intermittent severe energy restriction on appetite 

regulation.  
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Chapter VIII  

No effect of 24 h severe energy restriction on appetite, energy intake and 

metabolism in overweight and obese males 

Abstract 
Long-term success of weight loss diets might depend on how the appetite regulatory system 

responds to energy restriction. This study determined the effect of 24 h severe energy 

restriction on subjective and hormonal appetite regulation, subsequent ad-libitum energy 

intake and metabolism. In randomised order, eight overweight or obese males consumed a 24 

h diet containing either 100% (12105 (1174 kJ; EB) or 25% (3039 (295) kJ; ER) of estimated 

daily energy requirements (EER). An individualised standard breakfast containing 25% of 

EER (3216 (341) kJ) was consumed the following morning and resting energy expenditure, 

substrate utilisation, and plasma concentrations of acylated ghrelin, GLP-17-36, GIP1-42, 

glucose, insulin and NEFA were determined for 4 h after-breakfast. Ad-libitum energy intake 

was assessed in the laboratory on day 2 and via food records on day 3. Subjective appetite 

was assessed throughout. Energy intake was not different between trials for day 2 (EB: 14946 

(1272) kJ; ER: 15251 (2114) kJ; P=0.623), day 3 (EB: 10580 (2457) kJ; 10812 (4357) kJ; 

P=0.832) or day 2 and 3 combined (P=0.693). Subjective appetite was increased during ER 

on day 1 (P<0.01), but was not different between trials on day 2 (P>0.381). Acylated ghrelin, 

GLP-17-36 and insulin were not different between trials (P>0.104). Post-breakfast AUC for 

NEFA (P<0.05) and GIP1-42 (P<0.01) were greater during ER compared to EB. Fat oxidation 

was greater (P<0.01) and carbohydrate oxidation was lower (P<0.01) during ER, but energy 

expenditure was not different between trials (P=0.158). These results suggest that 24 h severe 

energy restriction does not affect appetite regulation or energy intake in the subsequent 48 h. 

This style of dieting may be conducive to maintenance of a negative energy balance by 

limiting compensatory eating behaviour, and therefore may assist with weight loss. 

 

Introduction 
Overweight and obesity are positively associated with several chronic diseases and 

consequently represent a considerable health and economic burden (Bray 2004; Roberts and 

Bernard 2005). In these populations weight loss of >5% body mass reduces the prevalence of 
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some of these chronic diseases (Anderson and Fernandez 2013). Traditional weight loss diets 

involve continuous daily energy restriction to induce a moderate daily energy deficit. This 

style of dieting is successful in some, and typically results in long term weight loss of >5% 

body mass in approximately 30-40% of dieters (Anderson et al. 1999; Greenberg et al. 2009; 

Sacks et al. 2009). One problem with such diets is thought to be the requirement for daily 

adherence to the diet in order to create a sufficiently large energy deficit to induce weight loss 

(Anderson et al. 2001). Intermittent severe energy restriction, which negates some of the 

arduous factors of continuous energy restriction, can achieve 4-8% weight loss in 8-24 weeks 

(Varady et al. 2009; Varady et al. 2011; Varady et al. 2013; Harvie et al. 2011; Harvie et al. 

2013) and therefore may represent a viable alternative weight loss strategy. 

In line with the findings in the previous chapter, the majority of studies have reported a small 

increase in energy intake in the days after an acute episode of severe or complete energy 

restriction, but this is insufficient to fully compensate for the energy restricted and 

consequently the energy deficit is sustained (Johnstone et al. 2002; Mars et al. 2005; Levitsky 

and DeRosimo 2010; O’Connor et al. 2016). However, the effect of severe energy restriction 

on energy intake in overweight and obese populations has not been determined, and little is 

known about how hormonal and subjective appetite markers respond after an acute period of 

severe energy, particularly in this population.  

Therefore, the purpose of this study was to examine the effect of 24 h severe energy 

restriction (~25% of EER) on appetite regulation (hormonal and subjective) and ad-libitum 

energy intake compared to an adequate energy control trial (100% of EER). 

 

Methods 
Subjects 

Eight overweight/ obese (BMI ≥28 kg·m-2; Body fat >20%), but otherwise healthy, weight 

stable and non-dieting males (age: 26 (4) y; weight 104.6 (17.6) kg; height: 1.82 (0.06) m; 

BMI: 32 (4) kg·m-2; body fat: 28 (4) %) completed this study. Subjects were not restrained, 

disinhibited or hungry eaters. Sample size was estimated from energy intake data from a 

similar study (Johnstone et al. 2002) and from unpublished energy intake data from our 

laboratory using the same ad-libitum meals, which provided a between group correlation of 

0.83 (G*Power 3.1.6; Dusseldorf, Germany). Using an α of 0.05 and β of 0.2, it was 



126 
 

determined 7 subjects would be required to reject the null hypothesis. Therefore we recruited 

8 subjects to counterbalance the study and ensure an adequate sample size for the primary 

outcome (i.e. energy intake). 

Study design 

Subjects completed a 1-day preliminary trial, during which height, weight and body fat 

percentage were measured, before they were familiarised with the ad-libitum meals and blood 

sampling procedures. Subjects then completed two 3-day experimental trials in randomised, 

crossover, counterbalanced order, separated by ≥14 days. Each trial consisted of a 24 h 

dietary intervention period where subjects received 100% (i.e. energy balance; EB) or 25% 

(i.e. energy restriction; ER) of EER, followed by two days where dietary intake, behavioural 

and metabolic responses were measured (Figure 8.1). 

Protocol 

For each trial, subjects attended the laboratory on two consecutive mornings, arriving via 

motorised transport at ~07:30 after a ≥10 h fast. On day 1, blood (by venepuncture of an 

antecubital/ forearm vein) and expired gas samples were collected and subjective appetite 

assessed (-24 h). Subjects were provided food and drink for the day, along with instructions 

about when to consume each item and left the laboratory at ~08:30. Upon arrival on day 2, a 

cannula was inserted into an antecubital/ forearm vein and measurements made on day 1 were 

repeated (0 h). A standardised breakfast, providing 25% EER and consisting of white bread, 

jam, butter, cereal and semi-skimmed milk (3216 (341) kJ; 123 (12) g carbohydrate; 21 (2) g 

protein; 20 (3) g fat; 4 (1) g fibre) was consumed over 20 min. Subjects then rested in the 

laboratory, with blood and expired gas samples collected and subjective appetite assessed 

periodically after breakfast. After the 4 h sample, the cannula was removed and an ad-libitum 

multi-item lunch was provided (4-4.5 h). After lunch, subjects left the laboratory, but were 

not permitted to consume any food or drink, with the exception of ad-libitum water and a 

standardised yoghurt and cereal bar snack (1135 (235) kJ; 33 (7) g carbohydrate; 5 (1) g 

protein; 13 (3) g fat; 1 (0) g fibre) at ~16:00 (8 h). Subjects returned at ~19:00 and were 

provided with an ad-libitum single-item dinner (11-11.5 h), after which they left the 

laboratory and were instructed not to consume any food or drink (other than water in the 

evening) until 08:00 the following morning (24 h). At 08:00 on day 3, subjective appetite was 

assessed (24 h) and subjects then completed a weighed food record for the rest of the day (24-

48 h). 
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Figure 8.1. Schematic representation of study protocol 

 

Energy intake 

Energy intake was assessed at a multi-item ad-libitum lunch (4-4.5 h; Appendix H), a 

homogenous ad-libitum dinner (11-11.5 h; Appendix I), and via habitual food records (24.5-

48 h; Appendix K).   

Energy expenditure and substrate oxidation 

Rested expired gas samples were collected pre-breakfast on day 1 (-24 h); and at 0, 1, 2, 3 

and 4 on day 2. Expired gas samples were collected and analysed as described in Chapter III. 

Subjective appetite 

Hunger, fullness, desire to eat (DTE) and prospective food consumption (PFC) were assessed 

pre-breakfast (-24 h), post-breakfast (-23.5 h), pre-lunch (-20 h), post-lunch (-19.5 h), pre-

dinner (-13 h) and post-dinner (-12.5 h) on day 1;  pre-breakfast (0 h), post-breakfast (0:20 h) 

and at 1, 2, 3, 4, 4.5, 5, 8, 8.25, 11, 11.5 h on day 2; and pre-breakfast (24 h) on day 3.     

Blood sampling 

Blood samples (15 mL) were drawn after 30 min of supine rest at -24, 0, 0.5, 1, 1.5, 2, 3 and 

4 h, and were treated and analysed for determination of acylated ghrelin, GLP-17-36, GIP1-42, 

insulin, glucose and NEFA, as described in Chapter III. 
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Statistical analysis 

Area under the curve (AUC) values were calculated using the trapezoidal method.  AUC was 

calculated for the response to the standardised breakfast (0-4 h) for all variables, as well as 

for day 1 (-24-0 h) and the period post-lunch on day 2 (4.5-11.5 h) for subjective appetite 

sensations. Data was analysed using the methods described in Chapter III. 

 

Results 
Energy intake 

There was no difference between trials for ad-libitum energy intake at lunch (EB: 5445 (792) 

kJ; ER: 5731 (1663) kJ; P=0.558) and dinner (EB: 5149 (1070) kJ; ER: 5169 (1141) kJ; 

P=0.912) on day 2. Furthermore, total ad-libitum energy intake on day 2 (P=0.623), day 3 

(P=0.832) or day 2 and 3 combined (P=0.693) was not different between trials (Table 8.1). 

Consequently, the energy deficit created on day 1 was maintained and total energy intake 

over the 3 day trial was 11567 (2710) kJ greater during EB (P>0.0001).  There was also no 

difference in ad-libitum protein, carbohydrate, fat or fibre intake during day 2 (P>0.192), day 

3 (P>0.255) or day 2 and 3 combined (P>0.326).  
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Table 8.1. Energy and macronutrient intake during each day of the experimental trial.  

 Protein (g) Carbohydrate (g) Fat (g) Fibre (g) Energy (kJ) 

Day 1 

EB 125 (12) 381 (37) 91 (9) 14 (1) 12105 (1174) 

ER 78 (8) † 73 (7) † 12 (1) † 4 (0) † 3039 (295) † 

Day 2 

EB 119 (21) 494 (52) 117 (14) 24 (3) 14946 (1272) 

ER 117 (24) 500 (52) 123 (29) 25 (4) 15251 (2114) 

Day 3 

EB 105 (32) 310 (85) 91 (41) 19 (7) 10580 (2457) 

ER 133 (58) 318 (134) 83 (55) 20 (8) 10812 (4357) 

Daily averaged intake 

EB 117 (12) 395 (39) 100 (14) 19 (3) 12543 (1174) 

ER 83 (25) † 273 (48) † 69 (27) † 15 (4) † 8688 (1922) † 
† indicates significant difference to EB (P<0.05). Data are means (SD) 

 

Energy expenditure and substrate oxidation 

There was an effect of time (P<0.0001), but no trial (P=0.094) or interaction (P=0.571) 

effects for energy expenditure (Figure 8.2). For carbohydrate and fat oxidation, there were 

time (P<0.001), trial (P<0.05) and interaction effects (P<0.05) (Figure 8.2). Carbohydrate 

oxidation was lower (P<0.01) and fat oxidation higher (P<0.001) at 1 h during ER compared 

to EB. Post-breakfast AUC (P=0.158; Figure 8.2) was not different between trials for energy 

expenditure. AUC was lower for carbohydrate oxidation (P<0.01) and higher for fat 

oxidation (P<0.01; Figure 8.2) during ER.  
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Figure 8.2. Line graphs represent energy expenditure (A) and substrate oxidation (B) during 

EB (■) and ER (○). Data points are means with vertical error bars representing standard 

deviation. Bar charts represent post-breakfast AUC for energy expenditure (C) and substrate 

oxidation (D) during EB (■) and ER (□). † indicates values are significantly different to EB 

(P<0.05). 

  



131 
 

Blood parameters 

For plasma glucose concentration (Figure 8.3), there were time (P<0.0001) and interaction 

(P<0.05) effects, but no trial effect (P=0.837). Plasma glucose concentration was greater at 4 

h during EB (P<0.05). There was a main effect of time (P<0.0001), but no trial (P=0.499) or 

interaction (P=0.787) effects for plasma insulin concentration (Figure 8.3). Post-breakfast 

AUC for plasma glucose (P=0.938) and insulin (P=0.359) concentrations were not different 

between trials. Plasma insulin and glucose concentrations peaked 1 h after breakfast in both 

trials, decreasing thereafter. There were time (P<0.0001), trial (P<0.05) and interaction 

(P<0.0001) effects for plasma NEFA concentration (Figure 8.3). Plasma NEFA concentration 

was greater at 0 and 0.5 h during ER (P<0.05). Post-breakfast AUC (P<0.05) was greater 

during ER compared to EB. Plasma NEFA concentration peaked at 0 h in both trials, 

decreasing thereafter.  

For plasma acylated ghrelin concentration (Figure 8.4), box plot analysis revealed one 

consistently outlying subject, exhibiting concentrations ~13 SD greater than the mean of the 7 

other subjects. Therefore, this subject was removed from the analysis. For acylated ghrelin 

concentration, there was a time effect (P<0.001), but no trial (P=0.265) or interaction 

(P=0.619) effects. Post-breakfast acylated ghrelin AUC (P=0.109) was not different between 

trials. Plasma acylated ghrelin concentration was suppressed after breakfast in both trials, 

retuning to fasting levels by 4 h. For plasma GLP-17-36 concentration (Figure 8.4), there was a 

time effect (P<0.0001) but no trial (P=0.162) or interaction (P=0.119) effects. Post-breakfast 

GLP-17-36 AUC (P=0.217) was not different between trials. Plasma GLP-17-36 peaked at 1.5 h 

in EB and 0.5 h in ER, decreasing thereafter. For plasma GIP1-42 concentration (Figure 8.4), 

there were time (P<0.0001) and trial (P<0.05) effects, but no interaction effect (P=0.157). 

Post-breakfast GIP1-42 AUC (P<0.01) was greater during ER compared to EB. Plasma GIP1-42 

peaked at 2 h during EB and 1 h during ER, decreasing thereafter.  
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Figure 8.3. Line graphs represent glucose (A), insulin (B) and NEFA (C) concentrations, 

during EB (■) and ER (○). Bar charts represent post-breakfast AUC during EB (■) and ER 

(□). Data points are means with vertical error bars representing standard deviation. † 

indicates values are significantly different to EB (P<0.05). 
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Figure 8.4. Line graphs represent acylated ghrelin (A), GLP-17-36 (B) and GIP1-42 (C) 

concentrations, during EB (■) and ER (○). Bar charts represent post-breakfast AUC during 

EB (■) and ER (□). Data points are means with vertical error bars representing standard 

deviation. † indicates values are significantly different to EB (P<0.05). 
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Subjective appetite sensations 

AUC for Hunger, DTE and PFC were greater, whilst AUC for fullness was lower during day 

1 (P<0.01), with no other differences in appetite sensations (P>0.381; Figure 8.5).  

 

Figure 8.5. AUC for hunger (A), fullness (B), DTE (C) and PFC (D), on day 1, the morning 

of day 2 (0-4 h) and the afternoon of day 2 (4.5-11.5 h), during EB (■) and ER (□). Data 

points are means with vertical error bars representing standard deviation. † indicates values 

are significantly different to EB (P<0.05). 

 

Body mass 

Morning body mass on day 1 and 2, respectively was 104.4 (18.0) kg and 103.2 (17.9) kg 

during ER and 104.4 (18.3) kg and 104.2 (18.2) kg during EB. There were time (P<0.0001) 

and interaction (P<0.0001) effects for body mass with greater body mass loss from day 1 to 

day 2 during ER (P<0.0001). Compared to day 1, body mass was reduced on day 2 during 

ER (P<0.0001), but not EB (P=0.126).  
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Discussion 
This study found that, following a single episode of severe energy restriction, overweight and 

obese individuals did not experience elevated appetite in the subsequent 24 h and there was 

no change in resting or postprandial appetite hormone profiles. In addition, there was no 

increase in ad-libitum energy intake during the subsequent 48 h, suggesting that 24 h severe 

energy restriction may be an effective method of reducing energy intake in overweight and 

obese males, without any counter-regulatory effects on appetite.  

In the current study, overweight and obese individuals did not adjust their energy intake in 

response to 24 h of severe energy restriction. Subjects consumed a similar amount of energy 

during days 2 and 3, irrespective of their energy intake on day 1. Consequently, the energy 

deficit creating during day 1 on the ER trial was maintained. This is similar to previous 

studies in lean individuals, investigating 24-48 h periods of complete (Johnstone et al. 2002; 

Levitsky and DeRosimo 2010) or severe (provided 40% EER) (Mars et al. 2005) energy 

restriction. These studies reported either no compensation (Levitsky and DeRosimo 2010) or 

partial compensation (Johnstone et al. 2002; Mars et al. 2005) in the 1-4 days after the period 

of energy restriction. Taken together with findings from the current study, these studies 

demonstrate that energy intake is not accurately adjusted in the short term, in response to an 

acutely induced severe energy deficit. Therefore, this might represent a viable method for 

reducing energy intake.  

In the current study, subjects reported greater hunger, DTE, PFC and lower fullness on day 1, 

during ER compared to EB. This is expected given the disparate energy intakes between trials 

on this day and has previously been reported during 36 h complete energy restriction 

compared to an adequate energy diet (Johnstone et al. 2002). In this study, consumption of an 

ad-libitum breakfast after energy restriction normalised subjective appetite (Johnstone et al. 

2002). In the current study, there was no difference in subjective appetite during day 2, 

suggesting that appetite is only transiently affected during a 24 h period of severe energy 

restriction, with no carry over onto subsequent days.  

Acylated ghrelin is an orexigenic hormone that increases prior to a meal and might initiate 

food intake suggesting a role in energy balance homeostasis (Cummings et al. 2004). 

However, previous studies have reported that fasting ghrelin concentrations appear to be 

unchanged after 1-4 days energy restriction of varying severity (Blom et al. 2006; Pasiakos et 

al. 2011; Doucet et al. 2004). In the current study, feeding reduced acyalted ghrelin 
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concentration, but fasting and postprandial acylated ghrelin concentrations were similar 

between trials, independent of whether subjects consumed 100 or 25 % of their estimated 

energy requirements during the previous 24 h. Doucet et al. (2007) similarly observed no 

difference in ghrelin suppression in response to a standardised breakfast, before and after 

consumption of a moderately hypoenergetic diet (~70% EER) for 4 days. The anorexigneic 

hormone GLP-17-36 was also not different between trials. Intravenous infusion of GLP-17-36 

has been shown to reduce appetite and food intake (Verdich et al. 1998), suggesting GLP-17-

36 may be involved in satiation and satiety (Holst 2007). Fasting and postprandial GLP-17-36 

concentrations are reduced after weight loss (Adam et al. 2005; Adam et al. 2006), but 

fasting and postprandial GLP-17-36 concentrations were not different between trials in the 

current study. Taken together, both GLP-17-36 and acylated ghrelin may serve as feeding cues 

within day, but data from the current study suggest they are not altered after a single episode 

of severe energy restriction.     

Given the proposed role of these hormones in appetite regulation, these findings may have 

important implications for energy balance homeostasis during chronic intermittent severe 

energy restriction. Considering there was also no difference in subjective appetite response 

after day 1 between ER and EB, the current study suggests that 24 h severe energy restriction 

does not affect subjective or hormonal appetite regulation. These findings likely explain the 

lack of hyperphagia observed in the current study and may at least partly explain the weight 

loss achieved and improved adherence to chronic intermittent severe energy restriction diets 

in overweight/ obese populations (Varady et al. 2009; Varady et al. 2011; Varady et al. 2013; 

Harvie et al. 2011; Harvie et al. 2013).  

In the current study, resting energy expenditure was unaffected by severe energy restriction, 

which is in line with findings from studies investigating short periods of complete energy 

restriction (Bergman et al. 2007; Klein et al. 1993; Horton and Hill 2001). However, fasting 

and postprandial substrate metabolism was affected by 24 h of severe energy restriction, with 

fat oxidation greater and carbohydrate oxidation lower on day 2, during the ER trial. This is 

indicative of altered nutrient supply and/ or endogenous stores and has been reported 

previously (Maughan et al. 2010). Complete energy restriction for 24 h has been shown to 

greatly reduce liver glycogen (Nilsson and Hultman 1973), but in the absence of exercise, 

muscle glycogen stores are largely preserved (Loy et al. 1986). Although some carbohydrate 

was provided in the present study, it seems likely that this was not sufficient to meet the 

obligate requirement of this group of subjects (Maughan et al. 2010). Consequently this 
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reduction in carbohydrate intake/ availability would stimualte lipolysis to provide substrate to 

preserve endogenous glycogen (Maughan et al. 2010). This is reflected in the greater plasma 

NEFA concentration during ER, which would increase fat oxidation and concomitantly 

reduce carbohydrate oxidation (Klein et al. 1993).  

These changes in substrate availability may have led to a slight alteration in glycaemic 

control. Whilst, there was no difference in glucose AUC, there appeared to be an altered 

pattern of postprandial glycaemia in response to the breakfast meal, evidenced by the 

observed interaction effect. Plasma glucose concentration was lower at 4 h during ER and 

whilst there was no other significant difference between trials, there appeared to be some 

disturbance in glycaemic control during the first 2 h post-breakfast. Indeed, before correction 

for multiple comparisons, serum glucose concentration was higher at 1 h during ER 

compared to EB (P=0.04). Prolonged complete energy restriction (i.e. starvation) is known to 

impair glycaemic control (Lundbaek 2006), an effect that is likely attributable to increased 

plasma NEFA concentrations, which have been shown to reduce the rate of glucose uptake 

into muscle (Soeters et al. 2008; Johnson et al. 2006). In addition, GIP1-42 AUC was greater 

after ER compared to EB. GIP1-42 and GLP-17-36 are incretin hormones, synthesised rapidly 

from the stomach in response to nutrient intake and stimulate the release of insulin prior to 

nutrient absorption (Baggio and Drucker 2007). In the current study, despite elevated GIP1-42 

during ER, the insulinotropic response to the standardised breakfast was not different 

between trials. The incretin effect is known to be impaired in obese and insulin resistant 

individuals (Creutzfeldt et al. 1978), which might explain why there was an increase in GIP1-

42, but not insulin after-breakfast. Although not an aim of the current study, these results 

suggest that severe energy restriction may impact glycaemic control, and whilst this study 

might be underpowered to elucidate the precise effects/ mechanisms, these results suggest 

this topic warrants further investigation. 

A potential issue with intermittent severe energy restriction is whether the degree of energy 

restriction required for this type of dieting to be successful is achievable under free-living 

conditions. Whilst appetite is increased during a period of severe energy restriction, the 

current study suggests these feelings are transient and constrained to the day of severe energy 

restriction. This and a previous study (Johnstone et al. 2002) suggest that severe energy 

restriction does not lead to any increase in appetite sensations in the days after a 24 h period 

of severe energy restriction. Daily energy restriction is the traditional method of dietary 

induced weight loss (Omodei and Fontana 2011), however compliance to such diets may be 
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compromised by continuous hunger and the need for daily adherence to the diet (Anderson et 

al. 2001). In theory, intermittent severe energy restriction might represent a more flexible 

dietary strategy compared to daily energy restriction and may facilitate better long term 

compliance by assisting with appetite regulation, although this theory remains to be tested. 

Previous studies have demonstrated weight loss of 4-12% after 8-24 weeks of intermittent 

severe energy restriction (Varady et al. 2009; Varady et al. 2011; Varady et al. 2013; Harvie 

et al. 2011; Harvie et al. 2013). In one study, weight loss was greater after 12 weeks 

intermittent severe energy restriction compared to isoenergetic daily energy restriction 

(Harvie et al. 2013). The current study observed no difference in subjective appetite and no 

difference in resting or postprandial concentrations of the appetite hormones acylated ghrelin 

and GLP-17-36 after 24 h energy balance or severe energy restriction. These results suggest 

short periods of severe energy restriction may produce an appetite profile conducive to 

weight loss, but whether this appetite profile is maintained after long term exposure to 

intermittent severe energy restriction has yet to be determined. Whilst no change in fasting 

ghrelin concentration was reported after 16 weeks of intermittent severe energy restriction 

(Harvie et al. 2013), the dynamic response to feeding of appetite hormones after long term 

intermittent severe energy restriction is unknown.  

The current study had the following limitations. The sample size for the study (n=8) was 

calculated to be sufficient to detect a difference in ad-libitum energy intake, however this 

sample size may be too small to detect differences in some blood parameters. This study also 

investigated a homogenous cohort of overweight/ obese, young (20-40 y) adult males and it is 

not known whether these findings extend to females, lean individuals, or older populations. 

The energy expenditure assessment in the current study did not account for physical activity 

and therefore the effect of severe energy restriction on this component of energy balance 

remains to be determined. Finally, whether the acute effects observed in the current study 

extend to the chronic intermittent severe energy restriction paradigm is unknown, with long 

term intervention studies required to determine this.        

In conclusion, the results of this study demonstrate that subjective appetite is only transiently 

affected during, and not after severe energy restriction, and that fasting and postprandial 

appetite hormone profiles are unaffected by an acute 24 h period of severe energy restriction. 

In addition, no difference in energy intake was observed up to 48 h after 24 h severe energy 

restriction, thereby preserving the deficit induced by energy restriction. This is the first study 
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to assess this in overweight/ obese subjects and suggests that 24 h of severe energy restriction 

induces an appetite response conducive to weight loss in these individuals, which may help 

explain findings from longer-term intervention studies. 
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Chapter IX  

General Discussion 

Obesity is a major risk factor for several chronic diseases and represents a considerable health 

and economic burden worldwide (Bray 2004; Robert and Bernard 2005). Fundamentally, 

obesity develops when energy intake exceeds energy expenditure over a prolonged period of 

time. It has been conclusively proven that significant weight loss can be achieved via dietary 

restriction (Varady 2011), however long term maintenance of weight loss is poor (Anderson 

et al. 2001), suggesting adherence to dietary interventions may decline over time. Recent 

research has found that novel dietary interventions, such as breakfast omission and 

intermittent severe energy restriction, can be effective methods of reducing daily energy 

intake (Chowdhury et al. 2015a; Chowdhury et al. 2015b; Betts et al. 2014; Levitsky and 

Pacanowski 2013; Levitsky and DeRosimo 2010; Johnstone et al. 2002; Klemple et al. 2010; 

O’Connor et al. 2016), with several studies also demonstrating that significant weight loss 

can occur from prolonged practise of these dietary interventions under tightly controlled 

experimental conditions (Varady et al. 2009; Varady et al. 2011; Varady et al. 2013; Harvie 

et al. 2011; Harvie et al. 2013; Geliebter et al. 2014). Hunger is often cited as an underlying 

cause for declining adherence to a diet (Vogels et al. 2005). This highlights an important 

mechanism that could determine the success of a method of dieting in the long term, and 

therefore understanding how a given dietary intervention affects appetite regulation may 

predict long term adherence to the diet. The work presented in this thesis has sought to 

determine the acute effects of breakfast omission and 24 h severe energy restriction on 

several variables central to appetite regulation and energy balance, including subjective 

appetite sensations, concentrations of gut hormones involved in appetite regulation and ad-

libitum energy intake. In addition, these studies also determined the effect of these dietary 

interventions on resting metabolism and insulin sensitivity. 

 

Effect of energy restriction on energy intake  

The success of a dietary intervention to induce changes in body weight will be determined by 

how it affects components of energy balance. The results from the studies presented in this 

thesis demonstrate that moderate (breakfast omission) or severe energy restriction 
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(consuming 25% of daily EER) is not countered in the short term by an increase in energy 

intake sufficient to fully compensate for the energy deficit induced. In Chapters IV, VII and 

VIII, the energy deficit induced via breakfast omission or severe energy restriction was at 

least partially preserved and therefore total energy intake was reduced. 

The association of regular breakfast omission with a higher BMI (Cho et al. 2003; Purslow et 

al. 2008) has led to the widespread belief that breakfast omission will increase appetite, 

causing overeating at subsequent meals and greater daily energy intake (Pereira et al. 2011). 

As discussed in previous sections, any increase in appetite appears to be constrained to the 

morning, with no carry-over effect to subsequent meals. Chapter IV found that, when 

breakfast was omitted, energy intake was increased ~16 % at an ad-libitum lunch and there 

was no further increase in energy intake at dinner. However, this marginal increase in energy 

intake at lunch was not sufficient to fully compensate for the energy omitted at breakfast and 

therefore daily energy intake was reduced. These results are in line with several previous 

studies, reporting either no difference (Levitsky and Pacanowski 2013; Gonzalez et al. 2013; 

Chowdhury et al. 2015b) or a small increase (Levitsky and Pacanowski 2013; Chowdhury et 

al. 2015a; Hubert et al. 1998) in energy intake at the first meal consumed after breakfast. 

With the exception of one study (Astbury et al. 2011), incorporation of Chapter IV into the 

existing body of literature demonstrates that breakfast omission may increase energy intake at 

a subsequent meal, but this is only sufficient to compensate for 0-35 % of the energy omitted 

at breakfast (Levitsky and Pacanowski 2013, Gonzalez et al. 2013, Chowdhury et al. 2015b, 

Chowdhury et al. 2015a, Hubert et al. 1998). Collectively, these studies refute the strongly 

engrained public message that omitting breakfast will increase daily energy intake. 

Building on this evidence, Chapters VII and VIII sought to determine whether inducing a 

severe energy deficit would prompt a more profound compensatory feeding response in lean 

(Chapter VII) and overweight/obese (Chapter VIII) subjects. The findings from these studies 

reflect the results from Chapter IV, demonstrating inaccurate short-term regulation of energy 

intake in response to a dietary induced energy deficit. In lean subjects, Chapter VII found an 

increase in energy intake of 7% after 24 h of severe energy restriction, but the energy deficit 

induced was not fully compensated up to 48 h after the period of severe energy restriction. 

Similarly, despite a subsequent increase in energy intake of ~20-30%, total energy intake was 

reduced 8400-9000 kJ after 24 h of complete (Johnstone et al. 2002) or 48 h of severe 

(consuming 40% EER) (Mars et al. 2005) energy restriction. However, these findings differ 

slightly from the results of Chapter VIII, which found no compensatory increase in energy 
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intake after 24 h of severe energy restriction in overweight and obese subjects. This could be 

due to differences in subject cohort and a similar effect was recently shown after breakfast 

omission. Two identical studies were performed in lean (Chowdhury et al. 2015a) and obese 

(Chowdhury et al. 2015b) subjects, with breakfast either consumed or omitted during two 

separate trials. At an ad-libitum lunch, lean subjects increased energy intake by 20% after 

breakfast omission, but energy intake was not different between trials in the obese subjects. 

Conversely, the same authors found that when habitual energy intake was assessed (via food 

records) at the end of a 6 week period of either consuming or omitting breakfast every 

morning, lean individuals consumed significantly less energy when omitting breakfast (Betts 

et al. 2014), whereas there was no difference in daily energy intake for obese individuals 

(Chowdhury et al. 2016). These finding demonstrate that obese individuals were able to at 

least partially compensate for the energy deficit imposed at breakfast in their habitual 

environment, but not under laboratory conditions. This might suggest that obese individuals 

are more strongly influenced by environmental factors governing energy intake (Mela 2006) 

and this could lead to an increase in feeding frequency and food selection in a free-living 

environment. The studies by Chowdhury et al. (2015a; 2015b), as well as Chapters VII and 

VIII from this thesis, employed ad-libitum laboratory feeding protocols, which provides 

meals at set times and limits external influences of food intake, in order to examine 

mechanisms of appetite regulation. As a result this removes the opportunity to increase the 

number of feeding occasions and limits food choices, which may affect overweight and obese 

individuals more than lean individuals.  

Irrespective of these minor discrepancies, the studies presented in this thesis suggest that 

humans are unable or unwilling to compensate for moderate or severe energy deficits in short 

(24-48 h) time periods. Therefore both breakfast omission and severe energy restriction may 

represent effective methods of reducing energy intake. 

 

Effect of energy restriction on subjective appetite regulation 

The work presented in Chapters IV, V, VII and VIII demonstrate that appetite is only 

transiently elevated in response to varying degrees of energy restriction. Chapter’s IV and V 

investigated a moderate energy deficit (~3090 kJ) induced by breakfast omission. In both of 

these studies, consumption of breakfast suppressed appetite compared to omitting breakfast 

during the morning, but appetite was offset to a similar extent after lunch, independent of 
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whether breakfast had been consumed or omitted ~4.5 h earlier. In Chapter IV, subjective 

appetite was offset by an ad-libitum lunch, during which subjects ate until they were 

‘comfortably full and satisfied’, and in the process they partially compensated for the energy 

deficit induced by breakfast omission. Several previous studies have similarly found that 

subjective appetite after ad-libitum lunch or dinner meals was not affected by prior omission 

of breakfast (Astbury et al. 2011; Levitsky and Pacanowski 2013; Chowdhury et al. 2015a; 

Chowdhury et al. 2015b). This was extended by the findings in Chapter V, demonstrating 

that subjective appetite could be offset to a similar extent by standardising lunch (containing 

35% EER) and dinner (containing 40% EER) meals. Consequently this fully preserved the 

energy deficit created by breakfast omission, without appearing to affect subjective appetite 

sensations. Therefore, Chapters IV and V demonstrate that a moderated energy deficit 

induced via breakfast omission only transiently elevates appetite, even when the energy 

deficit is fully or partially preserved after subsequent meals.  

Extending this concept, Chapters VII and VIII investigated whether inducing a severe energy 

deficit by consumption of a 24 h very-low energy diet (containing 25% EER), would 

differentially affect appetite compared to a control diet (containing 100% EER). These 

studies found that subjective appetite sensations were elevated during consumption of the 

very-low energy diet, which might be expected given the disparate energy provided during 

this day and difficultly blinding subjects to the intervention. After this 24 h period, subjective 

appetite was found to be elevated during the morning in Chapter VII, but this was not 

observed in Chapter VIII. In both of these studies, and in line with the findings in Chapter IV, 

subjective appetite was not different between trials after an ad-libitum lunch meal and no 

further differences were observed throughout the study period. An elevation in subjective 

appetite has been reported previously during a 24 h period of complete energy restriction and, 

similar to Chapter VII, this study also demonstrated that subjective appetite was offset by an 

ad-libitum meal (Johnstone et al. 2002). Differences between the findings in Chapter VII and 

VIII may be due to the subject cohort investigated and suggest that lean individuals (Chapter 

VII) exhibit more precise regulation of short term energy balance than overweight/ obese 

individuals (Chapter VIII), as has been previously suggested (Flint et al. 2007). 

Collectively, these studies all demonstrate an imprecise regulation of subjective appetite 

following moderate (Chapters IV and V) and severe (Chapters VII and VIII) dietary induced 

energy deficits. These studies suggest that subjective appetite is only transiently increased by 
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an acute period of energy restriction, and can be offset by an ad-libitum (Chapters IV and VII) 

or standardised (Chapters V and VIII) meal.  

Effect of energy restriction on peripheral appetite hormones 

Part of the appetite regulatory response may involve several gut peptides, which may 

influence post-meal satiety and subsequent meal initiation (Doucet and Cameron 2007). In 

this thesis, the orexigenic hormone acylated ghrelin and the anorexigenic hormone GLP-17-36 

were assessed in response to breakfast omission (Chapters IV and V) and severe energy 

restriction (Chapters VII and VIII), which may help identify underlying physiological factors 

determining the success of dietary interventions outside of rigid laboratory control. 

In regard to breakfast, no difference in acylated ghrelin was observed 4.5 h after breakfast 

omission or consumption in Chapters IV and V. This is in line with recently published studies, 

reporting a suppression of acylated ghrelin after breakfast consumption compared to 

breakfast omission, but these differences appear to converge after 3 h (Chowdhury et al. 

2015a, Chowdhury et al. 2015b). These studies suggest that the orexigenic hormone acylated 

ghrelin is only transiently suppressed by breakfast, and in the absence of additional food 

intake during the morning, acylated ghrelin concentrations return to baseline by lunch, 

independent of breakfast consumption in the morning. In contrast to this, Chapter V found 

that GLP-17-36 was elevated 4.5 h after breakfast consumption. This might be intuitive given 

that subjects reported to be hungrier after breakfast omission and GLP7-36 is linked to satiety 

(Holst et al. 2007), but these findings differ from Chapter IV and Chowdhury et al. (2015a; 

2015b). Following lunch, no differences in acylated ghrelin or GLP-17-36 were observed in 

Chapters IV and V, but this again differs somewhat from previous literature. Chowdhury et al. 

(2015a; 2015b) reported a paradoxical suppression of acylated ghrelin after an ad-libitum 

lunch, but no difference in GLP-1 concentrations, when breakfast had been omitted in the 

morning. However, different consumption patterns make it difficult to isolate the effects of 

breakfast on appetite hormone profiles after an ad-libitum lunch.  

In Chapter V, consumption of a standardised lunch revealed no differences in acylated 

ghrelin response, which is in line with a previous study (Thomas et al. 2015). However, 

studies have reported conflicting results in regard to the GLP-1 response to standardised 

feeding, with suppressed (Astbury et al. 2011), elevated (Thomas et al. 2015) and no 

difference (Gonzalez et al. 2013; Chowdhury et al. 2015a; Chapter V) in GLP-1 
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concentrations found after breakfast consumption, compared to breakfast omission. Some of 

these discrepancies may be explained by whether GLP-19-36 (i.e. total: Astbury et al. 2011; 

Thomas et al. 2015) or GLP-17-36 (i.e. active: Gonzalez et al. 2013; Chapter V) was assessed, 

or whether liquid (Astbury et al. 2011; Gonzalez et al. 2013) or solid (Thomas et al. 2015; 

Chapter V) standardised meals were consumed. In Chapter IV, a tendency for an interaction 

effect (P<0.056) was observed and mean values were greater prior to lunch after breakfast 

consumption compared to breakfast omission (9.85 vs. 6.55 pmol·L-1). Therefore it is 

possible this study may have been insufficiently powered to detect differences, due to large 

individual variation in the GLP-17-36 response. It should also be noted, that GLP-17-36 is 

rapidly degraded into its inactive form (GLP-19-36) by the enzyme dipeptidyl peptidase IV 

upon release from the intestinal L-cells (Holst and Deacon 2005) and therefore peripheral 

concentrations of GLP-17-36 may not truly reflect concentrations secreted centrally. 

Whilst the appetite hormone response to breakfast consumption/ omission has been 

researched in several studies, the response to acute severe energy restriction, described in 

Chapters VII and VIII, is relatively unknown. In lean males and females (Chapter VII), 

although 24 h of severe energy restriction increased subjective appetite and energy intake, 

this was preceded by alterations in postprandial appetite hormone profile that would be 

expected to suppress, rather than stimulate appetite. Specifically, acylated ghrelin AUC was 

reduced after 24 h of severe energy restriction, compared to adequate energy intake, and there 

was no difference in GLP-17-36. Appetite hormones also did not respond in a compensatory 

manner in overweight/ obese males (Chapter VIII), with no difference in acylated ghrelin or 

GLP-17-36 between trials. The pattern of acylated ghrelin response was similar in Chapters 

VII and VIII, with acylated ghrelin lower after severe energy restriction compared to energy 

balance, but this failed to achieve statistical significance in Chapter VIII. This may be 

because the study was powered to detect a difference in energy intake, but may have been 

underpowered to detect a change in acylated ghrelin.   

Similar results were recently reported in male and female (army) soldiers, undergoing 48 h of 

severe energy restriction (providing 10% of EER) concurrent with exercise training 

(O’Connor et al. 2016). Similar to Chapter VII, this study found suppressed acylated ghrelin 

and elevated GLP-1 concentrations after 48 h of severe energy restriction. This observed 

suppression of acylated ghrelin is potentially due to an increase in NEFA concentrations, 

which is typically observed in response to fasting/ severe energy restriction, and indeed was 

observed in Chapters VII and VIII. NEFA may inhibit the action of GOAT, the enzyme 
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responsible for the acylation of ghrelin, leading to a reduction in plasma concentrations in 

acylated ghrelin (Liu et al. 2008). Independent of this, consistent with the proposed 

orexigenic action of acylated ghrelin, this observed suppression may be conducive to weight 

loss and may partially explain the weight loss demonstrated from chronic intermittent severe 

energy restriction studies (Varady et al. 2009, Varady et al. 2011, Varady et al. 2013; Harvie 

et al. 2011, Harvie et al. 2013). 

Very recently, the first study to assess the subjective and appetite hormone responses to 

prolonged severe energy restriction was published (Hoddy et al. 2016). This study assessed 

fasting and postprandial appetite hormone concentrations, as well as subjective appetite 

sensations, after an 8 week ADMF intervention, alternating very-low energy diet (25% EER) 

with ad-libitum energy intake. On average subjects body mass decreased 3.9 kg over the 8 

week dietary intervention. Compared to baseline, postprandial ghrelin and PYY 

concentrations increased and there was no difference in postprandial GLP-1 concentrations 

after the 8 week dietary intervention. In addition, fullness was greater and there was no 

difference in hunger. Ghrelin concentrations have been shown to increase after weight loss 

from continuous energy restriction (Cummings et al. 2002). Therefore an increase in ghrelin 

after weight loss from intermittent severe energy restriction might be expected and suggests 

ghrelin may respond specifically to weight loss, independent of the method. However, 

increases in PYY and fullness, with no change in GLP-1 and hunger after weight loss is 

inconsistent with previous literature (Doucet et al. 2004). This might suggest that intermittent 

severe energy restriction differentially affects anorexigenic appetite hormones compared to 

continuous energy restriction, and this may enhance dietary adherence by increasing satiety.    

The work presented in Chapters IV, V, VII and VIII has demonstrated that the acylated 

ghrelin and GLP-17-36 response to moderate and severe energy deficits, induced by breakfast 

omission and 24 h of severe energy restriction, is not indicative of compensatory eating 

behaviour. However, compensatory eating behaviour was observed in Chapters IV and VII. 

Murine studies have demonstrated increased hypothalamic ghrelin receptor mRNA 

expression and increased acylated ghrelin transport across the blood-brain barrier with 

complete energy restriction, suggesting an increase in hypothalamic sensitivity to appetite-

mediating hormones in response to a dietary induced energy deficit (Kim et al. 2003, Banks 

et al. 2008). Results from Chapters IV and VII lend support this hypothesis, but further 

research is required.  
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Effect of energy restriction on resting metabolism 

In addition to factors governing food intake, several studies from this thesis also examined 

whether these dietary interventions impacted REE and substrate utilisation.  

An increase in REE was observed during the morning after breakfast consumption compared 

to breakfast omission, but total resting energy expenditure was not different between trials 

(Chapter V). As previously discussed, this transient elevation in energy expenditure during 

the morning is likely due to DIT, as the digestion of food is an energy-requiring process and 

produces an exothermic reaction. However, there were no further differences in energy 

expenditure after a standardised lunch meal, which is similar to observations after 

consumption of an ad-libitum lunch meal (Chowdhury et al. 2015a, Chowdhury et al. 2015b). 

Whilst one study did report that breakfast omission increased evening energy expenditure, it 

should be noted that the energy content of afternoon and evening meals were increased after 

breakfast omission, in order to match total (24 h) energy intake across trials (Kobayashi et al. 

2013). Therefore, the increase in energy expenditure observed during the evening is likely 

due to increased DIT after greater energy intake at subsequent meals, consequently offsetting 

energy expenditure over the 24 h study period. These findings suggest that consumption of 

breakfast does not affect REE, whether the energy deficit is maintained (Chapter V) or 

recovered (Kobayashi et al. 2013), but will cause a small increase in energy expenditure 

during the morning due to DIT.  

In both lean (Chapter VII) and overweight/ obese (Chapter VIII) subjects, a small reduction 

(~0.2 kJ·min-1) in resting energy expenditure was observed during the morning after 24 h of 

severe energy restriction, although this was not statistically significant in Chapter VIII. 

However, total resting energy expenditure calculated for the morning and afternoon during 

Chapter VII, was not significantly different between trials. This data suggests that 24 h of 

severe energy restriction only marginally reduces resting energy expenditure the following 

day, however large postprandial alterations in substrate utilisation were noted in both 

Chapters VII and VIII. In the energy balance condition, consumption of a standardised 

breakfast caused a rapid increase in carbohydrate oxidation concurrent with a reduction in fat 

oxidation, and although a similar relative effect was noted in the energy restricted condition, 

absolute carbohydrate oxidation was lower and fat oxidation greater after severe energy 

restriction. This pattern of postprandial substrate utilisation has similarly been reported after 

short-term complete energy restriction and is indicative of altered endogenous stores and 
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nutrient supply (Bergman et al. 2007, Klein et al. 1993, Horton and Hill 2001). Twenty-four 

h of complete energy restriction has been demonstrated to reduce hepatic glycogen by ~85% 

(Nilsson and Hultman 1973), which reduces hepatic glucose output and increases lipolysis 

(Maughan et al. 2010). In turn NEFA’s are mobilised from triglycerides stored in adipose 

tissue to provide substrate and preserve endogenous glycogen (Maughan et al. 2010). Plasma 

NEFA concentrations were elevated after severe energy restriction in Chapters VI, VII and 

VIII and this likely explains the increase in fat oxidation and reduction in carbohydrate 

oxidation observed in Chapters VII and VIII.  

Together, these studies demonstrate that 24 h of severe energy restriction induces metabolic 

alterations consistent with short-term complete energy restriction (i.e. starvation), which is 

likely a mechanism to preserve endogenous glucose stores. However, these effects appear to 

be transient, as no differences in fasting REE or substrate utilisation were observed 24 h after 

the resumption of ad-libitum feeding in Chapter VII.   

 

Effect of energy restriction on insulin sensitivity 

Plasma glucose and insulin concentrations were measured in Chapters IV, V, VI, VII and 

VIII, and this data was used to provide information about insulin sensitivity. However limited 

information about insulin sensitivity could be gleaned from the breakfast consumption/ 

omission studies in this thesis (Chapters IV and V) due to infrequent blood sampling. This 

has been more comprehensively assessed in other studies with similar designs, revealing that 

extending the morning fast via omission of breakfast reduces insulin sensitivity at a 

subsequent meal (typically lunch) compared to when breakfast is consumed, a phenomenon 

termed the ‘second meal effect’ (Chowdhury et al. 2015a; Chowdhury et al. 2015b).   

In this thesis, the glycaemic response to 24 h of severe energy restriction was assessed 

(Chapters VI, VII and VIII). In each of these studies, plasma/ serum insulin and glucose data 

suggests a reduction in postprandial insulin sensitivity after 24 h of severe energy restriction. 

This was specifically investigated in Chapter VI with an OGTT in lean male subjects. This 

study found that HOMA-IR was reduced, but postprandial serum glucose AUC 

concentrations were greater, with no change in serum insulin AUC after severe energy 

restriction. This suggests a reduction in the rate of glucose clearance from the blood for a 

given amount of insulin, indicative of insulin resistance. Similarly, plasma glucose AUC was 
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greater with no change in insulin AUC after consumption of a standardised breakfast in lean 

males and females (Chapter VII), and there was a tendency for greater glucose AUC in 

overweight/ obese males (Chapter VIII). A lack of statistical power in Chapter VIII likely 

explains why only a tendency was observed in this data set. Conclusively, it appears an acute 

period of severe energy restriction will impair postprandial glycaemic control.   

Data from these studies demonstrate the importance of dynamic (postprandial) assessments of 

insulin sensitivity, as opposed to fasting measures, in order to determine the effects of a 

dietary intervention on insulin secretion and insulin action to a given nutrient load 

(Muniyappa et al. 2008). The HOMA-IR measure of insulin sensitivity requires only fasting 

plasma glucose and insulin, which are independently affected by alterations in hepatic 

triglycerides (Kirk et al. 2007), hepatic glycogen (Nilsson and Hultman 1973) and 

glycogenolysis (Rothman et al. 1991). During periods of energy restriction these are all likely 

to decrease, which will reduce fasted plasma glucose. Therefore, a reduction in HOMA-IR 

under these conditions is likely a reflection of glucose availability and also likely to be 

transient. Indeed, one study reported a ~52% reduction from baseline in HOMA-IR 

immediately after a 48 h period of severe energy restriction, but this had recovered to a ~16% 

reduction from baseline after 3 days of adequate energy intake (Harvie et al. 2013). Whilst 

generally HOMA-IR may be able to detect long-term changes in insulin sensitivity, these 

studies suggest HOMA-IR may not be an appropriate way to assess acute alterations in 

dietary intake.   

As discussed in the previous section, a reduction in glucose availability will stimulate 

lipolysis to mobilise NEFA for energy metabolism, consequently increasing fat oxidation. In 

addition, this alteration in substrate availability may also explain the impairment in 

postprandial glycaemic control. Elevated concentrations of NEFA, observed after severe 

energy restriction in Chapters VI, VII and VIII, has previously been shown to reduce the rate 

of glucose uptake into the muscle (Soeters et al. 2008, Johnson et al. 2006), possibly to 

facilitate the replenishment of hepatic glycogen stores (Randle et al. 1963). These metabolic 

adaptations may explain the prolonged postprandial elevation of plasma/ serum glucose 

observed in Chapters VI, VII and VIII. In light of this, these effects are also likely to be 

transient. Nevertheless, how multiple exposures to short term periods of severe energy 

restriction and refeeding effect indices of insulin sensitivity are currently unknown and 

warrant further investigation.  
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Chapter’s VI, VII and VIII also investigated whether the incretin hormones were affected by 

a short period of severe energy restriction. Correlating findings between these studies is 

difficult as different variables were measured in each. GLP-17-36 was measured in Chapter VII; 

GLP-17-36 and GIP 1-42 were measured in Chapter VIII; and GLP-19-36 and GIP3-42 were 

measured in Chapter VI. From these variables, only GIP1-42 demonstrated an effect, with 

postprandial GIP1-42 AUC greater after 24 h severe energy restriction. The reason for this 

finding is unclear, but may represent a degree of ‘incretin resistance’ after severe energy 

restriction, although this was not observed in the other incretin hormones assessed in 

Chapters VI, VII and VIII. The findings in Chapter VIII may be because the biologically 

active form of the peptide was assessed in this study, compared to the total (active and 

inactive; GIP3-42) form measured in Chapter VI. Alternatively, it could be due to an impaired 

incretin response in the overweight and obese subjects in Chapter VIII (Omodei and Fontana 

2011). Although the incretin response was not a primary focus of this thesis, the results 

presented here may warrant further investigation in the future.  

 

Limitations and directions for future research 

Whilst it is important to determine the acute effects of dietary interventions prior to 

conducting long-term randomised control trials, an inherent limitation with all of the studies 

presented in this thesis is the short-term intervention and follow up period. The results of 

these studies demonstrate an appetite and energy intake response conducive to maintaining 

the dietary induced energy deficit, but future studies should aim to investigate the effects of 

repeated exposure to breakfast omission or 24 h periods of severe energy restriction on 

subjective and hormonal appetite regulation as well as energy balance and changes in body 

weight and body fat. This has been addressed in two studies after 6-weeks of breakfast 

omission (Betts et al. 2014; Chowdhury et al. 2016), but despite breakfast omission 

appearing to promote a negative energy balance, no change in body weight was observed, 

suggesting more than 6-weeks may be required to elucidate chronic effects. Long-term 

effects of ADMF on appetite regulation were recently investigated in one study (Hoddy et al. 

2016). However this study had several limitations, including lack of pre-trial dietary 

standardisation, assessment of total (rather than active) appetite hormones, large intra and 

inter-assay coefficient of variation in certain hormone analysis and a relatively short 

postprandial assessment period (2 h). In addition, this study assessed appetite hormone 
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responses after 2-3 days of unrestricted eating, whereas the immediate response to a period of 

severe energy restriction may provide more information about the long-term appetite 

regulatory effects of intermittent severe energy restriction. Therefore, whilst this study 

provides novel information in regard to appetite hormone response to semi-chronic 

intermittent severe energy restriction, the aforementioned considerations limit the 

interpretation of these results. Further studies will help to elucidate whether these dietary 

interventions can be effective methods of energy balance and weight management in the long 

term. 

A second limitation is that energy expenditure has not been fully determined in any of the 

studies presented in this thesis. Whilst Chapters V, VII and VIII have demonstrated that 

energy intake is reduced by breakfast omission or 24 of severe energy restriction, with 

limited effect on resting energy expenditure, these studies have not assessed the most 

malleable component of energy expenditure, physical activity. Again, this has recently been 

addressed with regard to breakfast omission (Betts et al. 2014; Chowdhury et al. 2016), but 

future studies should aim to determine whether physical activity is affected by intermittent 

severe energy restriction, which will enable a more comprehensive evaluation of energy 

balance to be made. In turn this will help to predict its effectiveness as a weight management 

programme. 

Due to the complexities of assessing appetite regulation and energy intake, the studies 

presented in this thesis utilised a laboratory environment, to control external factors that may 

confound subjective appetite, enabling hormonal factors of appetite regulation to be 

elucidated. This allows for greater experimental control and precision than is available with 

free-living study designs. However, eating behaviour is ultimately driven by the interaction 

between external and internal appetite regulatory processes and therefore findings from 

laboratory controlled studies may not transfer to a free-living environment. A potential 

avenue for future research would be to determine the effectiveness of these dietary 

interventions in subjects exposed to their habitual environment.  

The very-low energy diet investigated in Chapters VI, VII and VIII was created by removing 

or reducing high carbohydrate and high fat foods from the energy balanced diet, thus 

maintaining the protein faction of the diet where possible. The rationale behind this was that 

protein has been shown to increase satiety relative to carbohydrate and fat, and protein can 

help preserve fat-free mass during energy restriction (Wycherley et al. 2012). However, 
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manipulation of food types provided during severe energy restriction was not investigated as 

part of this thesis. Future studies should aim to determine whether this very-low energy diet 

could be manipulated to improve acceptability and long-term adherence to the diet. This 

could include alterations in macronutrient distribution of the diet, or incorporation of less 

energy dense food sources which would increase volume, but not the energy content of the 

diet. This has been shown previously to be an effective method of prolonging satiety after a 

meal (Kral et al. 2004) and represents and interesting avenue for future research.  

 

Implications of this research 

In well controlled laboratory studies, this thesis has repeatedly shown that an acute period of 

moderate or severe energy restriction is not met with a subsequent increase in energy intake 

to compensate for this energy deficit. The result of this is that the energy deficit achieved is 

sustained, suggesting that these methods of energy restriction may be effective for the 

management of energy balance. 

This research has revealed several important considerations and challenges for future 

research in this area. A fundamental problem with studying appetite regulation is its inherent 

multifactorial nature. Data presented in this thesis and other recent publications (O’Connor et 

al. 2016; Chowdhury et al. 2015a; Chowdhury et al. 2015b) seems to suggest a disconnect 

between supposed homeostatic regulators of appetite (i.e. acylated ghrelin, GLP-17-36, PYY3-

36) and subjective markers of appetite (i.e. hunger, fullness, energy intake). With homeostatic 

and hedonic influences of food intake seemingly working independently, it becomes difficult 

to determine what measures should be taken to assess the appetitive response to a dietary 

intervention. In light of these recent findings, it seems pertinent to question whether these gut 

peptides have a role in appetite regulation, at least in the short-term.  

In addition to this, are current methods for assessing subjective appetite (i.e. subjective 

appetite questionnaires, ad-libitum buffet meals) sensitive enough to detect subtle changes in 

behaviour, given the multifaceted nature of appetite regulation? This becomes more apparent 

when studying overweight and obese individuals, who repeatedly demonstrate an attenuated 

response to energy restriction, compared to their lean counterparts (Chapter VII and Chapter 

VIII; Chowdhury et al. 2015a and Chowdhury et al. 2015b). Whilst this may be due to poorer 

regulation of short-term energy intake (Flint et al. 2007) or increased sensitivity to 
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environmental stimuli (Mela 2006), it could also demonstrate that overweight and obese 

subjects are more aware of their behaviour in the laboratory. Difficulty in blinding subjects to 

the intervention may predispose them to altering their behaviour to conform to a perceived 

social norm (Higgs and Thomas 2016). This presents a real challenge in conducting research 

of this nature in these individuals, who are often the intended target of such interventions. A 

recent study utilised a SGLT2 inhibitor which causes an increase in energy output via urinary 

excretion of glucose, as a convert method on inducing an energy deficit, to study whether any 

adaptive behaviour occurred (Polidori et al. 2016). After a 52 week period, subjects lost ~4% 

body mass without being directly aware of an energy deficit. Concurrent with this weight loss, 

it was found that subjects energy intake increased by ~100 kcal·d-1 per kilogram of body 

weight lost. This is more than threefold the magnitude of corresponding energy expenditure 

adaptations and demonstrates that the appetite regulatory system is a significant barrier to 

long term weight loss and maintenance. This highlights the importance of understanding how 

this mechanism is affected by dietary interventions. Learning how to maximise satiation and 

satiety could lead to the development of successful weight management programmes, but 

whether current methods are sensitive enough to reliably assess appetite and food intake is 

questionable, and this may be prohibitive in achieving this goal.  

It has recently been shown that 8-weeks of consuming a VLED (~600-700 kcal) can reverse 

diabetes in some individuals and that this is driven primarily by a substantial reduction in 

liver fat (Steven et al. 2016). Whilst the dietary intervention in this study would likely be too 

extreme for the majority of people, these results suggest that intermittent severe energy 

restriction may be an effective method to improve insulin sensitivity. Despite this, the results 

presented in this thesis also seem to show a differential response between fasted and 

postprandial markers of insulin sensitivity (Chapters VI, VII and VIII). In the clinical setting, 

fasted markers are predominantly used to determine disease risk, but postprandial markers are 

increasingly being recognised as key indicators (Gerich 2003). Given humans spend the 

majority of time in the postprandial state, further research is required to determine whether 

this method of dieting would be effective for improving insulin sensitivity. Continuous 

glucose monitors are now being used in research and these could be an effective tool for 

studying the prolonged glycaemic response. This could provide important information about 

whether intermittent severe energy restriction can be used to improve glycaemic control in 

the long-term.  
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Conclusions  

The work presented in this thesis has established that moderate and severe energy deficits 

induced by breakfast omission and a 24 h severely energy restricted diet is only partially 

compensated for over the subsequent 24-48 h in a laboratory setting, suggesting that these 

methods of energy restriction may be successful for reducing energy intake. Whilst an 

increase in subjective appetite was observed during periods of energy restriction, this appears 

to be transient, and was offset after an ad-libitum meal. In addition, the appetite hormone 

response to 24 h of severe energy restriction is not indicative of compensatory eating 

behaviour. Collectively, these results indicate that breakfast omission and 24 h of severe 

energy restriction produce an appetite profile conducive to maintenance of a negative energy 

balance. These findings may elucidate some of the mechanisms behind the reported success 

of intermittent severe energy restriction in achieving weight loss in long-term intervention 

studies.  
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Appendices 

Appendix A  

Additional work arising from this thesis. Paper published in Appetite (2014) 82: 173-179. 

 

Effect of post-exercise drink macronutrient content on appetite and energy 
intake 

 

Abstract 
Carbohydrate and protein ingestion post-exercise are known to facilitate muscle glycogen 

resynthesis and protein synthesis, respectively, but the effects of post-exercise nutrient intake 

on subsequent appetite are unknown. This study aimed to investigate whether protein induced 

satiety that has been reported at rest was still evident when pre-loads were consumed in a 

post-exercise context. Using a randomized, double blind, crossover design, 12 unrestrained 

healthy males completed 30 min of continuous cycling exercise at ~60% VO2peak, followed 

by five, 3 min intervals at ~85% VO2peak. Ten min post-exercise, subjects consumed 500 ml 

of either a low energy placebo (15 kJ) (PLA); a 6% whey protein isolate drink (528 kJ) 

(PRO); or a 6% sucrose drink (528 kJ) (CHO). Sixty min after drink ingestion, a homogenous 

ad-libitum pasta lunch was provided and energy intake at this lunch was quantified. 

Subjective appetite ratings were measured at various stages of the protocol. Energy consumed 

at the ad-libitum lunch was lower after PRO (5831 ± 960 kJ) than PLA (6406 ± 492 kJ) 

(P<0.05), but not different between CHO (6111 ± 901 kJ) and the other trials (P>0.315). 

Considering the post-exercise drink, total energy intake was not different between trials 

(P=0.383). There were no differences between trials for any of the subjective appetite ratings. 

The results demonstrate that where post-exercise liquid protein ingestion may enhance the 

adaptive response of skeletal muscle, and this may be possible without affecting gross energy 

intake relative to consuming a low energy drink.  
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Introduction 
The maintenance of a stable body weight is achieved through careful balance between energy 

intake and energy expenditure. However, mismanagement of this balance on a global scale 

has led to an increase in the prevalence of obesity and obesity related comorbidities (Malik, 

Willett, & Hu, 2013; Finucane et al., 2011). Exercise and energy restriction are commonly 

used to create energy deficits during weight loss programs, but these methods appear to have 

disparate effects on appetite and subsequent energy intake (King et al., 2011). Energy intake 

appears to be unaffected by an acute bout of exercise, although chronic exercise programs 

appear to induce some level of compensation (Blundell et al. 2003). By contrast, acute energy 

restriction has been shown to markedly increase feelings of hunger and energy intake (Hubert, 

King, & Blundell, 1998). Increased feelings of hunger are cited as a key factor culminating in 

poor dietary adherence (Dansinger, Gleason, Griffith, Selker, & Schaefer, 2005), and as such, 

developing methods to suppress hunger and energy intake, whilst inducing a negative energy 

balance, should be the primary goal of modern weight management programmes. 

Following exercise, the consumption of fluid helps restore any plasma volume losses (Nose, 

Mack, Shi, & Nadal, 1988; Shirreffs, Taylor, & Leiper, 1996), and the addition of protein to 

post-exercise drinks might aid post-exercise rehydration (James, 2012), as well as being 

critically important for myofibrillar and mitochondrial protein synthesis (Wilkinson et al., 

2008). From a weight management perspective, it is also important to consider whether 

consuming energy in a post-exercise recovery drink will weaken the energy deficit induced 

by the exercise session, and how accurately the energy contained in the drink will be 

compensated for during subsequent feeding.  

High protein diets have been shown to promote greater feelings of satiety than normal protein 

diets, whilst promoting losses in body fat and preservation of lean body mass (Leidy et al. 

2007). Significant evidence also exists that acute protein feeding at rest enhances satiety (Hill 

& Blundell, 1986; Stubbs, van Wyk, Johnstone, & Harbron, 1996) and reduces subsequent 

energy intake (Poppitt, McCormack, & Buffenstein, 1998; Porrini et al., 1997; Araya, Hills, 

Alvina, & Vera 2000) compared to carbohydrate and fat. Additionally, protein has an 

increased thermogenic effect compared to carbohydrate and fat (Feinman and Fine, 2004) 

which may further decrease energy balance by increasing energy expenditure. Whilst there 

may be differences in food rheology between providing energy in liquid or solid form, 

several studies have demonstrated that a liquid protein meal also suppresses appetite and 

reduces acute energy intake compared to an isoenergetic carbohydrate or water control 
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(Anderson & Moore, 2004; Bowen, Noakes, Trenerry, & Clifton, 2006a; Bertenshaw, Lluch, 

& Yeomans, 2008; Astbury, Stevenson, Morris, Taylor, & McDonald, 2010). Conversely, 

other studies have reported no difference in energy intake between protein and carbohydrate 

pre-loads (Bowen, Noakes, & Clifton, 2007), as well as between low dose whey protein 

drinks and water (Poppitt et al. 2011). Whilst several studies have failed to observe any 

attenuation in energy intake, the majority of studies have reported an increase in subjective 

perceptions of satiety after consuming protein containing drinks (Harper, James, Flint, & 

Astrup, 2007; Bowen et al., 2007; Poppitt et al. 2011). This suggests that the consumption of 

protein containing drinks leads to enhanced satiety which may affect food intake or food 

choices (i.e. reduced snacking) under free-living conditions (Poppitt et al., 2011).  

A recent meta-analysis stated that studies utilising interventions that combine exercise with 

dietary restriction are the most successful for long term, sustainable weight loss and 

maintenance (Franz et al., 2007). High intensity intermittent exercise is characterised by brief 

vigorous exercise bouts interspersed with periods of rest, and has been shown to be a time-

efficient and enjoyable training method for cardiovascular and skeletal muscle adaptations, 

linked to improved health outcomes (Gibala, Little, McDonald & Hawley, 2012; Bartlett et al. 

2011). Both dietary restriction and exercise have an influence on appetite, and whilst the 

acute appetite response to a protein pre-load provided at rest has been well researched, no 

studies have attempted to investigate this in combination with exercise. Due to the popularity 

of consuming commercial protein and carbohydrate drinks after exercise, the aim of this 

study was to assess whether the macronutrient content of a drink has any effect on subsequent 

appetite and energy intake following 60 minute exercise session consisting of endurance and 

high-intensity intermittent exercise. As protein consumption at rest has been shown to 

attenuate subsequent energy intake, it was hypothesised that consuming protein in a post-

exercise recovery drink may lead to a reduction in energy intake at a subsequent meal. These 

is some evidence to suggest that chronic exercise may increase energy intake in some 

individuals (Blundell et al. 2003), and as such the consumption of a protein containing drink 

after exercise may have the potential to offset this effect, therefore becoming an effective aid 

for weight loss and management. A 30 g dose of protein has been shown to maximally 

stimulate muscle protein synthesis after exercise (Moore et al. 2009; Witard et al. 2014) and 

whey protein has been shown to attenuate appetite to a greater extent than other forms of 

protein (Hall, Millward, Long, & Morgan, 2003) Therefore, in this study a 6% (500 ml) whey 
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protein isolate drink was compared to an isoenergetic carbohydrate drink and low energy 

placebo.  

 

Methods 
Subjects 

Subjects were twelve healthy, weight stable, recreationally active males (mean ± SD) (age: 

24 ± 2 y, weight: 71.2 ± 5.7 kg, height: 1.75 ± 0.05 m, BMI: 23.2 ± 1.4 kg·m-2, VO2peak: 52 ± 

8 ml·kg-2). Subjects were not restrained, disinhibited or hungry eaters. 

Preliminary trials 

Subjects completed two preliminary trials. During the first, they completed a discontinuous 

incremental exercise test on an electrically braked cycle ergometer to determine VO2peak. 

During the second preliminary trial, subjects completed a full replication of an experimental 

trial including the ad-libitum pasta meal, with water ingested as the post-exercise drink. 

Pre-trial standardisation 

On the day of each experimental trial subjects consumed a standard breakfast providing 15% 

of estimated energy requirements (RMR (Mifflin et al., 1990) multiplied by 1.7) 2 h before 

exercise commenced. This amounted to 1810 ± 80 kJ and is consistent with the absolute 

amount of energy provided at breakfast in studies of this nature (Bertenshaw et al., 2008; 

Poppitt et al., 2011; Bertenshaw et al., 2013). The breakfast consisted of cereal (Rice Snaps, 

Tesco, Cheshunt, UK) and semi-skimmed milk (Tesco, Cheshunt, UK) in a ratio of 30 g 

cereal: 125 ml milk. Water was permitted ad-libitum and recorded on the morning of the first 

trial until subjects arrived at the lab, and was then repeated prior to subsequent trials.  

Experimental design 

Participants arrived at the laboratory between 9.30-10.30am and voided their bladder and 

bowels, before nude body mass was measured. Subjects then completed 30 min steady state 

cycling exercise at ~60% VO2peak followed by five min rest and then five 3 min intervals at 

~85% VO2peak, each separated by 2 min rest. Total exercise time was therefore 60 min. 

Expired air was collected between 14-15 min and 29-30 min steady state exercise and during 

the final minute of the third and fifth interval. Heart rate and RPE were measured at 15 min 
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and 30 min during steady state exercise and at the end of each interval. Subjects consumed 

100 ml of water at 15 min, and prior to intervals one, three and five. 

Upon completion of exercise, nude body mass was measured and subjects assumed a seated 

position. Ten minutes post-exercise, subjects were provided with a recovery drink (Table 1) 

to consume within five minutes and an ad-libitum lunch was provided 75 minutes post-

exercise whilst subjects rested in a comfortable environment (23.5 ± 1.8°C).  

The lunch meal was designed to closely match UK dietary guidelines for macronutrient 

proportions, and consisted of pasta, cheese, tomato sauce and olive oil (Tesco, Cheshunt, UK). 

The meal was homogenous in nature and provided 7.87 ± 0.1 kJ∙g-1 (14% protein, 53% 

carbohydrate, 33% fat).  

Post-exercise drinks 

Subjects completed three experimental trials with a different post-exercise recovery drink 

consumed during each trial (Table 1). Drinks investigated were; a whey protein isolate 

solution (Volactive Hydrapro, Volac International Ltd., Orwell, UK) providing 30g of whey 

protein (PRO), an energy matched sucrose (Tate and Lyle, London, UK) solution (CHO) or a 

placebo solution (PLA). The composition of the protein powder per 100 g powder was: 91.7 

g protein, 0.1 g carbohydrate, 0.2 g fat, 20 mg sodium, 10 mg potassium, 10 mg chloride 

(data supplied by the manufacturer). Drinks were prepared the evening before experimental 

trials and were refrigerated overnight (4°C). Each drink contained 425 ml of water mixed 

with 75 ml of lemon squash (Tesco, Cheshunt, UK), was served in an opaque container and 

was ingested through a straw to minimise any visual or olfactory differences between the 

drinks. Trials were separated by at least one week and administered in a double-blind, 

randomised, counterbalanced manner.  Subjects were aware that the study was assessing 

different post-exercise recovery drink compositions, but were not informed what the drinks 

contained. At the end of the study, subjects were informed about the contents of the 

experimental drinks, and asked whether they could tell any differences between the drinks 

and on which visit they thought they consumed each drink. Four out of twelve subjects stated 

they could taste a difference between the drinks, but only one subject correctly identified the 

drinks.   
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Table 1. Composition of test drinks. 

 Placebo (PLA) Protein (PRO) Sucrose (CHO) 

Energy (kJ) 15 528 528 

Protein (g) 0.3 30.3 0.6 

Carbohydrate (g)  0.6 0.3 30.8 

Fat (g) 0 0.1 0 

 

Subjective feelings questionnaires 

Subjects rated their feelings of hunger, stomach fullness, desire to eat and prospective food 

consumption (PFC). Ratings of muscle soreness, mouth taste, satisfaction and nausea were 

also included to distract subjects from the main outcomes. Questionnaires were provided pre-

exercise (0 min), post-exercise (60 min), post-recovery drink (75 min), pre-meal (135 min), 

post-meal (165 min), 30 minutes post-meal (195 min) and 60 minutes post meal (225 min).  

Additional questions related to drink perception (pleasantness, aftertaste, saltiness, bitterness, 

sweetness, creaminess, thickness, stickiness, fruitiness, and how refreshing) were asked 

immediately after drink ingestion. 

Statistical analysis 

Data was analysed using the methods described in Chapter III. 

 

Results 
Exercise measurements 

Subjects pre-exercise body mass (P=0.828) and subjective appetite ratings (P>0.219) were 

not different between trials. There was no difference between trials for VO2, heart rate or 

RPE response during exercise (Table 2). Gross energy expenditure during the exercise 

session was 2880 ± 295 kJ (PLA), 2851 ± 321 kJ (PRO) and 2823 ± 310 kJ (CHO) and was 

not different between trials (P=0.629). Additionally there was no difference in RER 

(P=0.364), fat oxidation (P=0.303) and carbohydrate oxidation (P=0.723) between trials. 
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Table 2. Mean variables during initial 30 min exercise and intervals for each trial. P-value 

represents main effect.  

 PLA PRO CHO P-value 

Initial 30 min 

VO2 (L·min-1) 2.35 ± 0.27 2.34 ± 0.25 2.39 ± 0.33 0.414 

VO2 (% of peak) 63 ± 3 63 ± 3 63 ± 4 0.565 

Heart rate (b·min-1) 152 ± 10 153 ± 8 153 ± 9 0.748 

RPE 13 ± 1 13 ± 1 13 ± 1 0.395 

Intervals 

VO2 (L·min-1) 3.20 ± 0.46 3.19 ± 0.41 3.23 ± 0.44 0.737 

VO2 (% of peak) 85 ± 3 85 ± 4 86 ± 3 0.642 

Heart rate (b·min-1) 177 ± 9 176 ± 7 176 ± 8 0.645 

RPE 17 ± 1 17 ± 1 17 ± 1 0.925 

 

Energy intake, appetite ratings and drink perception 

Energy intake at the ad-libitum test meal (Figure 1) was reduced during PRO compared to 

PLA (P<0.05), with no other differences between trials (P>0.315). When energy consumed 

in the post-exercise drink was included, total energy intake was 6431 ± 492 kJ (PLA), 6359 ± 

960 kJ (PRO) and 6640 ± 901 kJ (CHO) and there was no difference between trials 

(P=0.383). Water intake during the test meal was not different between trials (P=0.751) and 

amounted to 568 ± 366 ml, 479 ± 210 ml and 472 ± 151 ml during PLA, PRO and CHO, 

respectively.  

There was a main effect of time (P<0.01) for all subjective appetite measures (hunger, desire 

to eat, prospective food consumption and fullness), but no main effects of trial (P>0.219) or 

interaction effects (P>0.164) (Figure 2a-d).  



190 
 

Subjects perceived no difference between drinks for aftertaste (P=0.934), bitterness 

(P=0.105), creaminess (P=0.958), refreshment (P=0.226), thickness (P=0.913), stickiness 

(P=0.088), or fruitiness (P=0.196). CHO was perceived as more pleasant than PRO (P<0.05) 

and tended to be perceived as more pleasant than PLA (P=0.053). CHO was perceived as 

sweeter than PRO (P<0.05), whilst PRO was perceived as saltier than PLA (P<0.05) (Figure 

3). 

 

Figure 1. (a) Mean energy intake at the ad-libitum test meal (kJ) and (b) subjects individual 
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energy intakes (kJ) during each trial  Values are means, with vertical error bars representing 

standard deviation.* Significantly different from PLA (P<0.05) 

 Figure 2. Subjective feelings of hunger (a), desire to eat (b), prospective food consumption 

(c), and fullness (d) after consuming the placebo (■), protein ( ) and carbohydrate (○) 

drinks. Hatched shaded rectangle represents exercise, grey rectangle represents ingestion of 

the post-exercise recovery drink, and black rectangle represents the ad-libitum buffet meal. 

Data points are medians. All subjective measures of appetite showed a main effect of time 

(P<0.01) 
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Figure 3. Subjective perceptions of test drinks (mm): PLA (■), PRO (■) and CHO (□). 

Subjective perceptions of salty, sweet, creamy, refreshing and thick were non-normally 

distributed, however all values presented are means, with vertical error bars representing 

standard deviation for consistency. * significantly different from PLA (P<0.05). † 

significantly different from CHO (P<0.05).   

 

Discussion 
The aim of this investigation was to examine whether post-exercise drink composition would 

affect energy intake at an ad-libitum lunch served 60 minutes after drink ingestion (i.e. 75 

min post-exercise). The primary finding from this study was that energy intake was 

suppressed by approximately 9% (575 kJ) after consumption of a 6% whey protein isolate 

drink compared to a low energy placebo. These results suggest that consuming a protein 

containing drink after exercise might be an effective method of reducing energy intake at a 

subsequent meal compared to a low energy placebo drink.  
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Protein intake immediately after exercise potentiates the exercise-induced stimulation of 

myofibrillar and mitochondrial protein synthesis (Wilkinson et al., 2008). Furthermore, whey 

protein seems to induce a greater muscle protein synthetic response compared to casein or 

soy (Tang, Moore, Kujbida, Tarnopolsky, & Phillips, 2009), which is likely due to 

differences in postprandial absorption kinetics (Boirie et al., 1997). In the present study, 30 g 

of whey protein was provided, which has been shown to be within the optimal range to 

maximise the protein synthetic response (Moore et al., 2009; Witard et al. 2014). However, 

from a weight management perspective, the additional energy ingested in a post-exercise 

drink may compromise the energy deficit induced by the exercise session if the energy 

consumed is not compensated for at the next feeding opportunity. Results of the present study 

suggest that protein can be added to a post-exercise recovery drink without affecting gross 

energy intake. In addition to the effects of protein on satiety, protein also has an increased 

thermogenic effect compared to carbohydrate or fat (Feinman and Fine, 2004), and 

consequently post-exercise protein ingestion might further decrease energy balance by 

increasing energy expenditure, although this was not measured in the current investigation. 

There is increasing evidence that acute protein feeding at rest may enhance satiety (Hill & 

Blundell, 1986; Stubbs et al., 1996) and reduce energy intake at a subsequent meal (Poppitt et 

al., 1998; Porrini et al., 1997; Araya et al., 2000) compared to isoenergetic carbohydrate and 

fat meals. Although this effect is less conclusive when energy is provided in liquid form, 

several studies have demonstrated a suppression of appetite and energy intake when high 

protein drinks are provided at rest, compared to water and carbohydrate drinks (Bertenshaw 

et al., 2008; Bertenshaw et al., 2009; Astbury et al., 2010; Dove et al., 2009). Bertenshaw et 

al. (2008) found that a 300 ml drink enriched with 37.7 g of protein (50% of total energy) 

reduced energy intake after an interval of both 30 and 120 min compared to an isoenergetic 

high carbohydrate drink containing 1.7  g of protein (2% of total energy) or a low energy 

placebo. Similarly, Astbury et al. (2010) found that the addition of protein to mixed 

macronutrient 400 ml pre-load drinks reduced subsequent energy intake after 90 min 

compared to an energy free placebo although systematically increasing pre-load protein 

intake did not further reduce energy intake until a very high protein content of 50.4 g (50% of 

total energy) was achieved. Blinding subjects to drinks with such disparate macronutrient 

contents can prove difficult, and in both of these investigations, subjects reported protein 

containing drinks to be thicker and/or creamier than low protein or placebo control drinks 
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which may have influenced energy intake (Bertenshaw, Lluch, & Yeomans, 2013), as well as 

the expected satiety of the drink (McCrickerd, Chambers, Brunstrom, & Yeomans, 2012).  

Despite several studies reporting a decrease in energy intake following ingestion of protein 

containing drinks, this is not a universal finding. Poppitt et al. (2011) reported that low 

energy (<350 kJ) 500 ml whey protein enriched water drinks (5-20 g) did not decrease energy 

intake compared to an energy free placebo, although subjects reported increased fullness, 

satisfaction and decreased hunger after consumption of the protein drinks compared to the 

placebo drink. Much of the disparity within the liquid pre-load literature could be attributed 

to methodological differences, such as pre-load to meal time interval (Poppitt et al., 2011), 

volume of pre-load provided (Almiron-Roig & Drewnowski, 2003), sensory characteristics of 

the drinks (Bertenshaw et al., 2013), or protein source (Anderson & Moore, 2004). In the 

study of Poppitt et al. (2011), the time between ingesting the pre-load and the ad-libitum 

meal was 120 min which may be too long to observe a difference between drinks of such low 

energy density (<0.7 kJ·ml-1). Based on recent findings, the average time interval for 

voluntary meal requests occurs ~80 min after the cessation of exercise (King, Wasse, & 

Stensel, 2012). Therefore, in the current study, a 500 ml pre-load with a pre-load to meal time 

interval of 60 min was utilised (75 min after exercise), along with a more energy dense drink 

(1.06 kJ·ml-1) formulated to supply 30 g of protein (6%) to ensure maximal stimulation of 

muscle protein synthesis (Moore et al., 2009; Witard et al. 2014). Findings from the current 

study were that energy intake was reduced after protein ingestion at the subsequent meal by 

approximately 575 kJ representing a mean decrease of 9% compared to the placebo trial 

intake. However, there was no difference in energy intake after ingestion of the 6% protein 

compared to the isoenergetic carbohydrate drink, and was not different after ingestion of the 

carbohydrate and placebo drinks in the current study. When energy consumed in the post 

exercise drink was considered, total mean energy intake over each of the trials was reduced 

during PRO (6359 ± 960 kJ) compared to PLA (6431 ± 492 kJ) and CHO (6640 ± 901 kJ) 

although there were no significant differences between any of the trials (P=0.383). The 

exercise protocol of this study was conducted in the post-prandial state and it is unclear 

whether the same effect would be observed if exercise was performed in the fasted state. 

However, based on these results, the addition of protein to post exercise drinks might not 

increase energy intake at the next feeding opportunity and the consumption of protein after 

exercise may incur other benefits such as stimulating myofibrillar and mitochondrial protein 
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synthesis (Wilkinson et al., 2008) or enhancing the recovery of muscular force production 

(Cockburn, Hayes, French, Stevenson, & St Claire Gibson, 2008).  

No blood parameters were measured in the present investigation making the mechanisms 

behind the observed appetite suppression after protein administration difficult to elucidate. 

Bowen and colleagues (Bowen et al., 2006a; Bowen, Noakes, & Clifton, 2006b) have studied 

the effects of protein intake on appetite regulatory hormone profiles and have shown that 

lower post-prandial plasma concentrations of ghrelin as well as higher concentrations of 

satiety hormones glucagon-like peptide-1 (GLP-1) and cholecystokinin (CCK) are present up 

to 3 h after protein ingestion compared to glucose ingestion.  It is possible that the reduction 

in energy intake observed after protein ingestion during the current study was caused by 

alterations in gut peptide profiles, with protein stimulating an increase in satiety hormones 

(e.g. GLP-1 and CCK) and a reduction in appetite stimulatory hormones (e.g. ghrelin) 

compared to ingestion of a low energy placebo control. However, alterations in appetite 

hormone profiles do not always accurately predict energy intake (Bowen et al., 2007). 

Recent research has highlighted the impact of sensory characteristics of drinks on subsequent 

energy intake. Bertenshaw et al. (2013) observed that when a high carbohydrate drink is 

artificially thickened, ad-libitum energy intake was reduced compared to a high protein drink. 

The authors suggested that energy intake was primarily governed through the hedonic 

qualities of the pre-load, with drinks that are described by subjects as being particularly thick 

or creamy, typically inducing higher feelings of satiety and reducing ad-libitum energy intake 

at a subsequent meal. When reviewing the literature, several studies that have observed 

differences in energy intake between protein and carbohydrate drinks have also provided 

drinks that would be expected to differ hedonically (skimmed milk vs. fruit juice) (Dove et 

al., 2009), or subjects have identified differences in the sensory characteristics of the drinks 

(i.e. thickness and/or creaminess) (Bertenshaw et al., 2008; Bertenshaw et al., 2009; Astbury 

et al., 2010). Oreosensory cues have been shown to elicit hormonal changes related to 

appetite control (Teff, 2006, 2010), as well as enhance fullness and expected satiety of a 

drink (McCrickerd et al., 2012). Therefore, insufficient blinding of experimental drinks may 

result in sensory differences that confound any potential effects of macronutrient composition 

on appetite and subsequent energy intake. In the current study, an acidified whey protein 

isolate was utilised, which assimilates well in solution, and resulted in no differences in 

thickness or creaminess reported by participants between any of the experimental drinks 

(Figure 3). In turn, this may have attenuated the subjective perception of satiety which has 
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been commonly observed after protein ingestion (Bertenshaw et al., 2008; Bertenshaw et al., 

2009; Astbury et al., 2010; Poppitt et al., 2011; Dove et al., 2009), as there were no 

differences in hunger, fullness, prospective food consumption or desire to eat between trials 

in the current study. This may also help to explain why no difference was observed in ad-

libitum energy intake after ingestion of the protein or carbohydrate drinks in the present study, 

despite several studies observing greater energy intake after carbohydrate ingestion compared 

to protein (Bertenshaw et al., 2008; Bertenshaw et al., 2009; Astbury et al., 2010; Dove et al., 

2009).  

The consumption of protein and carbohydrate drinks is particularly common after exercise 

but the interaction between exercise and post-exercise macronutrient intake on appetite has 

not been well studied. Liquid protein feeding at rest has often been reported to suppress 

appetite and energy intake relative to carbohydrate (Bertenshaw et al., 2008; Bertenshaw et 

al., 2009; Astbury et al., 2010; Dove et al., 2009), although this was not observed during the 

current investigation. The mechanisms behind these findings are not entirely clear, but could 

conceivably be due to the exercise protocol of the current study having a greater effect on 

appetite and energy intake than the macronutrient content of the post-exercise drinks. Forty 

minutes of high intensity interval cycling has been shown to reduce muscle glycogen 

concentration by approximately 50% (Stepto, Martin, Fallon, & Hawley, 2001). Although the 

degree of glycogen depletion would have been expected to be less severe after exercise in the 

current study, the perturbation in glycogen homeostasis may have influenced energy intake 

(and therefore carbohydrate intake) in order to promote glycogen resynthesis and restore 

glycogen balance (Hopkins, Jeukendrup, King, & Blundell, 2011). This may have 

counteracted some of the satiating properties of the post-exercise protein drink culminating in 

no difference in energy intake between the carbohydrate and protein trials. However, other 

investigations have found no differences in energy intake between steady state exercise, 

intermittent exercise and resting conditions, where disparate states of glycogen homeostasis 

might be expected to influence energy intake significantly (Deighton, Karra, Batterham, & 

Stensel, 2013).  

Inter subject variability for energy intake appeared to be greater during the carbohydrate and 

protein trials compared to the placebo trial (Figure 1b). The reason for this is not clear, but 

might be due to differences in participant’s habitual intakes of these nutrients. Indeed, a study 

by Long, Jeffcoat, and Millward (2000) found that individuals who consumed a high protein 

diet habitually were less sensitive to the satiating properties of a high protein meal compared 
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to habitual low protein consumers. Likewise, we could speculate that a similar response may 

exist in subjects who consume a high carbohydrate diet habitually or perhaps regularly ingest 

high carbohydrate drinks in particular. Habitual dietary intakes were not collected as part of 

the current study and therefore these hypotheses remains speculative based on these results.  

In conclusion, the present study found that a whey protein isolate drink consumed 10 minutes 

after exercise reduced energy intake at a subsequent meal compared to a low energy placebo 

drink. This suppression of food intake was not observed after ingestion of a carbohydrate 

drink. Matching the sensory characteristics of the drinks may explain why no difference in 

subjective appetite and food intake was observed between carbohydrate and protein drinks. 

Protein ingestion immediately after exercise may enhance the adaptive response of skeletal 

muscle by increasing myofibrillar and mitochondrial protein synthesis, and findings from the 

present study suggest that this might be possible without affecting gross energy intake, 

relative to a low energy/ energy free drink. 
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Appendix B 

 
 

INFORMED CONSENT FORM  
(to be completed after Participant Information Sheet has been read) 

 
 

The purpose and details of this study have been explained to me.  I understand that 
this study is designed to further scientific knowledge and that all procedures have 
been approved by the Loughborough University Ethical Approvals (Human 
Participants) Sub-Committee. 
 
I have read and understood the information sheet and this consent form. 
 
I have had an opportunity to ask questions about my participation. 
 
I understand that I am under no obligation to take part in the study. 
 
I understand that I have the right to withdraw from this study at any stage for any 
reason, and that I will not be required to explain my reasons for withdrawing. 
 
I understand that all the information I provide will be treated in strict confidence and 
will be kept anonymous and confidential to the researchers unless (under the 
statutory obligations of the agencies which the researchers are working with), it is 
judged that confidentiality will have to be breached for the safety of the participant or 
others.  
 
 
I agree to participate in this study. 
 
 
 
                    Your name 
 
 
 
              Your signature 
 
 
 
Signature of investigator 
 
 
                               Date 
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Appendix C 

Health Screen Questionnaire for Study Volunteers 
 
 
As a volunteer participating in a research study, it is important that you are currently in good 

health and have had no significant medical problems in the past.  This is (i) to ensure your 

own continuing well-being and (ii) to avoid the possibility of individual health issues 

confounding study outcomes. 

 

If you have a blood-borne virus, or think that you may have one, please do not take part in 

this research. 
 

Please complete this brief questionnaire to confirm your fitness to participate: 
 
1. At present, do you have any health problem for which you are: 

(a) on medication, prescribed or otherwise ............  Yes  No  

(b) attending your general practitioner ...................  Yes  No  

(c) on a hospital waiting list ...................................  Yes  No  

 

2. In the past two years, have you had any illness which required you to: 

(a) consult your GP ................................................  Yes  No  

(b) attend a hospital outpatient department ...........  Yes  No  

(c) be admitted to hospital  ....................................  Yes  No  

 

3. Have you ever had any of the following: 

(a) Convulsions/epilepsy ........................................  Yes  No  

(b) Asthma  .............................................................  Yes  No  

(c) Eczema  ............................................................  Yes  No  

(d) Diabetes  ...........................................................  Yes  No  

(e) A blood disorder  ...............................................  Yes  No  
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(f) Head injury  .......................................................  Yes  No  

(g) Digestive problems  ...........................................  Yes  No  

(h) Heart problems  .................................................  Yes  No  

(i) Problems with bones or joints     ........................  Yes  No  

(j) Disturbance of balance/coordination  ................  Yes  No  

(k) Numbness in hands or feet ...............................  Yes  No  

(l) Disturbance of vision  ........................................  Yes  No  

(m) Ear / hearing problems  .....................................  Yes  No  

(n) Thyroid problems  .............................................  Yes  No  

(o) Kidney or liver problems  ...................................  Yes  No  

(p) Allergy to nuts  ..................................................  Yes  No  

 

4. Has any, otherwise healthy, member of your family under the age of 35 died suddenly 

during or soon after exercise? 

Yes  No  

 

If YES to any question, please describe briefly if you wish (eg to confirm problem 
was/is short-lived, insignificant or well controlled.) 
...................................................................................................................................................

...................................................................................................................................................

................ 

 

5. Allergy Information 

(a) are you allergic to any food products? Yes  No  

(b) are you allergic to any medicines? Yes  No  

(c) are you allergic to plasters? Yes  No  

 

If YES to any of the above, please provide additional information on the allergy 
……………………………………………………………………………………………………………

………………….. 
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5. Additional questions for female participants 

(a) are your periods normal/regular?  .....................  Yes  No  

(b) are you on “the pill”? .........................................  Yes  No  

(c) could you be pregnant?    ..................................  Yes  No  

(d) are you taking hormone replacement therapy 

(HRT)? 

Yes  No  

 

• Please provide contact details of a suitable person for us to contact in the event 
of any incident or emergency. 

 

Name:  …………………………………………………………………………………… 

 

Telephone Number:……...……………………………………………………………… 

 

 Work  Home  Mobile  

 

Relationship to Participant:...…………………………………………………………… 

 

• Are you currently involved in any other research studies at the University or 
elsewhere? 

 Yes  No  

 

If yes, please provide details of the study 

………………………………………………………………………………………………………

………………………………………………………………………………………………………

……………… 
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Appendix D 

Physical Activity Questionnaire 

During one week, how many times on average do you spend doing the following 

kinds of exercise FOR MORE THAN 15 MINUTES? 

 

1. Strenuous exercise (heart beats rapidly) 

For example; running, jogging, squash, hockey, football, rugby, vigorous 

swimming, vigorous long distance cycling 

 

_______ times per week. 

 

2. Moderate exercise (not exhausting) 

 

For example; fast walking, tennis, casual cycling, badminton, casual 

swimming, dancing 

 

 

 

_______ times per week. 

 

 

3. Mild exercise (minimal effort) 

 

For example; yoga, archery, fishing, bowling, golf, casual walking 

 

 

 

_______ times per week. 
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Appendix E 

THREE-FACTOR EATING QUESTIONNAIRE 

Part 1: Please answer true or false 

1. When I smell a sizzling steak or see a juicy piece of meat, I find it very difficult to 

keep from eating, even if I have just finished a meal. 

True  □  False  □ 

2. I usually eat too much at social occasions, like parties and picnics. 

True  □  False  □ 

3. I am usually so hungry that I eat more than three times per day. 

True  □  False  □ 

4. When I have eaten my quota of calories, I am usually good about not eating any 

more. 

True  □  False  □ 

 

5. Dieting is so hard for me because I just get too hungry 

True  □  False  □ 

6. I deliberately take small helpings as a means of controlling my weight. 

True  □ False  □ 

7. Sometimes things just taste so good that I keep eating even when I am no longer 

hungry. 

True  □ False  □ 

8. Since I am often hungry, I sometimes wish that while I am eating, an expert 

would tell me that I have had enough or that I can have something more to eat. 

True  □ False  □ 
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9. When I feel anxious, I find myself eating. 

True  □ False  □ 

10. Life is too short to worry about dieting. 

True  □ False  □ 

11. Since my weight goes up and down, I have gone on reducing diets more than 

once. 

True  □ False  □ 

12. I often feel so hungry that I just have to eat something 

True  □ False  □ 

13. When I am with someone who is overeating, I usually overeat too. 

True  □ False  □ 

14. I have a pretty good idea of the number of calories in common food. 

True  □ False  □ 

15. Sometimes when I start eating, I just can’t seem to stop. 

True  □ False  □ 

16. It is not difficult for me to leave something on my plate. 

True  □ False  □ 

17. At certain times of the day, I get hungry because I have gotten used to eating 

then. 

True  □ False  □ 

18. While on a diet, if I eat food that is not allowed, I consciously eat less for a period 

of time to make up for it. 

True  □ False  □ 
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19. Being with someone who is eating often makes me hungry enough to eat also. 

True  □ False  □ 

20. When I feel blue, I often overeat. 

True  □ False  □ 

21. I enjoy eating too much to spoil it by counting calories or watching my weight. 

True  □ False  □ 

22. When I see a real delicacy, I often get so hungry that I have to eat right away. 

True  □ False  □ 

23. I often stop eating when I am not really full as a conscious means of limiting the 

amount that I eat. 

True  □ False  □ 

24. I get so hungry that my stomach often seems like a bottomless pit. 

True  □ False  □ 

25. My weight has hardly changed at all in the last ten years. 

True  □ False  □ 

26. I am always hungry so it is hard for me to stop eating before I finish the food on 

my plate. 

True  □ False  □ 

27. When I feel lonely, I console myself by eating. 

True  □ False  □ 

28. I consciously hold back at meals in order not to gain weight. 

True  □ False  □ 



213 
 

29. I sometimes get very hungry late in the evening or at night. 

True  □ False  □ 

30. I eat anything I want, anytime I want. 

True  □ False  □ 

31. Without even thinking about it, I take a long time to eat. 

True  □ False  □ 

32. I count calories as a conscious means of controlling my weight. 

True  □ False  □ 

33. I do not eat some foods because they make me fat. 

True  □ False  □ 

34. I am always hungry enough to eat at any time 

True  □ False  □ 

35. I pay a great deal of attention to changes in my figure. 

True  □ False  □ 

36. While on a diet, if I eat food that is not allowed, I often then splurge and eat 

other high calorie food. 

True  □ False  □ 

Part 2: Please answer the following questions by circling the number with the response that is 

appropriate to you. 

37. How often are you dieting in a conscious effort to control your weight? 

1 (rarely)  2 (sometimes)  3 (usually)  4 (always) 

38. Would a weight fluctuation of 5 lbs. affect the way you live your life? 

1 (not at all)  2 (slightly)  3 (moderately)  4 (very much) 



214 
 

39. How often do you feel hungry? 

1    2     3    4  

(only at meal times)  (sometimes between meals)  (often between meals)   (almost always) 

40. Do your feelings of guilt about overeating help you control your food intake? 

1 (never)  2 (rarely)  3 (often)  4 (always) 

41. How difficult would it be for you to stop eating halfway through dinner and not 

eat for the next few hours? 

1 (easy) 2 (slightly difficult)  3 (moderately difficult) 4 (very difficult) 

42. How conscious are you of what you are eating? 

1 (not at all)  2 (slightly)  3 (moderately)  4 (extremely) 

43. How frequently do you avoid ‘stocking up’ on tempting foods? 

1 (almost never) 2 (seldom)  3 (usually)  4 (almost always) 

44. How likely are you to shop for low calorie foods? 

1 (unlikely)  2 (slightly unlikely) 3 (moderately likely) 4 (very likely) 

45. Do you eat sensibly in front of others and splurge alone? 

1 (never)  2 (rarely)  3 (often)  4 (always) 

46. How likely are you to consciously eat slowly in order to cut down on how much 

you eat? 

1 (unlikely)  2 (slightly likely) 3 (moderately likely) 4 (very likely) 

47. How frequently do you skip desert because you are no longer hungry? 

1 (unlikely) 2 (seldom) 3 (at least once a week) 4 (almost every day) 

48. How likely are you to consciously eat less than you want? 

1 (unlikely)  2 (slightly likely) 3 (moderately likely) 4 (very likely) 
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49. Do you go on eating binges though you are not hungry? 

1 (never)  2 (rarely) 3 (sometimes)  4 (at least once a week) 

50. On a scale of 0 to 5, where 0 means no restraint in eating (eating whatever you 

want, whenever you want it) and 5 means total restraint (constantly limiting food 

intake and never ‘giving in’), what number would you give yourself? 

 

0 

Eat whatever you want, whenever you want it 

1 

Usually eat whatever you want, whenever you want it 

2 

Often eat whatever you want, whenever you want it 

3 

Often limit food intake, but often ‘give in’ 

4 

Usually limit food intake, rarely ‘give in’ 

5 

Constantly limiting food intake, never ‘give in’ 

51. To what extent does this statement describe your eating behaviour? ‘I start 

dieting in the morning, but because of any number of things that happen during 

the day, by evening I have given up and eat what I want, promising myself to 

start dieting again tomorrow.’ 

1  2   3    4  

(not like me) (little like me) (pretty good description of me)  (describes me perfectly) 
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Scoring 

One point is given for each item in Part 1 and for each item (numbered question) in Part 2. 

The correct answer for the true/false items is described below. In part 1, an ‘incorrect’ 

response results in zero point being added to that factor. ‘Correct’ answers receive one 

point. The direction of the question in Part 2 is determined by splitting the responses at the 

middle. If the item is labelled ‘+’, those responses above the middle are given a zero. Vice 

versa for those with a ‘-‘. For example, scoring 3 or 4 on the first item of Part 2 (no. 37) 

would receive one point. Anyone scoring 1 or 2 would receive a zero. 

Key: 

Question number Correct Answer Score Factor concerning 

1 True  DH 

2 True  DH 

3 True  H 

4 True  DR 

5 True  H 

6 True  DR 

7 True  DH 

8 True  H 

9 True  DH 

10 True  DR 

11 False  DH 

12 True  H 

13 True  DH 

14 True  DR 

15 True  DH 

16 False  DH 

17 True  H 

18 True  DR 

19 True  H 

20 True  DH 

21 False  DR 
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22 True  H 

23 True  DR 

24 True  H 

25 False  DH 

26 True  H 

27 True  DH 

28 True  DR 

29 True  H 

30 False  DR 

31 False  DH 

32 True  DR 

33 True  DR 

34 True  H 

35 True  DR 

36 True  DH 

37 +  DR 

38 +  DR 

39 +  H 

40 +  DR 

41 +  H 

42 +  DR 

43 +  DR 

44 +  DR 

45 +  DH 

46 +  DR 

47 -  H 

48 +  DR 

49 +  DH 

50 +  DR 

51 +  DH 
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 Tally Score Boundaries 

Dietary restraint (DR)    0-10 low 

11-13 high 

14-21 clinical 

Dietary disinhibition 

(DH) 

  0-8 low 

9-11 high 

12-16 clinical 

Hunger (H)   0-7 low 

8-10 high 

11-14 clinical 

 

Source 

Stunkard AJ, Messick SM. The three-factor eating questionnaire to measure dietary restraint, 

disinhibition and hunger. Journal of psychometric research. 1985. 29(1): 71-83 

King JA, Wasse LK, Stensel D. Acute exercise increases feeding latency in healthy normal 

weight young males but does not alter energy intake. Appetite. 2013. 61: 45-51    
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Appendix F 

List of Study Foods 

Diets will be formulated and foods will be supplied during the study so therefore we 

would like to know whether there are any foods that you may be ALERGIC to or 

have a particular DISLIKE for. Please indicate in the table below: 

Food Allergy 
(Yes/No) 

Level of 
preference (1-5) 
1=enjoy eating 
5=will not eat 

Additional Comments 

Rice Crispies    

Milk    

Orange Juice    

White Bread    

Mayonnaise    

Chicken     

Lettuce    

Tomato    

Red Pepper    

Cookies    

Balsamic Vinegar    

Strawberry Yoghurt    

Chewee Cereal Bar    

Pasta    

Tomato Sauce    

Olive Oil    

Ready Salted Crisps    

Strawberry Jam    

Apple    

Banana    

Brown Bread    

Ham    
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Tuna    

Butter    

Porridge    

Orange Squash    

Blackcurrant Squash    

Summer Fruits 

Squash 
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Appendix G 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

How hungry do you feel? 

How full do you feel? 

How strong is your desire to eat? 

How much food do you think you could eat? 

How nauseated do you feel now? 

Not at all 
hungry 

Extremely 
hungry 

Not full at all Extremely full 

No desire at all Extremely 
strong 

Non at all A lot 

Not at all 
nauseas 

Extremely 
nauseas 

Subjective Feeling Questionnaire Q1 
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Appendix H 

Multi-item lunch meals 

Chapter VI Chapter VII Chapter VIII 

Food choices 

Salted crisps Salted Crisps Salted Crisps 

Salted Crisps Royal Gala Apples Royal Gala Apples 

Nutrigrain Elevensies Raisin Clementine’s Clementine’s 

Nutrigrain Elevensies Choc 

Chip 
White Bread White Bread 

Royal Gala Apples Brown Bread Brown Bread 

Banana Sliced Ham Sliced Ham 

White Bread Sliced Chicken Sliced Chicken 

Brown Bread Tuna Tuna 

Sliced Ham Lettuce Lettuce 

Sliced Chicken Tomato Tomato 

Tuna Mayonnaise Mayonnaise 

Grated Cheese Spreadable Butter Spreadable Butter 

Sliced Tomato Choc Chip Cookies Choc Chip Cookies 

Sliced Cucumber Yoghurt Yoghurt 

Mayonnaise  Cheese 

Spreadable Butter   

Margarine   

Bourbon Biscuits   

Custard Cream Biscuits   

Choc Chip Cookies   

Drink choices 

Water Water Water 

Orange Squash Orange Squash Orange Squash 

Blackcurrant and Apple 

Squash 

Blackcurrant and Apple 

Squash 

Blackcurrant and Apple 

Squash 

Summer Fruits Squash Summer Fruits Squash Summer Fruits Squash 
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Appendix I 

Pasta meals 

Chapter IV 
Ingredient Amount (g) 

Pasta 500 
Tomato Sauce 375 

Olive Oil 50 
Cheese 156 

  
Nutritional Information (per 100 g) 

Carbohydrate 25 g (53 %) 
Protein 7 g (14 %) 

Fat 7 g (33 %) 
Energy 801 ± 4 kJ 

 

Chapter VII and VIII 
Ingredient Amount (g) 

Pasta 500 
Tomato Sauce 490 

Olive Oil 40 
  

Nutritional Information (per 100 g) 
Carbohydrate 26 g (70 %) 

Protein 4 g (12 %) 
Fat 3 g (18 %) 

Energy 627 ± 11 kJ 
 

Appendix A 
Ingredient Amount (g) 

Pasta 500 
Tomato Sauce 490 

Olive Oil 40 
Cheese 156 

  
Nutritional Information (per 100 g) 

Carbohydrate 25 g (53 %) 
Protein 6 g (14 %) 

Fat 7 g (33 %) 
Energy 787 ± 10 kJ 
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Appendix J 

Porridge meal 

Chapter VII 
Ingredient Amount (g) 

Porridge Oats 500 
Semi-skimmed milk 375 

  
Nutritional Information (per 100 g) 

Carbohydrate 16 g (61 %) 
Protein 4 g (17 %) 

Fat 3 g (22 %) 
Energy 440 ± 5 kJ 
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Appendix K 

Food and Activity Record 

Subject no.:  ______________     Trial: ______________    Date:   ______________ 

 

To ensure that the same conditions are present before each trial, we ask that 
you complete this food and physical activity diary for the 48 h period before 
your first trial. We also ask that you then repeat this in the 48 h before each 
subsequent trial. PLEASE REFRAIN FROM ALCOHOL AND STRENUOUS 
EXERCISE IN THIS PERIOD.  

 

• Please describe each item of food and drink as fully as possible – type of food, 

cooking method, weight etc.  

• Also please weigh/measure and list all drinks you consume in the 48 hours. 

• You should not consume any food or drink other than what is supplied in the 

morning before each laboratory visit 

Guidelines for use of the food record diary 

1. Please weigh all the food on the scales provided by placing your plate on the 

scales, pressing the ‘zero’ button, and then loading on the item of food. If the 

meal consists of several items then ‘zero’ the scales before each and record 

the weights. For example: 

1) Put plate/bowl on the scales 

2) Zero scales 

3) Load first item e.g. meat – 125g shown 

4) Record in the booklet 

5) Zero scales 

6) Load on another item e.g. potatoes – 150g shown 

7) Record in booklet 

Repeat stages 5-7 until you have completed your meal 

• If eating out you will have to either (a) ask for an empty plate so that you 

can transfer each item to the new plate while you record the weight or (b) 

weigh the complete meal and eat each item separately and re-weigh the 

plate after each item so that you can work out the weight by the difference 
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• Some food types come in standard weights and in packets with 

information printed on the label, e.g. crisps, yoghurt, Mars bar, can of drink 

etc. So these are easy to record. 

2. Record only one food item on each line of the diary 

3. Describe each item as fully as possible. See example on the next page. 

4. Describe the method of cooking – boiled, roast, fried, grilled 

5. Indicate whether skins are eaten 

6. Please record all food in grams 

7. Remember to record cups of tea and coffee together with any milk or sugar 

added 

8. To record a commonly consumed item throughout the day more easily (e.g. 

tub of butter, packet of sugar), weigh the item at the start of the day and at the 

end of the day to obtain the total weight consumed. HOWEVER IF YOU LIVE 

IN SHARED ACCOMODATION MAKE SURE NOBODY ELSE USES YOUR 

ITEM OF FOOD 

9. For very light ingredients please use common household measures. i.e. ½ 

teaspoon of salt, sugar, herbs, spices, coffee etc.   

10. You may weigh ingredients raw or cooked e.g. pasta/rice but please indicate 

which you have done. 

SOME EXAMPLES OF THE DETAILS REQUIRED ABOUT EACH FOOD OR 
DRINK EATEN ARE GIVEN ON THE NEXT PAGE 

 

Operation of the scales 

1. The scales give a digital reading of the food type in grams. They can be 

‘zeroed’ by pressing the ‘0’ button on the front. You can switch the scales on 

by pressing the ‘on/off’ button on the front.  

2. Place on an even firm surface before turning on, and leave for a few seconds 

to balance before placing anything on them. Scales will read 0g when they are 

balanced, and after this you can begin to add food to the scales. Ensure that 

scales are steady before recording a weight.   

3. Scales will turn off when left for a short period untouched. They can also be 

turned off by holding the ‘on/off’ button for a short time. 
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Example of food diary 

Time Description of food Weight of food Weight of food 
left over 

8.30am Kellogs Cornflakes 40g 0g 
 Semi-skimmed milk 200g 0g 
 1 slice of toast, Hovis, granary 50g 0g 
 Butter, Country Life, no added 

salt 
10g 0g 

11.00am Coffee, Nescafe decaffeinated, 
granules 

180g 0g 

 Whole milk 17g 0g 
 Kit-Kat biscuit, 2 fingers 35g 0g 

1.12pm Tesco sandwich:  0g 
 White bread, 2 medium slices 100g 0g 
 Butter on bread 20g 0g 
 Grated cheese 40g 0g 
 3 tomato slices 10g 0g 
 1 can of diet coke, Coca Cola 330g 50g 

6.00pm Grilled lean lamb chop 150g 20g 
 Boiled new potatoes in skins 250g 43g 
 Processed peas, Cross and 

Blackwell  
100g 22g 

 1 banana 30g 0g 
 1 glass of orange juice, 

Tropicana, no bits 
148g 0g 

10.00pm Tea, PG tips 40g 0g 
 Semi-skimmed milk 200g 0g 
 4 biscuits, McVities, chocolate 

digestive  
50g 0g 

 

Example physical activity diary 

Time Activity Intensity Duration 

9.00am Cycle to university Low 20 min 

7.00pm Walk the dog Low 30 min 

    

Please record all your physical activity over the 48 h standardisation period in 
the table on the next page. PLEASE REFRAIN FROM ANY STRENUOUS 

ACTIVTY DURING THIS TIME. 
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Food Diary – Day 1 – Date…………………………….. 

Time Description of food Weight of food Weight left over 

    

    

    

    

    

    

    

    

    

    

    

    

    

    

    

    

    

    

    

    

    

    

    

 

Physical activity diary – Day 1 

Time Type Duration Intensity 
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Food Diary – Day 2 – Date……………………………………… 

Time Description of food Weight of food Weight left over 

    

    

    

    

    

    

    

    

    

    

    

    

    

    

    

    

    

    

    

    

    

    

 

Physical activity diary – Day 2 

Time Type Duration Intensity 
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