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mere theoretical speculation on the one hand, nor by the undirected accumulation of 

practical facts on the other, but rather by a motivated iteration between theory and 

practice…"     
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Abstract 
Most existing houses in the UK have a single thermostat, a timer and conventional 

thermostatic radiator valves to control the low pressure, hot water space heating 

system. A number of companies are now offering a solution for room-by-room 

temperature and time control in such older houses. These systems comprise of 

motorised radiator valves with inbuilt thermostats and time control. There is currently 

no evidence of any rigorous scientific study to support the energy saving claims of 

these ‘zonal control’ systems.  

This thesis quantifies the potential savings of zonal control for a typical UK home. 

There were three components to the research. Firstly, full-scale experiments were 

undertaken in a matched pair of instrumented, three bedroom, un-furbished, 1930s, 

test houses that included equipment to replicate the impacts of an occupant family. 

Secondly, a dynamic thermal model of the same houses, with the same occupancy 

pattern, that was calibrated against the measured results. Thirdly, the experimental 

and model results were assessed to explore how the energy savings might vary in 

different UK climates or in houses with different levels of insulation.  

The results of the experiments indicated that over an 8-week winter period, the 

house with zonal control used 12% less gas for space heating compared with a 

conventionally controlled system. This was despite the zonal control system resulting 

in a 2 percentage point lower boiler efficiency. A calibrated dynamic thermal model 

was able to predict the energy use, indoor air temperatures and energy savings to a 

reasonable level of accuracy. Wider scale evaluation showed that the annual gas 

savings for similar houses in different regions of the UK would be between 10 and 14% 

but the energy savings in better insulated homes would be lower. 
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1 Introduction 

1.1 Background 

As a part of 2008 Climate Change Act, the UK government made a commitment to 

reduce the greenhouse gas emissions by at least 80% compared to 1990 levels by 

2050 (Office of Public Sector Information, 2008). The Climate Change Act which was 

initially targeted to reduce emissions by 26% by 2020 was later tightened to 34% 

(Office of Public Sector Information, 2009). Carbon dioxide is the main greenhouse 

gas and, in 2013 accounted for 82% of total UK’s man-made greenhouse gas 

emissions (DECC, 2014a). Figure  1-1 indicates the contribution of each sector to the 

total UK carbon dioxide emissions (DECC, 2012a). Residential fossil fuel use has 

been the third largest contributor to the UK’s total carbon dioxide emissions after the 

energy supply and transport sectors and accounts for 15% of the total carbon dioxide 

emissions (DECC, 2012a). However, the share reported for this sector does not 

even include the emissions from the energy supply sector due to generating 

electricity for domestic use. Considering the energy supply as well, housing is 

responsible for 25% of the UK’s greenhouse gas emissions and therefore it would be 

difficult to meet the 2050 target without reducing emissions from residential buildings 

(Palmer & Cooper, 2011). Moreover, reduction in residential fossil fuel use is crucial 

for the UK’s energy security so that the UK could become less dependent on imports. 
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Figure  1-1: Contribution of different sectors to the UK’s total carbon dioxide 

emissions of 2011(DECC, 2012a) 

Achieving the Climate Change Act targets will require substantial reductions in 

energy consumption in different sectors; though reductions in the domestic sector 

are considered to be “relatively low cost” and “realistically achievable” (Committee on 

Climate Change, 2008). Since 1990, emissions from fossil fuel use in the residential 

sector have fluctuated but in 2010 they were 8% above the 1990 level (DECC, 

2011c). In 2010, the UK residential sector emissions of carbon dioxide increased by 

13.4% compared to the previous year (the highest rise for any single sector) due to a 

considerable rise in residential gas use for space heating as 2010 was on average 

the coldest year since 1986 (DECC, 2011c). In 2013, the emissions from this sector 

were estimated to be 3% below the 1990 level (DECC, 2014a).  

The UK’s housing stock is one of the oldest and least efficient in Europe (Boardman, 

Killip, Darby, et al., 2005). The majority of energy consumption in UK dwellings is 

due to space heating which in 2009 accounted for 61% of the total energy 

consumption in the domestic sector (DECC, 2011a). Figure  1-2 presents the 

domestic final energy consumption in UK by end use since 1970 in which space 

heating has been continuously dominant. Therefore as Shipworth et al. (2010) 

argues “Any policies and initiatives aimed at significantly reducing residential CO2 

emissions must address the largest residential CO2 emitter – central heating”. 
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Figure  1-2: Domestic final energy consumption by end use since 1970 (DECC, 

2011a)1 

Improvements in insulation and heating efficiency have saved a considerable 

amount of heat energy. Figure  1-3 shows that from 1970 to 2006 improvement in the 

efficiency of domestic heating systems and implementing different types of insulation 

such as loft (attic), cavity and hot water tank insulation and double glazing kept the 

current level of space heating energy consumption to almost half of the amount that 

it could have been without these improvements. 

                                            
1 For conversion of Mtoe to kWh see energy conversion factors, p XXI. 
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Figure  1-3: Space heating energy savings due to better insulation and heating 

systems efficiency in UK homes from 1970 to 2006 (DECC, 2011a) 

Figure  1-4 shows the energy used for space heating and it’s share in total household 

energy use since 1970 for the UK (Palmer & Cooper, 2011). It indicates that despite 

the energy efficiency improvements in houses, heating’s share of household energy 

use has increased from 58% in 1970 to 66% in 2007. During this period, the 

proportion of dwellings with central heating has increased from less than a third to 

96%. This increase in heating’s share of domestic energy use is despite the fact that 

the amount of electric equipment in homes has significantly increased and also that 

gas central heating systems are generally more efficient than individual room 

appliances such as open coal fires and are therefore expected to use less energy 

(Utley & Shorrock, 2008).  
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Figure  1-4: Household energy use for space heating and its share of all household 

energy use for the UK (Palmer & Cooper, 2011) 

The rise of central heating has considerably increased the domestic energy use. 

According to Andrews et al. (2012), central heating contributed to 30% increase in 

energy consumption between 1970 to 2010. This is because it allows people to heat 

the whole of their homes rather than just individual rooms and provides expectations 

of higher indoor temperatures throughout the house. Hunt & Gidman (1982), 

recorded spot measurements of room temperatures in 1000 homes in the UK during 

the February and March of 1978 and found that the average temperature in centrally 

heated homes was 3°C higher than the homes without central heating. 

It is likely that a considerable amount of energy is still being wasted in centrally 

heated homes and there is huge potential for further savings via better control 

strategies. An example of this waste would be heating all the rooms to maintain the 

same temperature even when they are unoccupied. Research has shown that an 

average centrally heated home consumes about twice as much energy for space 

heating as a similar home with heating only in the living room (Palmer & Cooper, 

2011). Utley & Shorrock, (2008) argue that this would be even higher for a house 

with poor levels of insulation while in a very well insulated house, it may be only 

necessary to have a simple system of one or two room heaters instead of a full 

central heating system. 
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Zonal Control of space heating (ZC) is one option when considering more efficient 

heating control strategies. ZC could be described simply as restricting the heating of 

unoccupied areas of the home in order to reduce wasted energy. For example, 

during the day time, when the bedrooms are unoccupied, only the living room could 

be heated while the first floor bedrooms would be a separate zone and only heated 

during the evening when they are occupied and often to a lower temperature 

compared to main living areas. Therefore, ZC could be potentially more energy 

efficient as it enables the householders to match their space heating to their lifestyles. 

1.2 Justification of the research 

Wireless technology and the availability of more powerful batteries have led control 

manufacturers to develop retrofit systems for zonal space heating. Although market 

deployment is in its infancy, this is a rapidly developing area with many new systems 

emerging. The main components of ZC systems are the battery-operated 

Programmable Thermostatic Radiator Valves (PTRV) which replace normal TRVs 

and have motorised valves to regulate the hot water flow through the radiators 

according to a set-point temperature and time schedule. These can be set on the 

PTRVs themselves, via a central controller which communicates wirelessly with the 

PTRVs, or even remotely via a mobile phone or computer. 

There has been little (if any) research to quantify how much energy can be saved 

using these devices. These savings are likely to be dependent on house type, size, 

location and occupancy pattern. Therefore, this research was conducted to answer 

the following questions:  

• How much energy could ZC save in a UK house? 

• Does the effectiveness of ZC depend on the local climate or its level of 

insulation? 

1.3 Aim and objectives 

The aim of this thesis was to quantify the energy demand reduction potential of using 

zonal space heating control in a UK home and the implication of this at a wider scale. 

This was achieved through the following objectives: 
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1. Design and set up an experimental investigation and measure the energy 

savings of zonal space heating control compared to conventional control in 

a real house.  

2. Predict the energy savings for the same house using a Dynamic Thermal 

Model (DTM) calibrated using measurements from the experimental 

investigation. 

3. Use the experimental results and the calibrated DTM to explore how 

savings might vary in UK houses exposed to a different climate or higher 

levels of insulation. 

1.4 Outline of the thesis 

• Chapter 2 presents a thorough literature review which was conducted for this 

study. This covers space heating methods in the UK with a focus on wet 

central heating systems and their controls; studies investigated the impacts of 

space heating controls on energy use; zonal space heating control systems; 

and existing literature on modelling energy use in the domestic sector. 

• Chapter 3 provides an overview of the methodology and describes the test 

houses used in this study and their characterisation tests including co-heating 

and airtightness tests. 

• Chapter 4 describes the space heating trials conducted in the test houses in 

order to measure the energy saving potential of ZC and presents the results of 

the trials. 

• Chapter 5 describes the construction of dynamic thermal models (DTMs) of 

the test houses for the purpose of modelling the space heating trials and the 

co-heating test. 

• Chapter 6 compares the results from the DTMs with the measured results 

from the tests. The chapter also describes the processes of calibration and 

validation of the DTMs based on these comparisons. 

• Chapter 7 firstly describes the development of an empirical model based on 

results from the space heating trials to predict the annual energy and cost 
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savings of ZC in UK homes located in different regions. The differences 

between the predictions of the empirical model and the calibrated DTM are 

investigated and potential reasons for the differences identified. The calibrated 

DTM is then used to predict the likely heating energy and cost savings in 

better insulated homes. 

• Chapter 8 discusses the findings from chapters 3 to 7, identifies the key 

messages from the research and makes suggestions for future work. 

• Chapter 9 presents the conclusions from the research. 
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2 Literature review 

2.1 Introduction 

This chapter presents the context for the study of zonal space heating control (ZC) in 

UK homes and reviews the relevant academic, governmental and industry based 

literature. Firstly, it describes different space heating methods in UK homes 

(section  2.2) and the configuration and components of the most common system 

which is currently being used: wet central heating (section  2.3). The literature review 

then discusses the space heating controls in existing UK homes as well as the 

regulations for new homes (section  2.4). In section  2.5, studies which had examined 

the impacts of conventional and occupancy based space heating controls are 

critically reviewed. Section  2.6 describes ZC and explores different ZC systems 

currently available in the UK market. Section  2.7 introduces different techniques and 

tools which are being used to model domestic energy use and discusses model 

calibration and validation techniques. Finally, section  2.8 summarizes the findings 

from literature review which have direct implications on the methods chosen for this 

study. 

2.2 Space heating methods in the UK homes 

Next to food, heating has been among the most important elements in human 

existence (Wright, 1964). Since the first fire was lit in a cave, heating the living 

spaces to increase thermal comfort has been associated with the life of most people 

especially those living in the colder climates. In the UK, homes were commonly 

being heated using coal open fires from as early as the 17th Century well into the 

1960s (Roberts, 2008 and Wright, 1964). The low pressure gravity hot water heating 

was common by 1900 but only limited to larger buildings and the heating in the 

middle- and lower-priced homes were “unplanned” and “almost unknown” (Doherty, 

1967). Early central heating systems were heated by back boilers situated behind 

the grate of open fireplaces which were only able to heat a few radiators (Beattie, 

1966). Back-boilers were simple and reliable and a large number of them were 

installed in the 1980s but they had low efficiencies (Munton, Wright, Mallaburn, et al., 

2014). 
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In the 1970s, with the introduction of North Sea Gas to the UK, gas fired central 

heating evolved (Roberts, 2008). This was a breakthrough into domestic space 

heating as, before this, particular rooms were heated when needed but now all the 

rooms could be heated, regardless of their occupancy. 

Currently, central heating is the main method for space heating in the UK homes. 

According to the 2011 Census (Office for National Statistics, 2011), there are more 

than 23 million households with at least one usual resident in England and Wales 

from which 97.3% of them have one or more types of central heating (Table  2-1). 

Domestic central heating systems can be fuelled by mains gas, Liquefied Petroleum 

Gas (LPG), oil, electricity or solid fuel. However, the majority of homes in England 

and Wales (78.7%) have central heating which is supplied by gas (Table  2-1). 

Table  2-1: Census 2011 data for domestic heating systems in England and Wales 

(Office for National Statistics, 2011) 

Total number of households with at least one resident 23,366,044 

Percentage of households with no central heating 2.7% 

Percentage of households with Gas central heating 78.7% 

Percentage of households with electric central heating 

(including storage heaters) 
8.1% 

Percentage of households with oil central heating 4.1% 

Solid fuel central heating (including wood and coal) 0.7% 

Other central heating  

(including solar, LPG or other bottled gas) 
1.6% 

Percentage of households with two or more types of central 

heating 
4.1% 

Central heating systems generally fall into 3 main categories: wet (hydronic) systems 

with heated water circulating through radiators, convectors or under-floor heating; 

warm air systems in which the air is delivered through ducts to rooms using a heat 

exchanger with a fan and filter (Doherty, 1967); and electric storage and panel 

systems using off peak and on peak electricity.  

Wet systems are by far the most common type of heating system in the UK homes 

(The Carbon Trust, 2011). 
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2.3 Wet central heating system components and 
configuration 

A standard domestic wet central heating system typically consists of the following 

components (Figure 2-1): 

• Boiler 

• Time switch/programmer 

• Room thermostat / Programmable room thermostat 

• Thermostatic Radiator Valves (TRV) 

• Motorised valve 

• Cylinder thermostat (only in systems with regular boiler) 

• Automatic bypass valve 

• pump 

• Heat emitters 

 

Figure  2-1: A standard domestic wet central heating system configuration (BRECSU, 

2001) 
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2.3.1 Boiler 

Boilers can be described as ‘regular’ or ‘combination’ (combi). A regular boiler is not 

able to provide DHW directly; therefore it does so indirectly via a separate hot water 

store (Figure  2-1). Historically, these were the most common boiler type and are 

often referred to as conventional or traditional boilers (BRECSU, 2000). A 

combination boiler has the capability to provide DHW directly, and some models 

contain a small internal hot water store. Combination boilers can be often more 

efficient as the standing losses from the hot water tank will be avoided (Munton, 

Wright, Mallaburn, et al., 2014). Both regular and combination boilers may either be 

condensing or non- condensing. Condensing boilers use the heat from the flue 

gasses as secondary heating to heat the water in addition to direct heat transfer via 

burning fuel (Hall & Greeno, 2013).They also have a larger heat transfer surface 

area compared to non-condensing boilers (Hall & Greeno, 2013). 

Condensing boilers are generally more efficient with an overall efficiency of above 90% 

compared to the non-condensing boilers with an expected efficiency of 75% (Hall& 

Greeno, 2013). The element that defines the efficiency of the condensing boilers in 

operation is the temperature at which the water returns to the boiler (Oughton and 

Hodkinson, 2008). High efficiency for the condensing boilers would be achieved with 

a water returning at a low temperature (Figure  2-2) (Oughton and Hodkinson, 2008). 
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Figure  2-2: Efficiency of condensing boilers (Oughton and Hodkinson, 2008) 

Condensing boilers have become mandatory for new and replacement boilers since 

2005 according to the UK Building Regulations (The Office of the Deputy Prime 

Minister, 2005). The percentage of dwellings with condensing boilers and in 

particular condensing combination boilers has increased to about a third of the UK 

housing stock in 2010 (Department for Communities and Local Government, 2012). 

According to the government’s Energy Efficiency Best Practice programme (EEBPp), 

the boiler is one of the main factors influencing energy efficiency of domestic central 

heating systems (BRECSU, 2000). The Seasonal Efficiency of a Domestic Boiler in 

the UK (SEDBUK) database records the efficiency of boilers which has been 

measured in a laboratory. 

Internal control of boilers is typically according to the water temperature flowing from 

the boiler. Based on the set-point and deadband2 two temperature threshold for Cut-

In and Cut-Out can be determined. If the water temperature is higher than Cut-Out, 

the boiler is switched off. If the water temperature is lower than the Cut-In, the boiler 

is switched on (Liao, Swainson & Dexter, 2005). The water set-point temperature 

                                            
2 Deadband here means a temperature range that is set around the set-point temperature to avoid 
excessive hunting by the controller (Race, 2005) 
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can be fixed, varied based on external air temperature or varied based on heating 

load. Liao et al. (2005) discussed that the overall performance of a heating system is 

considerably affected by the scheme for determining the value of water temperature 

set-point. 

2.3.2 Time switch / programmer 

A time switch or programmer is the primary way in which the central heating system 

can be controlled by the occupants. It allows them to set the times at which the 

system will turn on and turn off. A time switch is an electrical switch operated by a 

clock to switch only one circuit and therefore control either space heating or hot 

water, but not both (Energy Saving Trust, 2008a). A programmer can switch two 

circuits (heating and DHW). Depending on the type of programmer (i.e. mini, 

standard or full programmer) the heating and DHW time setting can be the same or 

fully independent (BRECSU, 2001). A mini programmer allows space heating and 

hot water to be on together or hot water alone but not heating alone. A standard 

programmer uses the same time setting for space heating and hot water. A full 

programmer allows the time setting for space heating and hot water to be fully 

independent (BRECSU, 2001). 

2.3.3 Room thermostat / Programmable room thermostat 

A room thermostat allows the occupants to control the central heating system by 

limiting the air temperature when the heating is on. It measures the air temperature, 

is often located in a central area of the home such as a living room or hallway and 

switches the space heating off when the temperature is above a single target 

temperature set by the user (set-point temperature) (Energy Saving Trust, 2008a). 

Building services handbook (Hall & Greeno, 2013) suggests that the thermostat 

should be installed somewhere away from draughts, direct sunlight and heat emitters 

at 1.2 to 1.5 m above the floor level. 

A Programmable Room Thermostat (PRT) is a combined time switch and room 

thermostat that enables the user to set different periods with different set-point 

temperatures for space heating, usually in a daily or weekly cycle (Energy Saving 

Trust, 2008a). The use of programmable thermostats was included in the US 

Environmental Protection Agency’s EnergyStar Programme in 1995, suggesting that 
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using them the households could save around $180 a year (Meier et al, 2012). 

However, programmable thermostats have not been widely used in the UK as it was 

believed that they are not necessary considering the milder climate of the UK 

(Munton, Wright, Mallaburn, et al., 2014).  

During 1990s, the ability of the PRTs to set different temperatures throughout a day 

and heating schedules for weekday/ weekends considerably improved (Peffer, 

Pritoni, Meier, et al., 2011). Moreover, mobile phones and internet technology have 

been developed quickly so that a number of remotely controlled thermostats which 

allow occupants to remotely control their heating system are now available from 

different manufacturers. Global Positioning System (GPS) in mobile phones allows 

the proximity of occupants to home to be identified and transferred to the thermostat 

which then can predict arrival times and ensure that the heating is turned on when 

the resident is coming home (Consumer focus, 2012). The interface can be remote 

via web or smart phone, a large full colour LCD, touch screen or even voice 

controlled (Peffer, Pritoni, Meier, et al., 2011).  

 

Figure  2-3: Two older thermostat designs with slider bars and analogue display on 

the left compared to two state of the art programmable thermostats with LCD or full 

touch screen on the right (Peffer, Pritoni, Meier, et al., 2011) 

2.3.4 Thermostatic Radiator Valves (TRVs) 

Thermostatic radiator valves (TRVs) are used to provide a degree of temperature 

control in individual rooms by adjusting the water flow through an emitter and 

controlling its heat output (BRECSU, 2001). TRVs are two-port throttling valves 

which can be installed in either the flow or return connection of radiators and are 

self-acting and require no external source of power (Figure  2-4) (CIBSE, 2009). 
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Head of a TRV contains a liquid or wax-filled capsule which expands or contract with 

the changes in room air temperature (CIBSE, 2009). The expansion of the liquid or 

wax filled capsule causes the valve seating to be depressed or elevated and 

consequently regulates the flow of hot water in the radiator (Watkins, 2011). TRVs 

are manually set at different levels (commonly 1 to 5 including a frost protection level 

or 1 to 6) using their temperature selector scale to define a separate target 

temperature for each room (Figure  2-4). A temperature setting range is often 

available from the manufacturer’s technical data. For example for one of the 

products (Drayton RT212) the temperature setting range for levels 1 to 6 was given 

between 12 °C to 29 °C (Invensys Controls, no date). 

 

Figure  2-4: Left: Manual on/off radiator valve. Right: Thermostatic Radiator Valve 

(TRV) (Munton, Wright, Mallaburn, et al., 2014) 

Figure  2-5 shows the components of a TRV with an integral temperature sensor 

which means the sensor, transmission unit and temperature selector constitute an 

assembly which is incorporated with the valve body assembly (BSI, 2006). This type 

of assembly would allow the TRVs to be fitted as direct replacements for manual 

on/off radiator valves (CIBSE, 2009).  

The accuracy of temperature control achieved by the TRVs is dependent on the 

ability of its temperature sensor to sense the real temperature of the room (Watkins, 

2011). According to BS7478 (1999), there is a relationship between the temperature 

at the thermostatic head assembly and the temperature at the centre of a room 



17 
 

which varies between different installations. TRV head which contains its 

temperature sensor should be positioned according to manufacturer’s 

recommendation to ensure that the sensor is properly exposed to the room 

temperature rather than the heat from the radiator (CIBSE, 2009). Since the integral 

sensor is very close to the radiator, sometimes the sensor is inevitably affected from 

the convective heat flows (Weker & Mineur, 1980). Therefore, in some TRVs the 

sensor or both the sensor and temperature selector unit is mounted remotely from 

the valve body (BSI, 2006).  

 

 

Figure  2-5: Principle components of a Thermostatic Radiator Valve (TRV) (BSI, 1999) 

2.3.5 Motorised valve 

Motorised valves are used to control the water flow from the boiler to heating and hot 

water circuits (Energy Saving Trust, 2008b). Motorised valves could be either two-

port or three-port (Figure  2-6) and their selection for each system is according to the 

system’s pipework layout and preference (Energy Saving Trust, 2008b).  
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Figure  2-6: An example of two-port (on the left) and three-port (on the right) 

motorized valve (Danfoss, no date) 

A two-port valve controls water flow to one circuit while a three-port valve controls 

flow to two circuits (BRECSU, 2001). 

When there is only one heating zone, a three-port valve can provide separate 

heating and hot water circuits. Most three-port valves are mid-position valves which 

means that they have one central inlet port connected to the flow from the boiler and 

two outlet ports; one for DHW and one for central heating (BRECSU, 2001). When 

there is more than one heating zone as well as hot water zone, a two-port valve for 

each heating circuit is required (Energy Saving Trust, 2008b). 

2.3.6 Cylinder thermostat  

Cylinder thermostats are only used in the systems with a regular boiler and a hot 

water tank, as opposed to systems with a combination boiler where hot water is 

instantly produced (Consumer focus, 2012). A cylinder thermostat which is often 

strapped to the DHW cylinder, measures the temperature of hot water cylinder and 

switches the hot water supply on and off using a motorized valve (BRECSU, 2001). 

A single target temperature can be set by the user or a  combined time switch and 

cylinder thermostat can be used to set different period with different target 

temperatures for the stored hot water (Energy Saving Trust, 2008b). 

2.3.7 Automatic bypass valve 

A bypass circuit must be installed if the boiler manufacturer requires one, or specifies 

that a minimum flow rate has to be maintained while the boiler is firing (Hall and 
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Greeno, 2013). The bypass circuit must then include an automatic bypass valve 

installed between the boiler flow and return considering the direction of the flow 

(Energy Saving Trust, 2008b). Automatic bypass valves are necessary when more 

than half of the radiators are fitted with TRVs (BRECSU, 2001) as when the TRVs 

begin to close the bypass valves opens to maintain a steady flow of water through 

the boiler (Hall and Greeno, 2013). Alternatively fixed bypass can be achieved either 

by ensuring that one radiator stays open or by adding a short pipe with a fixed 

position valve between the flow and return pipe (BRE, 2014). A radiator without a 

TRV or hand valve is a common form of fixed bypass (BRE, 2014). 

2.3.8 Boiler interlock 

Boiler interlock is not a control device but a wiring arrangement of the system 

controls (room thermostats, PRTs, cylinder thermostats, programmers and time 

switches) in order to prevent the boiler from firing when there is no demand for heat 

(Energy Saving Trust, 2008a). For the systems with a regular boiler, the interlock is 

usually set so that the room or cylinder thermostat switches the power supply to the 

boiler through the motorised valve (BRECSU, 2001). For systems with a combination 

boiler, interlock is usually achieved by using a room thermostat. In most cases, 

interlock also applies to the pump operation (BRECSU, 2001). TRVs alone are not 

sufficient for boiler interlock and needed to be installed together with a room 

thermostat (Energy Saving Trust, 2008a). 

2.3.9 Pump 

The pumps used in domestic central heating systems are simple centrifugal pumps 

(Mitchell, 2008). Domestic central heating pumps could be classified into three main 

categories; fixed speed, three speed and variable speed (Mitchell, 2008). Fixed 

speed pumps are the simplest type and used to be the standard for many years 

(Mitchell, 2008). Three speed pumps which are the most common type currently 

used have three settings which are related to three different pressure/flow diagrams 

as can be seen in Figure  2-7 (Mitchell, 2008). The speed of the pump is selected 

manually for the optimal operation of the system and the central heating controls 

cannot usually change the pump speed (Mitchell, 2008). Having three settings would 



20 
 

enable some flexibility for adjustment to individual installations and allows for 

potential changes to the system in future (Hall and Greeno, 2013). 

 

Figure  2-7: Pressure/flow diagram of a typical domestic three-speed central heating 

pump (Mitchell, 2008) 

Variable speed pumps have a self-regulating output facility which responds 

automatically to varying loads throughout a day in modern standard central heating 

systems with thermostats, motorized zone valves and TRVs (Hall and Greeno, 2013). 

2.3.10 Heat emitters 

Heat emitters transfer heat from a heating system into the building spaces by 

convection and radiation (Brown, 2011). A wide range of heat emitters are available 

for domestic wet central heating systems including panel radiators, column radiators, 

Low Surface Temperature (LST) radiators, towel rails, natural and fan convectors 

and under-floor heating coils (Figure  2-8). The most common type installed in 

modern housing is panel radiators which are available in a wide range of sizes and 

outputs to suit different rooms (BRECSU, 2000). Radiators are often installed below 

windows to counteract any cold downdraughts (Oughton & Hodkinson, 2008). As 

opposed to its name, the majority of the radiator’s heat is transmitted via convection 

(about 70%) rather than radiation (about 30%) (Brown, 2011). Fins are often added 

to the radiators to increase their surface area in order to increase their output 
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(CIBSE, 2005). LST radiators are used where young children or elderly are at risk in 

order to limit the surface temperature to 43ºC and prevent injury (HSE, 2012). 

 

Figure  2-8: Three common types of heat emitters: panel radiator, fan convector and 

underfloor heating coils (Young et al. 2013) 

The heat output of radiators are dependent on a number of factors including their 

size, number of panels (single or double), number of fins and their material 

(Table  2-2). 
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Table  2-2: The ranges of heat outputs and heights of different types of radiators 

according to a manufacturer (BSMW products Ltd, 2011) 

Radiator type 
Heat output range 

(W/m) 
Height range 

(mm) 

Finned steel 

panel 

Finned single panel 541-1218 

300-750 

Double panel, single 

fin 
820-1868 

Double panel, 

double fin 
1039-2258 

Old steel panel 
Single panel 483-1042 

300-740 
Double panel 752-1633 

Column 

radiators1  41-249 
460-910 

(Depth: 66-140) 
1 Heat output reported in W/Section  

Natural convectors are often 100% convective and consists of a copper or steel pipe 

with fins fitted along its length which is installed at the bottom of the casing (Oughton 

& Hodkinson, 2008). A convection airflow driven by the warm air above the 

convector is moved by the cooler air entering below (Oughton & Hodkinson, 2008). 

The fan convectors are similar to natural convectors but includes a fan and thus 

have higher outputs compared to natural convectors (Oughton & Hodkinson, 2008). 

In under-floor heating (Figure  2-8), circuits of plastic pipes laid in a floor screed or 

below a timber floor are fed with low temperature hot water. In under-floor heating, 

heat is typically emitted 40% convective and 60% radiative (Oughton & Hodkinson, 

2008). 
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2.4 Central heating controls in the UK homes 

2.4.1 Regulations for central heating controls 

Since the first mandatory UK Building Regulations were introduced in 1966, this has 

been revised several times over the last 40 years in order to improve the energy 

efficiency of both new and existing dwellings (Boardman, Killip, Darby, et al., 2005). 

Many factors such as thermal performance of building envelope, energy efficiency of 

boilers and the distribution systems and control systems influence the energy 

efficiency of a heating system (BRE, 2014). Central Heating System Specifications 

(CHeSS) document (Energy Saving Trust, 2008a) has provided the current “Basic” 

and “Best Practice” specifications for the components of domestic wet central 

heating systems that are critical to energy efficiency. For example, “Basic” system 

must have a regular or combination condensing boiler with minimum SEDBUK 

efficiency of 86% (bands A and B) or “Best practice” system must have a regular or 

combination condensing boiler with minimum SEDBUK efficiency of 90% (band A 

only). 

CHeSS (2008) defines “Basic” as “sufficient to comply with Building Regulations Part 

L1 that came into effect in April 2002”. The building regulations apply when: 

• A home is built 

• A home has an extension or change of use 

• More than one individual component, such as a boiler is replaced in a heating 

system. 

CHeSS (2008) also defines “Best Practice” as “the adoption of products and 

techniques that are already established in the market, cost effective and able to save 

energy without incurring undue risks”. This section focuses on the “basic” and “best 

practice” specifications of domestic space heating control systems.  

According to CHeSS 2008, a “Basic” central heating system must have following 

control specifications: 

• Full programmer and cylinder thermostat (for regular boiler with separate hot 

water store) 
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• Time switch (for combination boilers) 

• Room thermostat  

• Boiler interlock 

• TRVs on all radiators, except in rooms with a room thermostat.  

• Automatic bypass valve 

According to CHeSS 2008, a “Best Practice” central heating system must have 

following control specifications:  

• Programmable room thermostat (with additional DHW timing capability for 

regular boiler) 

• Boiler interlock 

• TRVs on all radiators except in rooms with a room thermostat 

• Automatic by pass valve 

• Cylinder thermostat (only for regular boilers) 

The main difference between the control specifications of “Basic” and “Best Practice” 

central heating systems is that in “Best Practice”, programmable room thermostat 

enables the households to program their heating in order to set different target 

temperatures (i.e. set-point temperature) throughout a day. In “Basic” systems, 

different set-point temperatures could only be set manually using a room thermostat. 

In recent years, more attention has been paid into controlling different zones in 

dwellings separately as reflected in Building Regulations Part L1A for new dwellings 

which came into force from 1 October 2010 (HM Government, 2013). According to 

Domestic Services compliance guide (Department for Communities and Local 

Government, 2011), which provides more detailed information on the guidance 

contained in approved documents of Part L1A (for new dwellings) and L1B (for 

existing dwellings), since 1 October 2010 every new home which is not open plan 

must be divided to at least two heating zones such that living and sleeping areas can 

be controlled at different temperatures by means of two thermostats. If the house is 

smaller (less than 150 𝑚𝑚2), then these two zones can be controlled by the same 

timer. This means that the flow of heat in each zone is controlled via separate room 

thermostats and motorised valves; although the same heating schedule can be 

applied for both zones using the same timer. If the house is larger (more than 150 
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𝑚𝑚2) then each zone must be controlled by its own timer. This only applies to the new 

homes but the minimum requirements for heating controls have not changed for 

existing dwellings since 2002 when the Building regulations part L came into force. 

Figure  2-9 and Figure  2-10 were adopted from a guide by The Association of 

Controls Manufacturers (TACMA) on how to comply with the 2010 Building 

Regulations Part L. They show examples of heating system layouts for new 

dwellings (layouts 1-6) and existing systems (layouts 7-12) that comply with “Basic” 

and “Best Practice” heating controls for different boiler types, dwelling size and valve 

types. In Figure  2-9, layouts 1, 2, 5 and 6 comply with “Basic”, and 3, 4 with “Best 

Practice”, heating controls for new dwellings. In Figure  2-10, layouts 7, 8 and 11 

comply with “Basic” and 9, 10 and 12 with “Best Practice” heating controls for 

existing dwellings. 
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Figure  2-9: Example layout for new systems to ensure compliance with the 2010 

Building Regulations Part L1A (TACMA, 2010) 
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Figure  2-10: Example layout for replacement boilers to ensure compliance with the 

2010 Building Regulations Part L1B (TACMA, 2010) 
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2.4.2 Space heating controls in existing homes 

Prior to December 2013, when Energy follow up survey (EFUS) 2011 (BRE, 2013) 

was published, there were very few reports or literature on the status of central 

heating controls in UK homes (Munton, Wright, Mallaburn, et al., 2014). Most of the 

information available was according to control manufacturers which indicated poor 

levels of space heating control in UK homes.  

One of the largest control manufacturers in the UK, Honeywell, noted that from 26 

million homes in the UK, about a third, do not have room thermostats which cause 

excessive room temperatures (Enviros Consulting Ltd, 2008). Similarly, work carried 

out by TACMA (The Association of Controls Manufacturers) with the Energy Saving 

Trust reported that 30% of homes in the UK do not have a room thermostat (Heating 

and Hot Water Task Force, 2010). Enviros Consulting Ltd (2008) estimated that 

almost a quarter of homes do not have either a programmable thermostat or a room 

thermostat. In addition, they estimated that nearly 40% do not have any TRVs 

installed (Enviros Consulting Ltd, 2008). Enviros Consulting Ltd (2008) stated that 70% 

of the dwellings do not have modern standard heating controls set by building 

regulations. More dramatically, according to Heating and Hot Water Taskforce (2010) 

there were 4% of homes with a boiler and no controls at all. 

These information were mainly in agreement with findings from a literature review by 

the statutory consumer champion for England, Wales, Scotland and Northern Ireland 

published in July 2012 (Consumer focus, 2012) which shed more light on the 

percentages of UK households with each of the main heating control types 

(Figure  2-11). 
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Figure  2-11: Percentage of UK households with a boiler with each of the main 

heating control types as reported in Munton et al. (2014) 

EFUS 2011 which was funded by DECC and carried out by the Building Research 

Establishment (BRE) collected new data on the patterns of household and dwelling 

energy use including information regarding what heating controls are currently 

installed in UK homes. Data was collected from an interview survey of a self-

selecting rather than randomly selected sample of 2616 households (BRE, 2013). 

The results of EFUS contradict the earlier findings showing that 49% of the 

households in their sample have full set of controls compared to only about 30% 

found in the previous reports. A report by Munton et al. (2014) who compared the 

data from EFUS 2011 with Consumer Focus report from 2008 argued that the 

proportion of households with central heating that have a range of controls may have 

increased over the recent years. Munton et al. (2014) summarized the most recent 

information available regarding the status of space heating controls in UK homes 

and its relationship with built type from EFUS 2011 data which are reproduced and 

presented in Table  2-3.  

Table  2-3 shows that most UK homes in their sample (97%) have a central timer 

regardless of the dwelling type. More than two third of the dwellings in each category 

have room thermostat with an average of 77% for the whole sample. However, room 

thermostats are least common in high rise flats (67%) and most common in 

bungalows (83%). It also indicates that above 60% of the central heating systems in 

each dwelling type have TRVs installed. The lowest percentage of dwellings which 
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have thermostats was found in high rise purpose built flats which had the highest 

percentages of dwellings with TRVs installed. 

Table  2-3: Proportion of dwelling types reporting primary heating controls 

(reproduced from Munton et al., (2014)) 

Dwelling/Household type Room Thermostat 
(%) 

Central Timer 
(%) 

TRV 
(%) 

Full set of 
controls1 (%) 

Whole sample 77 97 66 49 

Purpose built flat, high rise 67 99 78 52 

Purpose built flat, low rise 77 98 65 49 

End terrace 76 96 69 51 

Mid terrace 77 97 69 52 

Converted flat 77 97 67 51 

Bungalow: all ages 83 97 66 53 

Detached house: Pre 1919 76 98 70 52 

Detached house: Post 1919 74 96 59 43 

Semi-detached & terraced: pre 
1919 75 98 66 49 

Semi-detached & terraced: 1919-
1944 71 98 63 43 

Semi-detached & terraced: 1945-
1964 82 98 61 49 

Semi-detached & terraced: 1965 
onwards 80 97 66 53 

1 Including TRVs, central timer and a room thermostat
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2.5 Impacts of space heating controls on energy demand 

Improving the efficiency of domestic heating systems can be studied by considering 

the individual components such as boilers, thermostats, heat emitter controls (TRVs), 

pumps etc. or by considering the heating system as a whole (Liao, Swainson & 

Dexter, 2005). Liao et al. (2005) argues that although each individual item is 

becoming more efficient, the improvement in efficiency of the heating system as a 

whole is still unknown to a large extent. They suggested considering all components 

when looking for ways to improve energy efficiency rather than concentrating only on 

one individual item. Liao et al. (2005, p344) argue that “It is vital therefore that the 

interaction of the whole heating system within a building is considered when looking 

at controls and that a reliable and repeatable method of testing is developed to allow 

claims of performance to be assessed in terms of both energy and thermal comfort 

achieved”. 

Heating controls have the potential to reduce the heating energy demand in two 

main ways; by reducing the length of space heating in a house or altering the heating 

demand temperature at different spaces of a house according to its occupancy and 

usage patterns (Firth, Lomas & Wright, 2010). Research shows that the length of 

heating period and heating demand temperatures are the most influential factors 

affecting the amount of heating energy which is consumed in homes and their 

relevant CO2 emissions. Firth et al (2010) estimated the length of the heating period 

and the heating demand temperature to have normalized sensitivity coefficients of 

0.62 and 1.55 on CO2 emissions respectively. This indicates that for every 1% 

increase in the heating demand temperature, a 1.55% increase in average dwelling 

CO2 emissions will result. Also, a 1% rise in the number of heating hours is 

estimated to result in a 0.62% rise in CO2 emissions (Firth et al. 2010).  

The studies which investigated the impacts of space heating controls on energy 

demand can be divided into two main categories depending on the type of heating 

controls tested. A number of studies examined the effects of adding one or more 

conventional heating control components such as room thermostat, Programmable 

Room Thermostat (PRT) or TRVs to an existing heating system. They will be 

discussed in section  2.5.1. Other studies evaluated the energy saving potential of a 
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number of methods to control the delivery of heat in buildings more efficiently 

according to the building occupancy. They will be discussed in section  2.5.2.  

2.5.1 Conventional space heating controls 

Several studies were conducted to investigate the potential space heating energy 

savings which can be achieved by employing a number of conventional control 

components in homes including room thermostats, programmable room thermostats 

and TRVs. Based on their approach, these studies can be divided into three groups. 

In the first group, there are studies which used models (either steady state or 

dynamic). The second group used test house facilities to conduct a side-by-side 

comparison of the effects of different heating controls on energy demand and 

thermal comfort of a matched pair of test houses with synthetic occupancy. These 

studies were conducted by Building Research Establishment (BRE) in the late 1970s 

and 1980s (Rayment et al. 1983 and Rayment & Morgan 1984). In the third group, 

there are studies which compared energy demand or factors which influences the 

energy demand between real homes with different types of heating controls. The 

major difference between groups 1 and 2 and group 3 is that in group 1 and 2, 

studies often assume standard occupancy behaviour while the third group takes into 

account effects of occupants’ interaction with the heating system controls. 

An example of group 1 studies is the Good Practice Guide 302 (BRECSU, 2001) 

which used the Standard Assessment Procedure (SAP) for energy rating of 

dwellings (BRE, 2014) to estimate the energy savings which could be achieved in 

UK homes by applying better controls. According to them, installation of the 

minimum standard of controls in a wet system which previously had no controls 

reduces fuel consumption and CO2 emissions by 17%. They also argues that turning 

down a room thermostat by 1ºC will reduce space heating demand by 6-10% and 

reducing the heating on time by two hours a day can reduce demand by 6% 

(BRECSU, 2001). Good Practice Guide 302 also provided a Table in which the 

average potential savings which could be achieved by adding different features to 

improve an existing heating control system is predicted for different house types 

depending on their boiler type (Table  2-4). The guide explains that these predictions 

were based on assuming normal controls, systems and user behaviours and 

therefore actual savings in individual systems may be significantly different. However, 
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the details and assumptions involved in these predictions were not mentioned in the 

guide.  

Table  2-4 shows that the most energy savings across all the dwelling types can be 

achieved when the existing system does not have any type of controls. When the 

existing system already has control components such as room thermostat or TRV 

the percentage energy savings of adding additional control components reduces. For 

example, adding normal TRVs on all of the radiators to an existing heating system 

which has a room thermostat and boiler interlock, could on average only save 4% of 

fuel consumption regardless of the boiler type. 

Table  2-4: Typical average annual fuel and cost savings (£) which could be achieved 

from better heating controls (Table reproduced from Good Practice Guide 302 

(BRECSU, 2001)) 

Existing 

system has 

the following 

controls 

Improved system add 

the following for the 

minimum set 

Approximate 

average 

saving (% of 

the existing 

fuel 

consumption) 

Typical average Annual fuel cost savings 

(£) 

Terraced 
Semi-

detached 
Deatched 

Typical boiler with gravity DHW 

- RT,CT,MV,BI,TRV 17% 51 58 82 

RT CT,MV,BI,TRV 12% 36 41 58 

RT,CT,MV,BI TRV 4% 11 13 18 

TRV RT,CT,MV,BI 9% 27 31 44 

Typical boiler-fully pumped 

- RT,CT,MV,BI,TRV 17% 51 58 82 

RT, CT, MV BI,TRV 10% 30 34 48 

RT,CT,MV,BI TRV 4% 11 13 18 

TRV RT,CT,MV,BI 9% 27 31 44 

Typical combination boiler 

- RT, BI, TRV 15% 45 52 73 

TRV RT, BI 7% 21 24 34 

RT, BI TRV 4% 11 13 18 

RT=Room Thermostat, BI=Boiler Interlock 

TRV=Thermostatic Radiator Valve, CT=Cylinder Thermostat, MV=Motorised Valve 
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The estimated typical energy savings of installing TRVs using SAP was considerably 

lower than the claimed energy savings by their manufacturers. Tahersima et al. 

(2013) noted that TRVs can reduce the heating demand by up to 20%. However, 

their reference was only based on a claim on the website of a large manufacturer of 

heating controls (Danfoss). Hartmann (no date) in another document written for 

Danfoss noted that “according to experience” TRVs save 10-15% of energy and this 

could be up to 20% in “individual cases”. It should be noted that although TRVs are 

in use for decades, there are only a few published literature which investigates the 

energy savings of TRVs (Dentz & Ansanelli, 2015). 

Studies which used dynamic thermal modelling estimated higher potential savings by 

using TRVs compared to what estimated by Good Practice Guide 302 (BRECSU, 

2001). Xu et al. (2008) conducted a modelling analysis based on an existing multi-

family building and heating system in China and found that 12.4% of heating energy 

can be saved if the TRVs were kept on level 2-3 instead of being fully open (level 5). 

This saving was achieved due to the TRVs help in reducing the overheating. The 

mean room temperature for the whole building was reduced from 22.8°C when TRVs 

were fully open (or in other words when the heating system was operated without 

valve control) to 20.5°C with TRVs on level 2-3 (Xu, Fu & Di, 2008). Xu et al. (2008) 

also reported a monitoring study by Wang and DI (2002) from the Chinese 

government demonstration projects that indicated an average heating demand 

reduction of 10% when using TRVs. 

A recent study (Monetti, Fabrizio & Filippi, 2015) used EnergyPlus simulation 

software to construct and calibrate a dynamic thermal model based on the 

monitoring data in order to investigate the effect of TRVs on energy demand of an 

old existing multi-family home in Italy. Their case study results showed that the total 

heating demand of a heating season can be reduced by up to 10% by using TRVs 

and suggested that TRVs can be considered as low cost energy efficiency measure 

that can be easily applied to old buildings (Monetti, Fabrizio & Filippi, 2015). Again, 

their study was based on theoretical assumptions about occupants’ behaviour. For 

example no monitored data regarding the occupant’s interaction with TRVs and 

heating temperature set-points was available. They argued that higher quantity and 

quality data was needed for better calibration (Monetti, Fabrizio & Filippi, 2015).  
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In contrast with manufacturer claims and model predictions which suggest 

considerable potential for energy savings by better heating controls, a number of 

studies suggest conflicting results in real world configurations.  

Shipworth et al. (2010) in a study of 427 UK households argues that in contrast to 

what is currently assumed in policies and regulations, the use of “simple controls” 

(thermostats and time clocks) in homes does not reduce energy consumption. They 

found that the sample of homes without thermostatic control of the central heating 

system had mean estimated thermostat settings of 0.6ºC below those with 

thermostatic control. In addition, they found that central heating systems operated by 

timer are active 0.4 hours/day longer than those operated manually. They suggested 

that alternative forms of heating controls which appeal to householders should be 

developed and tested. 

In a side-by-side comparison study of BRE (Rayment, Cunliffe & Morgan, 1983), 

they found that there is no significant difference between the room air temperatures 

and space heating gas demand of a house controlled by a room thermostat and 

TRVs compared to a similar house controlled only by TRVs. Rayment et al. (1983) 

argues that for the type of occupancy and house tested, room thermostat could be 

as effective as TRV control. 

Conventional TRVs were found not to perform and operate as designed in real world 

set ups after many years in service (Liao et al., 2005 ) & (Dentz & Ansanelli, 2015). A 

survey of 35 buildings by Liao et al. (2005) although focusing on non-residential 

dwellings found that more than 65% of the TRVs were performing poorly as they 

failed to reduce the heating output of radiators when the room temperature was 

greater than its desired value and therefore the rooms were overheated. 

Figure  2-12 which is adopted from Liao et al. (2005) shows indoor temperatures in 

three rooms in a building with TRVs in their study and the corresponding external 

temperature. As it can be seen temperatures of up to even 29ºC was observed 

showing that the TRVs were not performing well. 
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Figure  2-12: Average air temperature in a building with TRV controlled radiators 

(Liao et al., 2005) 

In addition, 32% of the TRVs in this study were found to be set at maximum and 

more than 65% were found to be set at higher than required. One reason for the 

settings higher than required could be due to the fact that occupants do not often 

interact with the TRVs. Osz (2014) described a number of factors that could 

influence householder’s interaction with the TRVs. These included difficulty in 

reading and interpreting the settings (poor design), existence of different styles of 

TRV in homes which caused confusion, and householder’s lack of understanding 

regarding how TRVs work. Dentz & Ansanelli (2015) argues that even among 

experienced professionals there is a range of understandings about TRVs and some 

have little knowledge of TRVs. 

Another real world example is the PRTs which have been considered as one of the 

main components for energy saving in space heating. The basic idea of the PRTs 

has been to use two temperature targets and heat the house to a set-point 

temperature when the occupants are present and active and let the house to float to 

a lower, more energy efficient set-back temperature when the occupants are typically 

away or asleep (Lu, Sookoor, Srinivasan, et al., 2010). However, Lu et al (2010) 

argues that the households with a simple dial-type thermostat could easily adjust the 

temperature settings before going to sleep or leaving the house and save more 
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energy compared to the households with programmable room thermostats in which 

the heat is often wasted because it is often not possible to find one or two general 

schedules which can be applied for highly dynamic occupancy patterns of most 

homes. 

A number of studies which compared energy demand and heating practices in 

houses with a programmable room thermostats and houses with a simple room 

thermostat were reviewed by Wei et al. (2014). The main findings from a number of 

these studies were summarized in Table  2-5. 
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Table  2-5: Studies which compared energy demand and heating practices in homes 

with a programmable room thermostat and homes with a room thermostat and their 

main findings (Wei et al. 2014) 

Study 

Number of 
homes, 

Method of 
collecting data, 

country 

Main findings 

(Nevius & 

Pigg, 2000) 

299 homes, 

survey & 

measurement, US 

• Houses with PRT had thermostat set-points which were 

not significantly different than homes with a RT 

• Houses with PRT uses on average 2.5% less energy 

than houses with a RT but this difference was not 

statistically significant 

Jeeninga et 

al. (2001) in 

Dutch 

reported in 

(Groot et al. 

2008) 

180 homes, 

questionnaire, 

Netherlands 

• Preferred set-points are not affected by the type of room 

thermostat (programmable or manual) 

• Lower set-point temperatures during long unoccupied 

period in homes with RT compared to PRT 

(Guerra 

Santin & 

Itard, 2010) 

313 homes, 

questionnaire, 

Netherlands 

• Higher temperature settings during the night in houses 

with PRT 

• No statistically significant difference between the hours 

of use of thermostat and the thermostat setting between 

the houses with RT and PRT 

• The type of thermostat affects the number of rooms 

heated. In houses with PRT the occupants take less 

actions and leave the control to the PRT 

(Tachibana, 

2010) 

2356 homes, 

questionnaire, US 

• 86% of the homes with PRT applied evening to night 

time set-back compared to 66% of the homes with RT 

(Lutzenhiser, 

Cesafsky, 

Chappells, et 

al., 2009) 

279 homes, 

survey, US 

• Homes with manual thermostat use less energy 

compared to homes with programmable thermostat 

PRT=Programmable room thermostat 

RT=Room Thermostat 

Munton et al. (2014, p57) discusses that the failure to find consistent evidence that 

improved domestic heating control technologies deliver energy savings could be due 
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to poor experimental design. They suggest a number of important factors which need 

careful consideration. These include: 

• “having robust and consistent definition of control technologies”, 

• “monitoring actual house temperatures and heating durations”,  

• “an experimental design, at the very least involving a matched comparison 

that enables the study to control for intervening variables”  

• “measuring consumer behaviour carefully”. 

2.5.2 Occupancy based space heating control 

A number of studies have investigated the potential for saving space heating energy 

by controlling delivery of the heat more efficiently according to the presence of 

occupants in a space. These studies were mainly undertaken in the US where the 

majority of buildings are equipped with forced air heating systems. In a monitoring 

study of 8 homes in the US it was found that only half of the rooms were occupied for 

up to 60% of the time when the home was occupied, and that the occupancy of 

these rooms was predictable based on ongoing activities and times of the day (Lu, 

Sookoor, Srinivasan, et al., 2010). 

Meyers et al. (2010) estimated that 2.7% of all residential primary energy in the US is 

spent on heating unoccupied homes assuming that on average, homes are 

unoccupied for 4 hours during a weekday. Assuming the percentage of floor space 

occupied by bedrooms and living rooms to be 48% and 52% respectively, they also 

estimated that 6.2% of total primary energy is wasted for heating or cooling the living 

rooms during the night period when unoccupied. Moreover, 9.7% of total primary 

energy is wasted for heating or cooling the bedrooms during the 4hours of a day 

which was assumed that occupants spent in the living rooms. This shows a total of 

15.9% of wasted primary energy for heating or cooling unoccupied spaces of a 

typical US home. This was the largest waste amongst different inefficient energy 

delivery options and appliances which was investigated in their study including 

thermostat oversetting, leakage current and appliance choice.  

In addition, Meyers et al. (2010) investigated the energy savings from having 

individual control of each zone compared to when there is a single central thermostat 

controlling the whole house. Having a central thermostat could result in temperature 
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variations in homes (particularly upstairs cf downstairs) and therefore it may cause 

the thermostat to be set at higher temperatures to sufficiently heat the spaces that 

are far from the thermostat. Assuming that on average, thermostats in dwellings are 

set 1ºC higher in winter and 1ºC  lower in summer than the residents desired 

temperatures, they estimated that 1.25% of total primary energy can be saved in US 

dwellings. However, they did not conduct any measurements or consider the impact 

of indoor air temperature reductions on thermal comfort. All the estimations were 

based on a framework developed by using the energy data for 4383 US households 

collected by Residential Energy Consumption Survey (RECS) (US Department of 

energy, 2005) in the US. 

Several researchers have investigated the use of occupancy sensors to control 

HVAC systems based on either real time occupancy data or occupancy models 

integrated into building HVAC systems (Lu et al, 2010; Agarwal et al. 2011;Erickson 

et al. 2013).  

Scott et al. (2011) developed ‘PreHeat’ system and tested it in five homes, three in 

the US and two in the UK. The ‘PreHeat’ system was designed to enable home 

heating to be controlled automatically according to occupancy sensors and future 

occupancy prediction. All homes tested were family homes with two adults and one 

or more children. All US homes had forced air heating. One of the UK homes had a 

combination of underfloor heating and radiators while the other had radiators in all 

rooms. They compared the ‘PreHeat’ prediction algorithm with a seven day 

programmable thermostat with preconfigured heating schedules (i.e. scheduled 

algorithm). Individual room heating control according to occupancy sensors were 

applied in UK homes while in US homes the whole house air heating system was 

controlled according to the occupancy sensors. They alternated the heating control 

strategy each day between the ‘PreHeat’’s prediction algorithm and the scheduled 

algorithm in order to balance any effects of weather or household schedule changes. 

The resulting difference between the average outdoor temperature of PreHeat days 

and scheduled days was less than 0.3ºC. However, they did not mention how the 

household schedules could have been different from day to day. Over a 61 day 

monitoring period, ‘PreHeat’ resulted in  little difference in gas use for the homes in 
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the US with a whole house heating control system but resulted in 8% and 18% 

reduction in gas use for the individually controlled rooms in the UK homes. 

Moreover, Badiei et al (2014) used dynamic thermal modelling to investigate the 

effect of changing heating set-points and length of heating using programmable 

TRVs on energy demand of a three bedroom UK house. They found that decreasing 

heating set-point of every radiator in the house at the same time from 1°C to 5°C 

would result in 16% to 64% reduction in annual gas demand for space heating. 

Decreasing heating set-point in an individual room showed 3.7% to 14.5% reduction 

in annual gas demand. In addition, reducing heating time in all rooms from one hour 

to five hour resulted in 5.8% to 28% reduction in annual gas demand. Such reduction 

for an individual room showed a potential of 1.1% to 6.2% reduction in whole house 

annual gas demand. 

Lu et al. (2010) reported average energy savings of 28% from deploying occupancy 

sensors in 8 homes. The sensors were designed to automatically turn off the HVAC 

system, when the occupants were sleeping or away from home, using a “smart 

thermostat” compared to a heating system with “reactive thermostat”. The homes 

included both single person and multi person residents as well as houses shared 

between students and professionals. They developed an algorithm that analysed 

patterns in sensor data in order to recognize people leaving or sleeping so that the 

system could be switched off within few minutes of the event. The HVAC system was 

heating the whole house when occupied and not sleeping. There was no individual 

control of different rooms in their study. 

Agarwal et al (2011) used real time occupancy data from a wireless occupancy 

sensor network across one floor of a four floor US university building to control and 

actuate individual HVAC zones to be conditioned. They reported space heating and 

cooling energy savings of 8% to 13%. The authors discuss several applications of 

real time occupancy information and combined use of HVAC and IT resources for 

commercial buildings.  

According to Erickson et al (2013- p1&2) for occupancy based HVAC control, 

occupancy detection needs to be accurate, reliable and able to capture occupancy 

changes in real time. Moreover, the authors argue that “Unlike lighting, the thermal 
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ramp up or down of a room involves delay. While an optical system of occupancy 

monitoring can give occupancy in near real-time, reactively conditioning a room will 

likely leave occupants uncomfortable until target temperatures are met. In order to 

ensure occupant’s comfort, we must be able to predict when occupants are likely to 

enter a room and begin conditioning before-hand” (Erickson et al, 2013). 

Holland (2010) described a number of factors which needed to be taken into account 

when considering what was named “dynamic zoned control of the heating system” 

where a zone is not heated unless it is in use. Three important factors were user 

definable set-back temperatures which should be used for the unoccupied periods; 

the length of warm up time which is required for the rooms to achieve the comfort 

condition from the set-back condition; and the expected time of occupancy for each 

room. 

2.6 Zonal space heating control 

There are currently an increasing number of manufacturers of heating controls that 

are providing ZC systems for the new and existing homes with wet central heating 

systems (for example: Honeywell, 2015; Heat Genius, 2013; Eurotronic, 2011; 

Honeywell, 2014; Salus controls, 2013). These systems can be implemented easily 

and quickly and with minimum disruption for households as installing these systems 

does not need any pipe change, draining down3, running wires, plastering to do or 

lifting floor boards (Honeywell, 2014). The main component of such systems is 

Programmable Thermostatic Radiator Valves (PTRVs) which could replace the 

existing conventional TRVs simply by unscrewing the TRV heads and screwing 

PTRVs according to their manual (Honeywell, 2015; Heat Genius, 2013; Eurotronic, 

2011; Honeywell, 2014; Salus controls, 2013).  

PTRVs are battery-operated and have motorised valves and temperature sensor to 

control the flow of hot water to the radiators according to a target temperature 

schedule assigned for the room where the radiator is located (Figure  2-13) 

(Honeywell, 2014).  

                                            
3 However, if TRVs are not already installed, draining down is required and often a professional 
installer is needed. 
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Each room with a PTRV can have a number of different target temperatures 

throughout a day and schedules could be different from day to day and weekdays to 

weekends (Honeywell, 2015; Heat Genius, 2013; Eurotronic, 2011; Honeywell, 2014; 

Salus controls, 2013). Therefore, the rooms can be scheduled to be heated only 

when they are occupied and to the level needed. 

ZC systems available in the market can be divided into two main categories: modern 

luxury systems including PTRVs, a user friendly touch screen wireless central 

controller and a boiler relay (type1) (Honeywell, 2015 and Heat Genius, 2013) and 

simple “stand alone” PTRVs without any central controller or boiler relay (type2) 

(Eurotronic, 2011; Honeywell, 2014 and Salus controls, 2013). 

The schedules for the target temperatures can be set via the central controller which 

communicates wirelessly with the PTRVs (in type 1 systems) (Honeywell, 2015 and 

Heat Genius, 2013) or on the PTRVs themselves (in type 2 systems). The central 

controller can be also connected to a tablet or mobile phone wirelessly via internet 

and thus, the schedules can be modified remotely in type 1 systems (Honeywell, 

2015 and Heat Genius, 2013). In addition, the temperature settings can be manually 

overridden by the occupants if needed. In contrast to conventional TRVs which were 

adjustable to 5-6 different levels which often left the households without a clear 

understanding of what temperature each level is representing (Osz, 2014), exact 

temperatures can be adjusted using PTRVs. 

The main difference between type 1 and 2 systems is that in type 1 systems the 

boiler is switched on when the air temperature in any of the zones with PTRVs drops 

below its set-point temperature (Honeywell, 2015 and Heat Genius, 2013) while in 

type 2 systems, the boiler operation is conventionally controlled using a room 

thermostat and programmer or a programmable room thermostat (Eurotronic, 2011; 

Honeywell, 2014 and Salus controls, 2013). 

While type 1 systems might be considered as full zonal space heating control, type 2 

systems could be more relevant for UK homes where the households often tend to 

heat their homes for certain hours during a day and the heating is often switched off 

at night with no set-back temperature (Huebner, 2013). Moreover, applying type 1 

systems to existing dwellings requires replacing the thermostat and boiler relay 
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already existed in the system with the new wireless central controller and boiler relay 

(Honeywell, 2015 and Heat Genius, 2013). This would result in considerably 

increasing the capital costs of the system (Table  2-6) as well as installation costs 

(Honeywell, 2015 and Heat Genius, 2013).  

Table  2-6: A number of systems currently available in the UK market and their prices 

(as in 24 February 2015) for a configuration which can apply zonal space heating 

control in a typical UK house 

System Type  
Central controller + 

boiler relay price1 (£) 
PTRV price 
per unit1 (£) 

Total system price1 for a 
typical UK house2 (£) 

Honeywell Evohome 1 £178.8 £58.69 £531 

Heatgenius 1 £249.99 £59.99 £610 

Honeywell HR90 2 - £39.59 £238 

Salus PH60C 2 - £29.38 £177 

Eurotronic Sparmatic 

Comet 
2 - £15.95 £96 

1 Prices are VAT included but do not include the costs of installation and batteries and were sourced 

from the main dealers of the products in the UK on 24 February 2015. 
2 The house was assumed to have 3 bedrooms, a living room, a dining room, a bathroom and a 

hallway as heated spaces which comprises 7 zones, 6 of them controlled using PTRV and one 

controlled using a central controller or the existing room thermostat. The house was assumed to have 

a combination boiler. 

Type 1 systems might be suitable for those homes with no existing heating controls 

where upgrading to the cheaper type 2 systems would also need capital costs for a 

room thermostat and programmer (Eurotronic, 2011; Honeywell, 2014 and Salus 

controls, 2013). While type 1 systems could often be more user friendly as they are 

programmed using a touch screen central controller or/and computers, tablets or 

phones and also provide advance features such as remote access control 

(Honeywell, 2015 and Heat Genius, 2013), type 2 systems could be used as a cheap 

energy efficiency measure which can be added to an existing heating system by the 

householders themselves, with no need for any electrical work or plumbing to be 

done by an external installer (Honeywell, 2014). 

Honeywell’s latest ZC product Evohome (Honeywell, 2015) (Figure  2-13) is an 

example of type 1 system which features:  
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• Touch screen central controller with ability to control up to 12 zones. 

• Smart phone application which enables households to monitor and control 

their heating whether they are home or not. For example, it allows them to 

start heating their homes before they arrive home from work to avoid a cold 

home on their return. The connection between the central controller and 

smartphone is established using a remote access gateway. 

• Auto window function which realise if a window has been left open and stop 

heating that zone in order to save energy. 

•  Optimum start and stop: According to Honeywell (2015), Evohome is able to 

understand how a home heats up and cools down and thus, works out the 

exact time when a room needs to start heating up or cooling down to be at the 

desired temperature set for a time in a day. 

However, additional features such as auto window function, optimum start or remote 

access which could add extra energy savings to the zonal control systems were out 

of the scope of this study and were not investigated in this work. 

 

Figure  2-13: Honeywell’s Evohome system components including PTRV and central 

controller 

Heat Genius (Heat Genius, 2013) is another type 1 system with comparable features 

to Evohome which is currently available in the UK market. According to Heat Genius 

(2013), one of the unique features of the system compared to its counterparts is that 

wireless room sensors could be added to the system which detects when people are 
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using different rooms, thus can automatically schedule the radiators in each room to 

only come on at times when people normally use these rooms. However, the 

algorithms which lead to such automatic schedules were not described by the 

manufacturer. 

Apart from a limited number of type 1 ZC systems available in the UK market, there 

are good number of “stand alone” programmable thermostatic radiator valves (PTRV) 

products (type 2 system) which all have the same function though they have different 

designs and prices (Figure  2-14). Honeywell’s HR90 (Honeywell, 2014) have similar 

to PTRVs existed in the Evohome system but they can be programmed using the 

keys and displays on the PTRV heads and thus do not need a central controller for 

assigning the heating schedules and set-point temperatures (Figure  2-14). Similar to 

PTRVs in Evohome system they use two 1.5 Volts batteries and also have auto-

window function. 

 

 

 

 

 

 

 

Figure  2-14: A number of PTRVs from different manufacturers: from left to right: 

Honeywell HR90 (Honeywell, 2014), Salus PH60C (Salus controls, 2013) and 

Eurotronic Sparmatic Comet (Eurotronic, 2011) 

2.7 Modelling domestic energy use 

The modelling techniques for estimating energy use in houses can be divided into 

two main approaches: top-down and bottom-up. The top-down approach considers 

the residential sector as an energy sink and is not concerned with the individual 

dwellings (Swan & Ugursal, 2009). It uses historical statistics of energy use and 
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households on a national level and predicts the influence of changes in top level 

factors such as energy price, climate and macroeconomic indicators such as gross 

domestic product, unemployment and inflation on energy consumption of the whole 

housing stock (Swan & Ugursal, 2009). Therefore it is not suitable for investigating 

the effects of energy efficiency measures on energy demand. 

On the other hand, the bottom-up approach is based on principles of building physics 

and calculates the energy use of a representative group of individual houses, 

allowing extrapolating the results to regional or national levels (Swan & Ugursal, 

2009). The bottom-up models require a large number of input parameters such as 

building geometry, fabric, characteristics of the heating systems, internal 

temperatures and heating patterns, ventilation rates, individual appliances, external 

temperatures etc. 

The bottom-up models can be divided into steady state and dynamic models. 

2.7.1 Steady state models 

Current approaches in bottom-up domestic stock modelling in the UK typically 

employ steady state or quasi steady state calculations to estimate the monthly or 

annual energy demand (Taylor, Allinson, Firth, et al., 2013). The majority of bottom-

up residential stock models developed to date in the UK such as BREHOMES 

(Shorrock & Dunster, 1997), The Johnston model (Johnston, 2003), UKDCM 

(Environmental Change Institute, 2009), The DECarb model (Natarajan & Levermore, 

2007) and CDEM (Firth, Lomas & Wright, 2010) have used the same calculation 

engine known as Building Research Establishment Domestic Energy Model 

(BREDEM) (Kavgic, Mavrogianni, Mumovic, et al., 2010). BREDEM has different 

versions such as: BREDEM-8, which is developed for monthly analysis; BREDEM-12, 

for annual analysis; and BREDEM-9 which is a monthly version and the basis of the 

UK government’s Standard Assessment Procedure (SAP) (Kavgic et al. 2010). The 

Standard Assessment Procedure (SAP) 2012 is the latest version of the UK 

government’s approved methodology for rating the energy performance of new 

dwellings (BRE, 2014). Reduced Standard Assessment Procedure (RdSAP) is used 

for the energy performance assessment of existing dwellings (BRE, 2014). RdSAP is 

based primarily on SAP procedures and has additional standard data tables which 
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are added to the SAP model to replace the information which is not available for the 

existing dwellings. 

Much research has been conducted across the world using the bottom-up approach 

to evaluate the potential for energy savings and economic benefits of using different 

energy efficiency measures (Swan & Ugursal (2009)). Bottom-up models could 

provide good estimates of the effectiveness of different energy efficiency measures 

for policy makers (Kane, 2013). In the UK, SAP, RdSAP and BREDEM have been 

used in a number of key energy and environmental policy initiatives such as Warm 

Front (2014c), Green Deal and Energy Company Obligation (DECC, 2011b), and 

code for sustainable homes (Department for Communities and Local Government, 

2006).  

However, SAP’s procedure to model the energy use in houses with ZC is simplified 

and may not be suitable for detailed analysis of specific houses. SAP 2012 (BRE, 

2014) defines “time and temperature zone control” as “a system of control that allows 

the heating times of at least two zones to be programmed independently as well as 

having independent temperature control”. SAP 2012 (BRE, 2014) discusses that this 

could be achieved by “separate plumbing circuits, either with their own programmer 

or separate channels in the same programmer” or “programmable TRVs or 

communicating TRVs”. 

SAP 2012 (BRE, 2014) considers fewer hours of heating for the “rest of the house”4 

with a system with “time and temperature zone control” (7 hours per day; from 07:00 

to 09:00 and 18:00-23:00) for all days compared to other conventional control 

options with 9 hours during the weekdays (from 07:00-09:00 and 16:00 – 23:00) and 

16 hours during the weekends (from 07:00-23:00). In addition, it uses a lower mean 

temperature for the “rest of the house”. 

SAP’s procedure does not take into account a number of factors. For instance, it 

does not take into account the number of rooms which are controlled separately 

using programmable TRVs. As long as the house has two zones or more, the 

                                            
4 In SAP 2012 (BRE, 2014), monthly heating requirements of a house are calculated using mean 
internal and external temperatures and the heat transfer coefficient allowing for internal and solar 
gains. The mean internal temperature is calculated separately for the living area (often the living room) 
and the rest of the house. The mean living room and rest of the house temperatures will then be 
combined to find the mean internal temperature for the whole house. 
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procedure will remain the same without differentiating between numbers of zones 

which are separately controlled. In addition, since SAP estimations are independent 

of occupant behaviour, different set-back temperatures used in the zones controlled 

by PTRVs which could influence the energy saving potential of a “time and 

temperature control” system are not reflected in the SAP’s procedure. The length of 

the period when each room is heated to set-back temperature could also be different 

from house to house. 

As discussed here, weaknesses exist in SAP 2012 regarding the assumptions made 

about the occupant behaviour, hours of occupancy and the use of heating system 

suggests that steady state building physics models such as SAP should not be used 

for detailed analysis of energy savings before and after installing ZC. 

2.7.2 Dynamic models 

Dynamic thermal modelling could be used for more detailed analysis of the energy 

demand reduction potential of applying ZC as they offer the highest flexibility to 

model any system and occupancy. A number of dynamic thermal modelling tools 

such as DOE-2, EnergyPlus, TRNSYS, ESP-r and IES<VE> have been widely used 

in the past decade in early building design as well as analysis of retrofit opportunities 

(Crawley, Hand, Kummert, et al., 2008). The main focus has been on modelling 

larger commercial buildings rather than modelling domestic energy use (Porritt, 

2012). Taylor et al. (2013) were one of the first to try using dynamic thermal 

modelling for modelling a whole English region housing stock. They found the level 

of details available for the model inputs as one of the factors which affected the 

energy predictions with higher level of details resulted in higher energy predictions. 

It is important to consider the capabilities of each dynamic thermal modelling tool 

and choose the one which suits the most for the specific problem under investigation. 

The main feature of ZC is that different rooms are kept at different temperatures 

throughout a day. Any model should be dividable into various zones (i.e. each room 

with a radiator will be separate zone) where the set-points temperature of each zone 

could be altered throughout a day. Most of the current dynamic thermal modelling 

tools such as DOE-2, EnergyPlus, eQuest, TRNSYS and Trace700 are based on 

multi-zone thermal models and have such capability. 
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The tools mentioned are often focused on representing building characteristics 

accurately but to a lesser extent on the heating systems and controls. As a result, 

detailed hydraulic behaviours of the heating systems (e.g. The TRVs or PTRVs 

dynamic control process) are often represented in a simplified way.  

The other important factor to consider when modelling houses with ZC is the inter-

zone heat transfer. Thermal energy is transferred by convection from one zone of a 

building to another via air flow through doorways and windows (Allard & Utsumi, 

1992). This inter-zone convection could be either natural convection due to 

temperature differences between spaces, or forced convection by the pressure 

differences which are caused by mechanical ventilation or air distribution systems in 

buildings or a combination of both (Barakat, 1987). Keeping the rooms of a naturally 

ventilated house at different air temperatures throughout a day such as in ZC will 

result in natural convective heat flows through different rooms. Previous research 

has shown the significance of natural convection through door openings. For 

example flow rates of more than 1200 W have been observed to occur through a 

0.9*2.05 m doorway as a result of a 4 K temperature difference between the spaces 

on either side of the door (Barakat, 1987). Thus, the selected program should have 

been able to model the inter zone heat transfer and its influence on energy use of 

the building. 

EnergyPlus (US Department of Energy, 2012) is a well-known and powerful multi-

zone building simulation tool that was first released in 2001 by the US department of 

energy as a replacement for the two existing simulation tools; BLAST and DOE-2 

(Crawley, Hand, Kummert, et al., 2008). One of the main advantages of EnergyPlus 

to its predecessors is that in EnergyPlus, heat balance simulation is coupled with 

building systems simulation which means that at each time step (down to one minute) 

the building loads which is calculated by a heat and mass balance module is passed 

to building systems simulation module which has a variable time step (down to 

seconds) where the system responses are calculated (Crawley, Lawrie, Winkelmann, 

et al., 2001). The information from the building systems simulation module on the 

loads not met by the system is fed back to heat and mass balance module and will 

be reflected in the next time step of load calculations by adjusting the space 

temperature if required and thus result in more accurate space temperature 
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predictions (Crawley, Lawrie, Winkelmann, et al., 2001). This integrated feature 

discussed, allows realistic system controls to be modelled (Crawley, Lawrie, 

Winkelmann, et al., 2001). In addition, EnergyPlus uses Air Flow Network (AFN) 

model which allows simulation of inter- zone air flows and its influence on building 

energy use. 

2.7.3 Model calibration and validation 

Although building simulation has been widely used during the past three decades to 

investigate the effect of retrofit measures on energy savings and comfort, without 

calibration of the base case model, results produced are not reliable (Westphal & 

Lamberts, 2005). A large number of studies have shown discrepancies (which were 

often significant) between the model predictions and measured building energy use 

(Coakley, Raftery & Keane, 2014). Reddy (2006) defines calibrated simulation as 

“the process of using an existing building simulation program and “tuning” or 

calibrating the various inputs to the program so that observed energy use matches 

closely with that predicted by the simulation program”. The purpose for calibration is 

to ensure that the model could reasonably represent the thermal and energy 

behaviour of the real building and thus achieve confidence in model predictions 

(Westphal & Lamberts, 2005).  

Coakley et al. (2014, p. 127) conducted an extensive literature review on current 

approaches for building simulation calibration and classified them into four classes: 

1. Calibration based on manual, iterative and pragmatic intervention. 

2. Calibration based on a suite of informative graphical comparative displays 

3. Calibration based on special tests and analytical procedures. 

4. Analytical/mathematical methods of calibration 

In addition, a number of techniques and tools were suggested by Coakley et al. 

(2014) to support the calibration process of building simulation models such as track 

and record the changes made to the model during the calibration process, in order to 

improve the reliability and reproducibility of the calibration process, and conducting 

sensitivity analysis. Sensitivity analysis can be simply described as varying the 

model inputs and verifying the consequences of that change on the model outputs 

(Calleja Rodríguez et al. 2013). A number of sensitivity analysis techniques such as 
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differential sensitivity analysis, Monte Carlo analysis and stochastic sensitivity 

analysis have been used during the past two decades to understand the parameters 

which should be carefully considered when modelling a building. Lomas & Eppel 

(1992) were among the earliest to use these sensitivity analysis techniques for 

dynamic thermal modelling. 

ASHRAE (2009) discusses three methods to assess the accuracy of building 

simulation models: empirical validation, analytical verification and Inter-model 

comparison. In empirical validation results from building simulation are compared 

with the data measured in real buildings (ASHRAE, 2009). There are various 

published literature on validation mainly for residential buildings rather than large 

commercial buildings; where conducting detailed measurements require 

considerable efforts and costs (ASHRAE, 2009). A number of empirical validation 

studies are summarized by Neymark and Judkoff (2002). One of the main challenges 

researchers have been faced with to calibrate building energy models using 

empirical validation is the lack of detailed empirical data particularly for residential 

buildings which is necessary to understand the operational complexities and develop 

better models (Buswell, Marini, Webb, et al., 2013). In majority of the cases, even 

when the measured data is available, it has not been measured by end use and for 

example the gas use measured include the use for space heating, hot water and 

cooking which makes the calibration difficult. In addition, the measured data has also 

an uncertainty and the differences observed between the models and measurements 

will be due to errors in either set of data (ASHRAE, 2009). In Analytical verification 

simulation results are compared with the results of a solved analytical solution 

(ASHRAE, 2009). In Inter-model comparison simulated results are compared with 

simulated results using other models (ASHRAE, 2009). This method is particularly 

useful to test new models against the well established ones (Clarke, 2011). 

Recent research suggests comparison of hourly data measured and predicted using 

building simulation models rather than monthly or annual comparisons as it allows 

better comparison of buildings’ dynamic energy characteristics (Yoon et al. 2003). 

ASHRAE Guideline 14 (ASHRAE, 2002) which was initially developed to calculate 

the energy saving potential of retrofit measures defines the acceptance criteria for 

the calibration of building simulation models (Royapoor & Roskilly, 2015). When a 
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model meets these criteria, there is a reasonable agreement between measured and 

simulated data and the model can be considered ‘calibrated’ (ASHRAE, 2002). 

The guideline introduces two standardised statistical indices that should be used to 

compare measured data and simulation results: 

1. Mean Bias Error (MBE) (%): This is the sum of errors between measured and 

predicted energy use for each hour. MBE captures the mean difference 

between measured and predicted hourly energy use and thus is a good 

indicator of the overall bias in the model (Coakley, Raftery & Keane, 2014). 

MBE is calculated by equation ( 2-1): 

 𝑀𝑀𝑀𝑀𝑀𝑀 (%) =
∑ (𝑚𝑚𝑖𝑖 − 𝑠𝑠𝑖𝑖)
𝑁𝑁𝑝𝑝
𝑖𝑖=1

∑ (𝑚𝑚𝑖𝑖)
𝑁𝑁𝑝𝑝
𝑖𝑖=1

 ( 2-1) 

 

Where: 

𝑚𝑚𝑖𝑖 = measured data point for each model instance ‘i’ 

𝑠𝑠𝑖𝑖 = simulated data point for each model instance ‘i’ 

𝑁𝑁𝑝𝑝= number of data points at interval ‘p’ 

A limitation of this method is that positive and negative errors will cancel each other 

when summed which means the positive bias compensate for negative bias. 

2. Coefficient of Variation of Root Mean Square Error (CVRMSE) (%): This index 

does not suffer from the cancellation effect mentioned above and allows one 

to determine how well a model fits the energy use data by capturing offsetting 

errors between measured and simulated data which were existed in MBE 

method (Coakley, Raftery & Keane, 2014). CVRMSE (%) is calculated by 

equation ( 2-2): 

 

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 (%) =
�(∑ (𝑚𝑚𝑖𝑖 − 𝑠𝑠𝑖𝑖)2/𝑁𝑁𝑝𝑝)𝑁𝑁𝑝𝑝

𝑖𝑖=1

𝑚𝑚
 

( 2-2) 

 

Where: 
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 𝑚𝑚𝑖𝑖 , 𝑠𝑠𝑖𝑖  and 𝑁𝑁𝑝𝑝are as defined in equation ( 2-2) 

𝑚𝑚 = average of the measured data points. 

According to ASHRAE Guideline 14 the acceptance criteria for hourly calibration of 

building energy simulation models are: MBE 10% and CVRMSE 30%. These are 5% 

and 15% for monthly calibrations. 

It should be noted that “the current calibration criteria relate solely to the predicted 

energy consumption and do not account for uncertainties or inaccuracies of input 

parameters or the accuracy of the simulated environment (e.g. temperature profile)” 

(Coakley, Raftery & Keane, 2014). 

2.8 Summary 

The main findings from the literature review conducted here with direct implications 

on this study can be summarized as follows: 

• The majority of UK houses (above 97%) have central heating and a large 

number of them are wet (hydronic) systems. 

• In recent years, the importance of having more than one heating zone in 

dwellings have been realized in the UK as reflected in the Building 

Regulations Part L1A for new dwellings which came into force from 1 October 

2010. However, this does not apply to the existing dwellings. 

• A significant number of existing UK homes have poor levels of space heating 

controls and there is a great potential for improvement. However, there is 

evidence that the proportion of homes that have a range of controls may have 

increased over recent years. 

• In theory, energy can be saved in houses by advanced space heating controls 

as they could reduce the length of the heating period, the volume of house 

which is heated and the heating demand temperature. A number of studies 

have used models to prove that. However, there are a number of studies 

which shows that the predicted savings could be hardly achieved in real world 

settings. 

• There is a lack of a robust and repeatable methodology for measuring the 

energy savings which could be achieved by enhanced heating controls. 
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• There are a number of products currently available in the market which could 

be used to establish ZC in the existing houses with wet central heating 

systems. However, the energy and thermal comfort implications of using them 

instead of conventional space heating controls are unknown. 

• Dynamic thermal modelling could be used as the most detailed tool for 

calculating the energy savings of ZC in different houses. However, 

reconciliation of the model predictions with the measured data is crucial 

before the results could be trusted. 
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3 Overview of the methodology and test 
houses 

3.1 Introduction 

This chapter consists of two main sections. In the first section (section  3.2), an 

overview of the methods adopted in this study to achieve its aim and objectives is 

provided. The methods adopted were based on the use of a pair of full size test 

houses with synthetic occupancy. The second part of this chapter (section  3.3), 

describes these houses and discusses the characterisation tests which were carried 

out in them to evaluate and compare their thermal performances. Section  3.4 

summarizes the work presented in this chapter.  

3.2 Overview of the methodology 

This study combined space heating trials to measure the energy savings of zonal 

space heating controls, dynamic thermal modelling and a wider scale evaluation in 

order to achieve the aim and objectives described in section  1.3. This section 

provides an overview of these three components and discusses how they were 

interconnected. Further details of the methods for the trials, modelling and wider 

scale evaluation are given in chapters 4 to 7. 

3.2.1 Overview of the space heating trials 

The purpose of the space heating trials was to achieve the first objective of this study 

which was to measure the energy savings (if any) of applying zonal space heating 

control (ZC) in a UK house. 

It was decided to measure the energy savings of a house when its space heating is 

controlled by ZC compared to when it is controlled with a conventional system in 

comply with Building Regulations Part L1B (here referred to as Conventional Control 

(CC)). The reason for this choice was that although space heating is not controlled in 

the same way in every UK house, all new homes need to comply with the regulations. 
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In addition, nearly half of UK existing homes already have such sets of controls 

according to EFUS 2011 (BRE, 2013). 

Such comparison was not ideal to be conducted in a single house. Unless the house 

was built in a fully controlled environment such as in an environmental chamber, the 

changes in the weather for the periods when the house is controlled by ZC and then 

by CC could largely influence the energy consumption of the house and any potential 

energy savings measured. Therefore, this comparison was conducted using a 

matched pair of side-by-side test houses which will be fully described in section  3.3. 

In order to ensure that the two houses had a similar thermal performance, a side-by-

side co-heating test and air tightness tests were carried out in both prior to the space 

heating trials (see section  3.3.6). 

Two space heating trials (HT1 and HT2) each lasted four weeks were conducted 

during the winter of 2014. During the HT1 and HT2, the same synthetic, yet realistic, 

occupancy schedule was applied to both houses (see section  3.3.5). The two test 

houses were each equipped with the same new wet central heating system. In one 

house the space heating was controlled conventionally (CC) in compliance with 

requirements in UK Building Regulation Part L1B for existing dwellings, whereas in 

the other house ZC was used to heat the rooms only when they were ‘occupied’. In 

the HT1 ZC was applied to House 1 and CC to House 2 then, for the HT2, the 

heating control strategies were swapped with CC in House 1and ZC in House 2. This 

was done to negate any small differences between the thermal performances of the 

building fabric of the two test houses (see section  3.3.6). The energy use for space 

heating and indoor air temperatures of the two houses were measured and 

compared. 

The potential energy savings of a house heated by ZC instead of CC were quantified 

for one particular house in one location and over one winter period during the space 

heating trials. However, conducting further experimental studies in order to measure 

the annual energy savings of ZC or energy savings in houses located in different 

regions of the UK was not possible considering the time, budget and scope of this 

work. Instead, dynamic thermal modelling was used as an alternative method to 

assess the potential energy savings of ZC for better insulated houses and those 

exposed to different climate. 
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3.2.2 Overview of the dynamic thermal modelling 

EnergyPlus was used to create a Dynamic Thermal Model (DTM) of the building 

envelope of the test houses according to the existing knowledge of the test houses 

and information obtained via detailed house audits (chapter  5). In order to verify the 

building envelope model, the co-heating test was simulated and the predicted energy 

use during the co-heating test period was compared to the measured energy use 

according to ASHRAE guideline 14 acceptance criteria for hourly calibration of 

building energy simulation models (chapter  6, Section  6.2). The effects of employing 

two different air flow modelling strategies (i.e. scheduled natural ventilation (SNV) 

and Air flow network (AFN)) on model predictions were studied (model 1 and 2, 

Table  3-1). 

The verified building envelope model was then used and the HT1 (the period when 

data was successfully measured continuously for the period of 4 weeks) was 

simulated (chapter  6, section  6.3). Similar to the co-heating test, predicted energy 

use and indoor air temperatures using the two different air flow modelling strategies 

were compared to the measured data (model 3 and 4, Table  3-1). Any observed 

discrepancies between the predictions and measurements were then explored and 

modelling limitations and potential solutions were discussed. 

Based on the discrepancies observed between the predictions and measurements, a 

sensitivity analysis was conducted to investigate the effects of a number of 

parameters on improving model predictions of energy use and indoor air 

temperatures (chapter  6, section  6.4). Based on the results from the sensitivity 

analysis, a refined model was constructed and assessed against the ASHRAE 

guideline 14 calibration criteria (Refined model, Table  3-1). 

The second objective of this research was achieved as the refined model which was 

calibrated using the measurements was able to closely predict the energy savings of 

applying zonal control in the same house under the same conditions. 
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Table  3-1: Summary of the DTMs created during the modelling campaign 

Model Experiment Heating 
Occupancy 
modelled 
(Yes/No) 

Air flow 
modelling 
strategy 

Heating 
control in 
House 1 

Heating 
control in 
House 2 

1 Co-heating Electrical No SNV 
Constant air 

temperature 

Constant air 

temperature 

2 Co-heating Electrical No AFN 
Constant 

temperature 

Constant 

temperature 

3 HT1 Wet Yes SNV ZC CC 

4 HT1 Wet Yes AFN ZC CC 

Refined 

model 
HT1 Wet Yes AFN ZC CC 

3.2.3 Overview of the wider scale evaluation 

Two different approaches were undertaken in order to achieve the final objective of 

this study which was to explore how the energy savings would vary in better 

insulated houses and in different UK locations. In the first approach, an empirical 

model was developed using the Heating Degree Day (HDD) method based on the 

experimental data collected from the heating trials (chapter 7, section  7.2). The 

empirical model was used to extend the measured gas consumptions with CC and 

ZC to annual values, and to make an initial estimate of the effect of the weather in 

different parts of the UK on the potential savings. The empirical model estimated the 

annual gas savings of ZC and the corresponding cost savings. The model was also 

used to estimate the pay back periods of upgrading a same size house with 

conventional heating controls to zonal heating control in different UK regions.  

In the second approach, the calibrated DTM was used to investigate energy savings 

of applying ZC instead of CC in the same house for different regions of the UK using 

the same weather data as in the empirical model (chapter 7, section  7.3). The cost 

benefits were also recalculated based on the DTM results. The predictions of the 

DTM were then compared against the predictions of the empirical model. The 
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potential reasons for the differences observed in the predictions of the DTM and 

empirical model were then discussed.  

Finally, the calibrated DTM was employed and the effects of better insulated building 

envelope on the potential energy and cost savings of ZC in different regions were 

investigated (chapter 7, Section 7.4). 

3.3 Test houses 

This section introduces the test houses which were used for this study and describes 

their geometries, construction materials and properties, heating systems and their 

synthetic occupancy. 

3.3.1 Description of the test houses 

Loughborough University’s Matched Pair of 1930s houses (LMP1930) are a pair of 

adjoining semi-detached homes which were used for this research. The houses, 

which are typical family homes of the 1930s period, are located in the East Midland’s 

town of Loughborough, UK (Figure  3-1).  

 

Figure  3-1: Bird’s-eye view of the test houses, their surrounding buildings and 

vegetation (Google Maps, 2015) 

Semi-detached houses are the most common house type in England representing 26% 

of the housing stock with over 30% of them built between 1919 and 1944 

(Department for Communities and Local Government, 2001). However, semi-

LMP 1930 test houses 
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detached house layouts and construction methods remained largely unchanged from 

the 1930s through to as late as the 1960s (Rock, 2005) and so the house layouts 

could be representative of a larger proportion of homes. 

The test houses had the same geometry, size and construction and had not been 

significantly modified since they were built (Figure  3-2). 

 

Figure  3-2: Views of the two test houses: front, south-facing (left) and back, north-

facing (right) 

The fronts of the houses faced south and the windows were unshaded except for 

those on the West facade of House 1 and the East facade of House 2; these 

windows were covered by 50 mm of Polyisocyanurate (PIR) insulation boards from 

the inside of the houses to minimize the effect of different morning and afternoon 

solar heat transfer to the two houses (Figure  3-3). 
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Figure  3-3: The West facing windows in the House 1 which were covered by 50 mm 

PIR insulation boards 

Original open fire places were located at the party wall of the two houses in the living 

room and dining room of each house (Figure  3-4). These were blocked to avoid 

unnecessary air leakage. 
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Figure  3-4: Blocked original open fire places located in the living room of House 1 

3.3.2 Building geometry 

Internal dimensions of the test houses were measured at the beginning of this study 

and their floor plans were drawn (Figure  3-5). Each house had a total floor area of 

91.2 𝑚𝑚2(including both floors) and a total volume of 240 𝑚𝑚3. Each house had three 

rooms located on the ground floor including living room, dining room and kitchen plus 

a hallway and four rooms on the first floor including three bedrooms and a bathroom 

plus a WC and a hallway (Figure  3-5).  

 

Air vents were blocked using adhesive tape 
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Figure  3-5: The floor plans of the test houses5 with the floor area of each room 

                                            
5 The floor plans (here and throughout the thesis) are schematics and not to scale. The blocked fire 
places were not shown  
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3.3.3 Construction materials and properties 

Test house audits were conducted in the test houses to understand details of the 

construction materials used in the test houses. The areas and thicknesses of the 

bricks, cavity air gap, plaster, floor boarding, carpets and doors were measured and 

the materials used for each construction element were noted. A summary of 

construction elements, their areas and their calculated U-values according to RdSAP 

(BRE, 2014) are presented in Table  3-2. 

Table  3-2: Summary of construction elements of the test houses, their areas and 

calculated U-values according to RdSAP (BRE, 2014) 

Element Description 

Total 

Area 

(m2) 

U-value 

(W/m2K)1 

External walls Brick Cavity 81.6 1.6 

Floor (except 

kitchen) 
Suspended Timber  40.2 0.8 

Floor (kitchen) Solid floor 5.4 0.7 

Roof Pitched roof covered with clay tiles 45.62 2.3 

Windows Single glazing with wooden frames 20.7 4.8 

Entrance doors Wooden 3.4 3.0 

Party walls Brick Cavity with closed air vents 42.2 0.5 

Internal partitions Solid Brick covered with gypsum plaster  56.1 2.1 

1 Approximate U-values from UK Government’s Standard Assessment Procedure for energy 

rating of the existing dwellings (RdSAP) (BRE, 2014). 
2 The horizontal, not pitched, area. 

As found by the test house audits, both houses had 100% single glazed windows, 

un-insulated cavity external walls, and no floor or loft (attic) insulation (Table  3-2). In 

contrast, many UK homes have been refurbished, such that in 2011, of the 3.6 

million UK homes built between 1919 and 1944, only 4% had no loft insulation, only 

6% were still fully single glazed, and only 28% had uninsulated cavity walls 

(Department for Communities and Local Government, 2012). Therefore, the test 
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houses would represent the un-furbished interwar houses in the UK which account 

for about 180 thousand homes. 

The ground floor of LMP1930 test houses was mainly suspended timber ventilated 

with outdoor air using six cast iron air bricks located around the perimeter of each 

house (Figure  3-6). The underfloor void was 0.2 m deep (from the bottom of the floor 

boarding to the ground). In the UK, naturally ventilated floors are used to control the 

moisture from the ground. The Kitchen floors were constructed from solid concrete.  

 

Figure  3-6: Floor plan of the ventilated subfloors existed below the ground floor of 

each house and the location of air bricks 

Figure  3-7 shows examples of test house inspections when a part of carpet and floor 

boards were temporarily removed in a bedroom to measure the thicknesses of the 

floor materials6 (Figure  3-7 (a)) or the inspection in the loft (attic) space where no 

insulation was found (Figure  3-7 (b)). 

                                            
6 The photo was taken in an adjacent house which was built in the same year by the same builder 
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Figure  3-7: Examples of test house inspections for understanding details of 

construction materials: (a) construction of internal floors; (b) loft (attic) space 

construction (before removing debris) 

Figure  3-8 shows the inspection of cavity walls and underfloor void using a 

borescope. No insulation was found in the cavity (Figure  3-8 (a)). Acquiring better 

knowledge of the ground surface material (under the suspended floor), by taking 

photos and videos using a borescope inside the air bricks (Figure  3-8 (b)), was not 

successful due to filth existed under the suspended floors. 

 

Figure  3-8: Borescope investigation at the test houses: (a) exploring external wall 

cavity; (b) exploring subfloor construction through air bricks (Photos by Stephen 

Porritt) 
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3.3.4 Heating system 

Each house was equipped with an identical low pressure hot water (LPHW) wet 

central heating system consisting of a 30 kW condensing combination boiler 

(Worcester Greenstar 30 CDi combi) located in the kitchen, identical Eco-Compact 

radiators sized to suit each room, and a Horstmann wireless C-stat 17-B 

programmable room thermostat located in the hallway. Drayton RT212 TRVs were 

installed on all radiators apart from the ones located in the hallway of each house. 

The boilers were less than seven years old. 

Rated capacities of radiators which were selected according to each radiator’s height 

and width from their manufacturer’s data for a 50 K temperature difference between 

the room’s air and mean water temperature were reported in Table  3-3. 

Table  3-3: Rated capacities of the radiators in the LMP1930 test houses according to 

their manufacturer’s data for 50K temperature difference 

Room Radiator rated capacity (W) 

Living room 1372 

Dining room 882 

Hallway ground floor 1568 

Bedroom 1 1568 

Bedroom 2 1764 

Unoccupied room 980 

Bathroom 588 

3.3.5 Synthetic occupancy 

Both houses were equipped with synthetic occupancy to represent heat gains from 

people, domestic equipment and lighting, internal door opening/closing and window 

blind operation in both houses. 

Reviewing previous published reports and papers, it was found that a wide range of 

occupancy profiles have been used but mostly without any detailed information 

about the sources of their assumptions. Capon & Hacker (2009) assumed partial 

daytime occupancy and full evening and weekend occupancy for a case study house 
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without presenting any specific schedules. Hacker et al. (2008) provided more 

detailed occupancy profile for a family in a case study dwelling assuming the house 

is occupied all the time with one adult at work from 08:00 to 18:00. Adult bedrooms 

were assumed to be occupied from 23:00 to 07:00 and children bedrooms from 

20:00 to 07:00. The sources of these assumptions are not known. A relatively old 

report by Building Research Establishment (Allen and Pinney, 1990) provides 

occupancy periods for each room to be used in modelling. However, the profiles 

were constructed more than 20 years ago when due to absence of personal 

computers and TVs or game consoles, it cannot reflect realistic occupancy patterns 

of nowadays (Porritt, 2012).  

Porrit (2012) was the only recent study that was found to report a detailed occupancy 

schedule for each room. Porritt (2012) derived two occupancy profiles using data 

from the Time Use Survey 2000 which recorded, in ten minutely slots, the daily 

activity of over 6000 households as a representative sample of the population of 

households and individuals in the UK (ONS, 2002) (Table 3-4).  

Two occupancy profiles were assumed by Porritt: an occupancy profile for a family 

consisted of 2 working adults and school age children (number of children depending 

on house size), who are out of dwelling during the day time and an occupancy profile 

that assumed two elderly residence who occupy the dwelling all the time.  

Although Time Use Survey 2000 had detailed information regarding the type of 

activity and whether it happened inside or outside the house, it did not contain any 

detail regarding which room the activity had taken place. Therefore, Porritt’s 

occupancy profiles were based on a number of assumptions: 

• When sleeping is recorded the occupant is in their bedroom. 

• When children recorded that they are using computer or watching TV, it was 

assumed that they are in their bedrooms. 

• When adults recorded that they are using a computer it was assumed that 

they are in their bedroom and, when watching TV, are in their living room. 

• Cooking activities were happening in the kitchen. 

• Eating activities was happening in the dining rooms in the terraced and semi-

detached houses and in the living rooms in Flats as the kitchen in these 
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house types are small and does not allow the occupants to eat in the kitchen. 

In detached homes, eating was assumed to happen in the Kitchen where 

larger space would let the occupants to use it for dining. 

Moreover, Porritt (2012) assumed slightly different occupancy patterns for the 

weekends compared to the weekdays for a typical family. In weekends, the bedroom 

occupied periods were extended to consider morning lie-ins for some occupants. 

The chosen occupancy profile for the two houses in this study represented a family 

of two working adults, and two school-aged children. The ‘occupied hours’ for each 

room was set according to Porritt (2012) (Table 3-4). 

Table  3-4: Weekday and weekend ‘occupied’ hours of each room 

   

Room Weekday ‘occupied’ hours  Weekend ‘occupied’ hours 

Living Room 18:00-22:30 18:00-22:30 

Dining Room 
08:00-08:30  

17:00-18:00 

09:30-10:00  

17:00-18:00 

Kitchen 
07:30-08:00  

16:00-17:00 

09:00-09:30  

16:00-17:00 

Bedroom 1 

19:00-22:30 

22:30-08:00 

08:30-09:00  

16:00-17:00 

 

19:00-22:30 

22:30-09:30  

10:00-10:30  

16:00-17:00 

Bedroom 2 22:30-07:30 22:30-09:00 

Bathroom 

07:30-08:00  

08:30-09:00  

19:00-20:00 

09:00-09:30 

10:00-10:30 

19:00-20:00 

Bedroom 3 - - 

Bedroom 1 was assumed to be used only by the two children and Bedroom 2 by the 

two adults. It was assumed that bedroom 3 was unoccupied all the time. Although 

the occupancy patterns of the rooms were the same for all the weekdays, for the 
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weekends, bedroom occupied periods were extended by 1.5 hours thus shifting 

morning gains in other rooms 1.5 hours forward compared to the weekdays. During 

the day time (09:00 to 16:00 hrs on weekdays and 10:30 to 16:00 hrs on weekends) 

all the occupants were assumed to be out of the house. Evening occupancy patterns 

were the same for all days of the week including weekdays and weekends (Table 3-

4). 

The occupancy profile was mimicked in each house using a z-wave smart home 

controller: Vera 3 (Vera control Ltd, 2014) (Figure  3-9). Each house was equipped 

with its own Vera 3. A z-wave network was established in each house by linking Vera 

3 to a number of z-wave enabled smart plugs and motor controllers which allowed 

Vera 3 to send on/off commands to each plug or motor controller. 

 

Figure  3-9: Z-wave smart home controller used in each house for synthetic 

occupancy during the HT1 and HT2 

Tables published by the American Society of heating Refrigeration and Air 

conditioning Engineers (ASHRAE) (ASHRAE, 2009) were used to estimate the heat 

output rates from occupants, equipment and lighting. Similar to Porritt (2012), each 

house was assumed to have a refrigerator in the kitchen which was rated at 60 W, a 

150 W modern LCD TV in the living room and a computer or game console in the 

children’s bedroom with 100 W heat output.  Cooking gains were 1.6 kW for period of 

one hour during the evening, 160 W for the 30 minutes breakfast period and no 

cooker use at lunch time (Table 3-5). 
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Table  3-5: The timing and magnitude of internal heat gains presented in different 

rooms of both houses during each trial 

Room Time of day 
weekday 

Time of day 
weekend 

Gain source: estimated rate 
(W) 

Total 
estimated 

gains 
 (W) 

Total 
actual  
gains 
(W) 

Kitchen 

07:30-08:00 09:00-09:30 
Morning cooking: 160 

409 400 Adult cooking: 189 
  Fridge: 60 
     

16:00-17:00 16:00-17:00 
Evening cooking: 1600 

1903 1900 
Adult cooking: 189 

Lighting: 54 
  Fridge: 60 
     
  Fridge: 60 60 60 

Living 
Room 

18:00-19:00 18:00-19:00 

TV: 150 

556 580 
Lighting: 30 

Adult seated: 108*21 
Children seated: 80*21 

     

19:00-22:30 19:00-22:30 
TV: 150 

396 400 Lighting: 30 
Adult seated: 108*21 

Dining 
Room 

08:00-08:30 09:30-10:00 
Hot food: 18 *41 

448 460 Adult seated: 108 *21 
Children seated: 80 *21 

     

17:00-18:00 17:00-18:00 

Hot food: 18 *41 

478 480 
Lighting: 30 

Adult seated: 108 *21 
Children seated: 80 *21 

Bedroom 1 

08:30-09:00 10:00-10:30 Children seated: 80 *21 160 160 
     

16:00-17:00  
 

16:00-17:00 
 

Lighting: 30 
190 200 

Children seated: 80 *21 
     

19:00-20:00 19:00-20:00 
Lighting: 30 

110 120 
Child seated: 80 

     

20:00-22:30 20:00-22:30 
Lighting: 30 

290 300 Children seated: 80 *21 
Computer: 100 

     
22:30-08:00 22:30-09:30 Children sleeping: 54*21 108 120 

Bedroom 2 22:30-07:30 22:30-09:00 Adult sleeping: 72 *21 144 140 
1 Multiplied by the number of people 
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The total amount of heat required at any time and in each room was delivered using 

a series of incandescent, halogen and low energy light bulbs, oil-filled radiators or 

fan heaters (Table  3-6). The light bulbs were used instead of other potential heat 

emitters with small outputs due to the university’s health and safety policies which 

did not allow the researcher to use any other type of heaters in the unoccupied test 

houses. However, similar to any other heat emitter, all the electricity used by the light 

bulbs would end up as heat in the space. 

Table  3-6: Number of heat emitters and their nominal outputs used to deliver internal 

heat gains in each room 

Heat emitters 

and their 

nominal heat 

output (W) 

Number of heat emitters in each room 

Living room Dining room Kitchen Bedroom 1 Bedroom 2 

Light bulbs      

400W 1 1 - - - 

60W 3 1 1 5 2 

20W - 1 - 2 1 

Heaters      

Oil-filled radiator 

(400W) 
- - 1 - - 

Fan heater 

(1500W) 
- - 1 - - 

All the light bulbs used were placed on tripods for safety reasons (Figure  3-10). The 

location where the heat emitters were located and the height of the light bulbs on the 

tripods were matched between each room of the two houses. All the wire runs on the 

floors were covered by adhesive tape to avoid trips or falls. 
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Figure  3-10: light bulbs with different outputs used to produce the internal heat gains 

in the living room of House 2 

The heat emitters were controlled from the home automation controller to produce 

the repeating weekday and weekend total heat gain profiles (Figure  3-11). The z-

wave enabled smart plugs were AN148 by Everspring and used to switch on and off 

heat emitters in order to produce internal heat gains in different rooms. The actual 

total heat gains produced in each room were identical in each house and were within 

±10% difference of the total estimated values calculated from the ASHRAE tables 

(Table 3-5) (ASHRAE, 2009). This was due to the sizes of heat emitters that were 

available (Table  3-6). Variations in the mains electricity supply voltage also resulted 

in small differences in the heat gains achieved; however, this discrepancy was also 

the same for both test houses. 

400 W light bulbs  
(Only one of them was in use) 

60 W light bulbs  

Shielded temperature sensor  

 

Radiator surface 
temperature sensor  
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Figure  3-11: Total actual heat gains in different rooms of a house during a weekday 

All windows were fitted with internal roller blinds. The roller blind fabric was cut to the 

appropriate sizes to fit each window. The fabric used was thin (1 mm thick), with 

closed weave and had a grey colour. Blind rotary motors which were controlled by Z-

wave motor controllers (DBMZ Hunter Douglas) were used to move the blinds up 

and down. The roller blinds in the living room and bedrooms 1 and 2 were opened 

every weekday at 08:00 hrs and at 09:30 hrs on Saturday and Sunday. All blinds 

were closed at 16:00 hrs every day. The blinds in the dining room, bathroom and 

kitchen which all were facing north and the unoccupied spare bedroom were always 

remained closed.  

The internal doors were operated using electrical actuators controlled by the motor 

controllers which were receiving commands from the home automation controller. 

The internal doors of the living room, dining room and bedrooms 1 and 2 (Figure  3-5) 

were closed when the room was ‘occupied’7 and open otherwise (Table 3-4). The 

internal door of the kitchen was open at all times whilst the doors of the unoccupied 

                                            
7 Throughout, ‘occupied’ means that the room had synthetic occupants present. 
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spare bedroom (bedroom 3), the bathroom and the two doors to the outside, were 

closed at all times. 

In order to avoid any possibility of entrapment, the internal doors were needed to be 

manually operable as well as automatically. Therefore, a mechanism was designed 

by attaching the actuators to support rods using cable ties to firmly hold the actuators 

in an appropriate position (Figure  3-12). In order to open a door, the actuator chain 

pulled the door using a rope which was attached to the actuator chain from one side 

and to the door from the other side (Figure  3-12). When a door needed to be closed, 

the actuator chain was released and the door closer installed on the top of each door 

pushed the door back to its fully closed position. 

 

Figure  3-12: Internal door operation mechanism used in the test houses 

Aspects of occupancy that were not mimicked include outside door openings, 

window opening, domestic hot water use, bathroom heat gains and occasional 

electrical usage such as dish washers, clothes washing and kettles. Windows and 

doors could not be simulated due to security concerns. The potential heat gains from 

hot water use and occupants in the bathroom were considered to be negligible as 

any heat produced was assumed to be transferred directly to the outside by extract 

fans or window openings or drainage. Most importantly however, as both houses 

Support rod 

Motor controller 
Actuator 
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were operated in the same manner, their heating energy demands were not 

differently affected by the occupancy. 

The assumption of blinds in the dining room, kitchen and bathroom being always 

closed might not reflect the behaviour of real occupants. The blinds will reduce 

radiative and convective heat losses but, as these rooms were all facing north, the 

closed blinds have negligible effect on solar gains. The net effect is the same in both 

houses. 

All the synthetic occupancy equipment had been tested both in the laboratory and in 

situ prior to the start of the heating trials. In addition, Internet Protocol (IP) cameras, 

which were located in the living room of each house, were used to check the 

operation of some synthetic occupancy equipment such as internal door or window 

blinds opening/closing and the lighting status (Figure  3-13). 

 

Figure  3-13: IP camera which was used in the living room of a test house to check 

the operation of synthetic occupancy devices 

3.3.6 Experimental characterisation of the test houses 

Characterisation tests were conducted to assess and compare the thermal 

performance of the test houses. These tests consisted of a standard blower door test 

in accordance with ATTMA Technical Standard L1 (2010) and a standard co-heating 
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test as described by Wingfield et al (2010). No occupancy was simulated during the 

characterisation tests. 

The blower door tests were carried out on the same day (3 July 2013) for both 

houses (Figure  3-14). During the tests, the openings of the passive ventilation, 

extractor fan in the kitchen and original open fire places were sealed and all drainage 

traps were filled by water, as required by the standard test protocol. Thus the 

measured air leakage rate does not measure the in-use ventilation rate of the 

dwelling. 

 
Figure  3-14: The blower door tests set up during the test in House 1 

The front door of the test houses were arc shaped which did not allow the 

rectangular shaped blower door to be fitted to the front doors. Therefore, as it can be 

seen in Figure  3-14, a piece of wood were carefully cut and fitted above the 

rectangular blower door to cover all the open area of the front door. 

The co-heating tests were conducted simultaneously in the two test houses during 

the period of 23 November to 1 December 2013. Seven electrical fan heaters which 

were set on a level to emit a nominal heat output of 1500 W were used in each 
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house during the co-heating test (Figure 3-15). Four of them were placed in the 

ground floor rooms (i.e. living room, dining room, kitchen and hallway) and three of 

them were placed in the first floor; one in each bedroom (Figure 3-15). 
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Figure  3-15: The location of fan heaters and circulation fans during the co-heating 

test 

 

Circulation fans Electrical fan heaters 
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These electrical fan heaters were used to maintain a nominal internal air temperature 

of 25ºC in each room for a period of 9 days, plus 2 days of pre-conditioning. The two 

days pre-conditioning period was considered in order to allow the houses to achieve 

the steady state conditions required for the test. Circulation fans were used in each 

room to mix the air in the whole house and reduce stratification (Figure  3-16); the 

doors to all rooms were left open. 

The heat output of each fan heater was controlled using a thermostat located in the 

centre of each room, 1.5 m above the floor level. The thermostats were 4-wire 

PT100 resistance thermometers. They were shaded from direct sunlight and the hot 

air from the fan heaters (Figure  3-16).  

The thermostat was connected to a PID temperature control unit (InstCube 3216 L 

SSR Temperature Control Unit by TMS Europe Ltd) to switch the fan heater on and 

off using their PID control algorithm to maintain the constant air temperature of 25ºC. 

The electrical energy supplied to each house was measured at the meter (see 

section  4.2). 

 

Figure  3-16: The co-heating test set up in the living room of House 1 

Thermostat 

Circulation fan 

Fan heater 

PID temperature 
control unit 
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The internal air temperature of every room was measured at 1 minute intervals using 

calibrated thermistors (see section  4.2). Minutely values for outdoor air temperature 

and hourly values for global horizontal solar irradiance during the test period were 

sourced locally (see section  4.2). 

The “Siviour” linear regression method  described in Butler & Dengel (2013) was 

used to calculate the solar-corrected heat loss coefficient of each house by plotting 
Q
ΔT�  against S ΔT�  for each day (i.e. 23 November to 1 December 2013) of the co-

heating test (Figure  3-17) where: 

Q: Average daily measured power consumption (W) 

ΔT: Average daily air temperature difference between indoor and outdoor (ºK) 

S: Average daily global horizontal solar irradiance (W/𝑚𝑚2) 

 

Figure  3-17: Siviour regression analysis for the two test houses 

The resulting slope of the plot is the solar aperture R in 𝑚𝑚2 and the Y intercept is the 

solar corrected total heat loss coefficient in W/K. 
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The results of the characterisation tests are presented in Table  3-7 and show that 

the two houses had very similar overall heat loss coefficients that were within 6%. 

This is a remarkably similar performance, especially given the uncertainty of co-

heating tests, which may be greater than 10% (Butler & Dengel, 2013). In National 

House Building Council’s (NHBC’s) review of co-heating test methodologies (Butler 

& Dengel, 2013) solar corrected whole house heat loss coefficients found by 6 

independent co-heating tests conducted by different project partners ranged from -17% 

to +11% of the calculated steady state heat loss based on as-built dimensions and 

specific fabric element U-values and infiltration rates (BRE, 2014). It should be noted 

that although Wingfield et al. (2010) recommends the use of at least one week’s 

worth of co-heating test data and 9 days’ worth of data was used in this study, a 

longer period could have led to slightly different heat loss coefficients. 

The blower door test results also showed air leakages for the two houses were within 

3% (Table  3-7). Full reports of the blower door tests were presented in Appendix  A.1. 

An estimate of the background air infiltration rate, for the houses in the blower door 

test state (with the large purpose made openings blocked), can be achieved by 

dividing the air change rate at 50 Pa (N50) by 20 (CIBSE, 2000); which gives 1.07 

ACH and 1.1 ACH for Houses 1 and 2 respectively. The test houses were less 

airtight than the average for UK houses of a similar age as reported by Building 

Research Establishment (Stephen, 2000): the mean air leakage rate of 58 dwellings 

built between 1930 and 1939 was 15.9 ACH at 50 Pa.  

Table  3-7: Summary of the house characterisation test results 

Performance measure House 1 House 2 % difference 

Total heat loss coefficient 

(W/K) 
382 361 +5.6% 

Air leakage 

(m³/ h*m² Surface area at 

50Pa) 

20.761 21.392 -2.9% 

Infiltration rate (ACH) 1.07 1.1 -2.9% 

Solar aperture (𝑚𝑚2) 9.9 11.8 -16% 
1 Equals to 21.5 ACH at 50 Pa 
2 Equals to 22.1 ACH at 50 Pa 
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3.4 Summary 

This chapter provided an overview of the space heating trials, modelling and wider 

scale evaluation campaigns which formed the methodology of this research. It also 

described the LMP1930 test houses used in this study, their geometries, 

construction materials, heating systems and the synthetic occupancy regime. In 

addition, the characterisation tests which were carried out in the houses were 

described and their results were discussed. The building envelope of the two houses 

showed a close thermal performance which was considered suitable for a side-by-

side comparison of the energy performance of different heating control strategies. 
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4 Space heating trials 

4.1 Introduction 

This chapter describes the two space heating trials (HT1 and HT2) and present their 

results. It starts with describing the test houses’ instrumentation set up (Section  4.2) 

and space heating control strategies (Section  4.3) during the HT1 and HT2 trials. 

The chapter then discusses the results by comparing the indoor air temperatures 

(Section  4.4), heating demand, boiler efficiencies and fuel use (Section  4.5) of the 

two houses. The chapter finishes by providing a summary of the findings from the 

space heating trials in section  4.6. 

4.2 Instrumentation 

Identical instrumentation was used in each house. Indoor air temperature was 

measured throughout the testing period, in each room, at 1 minute intervals, using U 

type thermistors. These were located in the volumetric centre of each room using 

tripods and were shielded from any direct sunlight using aluminium sheets 

(Figure  3-10). 

The surface temperature of each radiator was measured at 10 minute intervals using 

I-button temperature loggers (Hindman, 2006). They were attached to the centre of 

each radiators surface using adhesive tape (Figure  3-10). 

Boiler heat output was measured at 1 minute intervals using a heat flow meter 

consisting of Supercal 531 energy integrator (Sontex SA, 2014a) programmed for 

10Wh per pulse, Superstatic 440 flow meter (Sontex SA, 2014b) installed at the 

return water going to the boiler and Pt500 temperature sensors inserted into ½” BSP 

pockets both at supply and return water pipes to the boiler (Figure  4-1). The active 

measuring temperature sensor tips were placed in the centre of the pipe cross 

section and the water pipes were insulated around the area where the temperature 

sensors were inserted according to the manufacturer’s guidance to increase the 

accuracy of measurements. Supercal 531 calculated the heat captured into the water 

(i.e. boiler heat output) from the mean flow rate, the water temperature difference 

and the heat coefficient. 
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Figure  4-1: Equipment used to measure boiler heat output in the test houses; 

consisted of flow meter, temperature sensors and energy integrator 

The volume of gas consumption for the boiler was measured every 10 minutes at the 

supply company gas meter of each house using an intrinsically safe pulse counter. 

This consisted of a Technolog Zmart Link gas flow transmitter which transmitted the 

pulse outputs from the gas meter to a gateway used for data recording and 

monitoring8. The gas pulse data could be then downloaded via web. The gas 

consumption (in kWh) was then calculated using the natural gas calorific value of 

39.6 𝑀𝑀𝑀𝑀𝑚𝑚−3 (DECC, 2014b). 

 

                                            
8 The gas flow transmitter and the gateway were sourced from Loughborough University’s DEFACTO 
(Digital Energy Feedback and Control Technology Optimisation) project partners and were not 
commercially available in the market 

Supercal 531 
Energy integrator 

Superstatic 440 
flow meter 

Pt 500 temperature 
sensors 
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Figure  4-2: Equipment used to measure and record volume of gas use in the test 

houses 

Electricity consumption was recorded every 5 minutes using LED pulse loggers 

(Enica Ltd, 2014) installed on the supply company electricity meter of each house, 

and at the individual appliance level using Plogg energy meters (Constable & Shaw 

2011). This provided a measure of the heat delivered to the houses as electricity. All 

supplied electricity emerges as heat in the house. 

Outdoor air temperature was measured every minute using a thermistor located 

adjacent to the houses but far enough away to avoid any thermal effects from the 

external walls. The thermistor was shaded from direct solar radiation and the sky and 

was shielded to protect it from rain and moisture (Figure  4-3).  

Data logging at each house was carried out using a DT 85 Datataker data logger 

with in-built web server. The recorded data could be accessed online and 

downloaded at any time. Data collected was checked on a daily basis during the 

space heating trials. Checking the data on a daily basis was particularly useful on an 

occasion during the HT2 when it was found that there is no heat output from the 

boiler in one of the test houses, and immediate inspection of the test house revealed 

a leak in the pipes; which was quickly fixed with minimum loss of testing time and 

data. 

Gas pulse 
transmitter Gateway 
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Figure  4-3: The location of temperature sensor used to measure outdoor air 

temperature and its shielding 

Hourly global horizontal solar irradiance was sourced from the MIDAS Land Surface 

Observation database at the British Atmospheric Data Centre (BADC) operated by 

the UK Meteorological Office (UK Meteorological Office, 2012). The nearest weather 

station was Sutton Bonington located 8 km away from the test houses. 

All the temperature sensors used had been calibrated by the researcher before and 

after the experiments using a controlled water bath calibrator (Figure  4-4).  
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Figure  4-4: The calibration of U type thermistors using water bath calibrator  

The accuracy of the equipment and uncertainty in values used in this study is 

indicated in Table  4-1. 

 

 

 

 

 

 

 

 

 



 

90 
 

Table  4-1: Accuracy of the equipment and uncertainty in values used 

Equipment / 
values used 

Parameter 
measured / 
calculated 

Accuracy / 
uncertainty 

Source 

U type 

thermistors  
Air temperature ±0.2ºC 

Manufacturer 

stated 

accuracy 

Data logger Air temperature 0.1% 

Manufacturer 

stated 

accuracy 

I-buttons  
Radiator surface 

temperature 
±0.5ºC 

Manufacturer 

stated 

accuracy 

Gas meter  Volume of gas ±2%   

 National 

Measurement 

Office (2014) 

Gas calorific 

value 
Energy of gas ±1.5 MJ𝑚𝑚−3 

Buswell 

(2013) 

Heat meter  Boiler heat output ±2% 

Manufacturer 

stated 

accuracy 

4.3 The control strategies 

Two space heating trials (HT1 and HT2) were conducted in the test houses. HT1 

was conducted continuously from 16 February to 15 March 2014. HT2 started on 18 

March 2014, was stopped for 1 week due to equipment failure (9 to 15 April) and 

then continued afterwards until 21 April 2014. Thus each heating trial consisted of 4 

weeks of reliable data including 20 weekdays and 8 weekend days. 
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The CC system consisted of the programmable room thermostat (PRT) in the 

hallway and TRVs on all radiators apart from the one located in the hallway 

(Figure  4-5). This enabled the heating system to be operated on a daily schedule 

using the PRT. The PRT controlled the boiler, which delivered hot water to all the 

radiators, while the individual TRVs provide some room-by-room temperature control. 
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Figure  4-5: Test house schematic plans with heating systems and environmental 

monitoring equipment as configured during heating trial 1, for heating trial 2 the 

PTRVs with their central controller were swapped with TRVs in the opposite house 
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The PRT was set to switch the heating on for 10.5 hours per day on weekdays 

(06:00- 09:00 and 15:00 – 22:30) and 17 hours per day during the weekends (06:00 

– 23:00) (i.e. the ‘Heating on’ periods) and the boiler was switched off during the rest 

of the day (i.e. the ‘Heating off’ periods)9. There was no set-back temperature during 

the heating off period (Table 4-2). This is similar to the heating durations specified in 

the UK standard calculation method (SAP) (BRE, 2014) but with each heating period 

starting one hour earlier. This was because the poorly-insulated house needed 

longer time to achieve suitable temperatures for the assumed periods of occupant 

activity.  

Suitable TRV positions were found for each radiator by trial and error in order to 

achieve the comfort temperature specified by CIBSE Guide A (CIBSE, 2006a) for 

winter comfort: i.e. 21oC in the living room and bathroom and 19oC in the bedrooms. 

In the unoccupied spare room a setting that yielded approximately 12°C was used to 

as this was assumed to be the lowest temperature that would avoid frost and 

condensation (BRECSU, 2001) (Table 4-2). The TRV settings were determined for 

the radiators in house 2 before starting the HT1 and were not changed when they 

were transferred to the radiators in house 1 for the HT2. 

For ZC, the whole system ‘heating on’ and ‘heating off’ periods were set by the PRT, 

and were the same as for the CC. The difference between ZC and CC was that 

programmable thermostatic radiator valves (PTRV) replaced the normal TRVs in 6 of 

the rooms (Figure  4-5). Room temperature set-points were the same as for CC but 

were set only for the ‘occupied’ hours (Table 4-2). However, the PTRVs’ central 

controller adjusted the set-point temperature of the PTRVs 30 minutes before each 

‘occupied’ period in order to allow the room to reach the set-point temperature 

(Figure  4-6). The set-point temperatures were held whilst the room was ‘occupied’, 

but allowed to fall to the set-back temperatures when the heating system was on but 

the room scheduled to be unoccupied. The set-back temperature was 16°C in all 

rooms except the unoccupied spare room for which 12°C was used (as for CC). 

When the heating system was off according to the PRT there was no set-back 

                                            
9 Throughout, ‘Heating on’ and ‘Heating off’ periods means the times given here.10 This is thus the average of 4 
weeks with ZC in House 1 and 4 weeks in House 2, and likewise for CC. 
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temperature. In other words, PTRVs could not cause the heating system to turn on 

as it was controlled by the central thermostat. 

 

Figure  4-6: A PTRV installed on a radiator (on the left) and the interface of the 

central controller used to programme the PTRVs (on the right) 

Compared to CC, in which all the rooms were heated to their set-point temperatures 

for 10.5 hours during weekdays and 17 hours during weekends (i.e. ‘Heating on’ 

hours), ZC established shorter periods of time when each room was heated to its 

set-point temperature (see Table 4-2). 

 

 

 

 

 

 

 

 

 



 

95 
 

Table  4-2: Weekday and weekend ‘occupied’ hours with the number of hours each 

room was heated to the set-point or set-back temperatures and, for ZC, the PTRV 

set-point and set-back temperatures, and for CC, the TRV position 

   ZC  CC 

Room 
Weekday 
‘occupied’ 

hours  

Weekend 
‘occupied’ 

hours 

Set-
point 
(ºC) 

Set-
back 
(ºC) 

Number  
of hours 
heated  
to the  

set-point  
(WD1 

WE2) 

Number 
 of hours 
heated  
to the  

set-back 
(WD1, 
WE2) 

 Number  
of hours 
heated  
to the  

set-point  
(WD1, 
WE2) 

TRV 
level 
(1-6)3 

Living 
Room 18:00-22:30 18:00-22:30 21 16 5, 5 5.5, 12 

 
10.5, 17 4 

Dining 
Room 

08:00-08:30 
17:00-18:00 

09:30-10:00 
17:00-18:00 19 16 2.5, 2.5 8, 14.5 

 
10.5, 17 3 

Kitchen 07:30-08:00 
16:00-17:00 

09:00-09:30 
16:00-17:00 - - - - 

 

- - 

Bedroom 
1 

19:00-22:30 
22:30-08:00 

08:30-09:00 
16:00-17:00 

19:00-22:30 
22:30-09:30  
10:00-10:30 
16:00-17:00 

19 16 8.5, 10 2, 7 

 

10.5, 17 3 

Bedroom 
2 22:30-07:30 22:30-09:00 19 16 2, 3.5 8.5, 13.5  

 

10.5, 17 4 

Bathroom 
07:30-08:00  
08:30-09:00 
19:00-20:00 

09:00-09:30 
10:00-10:30 
19:00-20:00 

21 16 3.5, 3.5 7, 13.5 

 

10.5, 17 4 

Un-
occupied 
Bedroom 

- - 12 - 10.5, 17 - 
 

10.5, 17 1 

1WD – weekdays   
2 WE - weekends 
3 The TRV settings provided the same set-point temperatures in each room as the set-points with ZC 
 

4.4 Comparison of indoor air temperatures 

The air temperature and radiator surface temperatures varied throughout a typical 

weekday and weekend according to the heating strategy set on the PRT, but there 

were distinct room-by-room temperature differences depending on whether CC or 

ZC was used (e.g. Figure  4-7). In the morning, the radiators started to warm up when 

the heating came on and with CC continued to emit heat until the set-point 

temperature was reached. With ZC however, if the room was not scheduled to be 
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‘occupied’, the PTRV stopped the flow of water to the radiator when the set-back 

temperature was reached (see Figure  4-7, dining room and living room, morning 

heating period). If the room remained unoccupied, ZC only provided heat when the 

air temperature fell below the set-back temperature whereas, with CC, heat was 

provided to maintain the higher, set-point temperature (Figure  4-7, living room, 

morning on period, bedroom 2 evening heating period). If a room with ZC became 

occupied during a ‘heating on’ period, the PTRV would enable flow to the radiator to 

bring the room temperature up to the set-point (Figure  4-7, dining room, living room 

and bedroom evening heating on periods).  It is the difference in the energy needed 

to achieve the set-point temperature compared to the set-back temperature when the 

heating is on but rooms are unoccupied, that leads to potentially lower heating 

energy consumption. The lower the set-back temperature and the shorter the 

occupied time relative to the heating on time, the more energy ZC might, in principle, 

save. However, in ZC the heated rooms would lose more heat to neighbouring 

spaces that are at a lower temperature compared to CC when the neighbouring 

spaces are at a higher temperature. 

The houses exhibited other characteristics common to UK centrally heated homes, 

especially poorly insulated homes.  For example, even though bedroom 2 was 

‘occupied’ from 06:00 hrs to 07:30 hrs and the heating was on, the room failed to 

reach the set-point temperature with either ZC or CC. In fact, the set-point wasn’t 

reached even after 3 hours of heating using CC. Bedroom 2 has a particularly large 

single-glazed bay window and therefore high rates of heat loss. In the middle of the 

day, when the house was unheated, the temperatures in the north-facing rooms fell 

to below the set-back temperature in the case of bedroom 1. In contrast, the solar 

gain through the large, south-facing window of bedroom 2, and the similarly sized 

window in the living room, caused the temperatures in the middle of the day to 

exceed the heating set-point; especially in the house with CC (Figure  4-7). In the 

evening heating period, with both CC and ZC, the living room, and to a lesser extent 

the dining room temperatures exceeded the set-point during the occupied hours. 

This was most likely due to the internal heat gains. 
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Figure  4-7: Air and radiator surface temperature variations in different rooms: heating 

trial 1, 21st Feb 2014, ZC in House 1, CC in House 2. 
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Table  4-3 shows the average air temperature in each room for the 8 weeks trial 

periods10. These are broken down into five different averaging periods: the whole of 

each day; when the PRT had switched the ‘Heating on’; when the heating was on 

and the space occupied, ‘Heating on and occupied’; when the heating was on but the 

space was unoccupied, ‘Heating on and unoccupied’;  and, finally, the average 

during the ‘Heating off’ hours. The table also gives the floor area-weighted11 average 

temperature for the whole house during each of these five periods. 

Table  4-3: Average indoor air temperatures in each room during five different periods, 

and the spatially averaged whole house temperature 

 ‘Heating on’  
‘Heating off’ 

Room 

Whole day ‘Heating on’ ‘occupied’ ‘unoccupied’ 

ZC 

(ºC) 

CC 

(ºC) 

ZC 

(ºC) 

CC 

(ºC) 

ZC 

(ºC) 

CC 

(ºC) 

ZC 

(ºC) 

CC 

(ºC) 

ZC 

(ºC) 

CC 

(ºC) 

Living Room 19.2 20.0 20.3 21.5 22.3 22.5 18.7 20.5 18.0 18.4 

Dining Room 18.2 18.7 19.0 19.5 20.4 20.1 18.8 19.4 17.4 17.7 

Bedroom 1 18.0 18.3 18.9 19.2 18.9 19.2 18.7 19.4 17.1 17.3 

Bedroom 2 17.2 18.2 17.6 19.1 16.3 18.1 17.9 19.3 16.5 17.1 

Bathroom 16.5 17.7 17.3 18.9 19.7 19.1 17.2 18.9 15.5 16.4 

Unoccupied 

room 
14.8 15.3 14.9 15.5 - - 14.9 15.5 14.6 15.0 

Circulation 

areas1 19.1 19.5 20.3 20.8 - - 20.3 20.8 17.8 18.1 

Kitchen 19.6 20.0 20.7 21.2 23.0 23.6 20.4 20.8 18.4 18.6 

Whole house2 18.1 18.7 18.9 19.7 19.7 20.1 18.6 19.6 17.1 17.5 
1 Average air temperature in hallways on the ground and first floors. 
2 Floor area weighted average air temperature. 

The averages are across four weeks with the control system in one house and four weeks in the 

other house. 

Considering the whole day, the average air temperature of all the rooms and the 

whole house was lower with ZC than with CC. The temperatures were also lower 
                                            
10 This is thus the average of 4 weeks with ZC in House 1 and 4 weeks in House 2, and likewise for CC. 
11 Calculated as: (T1 ∗ A1 + T2 ∗ A2 + ⋯+ Tn ∗ An)/(A1 +  A2 + ⋯+ An) where: T1 to Tn are the average air 
temperature of different rooms during each of the 5 periods and A1to An are the floor area of those rooms 
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with ZC during periods when the heating system was on and when the heating 

system was off. This was because ZC kept space temperatures low when rooms 

were scheduled to be unoccupied, but provided similar air temperatures to CC (not 

less than the set-point temperature) when the rooms were scheduled to be occupied. 

During the ‘occupied’ hours when the heating was on, for both control strategies, the 

average indoor air temperatures measured in the living room and dining room were 

higher than their set-point temperature, which is thought to be due to the effect of 

internal heat gains and closing the doors when the rooms were occupied. 

The average air temperature in bedroom 2 was lower than its set-point temperature 

during the ‘occupied’ hours especially in the house with ZC. This was because this 

bedroom was ‘occupied’ mostly during the night when the occupants were assumed 

to be sleeping and the heating was switched off (it is usual to sleep in an unheated 

bedroom in the UK (Huebner et al. 2013). Therefore, the daily period when the 

heating was on and the room was ‘occupied’ and thus heated was too short for the 

room to achieve its set-point temperature (Table 4-2).  

On a similar basis, the average air temperature in bedroom 1 during the occupied 

hours was higher than bedroom 2 and close to the set-point temperature because it 

was ‘occupied’ for longer each day, when the heating was on, for purposes other 

than sleeping.  

The average air temperatures during the sleeping periods are worth noting. In the 

house with ZC they were 15.5ºC and 14.3ºC, in bedrooms 1 and 2, respectively, 

which was lower than the averages of 16.2ºC and 14.6ºC found for CC.  Bedroom air 

temperatures in both homes are thus lower than the CIBSE recommendation for 

bedrooms of 17ºC. However, Humphreys (1979) reports good sleep quality even for 

bedroom temperatures as low as 12ºC  while Collins (1986) and Hartley (2006) 

indicate the world health organization’s bedroom temperature limit of 16ºC to reduce 

the risk of decreasing resistance to respiratory infections which can occur at lower 

temperatures (Peeters et al. 2009). 

Bathroom average air temperatures were lower than the designed set-point 

temperature with both ZC and CC during ‘occupied’ hours. This could be due to an 

undersized radiator. Also, there were no internal heat gains as it was assumed that 
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in real houses any heat gain produced in this room would be quickly transferred to 

outdoor via extract fans or window opening. 

The mean temperatures in the unheated rooms (i.e. unoccupied room and kitchen) 

were found to be lower for ZC during all the periods of the day. Again this was 

assumed to be due to higher rates of heat loss and lower rates of heat gain to and 

from the adjacent rooms in which were cooler in ZC compared to CC. The mean 

temperature of the kitchen was much higher than all other rooms during the 

‘occupied’ hours (23ºC and 23.6ºC for ZC and CC respectively). This was clearly due 

to the considerable heat gains from cooking.  

The daily average air temperatures in the circulation areas on the ground floor and 

first floor were lower in the house with ZC compared to the house with CC. This 

could again be explained by the lower temperatures in adjacent rooms acting as a 

heat sink. 

It is important to quote the energy savings of ZC when the same level of comfort as 

CC is being provided. In this work, it is assumed that indoor air temperature alone is 

a good proxy for thermal comfort. However, in this experimental work, it was not 

possible and in fact intended to provide identical temperatures at the same time in 

the two homes using the different control strategies. The consequence, as can be 

seen from Table  4-3, is that the whole house average air temperature during 

‘occupied’ hours was slightly lower with ZC (19.7°C), than it was with CC (20.1°C). 

However, the main reason for the whole house average air temperature during the 

“occupied” hours being slightly lower in ZC compared to CC was that ZC provided 

lower air temperatures in bedroom 2 which was mainly occupied for the purpose of 

sleeping  as it was discussed earlier.  

Considering the hours of ‘active occupancy’ (i.e. when the occupants are assumed to 

be present and awake) for the entire 8 weeks of the trials the average air 

temperatures of the whole house was 21.0ºC for ZC and 20.8ºC for CC. Therefore, 

on average, for this experiment ZC provided a slightly higher air temperature 

compared to CC during the time period of most interest (i.e. ‘active occupancy’). 

Therefore, it was assumed that both control strategies provided the same level of 

thermal comfort to the occupants. 
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4.5 Heating demand, boiler efficiencies and fuel use 

During the heating trials the daily average outdoor air temperature ranged from a 

minimum of 2.5ºC (Day 14) to a maximum of 13.1ºC (Day 48) with an average of 

7.1ºC (Figure  4-8). As expected, whole house heating demand, as measured by the 

boiler heat output, was greater on colder days than on warmer days. During the 

weekends, the heat output was generally higher than for weekdays because the 

heating was switched on for longer (Figure  4-8).  

The daily heat output with ZC varied from 22.6 to 80.6 kWh/day with an average of 

53.6 kWh/day, while with CC it varied from 25.0 to 90.8 kWh/day with an average of 

62.4 kWh/day. On every day of the trials the daily boiler heat output in the house with 

ZC was lower than the boiler output in the house with CC (Figure  4-8). Overall, daily 

heat output with ZC was between 2.6% (Day 7) and 22.1% (Day 25) lower than with 

CC, giving a daily average of 14.1% lower heat output. 

 

Figure  4-8: Measured daily heat output from the boilers during the heating trials 1 

and 2 and their error bars (based on heat meter’s manufacturer stated accuracy) 

together with the average daily outdoor temperature 

The efficiency of boilers when operating with ZC was lower than the efficiency of the 

boilers when operating with CC (Figure  4-9). However, the difference was quite small, 
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being on average 1.5 percentage points (pp) less efficient during the first trial (HT1) 

and 3.3pp less in the second trial (HT2). The larger difference during the HT2 is 

perhaps due to the warmer weather which meant the boiler outputs were less and so 

they were operating further away from the peak efficiencies for longer. At part load, 

small differences in power output lead to larger differences in efficiency than at, or 

near, peak load. There may also be some small differences between the boilers 

installed in the two houses as they were less than seven years old. 

Averaged over both trials, the efficiency of the boilers associated with ZC were 2.4pp 

less efficient than the boilers controlled conventionally (CC) (Table  4-4). A standard 

chi-square test was conducted to determine if the results were statistically significant. 

This difference was found to be statistically significant (p<0.01) and is likely to be 

because boilers operated under ZC, experiencing lower heating loads, and so 

operate further away from the peak load capacity – at which they are most efficient. 

 

Figure  4-9: Daily efficiency of the boilers with zonal control (ZC) and conventional 

control (CC) in each heating trial with their error bars12 together with the daily 

average outdoor temperature 

                                            
12 Uncertainty in daily boiler efficiencies are calculated as the quadratic sum of the uncertainties in calorific 
value of gas, gas meter and heat meter (Table 5) 
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Table  4-4: Summary of daily average boiler efficiencies in each heating trial and 

overall efficiency 

 

Heating Trial 1,  

Boiler Efficiency (%) 

Daily Average 

(minimum, 

maximum) 

Heating Trial 2,  

Boiler Efficiency (%) 

Daily Average 

(minimum, 

maximum) 

Overall Average 

Boiler Efficiency (%) 

Daily Average 

(minimum, 

maximum) 

Zonal Control  

(ZC) 

84.2%  

(82.5%, 85.7%) 

82.8% 

(80.4%, 85.6%) 

83.5% 

 (80.4%, 85.7%) 

Conventional 

Control (CC) 

85.7%  

(83.7%, 88.3%) 

86.1% 

(82.9%, 89.3%) 

85.9% 

(83.7%, 89.3%) 

Difference 1.5pp1 3.3pp1 2.4pp1 

1 Percentage points 

The total gas consumption across both heating trials was 11.8% less with ZC than 

with CC. This resulted from the combination of a reduced heat demand of 14.1% but 

a reduction in boiler efficiency of 2.4pp. Average daily gas consumption was 

significantly less (p<0.05) with ZC (64.2 kWh) rather than CC (72.8 kWh). During the 

40 weekdays of monitoring, average daily gas consumption was significantly less 

(p<0.01) in the house operating with ZC (61.8 kWh) rather than the house operating 

with CC (71 kWh); a difference in gas consumption of 13%.  During the 16 weekend 

days the house with ZC used on average 70.3 kWh/day while the house operating 

with CC used 77.3 kWh/day; a difference of 9.1% . However, this was not found to 

be statistically significant; due to the relatively small number of weekend days (n=16) 

for testing any statistical significance. Compared to weekdays, at the weekends 

rooms are occupied for a greater proportion of the time that the heating is on 

(Table  4-2) and the programmable thermostat (located in the hallway) tends to reach 

the set-point more often with CC than with ZC and so the heating system is cycled 

off for slightly longer with CC. These results suggest that houses that are more 

intermittently occupied and which have rooms that are used infrequently might 

benefit more from ZC than homes that are occupied extensively and for longer (see 

chapter  8). 
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4.6 Summary 

This chapter has described the space heating trials conducted in the LMP1930 test 

houses during an 8-weeks winter test period and has presented the trials results. 

The main findings from the space heating trials can be summarised as: 

• The average air temperature of all the rooms and the whole house was lower 

with ZC than with CC considering the whole day, the period when the heating 

system was on and the period when the heating was off. 

• In most rooms and in both houses, the average air temperature measured 

during the occupied period when the heating was on was different from their 

set-point temperatures. 

• The average air temperatures in bedrooms in both houses during the sleeping 

period were below air temperatures recommended by CIBSE. 

• Whole house average air temperature during ‘occupied’ hours was slightly 

lower with ZC (19.7°C), than it was with CC (20.1°C). However, these were 

very close when excluding the air temperatures during the sleeping period. 

• Daily boiler heat output of the house with ZC was lower than that of the house 

with CC on every single day. On average, daily heat output of the boiler in the 

house with ZC was 14.1% lower than the boiler in the house with CC. 

• The average efficiency of the boilers associated with ZC were 2.4pp lower 

than that of the boilers controlled conventionally (CC) 

• The total gas consumption across both heating trials was 11.8% less with ZC 

than with CC. 

• The average gas savings of ZC were found to be higher during the 

intermittently heated weekdays rather than weekends when the houses were 

heated for longer periods. 
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5 Dynamic thermal modelling 

5.1 Introduction 

This chapter describes the use of of dynamic thermal models (DTMs) to simulate the 

co-heating test (section  3.3.6) and space heating trials (chapter  4) conducted during 

the experimental campaign of this study. The modelling approach adopted here was 

according to recommendations by Lomas et al. (1997) in which the experimental 

work was firstly simulated in a so called “blind phase” where the modeller is unaware 

of the actual measured performance of the building. The empirical validation was 

then conducted in an “open phase” (chapter 6) in which the measurements were 

made available. 

EnergyPlus version 8.1.0.009 which was released in October 2013 was used in this 

research. EnergyPlus is a freely available dynamic thermal modelling tool which has 

undergone a number of revisions and the current version 8.3 was released in March 

2015. The input data for EnergyPlus simulations is contained in a text file called the 

Input Data File (IDF). This enables the user to change sections of the input file and 

control these changes using a text editor or a third party such as IDF editor. 

DesignBuilder (2014) is a commercially available software package that offers 

detailed dynamic thermal simulations, for which it uses the EnergyPlus simulation 

engine and provides a user friendly graphical user interface. In this study, 

DesignBuilder version 3.4.0.0.41 which was released in April 2014 was used to input 

the building geometries, construction materials and input parameters for modelling 

the air flow and heating systems. The model created in DesignBuilder were then 

converted to the EnergyPlus IDF files, which were modified further using a text editor 

and the EnergyPlus IDF Editor in order to construct the final EnergyPlus model and 

run simulations. 

The chapter starts with the description of modelling the building envelope of the test 

houses (section  5.2). Then in section  5.3, it describes two different air flow modelling 

methods which were used to model air flows in the houses. In section  5.4, modelling 

of the heating systems which were used during the co-heating test and HT1 are 

discussed. In section  5.5, the procedure for modelling the synthetic occupancy of the 
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houses is discussed. In section  5.6, the generation of the weather file for the periods 

of co-heating test and the HT1 is described. Finally, section  5.7 presents a summary 

of this chapter. 

5.2 Modelling the building envelope of test houses 

In this section, construction of a DTM of the building envelope of the LMP1930 test 

houses is described including details of geometry, zoning, ground modelling and 

construction materials. 

5.2.1 Building geometry 

Internal dimensions of the LMP1930 test houses were entered in to the 

DesignBuilder software. The semi-detached test houses were modelled together 

(Figure  5-1) as this allows influences of the adjacent house on thermal behaviour of 

each house to be considered in the model. In addition, the neighbouring houses 

were modelled as component blocks in order to take into account their potential 

shading and reflection effects on LMP1930 houses (Figure  5-2). 

 

Figure  5-1: Views of the LMP1930 test house model in DesignBuilder: front, south-

facing (left) and back, north-facing (right) 
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Figure  5-2 View of the LMP1930 test house model with the effect of shading from the 

neighbour blocks (15 March at 16:00) 

A number of simplifications were made in the models. The party wall between the 

two houses was modelled as a partition wall (see section  5.2.4 for details of 

construction materials). The chimneys and sealed fire places were not considered in 

the model. 

The width and height of each window was entered separately, including the frame 

according to the window corner definition in DesignBuilder (Figure  5-3). The window 

frames and dividers were also entered separately for each window (Figure  5-3). The 

window area which is provided to EnergyPlus IDF input file after conversion have 

slightly smaller area compared to the area defined in DesignBuilder in order to take 

into account the frames which is not considered in definition of window area in 

EnergyPlus (Figure  5-3). Internal doors and external doors were also entered into 

the model. 



 

108 
 

 

Figure  5-3: Window geometry definition in DesignBuilder and EnergyPlus 

(DesignBuilder, 2014) 

5.2.2 Zoning 

In each house, the lower storey was divided into 4 zones including the living room, 

dining room, kitchen and hallway while the upper storey was divided into 6 zones of 

hallway, bathroom, bedroom 1, bedroom 2, bedroom 3 (unoccupied room) and a WC 

(Figure  5-4). The subfloor and the loft (attic) space of each house was considered as 

additional unheated zones. 

Each EnergyPlus zone is defined as a common air mass at a specific temperature 

(i.e. the air is fully mixed). In space heating with ZC, each room with a radiator and 

PTRV is controlled to a temperature which is often different from the temperatures at 

which other rooms are being controlled. Although few zones such as bedroom 1 and 

2 which have the same set-point temperature could have been merged into one zone 

for the house with CC, keeping the same zoning configuration for the houses with 

CC and ZC would enable room by room comparison of the two control strategies. In 

addition, having separate zones enabled the internal heat gains of each zone to be 

modelled more accurately. 
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Figure  5-4: LMP1930 test house model zoning strategy for ground floor and first floor 

 



 

110 
 

5.2.3 Ground modelling 

The suspended timber ground floor of each house was modelled explicitly as a 

separate zone (subfloor zone) which was added below the ground floor. The subfloor 

zone had six air bricks each having an open area of 0.01 𝑚𝑚2 as measured at the test 

houses. The height of the subfloor was 0.2 m according to the measured depth of 

the underfloor void existed (from the bottom of the floor boarding to the ground). It 

was assumed that the ground under the suspended timber floor is just bare earth 

(see section  3.3.3). 

The solid floors of the kitchens were represented by a 100 mm concrete slab. The 

thickness of concrete slab could not be directly measured and was assumed to be 

100 mm, according to a document by University of the West of England (2009). 

Average monthly ground surface temperatures under the building are used by 

EnergyPlus as the outside surface temperature for all surfaces adjacent to the 

ground to calculate the heat transfer between the ground and any adjacent zone. 

Average monthly ground surface temperatures could be calculated using 3D ground 

heat transfer program of EnergyPlus for slabs (US Department of Energy, 2013b). 

The 3D slab program included in EnergyPlus produces outside surface temperature 

of the core and perimeter of a slab in contact with the ground. The programme uses 

twelve separate average monthly indoor temperatures as inputs for the calculation of 

the ground temperature. However, this programme could not be used to calculate 

the ground temperature under a ventilated suspended timber floor, and this was not 

measured during the experimental work.  

According to EnergyPlus documentation, the undisturbed ground temperatures 

calculated by EnergyPlus’s weather converter program are often not appropriate for 

building loss calculations as these values are too extreme for the soil under a 

conditioned building (US Department of Energy, 2013b). EnergyPlus documentation 

(US Department of Energy, 2013b) suggests using ground temperatures of 2°C 

below mean internal temperatures for large commercial buildings in the US. However, 

it does not suggest any method for calculating or estimating ground surface 

temperature under a ventilated suspended timber floor or for small residential 

buildings such as this case. An article by (Lstiburek, 2008) published in ASHRAE 
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Journal of Building Sciences suggests that a reasonable rule of thumb to estimate 

the ground surface temperature of ventilated crawlspaces is to use the average 

annual ambient air temperature of that location. In absence of any other reference, 

the average annual ambient air temperature measured at Sutton Bonnington 

weather station for the year 2014 which was 11.8ºC (UK Meteorological Office, 2012) 

was assumed as the monthly ground surface temperatures. 

5.2.4 Construction materials and properties 

Construction materials properties were selected from DesignBuilder’s library as 

shown in Table  5-1. 

Table  5-1: Construction materials properties used in LMP1930 model 

Material 
Conductivity 

(W/m. K) 

Density 

(kg/𝒎𝒎𝟑𝟑) 
Specific heat 

capacity (J/kg. K) 

Brick (outer leaf) 0.84 800 1700 

Brick (inner leaf) 0.62 800 1700 

Plaster (dense) 0.50 1000 1300 

Clay tile 1.00 800 2000 

Roofing felt 0.19 837 960 

Glazing 0.9 - - 

Polyisocyanurate 0.022 1470 45 

Timber flooring 0.14 1200 650 

Cast concrete 1.13 1000 2000 

Carpet 0.06 1300 200 

Plasterboard 0.25 896 2800 

Painted oak (doors 

and windows) 
0.19 2390 700 

DesignBuilder models each building element as one or more layers of construction 

materials with a specific thickness. The U-value of each element was automatically 

calculated by DesignBuilder (Table  5-2). 
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Table  5-2: Construction elements of the test houses and their U-values and 

thicknesses of the materials used in each construction element  

Building element 
Materials 

(outermost to 
innermost layer) 

Thicknesses (outermost to 
innermost layer) (m) 

U-value1 

(W/𝒎𝒎𝟐𝟐𝑲𝑲) 

External cavity 

walls 

Brick, air gap, 

brick, dense plaster 
0.105, 0.07, 0.105, 0.013 1.666 

Internal partition 

walls 

Plaster, brick, 

dense plaster 
0.013, 0.105, 0.013 2.077 

Party wall 

Plaster, brick, air 

gap, brick, dense 

plaster 

0.013, 0.105, 0.07, 0.105, 

0.013 
1.281 

Ground floor (semi 

exposed) 

Timber flooring, 

carpet 
0.02, 0.005 2.015 

Kitchen’s solid floor Cast concrete 0.1 3.35 

Internal floor 

(between ground 

floor and first floor) 

Plasterboard, air 

gap, timber 

flooring, carpet 

0.013, 0.1, 0.02, 0.005 1.373 

First floor ceiling 

(semi exposed) 
Plaster board 0.013 3.1 

Pitched roof 
Clay tile, air gap, 

roofing felt 
0.025, 0.02, 0.005 2.93 

Glazing Single glazing 0.003 5.894 

Window Frame Wooden (oak) 0.02 3.633 

Window covered 

with insulation 

board 

Glass, air gap, 

Polyisocyanurate 
0.003, 0.01, 0.05 0.377 

Doors (internal & 

external) 
Wooden (oak) 0.044 2.034 

1 U-values were calculated by DesignBuilder for simple calculation methods such as SBEM 
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For the windows, 3 mm single layer clear glass was selected from DesignBuilder 

glazing type templates for the whole house model. Characteristics of the glazing 

material selected were presented in Table  5-3. 

Table  5-3: Characteristics of the glazing in LMP1930 model 

Type 
Conductivity 

(W/m K) 

Solar 
transmittance 

(SHGC) 

Outside/ 
inside 
solar 

reflectance 

Visible 
transmittance 

Outside/ 
inside 
visible 

reflectance 

Outside/ 
inside 

emissivity 

3mm 

clear 
0.9 0.837 0.075 0.898 0.081 0.84 

Sub-surfaces in DesignBuilder define areas which have a different construction to 

that of the main. The windows on the East and West facades, which were covered 

from inside with insulation boards during the experiments, were modelled using a 

sub-surface with 3 layers: 3 mm glass, 10 mm air gap and 50 mm 

Polyisocyanurate insulation boards (thermal conductivity of 0.022 W/m𝐾𝐾 (Celotex, 

2015)). The total U-value of the sub-surface was calculated as 0.377 W/𝑚𝑚2𝐾𝐾 

(Table  5-2). 

The blinds in the houses were modelled as a closed weave, medium coloured shade 

from the DesignBuilder database. The transmittance and reflectance characteristics 

matched those in the ASHRAE handbook of fundamentals (ASHRAE, 2009) 

(Table  5-4). 

Table  5-4: Characteristics of the blinds material chosen for the model 

Characteristics Values 

Thickness (m) 0.001 

Conductivity (W/m-K) 0.1 

Solar / visible transmittance 0.05 

Solar / visible reflectance  0.3 

Long wave emissivity 

Long wave transmittance 

0.9 

0 
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5.3 Modelling the air flow 

Air flows in buildings happen when there is a pressure difference between two points 

and a continuous flow path or opening which connects the points (Straube, 2008). In 

a naturally ventilated building, the pressure difference can be caused by wind and air 

density differences between the points due to their temperature difference (buoyancy 

or stack effect) (Straube, 2008).   

EnergyPlus has three approaches to modelling the air flow in buildings: scheduled 

natural ventilation (SNV), Air Flow Networks (AFN) and Computational Fluid 

Dynamics (CFD). However, only two of them (i.e. SNV and AFN) could be used 

when the model is used for the purpose of predicting the energy consumption of the 

building. Each approach has its own advantages and disadvantages and one 

important decision was to select the most appropriate method of modelling air flows 

for this research. In order to test the suitability of the two air flow modelling 

approaches, both approaches were used to simulate the co-heating test and space 

heating trials and the results were compared with each other and the measured data. 

5.3.1 Scheduled Natural Ventilation (SNV) 

Scheduled natural ventilation is the simplest approach for modelling air flows. A 

design air infiltration rate for each zone is input directly in units such as flow per zone 

(𝑚𝑚3/𝑠𝑠) or flow per zone floor area (𝑚𝑚3/𝑠𝑠 𝑚𝑚2) or flow per exterior surface area 

(𝑚𝑚3/𝑠𝑠 𝑚𝑚2) or air change rates per hour. EnergyPlus then modifies these design flow 

rates using equation ( 5-1). 

 

 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 = 𝐼𝐼𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 ∗ 𝐹𝐹𝑠𝑠𝑠𝑠ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 ∗ (𝐴𝐴 + 𝐵𝐵|𝑇𝑇𝑧𝑧𝑧𝑧𝑧𝑧𝑧𝑧 − 𝑇𝑇𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑟𝑟|
+ 𝐶𝐶 𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 + 𝐷𝐷 𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 2) 

( 5-1) 

Where: 

𝐼𝐼𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = specified infiltration of the zone as a design level  

𝐹𝐹𝑠𝑠𝑠𝑠ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 = schedule fraction which can modify the infiltration volume flow rate for 

each time step according to a defined schedule for each zone. 
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A= constant term coefficient with a default value of 1 

B= temperature term coefficient with a default value of 0 

𝑇𝑇𝑧𝑧𝑧𝑧𝑧𝑧𝑧𝑧 − 𝑇𝑇𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 = temperature difference between the zone and outdoor 

C= velocity term coefficient with a default value of 0 

D= velocity squared term coefficient with a default value of 0 

As default EnergyPlus assumes the values of 1 for coefficient A and 0 for coefficients 

B, C and D which gives a constant volume of infiltration air flow under all conditions. 

According to EnergyPlus input output reference (US Department of Energy, 2013c) a 

detailed analysis is needed to determine a custom set of coefficients. Therefore, the 

default coefficients were not changed for LMP1930 model. 

Measuring infiltration rates of the individual zones of the LMP1930 was not possible. 

Instead, the whole house infiltration rate, as measured during the airtightness test, 

was used in the model. DesignBuilder uses equation ( 5-2), sourced from BS EN 

12831 (British Standards, 2013), to convert the whole house infiltration rate 

measured at 50 Pa to infiltration rate at normal operating conditions for each zone. 

Equation ( 5-2) uses a shielding coefficient (𝑒𝑒) which takes into account the number 

of exposed openings in each zone and wind exposure and a height correction factor 

(ε). 

 𝑉̇𝑉𝑖𝑖𝑖𝑖𝑖𝑖,𝑖𝑖 = 2.  𝑉𝑉𝑖𝑖.  𝑛𝑛50.  𝑒𝑒𝑖𝑖.  𝜀𝜀𝑖𝑖              [𝑚𝑚3 ℎ⁄ ] ( 5-2) 
  

Where: 

𝑉̇𝑉𝑖𝑖𝑖𝑖𝑖𝑖,𝑖𝑖 = infiltration air flow rate of heated space (i) induced by wind and stack effect 

on the building envelope 

𝑉𝑉𝑖𝑖= volume of heated space (i) in 𝑚𝑚3 calculated on the basis of internal dimensions 

𝑛𝑛50= air exchange rate per hour (ℎ−1), resulting from a pressure difference of 50 Pa 

between the inside and outside of the building 
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𝑒𝑒𝑖𝑖= shielding coefficient obtained from Table  5-5. For the case of LMP1930 model, 

moderate shielding was set in the model. 

𝜀𝜀𝑖𝑖= height correction factor which takes into account the increase in wind speed with 

the height of the space from ground level. 𝜀𝜀𝑖𝑖=1 when the centre of zone height to 

ground level is below 10 m which was the case for all the zones in LMP1930 model. 

Table  5-5: Shielding coefficient (e) reproduced from Table D.8 BS EN 12831 (British 

Standards, 2013) 

Shielding class 

𝑒𝑒 

Heated 

space 

without 

exposed 

openings 

Heated 

space with 

one 

exposed 

opening 

Heated space 

with more 

than one 

exposed 

opening 
No shielding (buildings in windy areas, high 

rise buildings in city centres) 
0 0.03 0.05 

Moderate shielding (buildings in the country 

with trees or other buildings around them, 

suburbs) 

0 0.02 0.03 

Heavy shielding (average height buildings in 

city centres, buildings in forests) 
0 0.01 0.02 

As there was no significant difference between the infiltration rates measured in the 

two test houses (see section  3.3.6), the mean result (i.e. 21.75 ACH at 50 pa) was 

used in the model for the both houses. 

The ventilation rates of the subfloor and the loft (attic) space could not be estimated 

by this method as they were not measured in the airtightness test. Measurements of 

the ventilation rates of suspended floors (either concrete or timber) are very limited 

(Hartless, 2004 & Edwards et al, 1990). In a study by Edwards et al. (1990), subfloor 

ventilation rates of a 45 𝑚𝑚2 low energy UK house was measured between about 0.1 

to near 2 ACH for different wind speeds and wind directions. However, the total 

effective area of the air bricks was only 0.018 𝑚𝑚2 compared to 0.06 𝑚𝑚2 in the 

LMP1930 houses with the same floor area. Also the void depth was 1.0 m compared 

to 0.2 m for the LMP1930 houses. The smaller total effective area of the air bricks 
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(about 1/3 of the total effective area of the LMP1930) and considerably larger volume 

of the void (about 5 times larger) in the house examined by Edwards et al (1990) 

suggests that the subfloor ventilation rates of the LMP1930 houses could be 

considerably higher in air changes per hour. 

The only study which was found to report the measured ventilation rates beneath a 

suspended timber floor of a UK house with a similar void depth (i.e. 0.022 m 

compared to 0.02 m in LMP1930) and total effective area of air bricks (0.07 vs 0.06 

𝑚𝑚2 in LMP 1930) reported that the subfloor ventilation rate was widely fluctuating; 

ranging from about 3 air changes per hour (ach) to over 13 ACH (Hartless & White, 

1994). Hartless & White (1994) argues that the subfloor ventilation rate of the house 

examined was heavily influenced by the subfloor/external temperature difference 

rather than the wind speed. Infra-red thermography showed that the air was moving 

from the subfloor void to the gap behind the plasterboard in the walls due to a 

leakage path at the wall/floor junction. Hartless & White (1994) discussed that this 

problem has been also observed in other UK homes and could explain the high 

subfloor ventilation rates found in their study. However, there was no plasterboard 

used in the walls of LMP1930 test houses.  

Considering the lack of comprehensive data regarding the subfloor ventilation rates, 

ventilation rate of 8 ACH which was the mean value of 3 and 13 ACH found as lower 

and upper limits of subfloor ventilation rate in Hartless’s (1994) study was chosen in 

this study as the constant subfloor ventilation rate of both LMP1930 test houses. 

Ventilation rates of loft (attic) spaces were measured in a number of studies; mainly 

in the US. Dietz et al. (1986) conducted detail multi-zone PFT gas measurements in 

a number of homes in the US and reported 3 ACH as “typical” for ventilation rate of 

loft spaces. I’anson et al. (1982) measured loft space ventilation rate of 4.3 ACH in a 

middle terraced three bedroom house using three tracer gases. The loft space of this 

house was ventilated by a continuous gap with 10 mm width behind the fascia board. 

Allinson (2007) modelled ventilated pitched roofs during low wind speed conditions in 

the UK and chose a ventilation rate of 2 ACH according to assumptions by Burch 

(1980). Sanders et al. (2006) developed a number of broad rules for estimating the 

loft ventilation based on a series of measurements of the ventilation rates of the 

houses (including loft) using tracer gas techniques which were conducted in about 
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eighty properties in England and Scotland during 1970s and 1980s. According to this 

document, where the loft is not sealed, but with no eaves or ridge ventilators, the loft 

ventilation rate in air changes per hour (ACH) is approximately equivalent to the wind 

speed in m/s. This is similar to the case of the LMP1930 houses where there were 

no eaves or ridge ventilators. Therefore, the average wind speed during each test 

was used as the constant ventilation rate of the loft space of the LMP1930 test 

houses. The average wind speed measured during the co-heating test and heating 

trial 1 were 2.7 m/s and 4.0 m/s which suggested 2.7 and 4.0 ACH for the loft space 

ventilation rate of the LMP1930 houses during the co-heating test and heating trial 1 

respectively. These were close to the suggested typical loft space ventilation rates 

measured or assumed in the other studies. 

In SNV, the air exchange between zones through openings such as internal doors, 

windows or holes (i.e. stairs) is modelled using the concept of mixing where equal 

amounts of air are transferred from one zone to another and vice versa. It is not 

possible to model unidirectional air flow from one zone to another using this method. 

The design flow rate is the maximum air exchange between the two zones and is 

explicitly defined for each opening as flow rate per zone (𝑚𝑚3/𝑠𝑠), flow rate per zone 

floor area (𝑚𝑚3/𝑠𝑠 𝑚𝑚2), flow rate per person or air changes per hour (ach). This 

maximum value is then modified by a schedule fraction which defines the operating 

schedule of the opening. 

DesignBuilder’s default value of 0.1 𝑚𝑚3 𝑠𝑠.𝑚𝑚2⁄  was selected as the air flow rate per 

opening area which exchanges between each two adjacent zone through openings. 

The same value of 0.1 𝑚𝑚3 𝑠𝑠.𝑚𝑚2⁄  was also considered for the air flow rate per square 

meter of the opening which connected the lower storey to the upper storey. The 

opening has a measured area of 2.25 𝑚𝑚2. This value of 0.1 𝑚𝑚3 𝑠𝑠.𝑚𝑚2⁄  was 

automatically multiplied by the area of each opening by DesignBuilder to provide the 

air flow rate of each zone in 𝑚𝑚3 𝑠𝑠⁄  which is used in IDF file. 

5.3.2 Air Flow Network (AFN) 

A second, more detailed approach to modelling the air flows through a building is to 

establish an Air Flow Network (AFN). The AFN consists of a number of nodes 

connected by air flow components through surface linkages (Gu, 2007). Each heat 
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transfer surface in a building, with both faces exposed to air, works as a surface 

linkage through which air flows (Gu, 2007).The associated air flow component for 

each surface can be one crack (or surface effective leakage area) at the average 

height of the surface, one opening in an exterior or interior window or door, or a 

horizontal opening. In EnergyPlus, each linkage surface specifies two connected 

nodes: two zone nodes based on inside and outside face environment for an interior 

surface, or a zone node based on inside face environment and an external node (US 

Department of Energy, 2013c). Since AFN assumes that air flows from one node to 

another, it simplifies airflows through its pathways and cannot predict internal air 

circulation within a thermal zone (Gu, 2007).  

DesignBuilder was employed in this study to facilitate the process of defining the 

nodes and linkage surfaces via its “calculated natural ventilation” simulation option. 

The air flow through cracks in the walls, floors and the roof is calculated by AFN 

model as a function of the pressure difference across the crack according to power 

law in form of equation ( 5-3) (US Department of Energy, 2013c). 

 𝑄𝑄 = (𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑘𝑘 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹) ∗  𝐶𝐶𝑇𝑇 ∗ 𝐶𝐶𝑄𝑄 (∆𝑃𝑃)𝑛𝑛 ( 5-3) 
  

Where: 

 𝑄𝑄 = air mass flow rate (kg/s) 

Crack factor = multiplier for a crack 

𝐶𝐶𝑇𝑇 = reference condition temperature correction factor (dimensionless) 

𝐶𝐶𝑄𝑄 = air mass flow coefficient (kg/sat1 Pa)  

∆𝑃𝑃 = pressure difference across crack (Pa) 

n = Air flow exponent (dimensionless): The valid range is 0.5 for fully turbulent flow to 

1.0, for fully laminar flow (US Department of Energy, 2013c). 

Air flows through doors, windows and vents when they are open or closed are 

calculated by a similar method. When these openings are closed, AFN model 

automatically generates a crack around the perimeter of each opening. The air mass 
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flow coefficient (𝐶𝐶𝑄𝑄) (kg/s at1 Pa) is calculated by multiplying the air mass flow 

coefficient (kg/s. crack length at1 Pa) by the length of the crack (i.e. the perimeter of 

the opening).  

When these openings are open another form of the power law equation in form of 

equation ( 5-4) is used: 

 

 
𝑄𝑄 = 𝐶𝐶𝑑𝑑𝐴𝐴�

2∆𝑃𝑃
𝜌𝜌

  
( 5-4) 

 

Where:  

𝑄𝑄 = volume flow rate across the opening (m3/s) 

𝐶𝐶𝑑𝑑 = discharge coefficient (dimensionless); depends on the geometry of the opening 

and the Reynolds number of the flow 

A = surface area of the opening (m2); defined using an opening factor which defines 

the fraction of total surface area of an opening which is opened 

ΔP = pressure difference across the opening (Pa) 

ρ = air density (kg/m3)  

The air mass flow rate (kg/s) is then calculated by multiplying the volume flow rate by 

the air density. Bi-directional flows can be modelled for vertical openings when air is 

simultaneously moving in two directions depending on stack effects and wind 

conditions (US Department of Energy, 2013c). 

EnergyPlus can also use AFN to model air flows through horizontal openings such 

as staircase. Horizontal openings can produce two-way flow when forced and 

buoyancy flows co- exists, however, AFN cannot model bi-directional flows at a 

given time step (US Department of Energy, 2013c) 

The input variables required for establishing the AFN were: wind pressure 

coefficients (𝐶𝐶𝑝𝑝), air mass flow coefficient (𝐶𝐶𝑄𝑄) (kg/s at1 Pa) and flow exponent (n) for 
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each crack, air mass flow coefficient (𝐶𝐶𝑄𝑄) (kg/s. m crack length) and flow exponent (n) 

for the doors and windows when they are closed and discharge coefficient (𝐶𝐶𝑑𝑑) for 

each opening at each opening factor. These are discussed in more detail below. 

• Wind pressure coefficients (𝑪𝑪𝒑𝒑) 

AFN uses wind pressure coefficients (𝐶𝐶𝑝𝑝) to calculate the wind driven pressure on 

the external surfaces of a building. Wind pressure coefficient values are required for 

each wind direction at an interval (for example: every 45 degrees) on each external 

surface. Sensitivity analysis by Cóstola et al. (2010) has shown 𝐶𝐶𝑝𝑝 as one of the 

most influential input parameters on air change rate and thus several building 

performance indicators such as energy consumption and thermal comfort (Cóstola, 

Blocken & Hensen, 2009). The wind pressure coefficient is dependent on a number 

of factors including building geometry, facade detailing, position on the facade, the 

degree of exposure, wind speed and wind direction (Cóstola, Blocken & Hensen, 

2009). Therefore, wind pressure coefficients are generally unknown, except in the 

case of very simple structures or extremely well studied buildings, and must be 

assumed which could significantly influence the accuracy of the air change rate 

calculations (ASHRAE, 2009). 

Wind pressure coefficients could be obtained from full scale measurements or wind 

tunnel model tests of the specific site and building or via CFD (ASHRAE, 2009). 

However, full scale experiments are very complex and expensive. Alternatively, there 

are databases of 𝐶𝐶𝑝𝑝 values which could be used as secondary sources of data. 

DesignBuilder is supplied with a database of wind pressure coefficients based on 

data from Liddament (1986) which is also reported in CIBSE guide A (CIBSE, 2006a) 

and is often used as a “good first level of approximation for basic design purposes” 

(DesignBuilder, 2014). The 𝐶𝐶𝑝𝑝 data is for low rise buildings (i.e. buildings of 3 storeys 

or less) with square surfaces (aspect ratio 1:1) and for 3 levels of site exposure to 

wind: sheltered, normal and exposed. The data is given in 45° increments. In this 

study, 𝐶𝐶𝑝𝑝 data was chosen from DesignBuilder’s database considering normal site 

exposure.  Figure  5-5 was adopted from CIBSE guide A (CIBSE, 2006) and shows 

the definition of surfaces in determining wind pressure coefficients. 
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Figure  5-5: definition of surfaces in determining wind pressure coefficients (CIBSE, 

2006) 

Example of wind pressure coefficients over façade 1 and roof (front) for wind angels 

in 45º increments were presented in Table 5-6 (DesignBuilder, 2014). They were 

based on the slope of surfaces considering normal exposure of the site to wind and 

aspect ratio 1:1. 

Table  5-6: Wind pressure coefficients over façade 1 and roof (front) for wind angles 

in 45º increments based on the slope of surfaces considering normal exposure of the 

site to wind and aspect ratio 1:1 (DesignBuilder, 2014) 

Wind angel to surface  Vertical Slope<=10º Slope 11-30º Slope 31-89º 

0º 0.4 -0.6 -0.35 0.3 

45º 0.1 -0.5 -0.45 -0.5 

90º -0.3 -0.4 -0.55 -0.6 

135º -0.35 -0.5 -0.45 -0.5 

180º -0.2 -0.6 -0.35 -0.5 

225º -0.35 -0.5 -0.45 -0.5 

270º -0.3 -0.4 -0.55 -0.6 

315º -0.1 -0.5 -0.45 -0.5 
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• Air mass flow coefficient (𝑪𝑪𝑸𝑸) (kg/s at 1 Pa) and flow exponent (n) for 

each crack 

AFN requires air mass flow coefficient (𝐶𝐶𝑄𝑄) (kg/s) at a reference condition 

(temperature, pressure and humidity) for each crack in internal and external walls, 

floor/ceiling and roof defined at 1 pa pressure difference across the crack. Gaps and 

cracks in the building fabric cannot be accurately characterized by visual inspection 

as the leakage paths are often obscured by internal finishes or external cladding and 

are hard to follow (ATTMA, 2010). Although the air tightness of the test houses were 

measured at 50 Pa, it was not possible to use these values directly in the model 

when using AFN. 

DesignBuilder uses a simplified approach which defines one crack for each surface 

of the building. The characteristics of these cracks are defined in DesignBuilder 

crack templates. There are five crack templates in DesignBuilder: Very poor, poor, 

medium, good and excellent which can be selected according to the leakiness level 

of the building under study. Since the air permeability test proven an indication of 

poor air tightness of the test houses (see section  3.3.6), data corresponding to “poor” 

crack template was chosen for the model. The crack templates has air mass flow 

coefficient per square meter of each surface (kg/s.𝑚𝑚2) at1 Pa (Table  5-7) which 

provides the air mass flow coefficient (𝐶𝐶𝑄𝑄) (kg/s) required in EnergyPlus by 

multiplying the flow coefficient per square meter of the surface by the surface area 

(Table  5-7). In addition, DesignBuilder’s crack templates have flow exponents (n) 

(equation ( 5-3)) for internal and external walls, floor/ceiling and roof (Table  5-7).  
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Table  5-7: Crack characteristics according to DesignBuilder’s “poor” crack template 

used in the model for walls, floors and the roof 

Building element 

Air mass flow 
coefficient (𝑪𝑪𝑸𝑸) 

(Kg/s.𝒎𝒎𝟐𝟐) at 1Pa 

Flow exponent (n) 

External walls 0.0002 0.7 

Internal walls 0.005 0.75 

Internal floors 0.002 0.7 

External floors 0.001 1.0 

Roof 0.00015 0.7 

• Air mass flow coefficient (𝑪𝑪𝑸𝑸) (kg/s. m crack length) and flow exponent 

(n) for the doors and windows when they are closed 

DesignBuilder also provides the air mass flow coefficient (𝐶𝐶𝑄𝑄) (kg/s. m crack) at1 Pa 

and flow exponent (n) for the cracks around the perimeter of these openings on the 

same five point scale (Table  5-8). 

Table  5-8: Crack characteristics according to DesignBuilder’s “poor” crack template 

used in the model for the doors, windows and vents 

Building element 

Air mass flow 
coefficient (𝑪𝑪𝑸𝑸) (Kg/s. 

m) at 1Pa 

Flow exponent (n) 

External windows 0.001 0.6 

External doors 0.0018 0.66 

Internal doors 0.02 0.6 

External vents 0.01 0.66 

• Discharge coefficients (𝑪𝑪𝒅𝒅) 

Discharge coefficient is difficult to determine and experimental values which has 

found for discharge coefficient varies from 0.3 to 0.8 and without a clear 

understanding of what causes these differences (International Energy Agency, 1992). 
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CONTAMW which is a multi-zone air flow and contaminant transport analysis 

software developed by US department of commerce (Dols & Walton, 2002) suggests 

a discharge coefficient of 0.6 for orifices and slightly higher for large openings in 

buildings. ASHRAE (ASHRAE, 2009) propose the correlation based on inter zone 

temperature differences as in equation ( 5-5) for the range of ΔTs from 0.5 to 40ºC: 

 Cd =  0.4 +  0.0045 ΔT ( 5-5) 
 

DesignBuilder’s help documentation notes that “given other uncertainties in natural 

ventilation calculations (wind pressure coefficients, effective areas of real-world 

openings and crack flows etc.), using a discharge coefficient between 0.60 and 0.65 

should provide sufficient accuracy” (DesignBuilder, 2014). Discharge coefficient of 

0.65 was selected for all the openings including the horizontal openings and both 

opening factors. 

5.4 Modelling the heating systems 

This section describes the methods for modelling the heating systems for the co-

heating test (section  5.4.1) and the HT1 (section  5.4.2). 

5.4.1 Modelling the heating system for the co-heating test 

The co-heating test (see section 3.3.6) was modelled using electric convectors with 

100% efficiency in every zone of the LMP1930 building envelope model (except the 

unheated loft (attic) and subfloor zones). The average air temperature measured 

during the co-heating test in each zone was used as the set-point temperature of that 

zone in the model (Table  5-9). 
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Table  5-9: Measured average air temperature in different zones during the co-

heating test; theses temperatures were used as the set-point temperature of each 

zone in the DTM when modelling the co-heating test 

Zone 
House 1 

Set-point temperature 
(°C) 

House 2 
Set-point temperature 

(°C) 

Living room 24.32 24.40 

Dining room 24.64 24.10 

Kitchen 25.15 24.29 

Hallway ground floor 24.00 24.16 

Hallway first floor 24.67 24.48 

Bedroom 1 24.62 24.82 

Bedroom 2 24.67 23.35 

Unoccupied bedroom 24.83 24.43 

Bathroom 23.53 24.20 

Volumetric weighted 

Average for the whole 

house 

24.50 24.82 

Electricity used by circulation fans during the co-heating test was considered to end 

up as heat in the zone, thus there was no need to model these separately.  

5.4.2 Modelling the heating systems for the space heating trials 

The gas powered central heating systems were modelled to simulate the HT1: one 

with CC and the other one with ZC. Each heating system consisted of a gas fired 

condensing combination boiler and 7 radiators as described in section  3.3.4 

(Table  3-3). They were modelled for each house using DesignBuilder’s detailed 

HVAC option.  

The condensing combination boilers were modelled with nominal heat output of 30 

kW and mean efficiency of 84.2% and 85.7% as measured during the HT1 (see 

section  4.5). The normalized boiler efficiency curve of condensing combination 

boilers was selected from DesignBuilder’s template library. The circulating hot water 

flow temperature was set to maximum during the HT1 which is 88°C according to the 
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manufacturer’s data (Worcester Bosch Group, 2009). In DesignBuilder, the hot water 

flow temperature in a wet heating system is controlled via a set-point manager which 

controls the hot water flow temperature according to a schedule. This was set to be 

always 88ºC. 

Radiators were modelled using the water baseboard heater model of EnergyPlus 

enabling both convection and radiation heat transfer. The water mass flow rate of 

each radiator supplied from the primary system is calculated at each time step by 

determining the impact of radiator on surrounding air via convection and to the 

surfaces by radiation (US Department of Energy, 2012). 

There will be water flow rate and therefore heat transfer from the radiator when all of 

the three following criteria are met: firstly, the radiator unit is “on” at that time step; 

secondly, there is any heat requirement remaining in the zone to be met according to 

the zone’s set-point temperature and finally the boiler is “on” according to its 

schedule. 

The water baseboard heater model requires a number of inputs: rated average water 

temperature (°C), rated water mass flow rate (kg/s) and rated capacity (W). 

According to the radiators’ manufacturer data: rated average water temperature was 

70°C and the rated water mass flow rate (kg/s) of each radiator was calculated using 

equation ( 5-6): 

 

 𝑚𝑚 = 𝐻𝐻/(𝐶𝐶𝑝𝑝 ∗ (𝑡𝑡𝑓𝑓 − 𝑡𝑡𝑟𝑟)) ( 5-6) 
 

Where: 

𝑚𝑚= rated water mass flow rate (kg/s) 

𝐻𝐻= rated capacity of radiator (W) selected from Table  3-3 according to the 

manufacturer’s data 

𝐶𝐶𝑝𝑝= specific heat capacity of water and was approximated as 4187 J/kg.°C for the 

purpose of calculating water flow in radiators 
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𝑡𝑡𝑓𝑓 = standard water flow temperature (°C) = 75°C 

𝑡𝑡𝑟𝑟 = standard water return temperature (°C) = 65°C 

The radiant fraction of the radiators is the portion of the power input transferred to 

the occupants and surfaces as radiant heat and was considered to be 0.3 for all the 

radiators according to Oughton & Hodkinson (2008). 

A constant speed pump was modelled for the circulating hot water supply loop of 

each house with a maximum loop flow rate of 0.00034 𝑚𝑚3/𝑠𝑠 and minimum loop flow 

rate of zero and a rated pump head of 6000 pa according to the specifications of the 

central heating pumps in the houses. The control type of the pump was selected as 

intermittent control. This enabled the modelled pump to shut down when no heating 

was required. When there was heat demand, the pump selected a flow rate 

somewhere between the maximum and minimum user defined flow rates in order to 

meet the heating requirements. Rated energy consumption of the pumps was left as 

“autosize” and default value of 0.9 was selected for the motor efficiency of the pumps 

as the electricity consumption of the houses was not studied in this research. 

All the pipes in the system were assumed to be adiabatic. There was no information 

available regarding the pipe run in the houses and obtaining more information 

required removing a large amount of the floor boards on the ground and first floors 

which was not possible to do in this work. 

The Programmable Room Thermostat (PRT) (see section  4.3) was modelled using 

the boiler operation availability schedule of DesignBuilder’s circulating hot water loop 

data. The radiators availability schedules were set to be always “on”. 

The default control strategy of a wet heating system in a multi zone building model in 

EnergyPlus and DesignBuilder is that each zone has its own room thermostat which 

could be scheduled to assign set-point and set-back temperatures throughout a day. 

However, this control strategy of the heating system is inherently different from the 

control strategy in houses with either CC or ZC where boiler operation was controlled 

by a PRT located in the hallway and set-point and set-back temperatures (only in ZC) 

for each room are applied by TRVs (in CC) or PTRVs (in ZC). Currently, there is no 

solution in DesignBuilder in order to better represent the control strategy in multi 



 

129 
 

zone houses with a PRT control over the boiler and overcome the problem 

discussed. However, Energy Management System (EMS) which is an advanced 

feature of EnergyPlus enables one to write custom programmes to describe specific 

control algorithms in a language called EnergyPlus Runtime Language (ERL) (US 

Department of Energy, 2013a). Such code could be added directly to the 

EnergyPlus’s IDF file to override the existing default control. An ERL code was 

initially written for this purpose which could be found in appendix A.2. The code was 

written in order to shut down the hot water supply from the boiler at any time step 

when the air temperature in the ground floor hallway (where PRT was located) 

increased above its set-point temperature of 21 °C. However, it was found that 

adding such code to better represent the control strategy requires accurate 

predictions of the air temperature. As it will be discussed in sections  6.3 and  6.4, it 

was not possible to accurately predict the hallway ground floor air temperature due 

to complexities involved with modelling the air flow between the ground floor and first 

floor hallways. Therefore, after running a number of simulations and compare the 

predictions with the default control strategy, it was decided not to use the ERL code 

as it could not increase the accuracy in this case when the air temperatures could 

not be accurately predicted. 

5.5 Modelling the occupancy 

There was no occupancy during the co-heating test. All the internal doors in the 

model were set 100% open while all the windows and external doors were set 100% 

closed as was the case throughout the co-heating test. All window blinds were 

modelled open for the whole simulation period as it was during the test. 

Modelling the occupancy for the HT1 was also straightforward as the synthetic 

occupancy presented was fully known. The electricity use measured in each zone 

was used to model the lighting and equipment gains in the modelled zone. The fan 

heaters used to represent heat gains in the kitchen were added as electric 

equipment with 100% convective heat. The oil filled radiators were also added as 

electric equipment but with a radiant fraction of 0.3. All the other lighting devices 

were added as lights with 0.42 radiant and 0.18 visible fractions. 
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All the external doors and windows were closed for the whole simulation period and 

the operation of the internal doors were set in the model according to their operation 

in real test houses described in section  3.3.5. Operation schedule of the window 

roller blinds were set according to their real schedule explained in section  3.3.5. 

5.6 Weather file Construction 

It is important that the weather parameters in the model represent the real weather 

conditions at the test houses during the experimental period for comparing the model 

predictions and the measured data from the experiments. The EnergyPlus weather 

converter programme was used to create weather files for the test periods. Hourly 

data derived from weather stations were: dry bulb temperature (ºC), dew point 

temperature (ºC), relative humidity (%), atmospheric pressure (pa), direct normal 

solar radiation (Wh/𝑚𝑚2), diffuse horizontal solar radiation (Wh/𝑚𝑚2), wind direction 

(degree), wind speed (m/s), total sky cover (tenth) and snow depth (cm).  

Weather parameters required were measured on site or sourced from either: the  

Centre for Renewable Energy Systems Technology (CREST) weather station at 

Loughborough University, 2 km from the test houses; Sutton Bonnington, 7.5 km 

from the test houses; or Nottingham Watnall (26 km from the test houses). Sutton 

Bonnington and Nottingham Watnall weather data for the period of experiments were 

sourced via MIDAS Land Surface Observation database at the British Atmospheric 

Data Centre (BADC) operated by the UK Meteorological Office (2012). 

Hourly dry bulb temperature was measured outside the test houses during all tests 

(see section  4.2). Hourly dew point temperature, wind speed, wind direction and 

humidity were sourced from Sutton Bonnington weather station. Cloud cover and 

atmospheric pressure data were sourced from Nottingham Watnall. Hourly Wind 

speed in Knots and the amount of cloud cover in Oktas13 were converted to m/s and 

tenths respectively. The following criteria were used to convert the amount of cloud 

cover in Oktas to tenth (BADC, 2014): 

 

                                            
13 Although cloud amount has been measured in eighths (or Oktas) since 1949 (BADC, 2014), EnergyPlus still 
uses the old format of cloud cover data (i.e. tenths of coverage). 
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Table  5-10: Conversion factors of cloud cover from Oktas to tenth 

Value in Oktas 0 1 2 3 4 5 6 7 8 

Equivalent value in tenths 0 2 3 4 5 6 8 9 10 

Direct Normal Radiation (DNR) is the amount of solar radiation in Wh/m2 received 

directly from the solar disk on a surface perpendicular to the sun’s rays; Diffuse 

Horizontal Radiation (DHR) is the amount of solar radiation in Wh/m2received from 

the sky (excluding the solar disk) on a horizontal surface, and the Global Horizontal 

Radiation (GHR) is the total amount of direct and diffuse solar radiation in 

Wh/m2received on a horizontal surface. 

Hourly GHR and DHR were measured at Centre for Renewable Energy Systems 

Technology (CREST) at Loughborough University and used to derive DNR. 

DNR can be calculated for each hour from GHR and DHR measurements using 

equation ( 5-7): 

 𝐷𝐷𝐷𝐷𝐷𝐷 =
𝐺𝐺𝐺𝐺𝐺𝐺 − 𝐷𝐷𝐷𝐷𝐷𝐷

cos (𝜃𝜃𝑧𝑧)
 ( 5-7) 

 

Where: 

 𝜃𝜃𝑧𝑧 = solar zenith angle and can be calculated using equation ( 5-8): 

 

 𝑐𝑐𝑐𝑐𝑐𝑐𝜃𝜃𝑧𝑧 = 𝑐𝑐𝑐𝑐𝑐𝑐∅𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 + 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 ( 5-8) 
 

Where: 

 ∅ = latitude for the location where the test houses were located. 

𝛿𝛿 = solar declination and can be calculated according to equation ( 5-9): 

 𝛿𝛿 = 23.45 sin �360 ∗
284 + 𝑛𝑛

365
� ( 5-9) 
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Where: 

 n = day of the year. 

𝜔𝜔 = solar hour angle which is the angular displacement of the sun east or west of the 

local meridian due to rotation of the earth on its axis at 15º per hour; morning 

negative, afternoon positive.  

In this research DNR was automatically calculated using the weather converter 

programme of EnergyPlus by inserting GHR and DHR. Snow depth was considered 

as zero since there was no snow on the ground during the period of the experiments. 

Table  5-11 summarizes the sources of weather data used in this study. 

Table  5-11: Summary of hourly weather parameters, their units and sources of data 

Parameter unit Source 

Dry bulb temperature ºC Measured locally outside the test houses 

Dew point temperature ºC Sutton Bonnington weather station  

Relative humidity % Sutton Bonnington weather station 

Global horizontal 

radiation 
W/𝑚𝑚2 

Measured at Loughborough university 

campus, CREST 

Direct normal radiation W/𝑚𝑚2 

Derived from global and direct normal 

horizontal radiation using EnergyPlus 

weather converter programme 

Diffuse horizontal 

radiation 
W/𝑚𝑚2 

Measured at Loughborough university 

campus, CREST 

Wind direction Degree Sutton Bonnington weather station 

Wind speed Knots Sutton Bonnington weather station 

Total sky cover Oktas Nottingham Watnall weather station 

Snow depth cm 
Considered as zero for the whole tests 

period 

Atmospheric Pressure 
Hecto 

Pascals 
Nottingham Watnall weather Station 

These parameters were inserted into a CSV file which then was imported in 

EnergyPlus weather convertor programme to generate the EPW file. Latitude, 

longitude and elevation of the test houses were found using Google earth (2015) and 
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inserted in a separate “definition” (.def) file. This definition file should be saved with 

the same name as the CSV file and is needed by the weather converter programme 

for the conversion process. 

5.7 Summary 

This chapter described the dynamic thermal modelling tools, techniques and the 

input parameters which were used to model the co-heating test and the space 

heating trial 1 (HT1). This included modelling the building envelope of the test 

houses, the air flow modelling strategies employed, the heating systems used during 

the tests and their control strategies as well as occupancy profiles. It also describes 

the method used to construct a weather file which was used to simulate the co-

heating test and the HT1 including the weather parameters used and their sources. 

The results from modelling the co-heating test and the HT1 will be compared in 

chapter  6. 
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6 Comparison of the DTM predictions and 
measurements: DTM calibration 

6.1 Introduction 

In this chapter, the results from modelling the co-heating test and HT1 are compared 

to the experimental results. Firstly, in section  6.2, the energy uses measured during 

the co-heating test are compared to those predicted using each air flow modelling 

strategy. Then in section  6.3 the measured and predicted energy uses and indoor air 

temperatures of the LMP1930 test houses during the HT1 are compared. Section  6.4 

describes the calibration procedure which was conducted to achieve a calibrated 

model. Finally, section  6.5 provides a summary of this chapter. 

6.2 Comparison for the co-heating test 

In this section, the measured energy use of the houses during the co-heating test are 

compared with the energy use predicted using the model with Scheduled Natural 

Ventilation (SNV) (section  6.2.1) and Air Flow Networks (AFN) (section  6.2.2). 

6.2.1 Model with SNV 

The total hourly electricity consumption predicted by the model for each house was 

compared to that measured during the 9 days of the co-heating test (Figure  6-1). The 

comparison showed that the predictions have a similar trend to the measurements. 

In both cases the electricity use decreases when the outdoor air temperature 

increases and vice versa. A strong negative relationship between the amount of 

hourly global horizontal solar radiation (W/𝑚𝑚2) and electricity use of the test houses 

was observed (Figure  6-2). During the daytime, when the solar radiation was at its 

peak, the energy consumption dropped to its minimum for that day. Generally, during 

the days when the solar radiation was higher, the outdoor air temperature was also 

higher and the energy consumption was lower compared to days when the solar 

radiation was lower. During the night, when there was no solar gain, the 

temperatures dropped and the amount of energy use was considerably increased. 
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In House 1, some discrepancies were found between the predictions and the 

measurements of energy use during days 7 and 8 where the model underestimated 

the energy use (Figure  6-1). The average wind speed during day 7 and day 8 were 

4.6 m/s and 3.2 m/s, respectively, compared to the average wind speed of 2.3 m/s 

for the rest of the co-heating period (Figure  6-3). Therefore, the discrepancies could 

be explained as when the wind speed is higher, the rate of heat loss through 

infiltration increases while the model assumed the same rate of infiltration regardless 

of the wind speed. 

For House 2, Figure  6-1 shows that the model slightly overestimates the energy use 

for the whole period. This is in line with the results of the co-heating test in 

section  3.3.6, where it was found that the total heat loss coefficient of the House 2 

was 5.6% lower than House 1. By assuming the same construction for both houses 

in the model, the predicted energy use of the house 2 was higher during the co-

heating test due to its lower total heat loss coefficient. It was important to model the 

houses with the same construction as it was not clear which parts of the fabric are 

responsible for the differences observed. It was unlikely that every part of the fabric 

contributed the same to the whole house better thermal performance. 
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Figure  6-1: Whole house hourly electricity consumption measured in House 1 and 2 

compared with the model prediction along with the hourly outdoor air temperature 

(SNV) 
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Figure  6-2: Whole house hourly electricity consumption measured in House 1 and 2 

compared with the model prediction along with the hourly global horizontal solar 

radiation (SNV) 
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Figure  6-3: Whole house hourly electricity consumption measured in House 1 and 2 

compared with the model prediction along with the hourly wind speed (SNV) 
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The infiltration rate of each zone in the ground and first floors was calculated by 

DesignBuilder as described in section  5.3.1 according to equation ( 5-2). The 

underlying assumptions of the calculation method were reflected in the results. 

Infiltration rate of the zones with more than one exposed surface including living 

rooms, hallway ground floors, kitchens, bedroom 2, unoccupied bedrooms and 

bathrooms were calculated as 1.3 ACH while this was calculated as 0.9 for the 

zones with only one exposed surface including dining rooms, bedroom 1, hallway 

first floors and WCs. The infiltration rates of the subfloors and the roof were 8.0 and 

2.7 ACH, respectively, as they were explicitly defined. 

The difference between daily electricity use predicted by the model and the 

measured daily electricity use varied from -6% to +1% for House 1 and from -1% to 

+8% for House 2 (Figure  6-4). On average, for the whole co-heating test period, the 

difference between daily electricity consumption predicted and measured was 0.1% 

and 4.8% in House 1 and 2, respectively. 
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Figure  6-4: Measured and predicted whole house daily electricity consumption in 

House 1 and 2 during the co-heating test (SNV) 
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The ASHRAE acceptance criteria for the calibration of building simulation models 

described in section  2.7.3 showed that the models of both houses met the 

requirements for both criteria of MBE and CVRMSE (Table  6-1). 

Table  6-1: MBE (%) and CVRMSE (%) calculated and their acceptable limit (co-

heating test with SNV) 

 House 1 House 2 Acceptable limit 

MBE (%) 0.9% 4.9% 10% 

CVRMSE (%) 5.4% 7.9% 30% 

6.2.2 Model with AFN 

The model was re-run using AFN instead of SNV. The predicted room by room 

infiltration rate and the whole house infiltration rate was not comparable to the model 

in SNV or measured results from the airtightness test. This was due to the different 

methodology of AFN for calculating air flows compared to SNV. In AFN, for each 

crack or opening in any exterior surface, the model predicts the air volume flow rate 

from outdoors to the thermal zone associated with that specific crack or opening. In 

addition, AFN reports the air volume flow rates in the reverse direction (i.e. from a 

thermal zone to outdoors). AFN also reports the air volume flow rates from each 

zone to its adjacent zones through interior surfaces (inter-zone air flow). These air 

volume flow rates in AFN are not constant like SNV and they change from one time 

step to another according to the variations in the wind and stack effects. 

In total, there were more than 200 cracks and openings in the LMP1930 model. 

Hourly air flows from outdoors to each zone (𝑚𝑚3/ℎ𝑟𝑟) was calculated as the sum of 

hourly air flows (𝑚𝑚3/ℎ𝑟𝑟) in the direction of outdoors to indoors through all the cracks 

and openings in all exterior surfaces of the zone. An average air infiltration rate (ach) 

for the co-heating test period was achieved for each zone by averaging the hourly air 

flows from outdoors to the zone divided by the volume of the zone. Similarly, an 

average exfiltration rate (ach) for the co-heating test was calculated for each zone 

considering the air flows in the reverse direction (i.e. from the thermal zones to 

outdoors). The average infiltration and exfiltration of each zone of the LMP 1930 test 

houses during the co-heating test period were reported in Table  6-2. 
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Table  6-2: Zone by zone average infiltration rate and exfiltration rate for the 

LMP1930 test houses calculated by AFN 

Zone 

 

House 1 House 2 

Average 
infiltration rate 

(ach) 

Average 
exfiltration rate 

(ach) 

Average 
infiltration rate 

(ach) 

Average 
exfiltration rate 

(ach) 

Living room 0.23 0.37 0.23 0.37 
Dining room 0.55 0.05 0.56 0.04 

Kitchen 1.65 0.25 1.2 0.4 
Hallway 2.02 0.18 1.54 0.26 

Hallway first floor 0.02 1.28 0 0.8 
Bedroom 1 0 0.6 0 0.6 
Bedroom 2 0 1.7 0 1.7 

Unoccupied room 0.15 2.15 0 2.3 
Bathroom 0.02 1.88 0 1.9 

WC 0 3.5 0 2.1 
Subfloor 21 0 21 0 

Roof 0 2.1 0 2.1 

As it can be seen from Table  6-2, the AFN predicted that the air was coming from 

outdoors to inside the building mainly through the subfloor air bricks and the ground 

floor cracks and openings. Average infiltration rates of near to zero for the rooms at 

the first floor and the roof, show that the amount of air which flows from outdoors to 

indoors through the first floor rooms and the roof is negligible. The air was mainly 

escaping to outside through the cracks in the exterior surfaces of the first floor and 

the roof. 

The AFN predictions of how the air was flowing in the LMP1930 houses during the 

co-heating test proved the significant effect of stack ventilation compared to wind 

induced ventilation. The indoor air at temperatures of about 25°C maintained during 

the co-heating test was considerably warmer and thus less dense than the colder 

outdoor air. This causes a significant pressure difference during the whole period of 

the co-heating test in which the air entering the building was continuously heated. 

The warm, less dense air which was trying to rise and escape from the cracks at 

higher levels of the building (i.e. first floor and the roof) was drawing the cold dense 

air into the cracks at the lower levels (i.e. subfloor and the ground floor) (Figure  6-5). 
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Figure  6-5: Schematic of the pressure distribution and the air flows in the LMP1930 

test houses during the co-heating test 

The energy use predictions by the AFN model were compared with the 

measurements in the same way as the predictions from the model with SNV 

(Figure  6-6). The AFN model underestimated the hourly electricity consumption 

during the whole co-heating test period for both houses. The calculated MBE and 

CVRMSE were higher than for the model with SNV (Table  6-3). However, the energy 

use predictions of the model still met the ASHRAE calibration criteria for both houses. 
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Figure  6-6: Whole house hourly electricity consumption measured in House 1 and 2 

compared with the model prediction along with the hourly outdoor air temperature 

(AFN) 
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Table  6-3: MBE (%) and CVRMSE (%) calculated and their acceptable limit (Co-

heating test with AFN) 

 House 1 House 2 Acceptable limit 

MBE (%) 9.0% 5.4% 10% 

CVRMSE (%) 10.7% 8.0% 30% 

Comparing the results of the models with SNV and AFN, it was concluded that in this 

case, AFN was better able to represent wind pressures and the stack ventilation 

effects. However, the magnitude of air flows and the overall building heat transfer 

was better represented by SNV based on the energy demand results. It was not 

possible to determine if this would also be the case for an intermittently heated 

building as in the HT1. Therefore, both air flow modelling strategies were employed 

to simulate the HT1 and the results compared. 

6.3 Comparison for the Heating Trial 1 

In this section, the measured and modelled energy demands (section  6.3.1) and 

indoor air temperatures (section  6.3.2) of the houses during the HT1 are compared 

and the potential reasons for any discrepancies are discussed. 

6.3.1 Comparison of the energy demands 

Daily boiler heat output measured during the HT1 was compared with model 

predicted daily boiler heat output using both air flow modelling strategies 

(Figure  6-7and Figure  6-8). In the house with ZC (Figure  6-7) the predicted daily 

boiler heat outputs with either of the air flow modelling strategies were lower than the 

measured daily boiler heat output for the majority of the days. For the whole HT1, the 

model with SNV under-predicted the total boiler heat output in the house with ZC by 

8% while the model with AFN under-predicted by 23%. 
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Figure  6-7: Measured and predicted daily boiler heat output during Heating Trial 1 in 

house with ZC 

In the CC house (Figure  6-8), model predictions were closer to the measured boiler 

heat outputs. As for the house with ZC, the model with SNV predicted higher daily 

boiler heat outputs than the model with AFN. The difference between the measured 

and predicted boiler heat demand in the house with CC was 0.5% and 11% for the 

models with SNV and AFN respectively. 
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Figure  6-8: Measured and predicted daily boiler heat output during Heating Trial 1 in 

house with CC 

Hourly analysis of the predicted and measured boiler heat outputs showed that none 

of the models could be considered calibrated according to ASHRAE hourly 

calibration criteria (Table  6-4). Although MBE (%) calculated for both houses were 

within the 10% limit for the model with SNV (8% and -0.4% for the house with ZC 

and CC respectively), they exceeded the limit for both houses using the model with 

AFN (23% and 11% for the ZC and CC house respectively). CVRMSE (%) calculated 

for both houses were above the 30% accepted limit using SNV and AFN. 

Table  6-4: MBE (%) and CVRMSE (%) calculated for each house and their 

acceptable limit using each air flow modelling strategy 
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Acceptable 
limit 

ZC House 
MBE (%) 8% 23% 10% 

CVRMSE (%) 35% 45% 30% 
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Lower energy consumption in rooms with a radiator was predicted by most building 

energy simulation programs tested by Lomas et al. (1997) in the International Energy 

Agency (IEA) report. 

The energy savings in boiler heat output of ZC predicted by the DTM with SNV and 

AFN were 26% and 21% respectively. These were considerably higher than the 

measured 14.5% and therefore further work was needed to understand the 

differences and calibrate the model. This was addressed in section  6.4. 

6.3.2 Comparison of the indoor air temperatures 

Measured and predicted indoor air temperatures were compared for each room of 

the house with ZC (Figure  6-9) and the house with CC (Figure  6-10). Outdoor air 

temperatures, and global horizontal solar radiation for the south facing rooms, were 

added to the plots to aid understanding. The heating on hours, heating off hours, 

occupied and unoccupied hours, set-point and set-back temperatures were indicated 

on each plot. These plots were inspected visually to identify repeating patterns of 

discrepancies between the measured and predicted air temperatures.  

The plots presented here were for the three consecutive days; two weekdays 

(Thursday 27 and Friday 28 February 2014), and one weekend day (Saturday 1 

March 2014) to include different heating schedules used at weekdays and weekends. 

The weekdays represent days with higher (Thursday) and lower (Friday) levels of 

solar radiation: the average daily global horizontal solar radiation for weekday 1 and 

weekday 2 were 116 and 52 W/𝑚𝑚2 respectively compared to the average of 95 W/𝑚𝑚2 

for the whole HT1.  Daily average outdoor temperature, global horizontal solar 

radiation and wind speed for the selected days and the whole HT1 period were 

presented in Table  6-5. 
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Table  6-5: Weather parameters for the selected days and the whole HT1 

Weather parameter Thursday Friday Saturday 
Whole 
test (28 
days) 

average outdoor temperature 

(°C) 
5.2 2.5 2.5 6.2 

average global horizontal solar 

radiation (W/𝑚𝑚2) 
116 52 94 95 

average wind speed (m/s) 4.6 2.8 1.5 3.8 
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Figure  6-9: predicted and measured indoor air temperatures of the house with ZC 

along with measured outdoor air temperatures and global horizontal radiation; 27 

Feb to 1 March 2014 
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Figure  6-10: predicted and measured indoor air temperatures of the house with CC 

along with measured outdoor air temperatures and global horizontal radiation; 27 

Feb to 1 March 2014 
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During the “heating on” hours, indoor air temperatures predicted using SNV and AFN 

followed a similar pattern to those measured in each room and in both houses. Air 

temperatures rise when the heating comes on, and with CC continued to increase 

until the set-point temperature was achieved (Figure  6-10). However, with ZC, when 

the room was not scheduled to be occupied, the air temperature only increased until 

the set-back temperature of the room was achieved (Figure  6-9). When the room 

was scheduled to be occupied, the room air temperature increased to its set-point 

temperature (Figure  6-9). This demonstrates that the heating schedules in the model 

were similar to those in the real test houses. However, discrepancies were observed 

between the predicted and measured hourly air temperatures which were persistent 

throughout the test period. These differences could be divided into two categories: 

differences during the” heating on” hours and differences when the heating was off. 

• Differences during “heating on” hours 

When scheduled to be occupied, living room air temperatures measured in both 

houses exceeded the nominal set-point of 21°C (Figure  6-9 and Figure  6-10) as the 

PTRVs and the TRVs did not maintain the room air temperatures accurately. 

Temperatures of up to 25°C were recorded during the evening hours when the door 

was closed and there was high level of internal heat gains. High temperatures were 

also recorded when there was high level of solar radiation. The measured radiator 

surface temperatures indicated that their heat output continued even when the 

rooms were above their set-point temperatures (see Figure  4-7). 

Similarly, temperatures achieved in the dining rooms of both houses were slightly 

higher than the nominal set-point temperatures assumed in the model when they 

were scheduled to be occupied and with internal heat gains and the doors closed. 

During the rest of the heating on hours, predicted dining room air temperatures were 

relatively close to those measured. 

The ability of TRVs to maintain a set-point temperature was found to vary between 

rooms. The measured and predicted air temperatures in bedroom 1 and 2 were 

similar in the house with CC, while slightly different in the house with ZC. 
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The unoccupied bedrooms were only heated when their air temperature dropped 

below 12°C. The doors were also always closed and the model using AFN better 

predicted air temperatures. 

Detailed operation of TRVs and PTRVs cannot easily be modelled in Design Builder 

or EnergyPlus. This could be a significant source of inaccuracy as this difference 

would affect the rate of heat transfer to adjacent rooms and outdoors as well as the 

accuracy of the predicted air temperatures. Therefore, better predicted air 

temperatures might be achieved during the heating on hours by changing the 

nominal set-points in the model to an average of the measured air temperature for 

each room. 

Solar gains also played a role in the differences observed between the predicted and 

measured air temperatures. The measured air temperatures in the south facing 

rooms with large windows (i.e. living room and bedroom 2) were higher than those 

predicted during sunny days (Figure  6-9 and Figure  6-10). Since the glazing and 

wooden frame area of the windows were accurately measured and inserted in the 

model as described in section  5.2.1, differences observed could be attributed to one 

or more than one of the following reasons: 

a) Solar transmittance of the glazing might be assumed low in the model. 

b) Solar absorptance of the floor might be assumed low in the model. 

(EnergyPlus assumes that all direct normal solar radiation entering a zone 

falls on the floor (US Department of Energy, 2012)). 

c) Ground reflectance values which are used to calculate the ground reflected 

solar radiation might be assumed low in the model. 

d) Differences between the amounts of solar radiation measured at weather 

station compared to actual on site solar radiation. 

e) Errors involved in measuring air temperature under high solar radiation using 

a thin layer of aluminium foil to protect the temperature sensor from direct 

solar radiation. 
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There were two unheated rooms in each house: kitchen and first floor hallway14. 

Predicted air temperatures in both of these rooms were found to be lower than the 

measured air temperatures during the heating on hours. In the two houses, the boiler 

was located in the kitchens and the pipes were uninsulated (Figure  6-11). The 

additional heat gains from the boiler casing and its associated pipe work were not 

included in the model. The heat loss from a boiler casing and associated pipe work 

and fittings could be considered to be about 2% of the boiler’s rated output (Vesma, 

2014). This would result in 600 W additional heat gains in the kitchens when the 

heating was on. 

 

Figure  6-11: Boiler and its uninsulated pipe work and the position of temperature 

sensor on a tripod in the kitchen of House 2 

The lower predicted air temperature of the hallway first floor compared to the 

measured air temperatures was believed to be due to the difficulties in modelling 

                                            
14 WCs were ignored in this analysis due to its relatively small floor area and the fact that their air temperatures 
were not measured during the HT1 

Temperature 
sensor 

Boiler 
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natural convection through the staircase which connected the ground floor and first 

floor hallways of each house. Both air flow modelling strategies could only very 

poorly represent the air flows through large horizontal openings. According to 

DesignBuilder’s help document, “the air flow between two floors connected by large 

horizontal openings (i.e. holes) could be only modelled “very approximately” when 

using the AFN”. According to EnergyPlus input output reference (US Department of 

Energy, 2013c), the AFN model is unable to model bi-directional flows through large 

horizontal openings at a given time step. 

Inaccuracies of modelling natural convection through staircase would also cause 

inaccuracies in predicted air temperatures of the ground floor hallway. The measured 

hallway air temperature of the house with ZC was below 21°C for most of the heating 

period (Figure  6-9) which was lower than model prediction. This could be explained 

as a large proportion of the heat emitted from the radiator in the ground floor hallway 

was transferred to the hallway first floor and its adjacent bedrooms (as well as colder 

rooms in the ground floor). In the house with CC (Figure  6-10), the hallway ground 

floor air temperature predicted and measured during the heating on hours were very 

close to the nominal set-point temperature of 21°C. This can be explained as in the 

house with CC, since the first floor rooms were also heated during the heating on 

hours, the rate of heat loss from the ground floor hallway to the first floor hallway was 

considerably lower than the house with ZC. 

One alternative method could be to consider the ground floor and first floor hallways 

as a single zone. However, according to EnergyPlus documentation (US Department 

of Energy, 2013c) AFN cannot model the air temperature stratification within a 

thermal zone which is the case if the hallway would have been considered as a 

single zone. Another alternative is to increase the air flow from the ground floor to 

the first floor by increasing discharge coefficient of the hole connected the two floors 

when using AFN or to increase the amount of air mixing between the ground floor 

and first floor when using SNV air flow modelling. 

• Differences during “heating off” hours 

When the heating turned off, the predicted air temperatures fell at a faster rate than 

was measured. This was true in all of the rooms, for both houses and regardless of 
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the air flow modelling method. The first potential reason could be higher fabric heat 

loss or higher infiltration heat loss assumed in the model. However, the model 

showed a reasonable prediction of the overall heat loss due to fabric and infiltration 

when modelling the co-heating test and overall, the predicted energy use was lower 

than the measured energy use in both houses regardless of the air flow modelling 

strategy. Therefore, reducing the fabric or ventilation heat loss would not improve the 

model. 

Figure  6-9 and Figure  6-10 show that predicted rates of heat up are also higher than 

measured. This could potentially be due to lower thermal mass in the model than in 

the real building. These fast heat up and cool down rates in rooms heated with 

radiators were similar to the findings of others. Zhai & Chen (2005) used 

experimental data from IEA annex 21/task 1215 reported by Lomas et al. (1997) to 

simulate natural convection in a room with an oil-filled radiator controlled via a PID 

controller. They found that the difference between the predicted and measured air 

temperatures of the room with a radiator were significant during the heat up and cool 

down. Similar findings were reported by Beausoleil-Morrison (2000). Figure  6-12 

which is adopted from Zhai and Chen (2005) shows the predicted and measured 

mean air temperature for the IEA test room with radiator for their study (a) and study 

by Beausoleil-Morrison (2000) (b). 

                                            
15 International Energy Agency (IEA) annex 21/task 12 was conducted for the purpose of empirical 
validation of building energy simulation programs 
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Figure  6-12: predicted and measured mean air temperature over a single day for the 

IEA test room with radiator for (a) study by Zhai and Chen (2005) and (b) study by 

Beausoleil-Morrison (2000) (Figure was reproduced from Zhai and Chen (2005)). 

Zhai and Chen (2005) argue that the higher rates of air temperature change 

predicted in the model is because of the dynamic behaviours of the radiators: the 

time delay as the water warms or cools when the heater is switched on or off cannot 

be represented. This causes the air to heat up much faster in the model than it does 

in reality. 
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To sum up, ten input parameters were identified as those which could have 

potentially influenced the discrepancies observed between the predicted and 

measured indoor air temperatures and will be investigated further: 

1. Set-point temperatures of the rooms in which the heating was controlled by 

TRV or PTRV 

2. Unaccounted heat gains in the kitchens from the boiler casing and pipe work  

3. The amount of air flow between the ground floor and first floor hallways 

4. Hallway zoning strategy 

5. Ground reflectance 

6. Solar transmittance of the glazing 

7. Solar absorptance of the floor materials 

8. Building fabric heat loss 

9. Infiltration heat loss 

10. Thermal mass 

6.4 Model calibration 

Indoor air temperatures and boiler heat outputs measured during the HT1 were used 

to calibrate the model. The calibration procedure consisted of three steps: 

1. Sensitivity analysis was conducted to evaluate the effects of the 10 parameters 

proposed in section  6.3.2 on improving the model’s predictions of energy use 

and indoor air temperatures. 

2. The parameters which had the potential to improve the predictions of both 

energy and indoor air temperature were adjusted in the base case model to 

generate a refined model.  

3. The refined model was assessed against the acceptance criteria for hourly 

calibration of building energy simulation models according to ASHRAE 

Guideline 14. In addition, the hourly indoor air temperatures measured and 

predicted were plotted and inspected visually as an additional check in order to 

identify any discrepancies. 

The calibration procedure was applied to two versions of the base case model: one 

using SNV, and one using AFN to model the air flows through the houses. Ten 
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variants for the LMP1930 test house model were constructed. For each variant, all of 

the model inputs were exactly the same as the base case model except for the one 

parameter being studied. This parameter was altered, within a reasonable range, to 

investigate if it improved the accuracy of energy use and indoor air temperature 

predictions. The ten variants are described below: 

Variant 1 was constructed to evaluate the effects of changing the set-point 

temperatures in the rooms in which the heating was controlled by TRV or PTRV: In 

ZC house, the nominal set-point temperatures assumed in the base case model was 

replaced with the average air temperature measured during the occupied hours in 

each room (Table  6-6). In CC house, the average air temperatures measured in 

each room during the heating on hours, except the first hour of each heating period 

(warm up periods) were replaced the nominal set-point temperatures. 

Table  6-6: Nominal and new set-point temperatures which were applied for variant 1 

Room Set-point temperature ZC (°C) Set-point temperature CC (°C) 

 Nominal New Nominal New 

Living room 21.0 22.1 21.0 23.0 

Dining room 19.0 20.3 19.0 20.1 

Bedroom 1 19.0 19.9 19.0 19.5 

Bedroom 2 19.0 19.0 19.0 19.0 

Bathroom 21.0 19.7 21.0 18.7 

Variant 2 was constructed to evaluate the effects of adding a heat emitter to the 

kitchen of the two houses in order to represent the kitchen heat gains from the boiler 

casing and its associated pipe work. A radiator was added with a rated capacity of 

600 W and was scheduled to be always on when the heating was on. 

Variant 3 was constructed to evaluate the effect of increasing the air flow between 

the ground floor and the first floor hallways. The discharge coefficient of the opening 

was changed from 0.65 to 0.72 (10% increase) for the version of the model which 

used AFN to model the air flows. For the version of the model which used SNV, the 

design flow rate between the ground floor and first floor hallway increased by 10%. 
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Variant 4 was constructed to evaluate the effect of modelling the ground floor and 

first floor hallways as a single zone instead of two separate zones.  

Variant 5 was constructed to evaluate the effects of higher ground reflectance by 

increasing the monthly ground reflectance of the model from 0.2 to its maximum 

value of 1.0. 

Variant 6 was constructed to evaluate the effects of higher solar transmittance of the 

glazing by increasing it by 10% from 0.837 to 0.92. 

Variant 7 was constructed to evaluate the effects of higher solar absorptance of the 

floor materials (i.e. carpet and timber floor) by increasing each of them by 10%. 

Variant 8 was constructed to evaluate the effects of lower building fabric heat loss. 

The conductivities of the two layers of external walls were reduced by 30% each. 

This resulted in a reduction of 17% in the U-values of the external walls. 

Variant 9 was constructed to evaluate the effect of lower infiltration heat loss. For 

the version of the model using AFN, the poor crack template was replaced by the 

medium crack template (Table  6-7 and Table  6-8). 

Table  6-7: New crack characteristics according to DesignBuilder’s “medium” crack 

template used in the variant 9 for walls, floors and the roof 

Building element 

Air mass flow 
coefficient (𝑪𝑪𝑸𝑸) 

(Kg/s.𝒎𝒎𝟐𝟐) at 1Pa 

Flow exponent (n) 

External walls 0.0001 0.7 

Internal walls 0.003 0.75 

Internal floors 0.0009 0.7 

External floors 0.0007 1.0 

Roof 0.0001 0.7 
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Table  6-8: New crack characteristics according to DesignBuilder’s “medium” crack 

template used in the variant 9 for the doors, windows and vents 

Building element 

Air mass flow 
coefficient (𝑪𝑪𝑸𝑸) (Kg/s. 

m) at 1Pa 

Flow exponent (n) 

External windows 0.00014 0.65 

External doors 0.0014 0.65 

Internal doors 0.02 0.6 

External vents 0.008 0.66 

For the version of the model which used SNV, the infiltration design flow rate of each 

room was decreased by 10%.  

Variant 10 was generated in order to investigate the effects of assuming higher 

thermal mass in the model on the predictions of energy use and indoor air 

temperature. The “Temperature Capacity Multiplier” object of EnergyPlus was used 

to increase the thermal capacitance of the air in every zone. It was used in previous 

studies (Huchuk, Brien & Cruickshank, 2012), to account for the thermal mass of 

room contents. However, the value used was not mentioned in their paper. The 

object was also used by German et al. (2014) for calibrating a model in which the 

temperatures responded too quickly to outdoor environmental changes. A 

“Temperature Capacity Multiplier” value of 15 was found in their study to improve the 

rate of change of indoor air temperature. In this study, it was found that a reasonable 

rate of air temperature change in the model could be achieved by using a 

“Temperature Capacity Multiplier” of 10 for the heavily instrumented houses. 

For all ten variant models MBE (%) and CVRMSE (%) for the hourly boiler heat 

output were calculated. In addition, the difference between the measured and 

predicted volumetrically weighted whole house average air temperatures (ΔTavg 

(°C)) was calculated (Table 6-9). For each case, the three indices were compared to 

the base case model: where a variant improved the prediction it was indicated by a 

tick mark and where it was not improved it was indicated by a cross mark. 
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For the model with SNV, none of the 10 variants improved the predictions of both 

energy and indoor air temperature. While this model could closely predict the energy 

use in the co-heating test, where all the zones were heated to very similar 

temperatures, it failed when the rooms were heated to different temperatures and the 

effects of natural convection were significant. 

For the model with AFN, three variants improved the predictions of both energy and 

indoor air temperatures: 1, 2 and 10. 
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Table  6-9: MBE (%), CVRMSE (%) and ΔTavg (°C) calculated for each case and 

each house using AFN and SNV 

Variant 

Model with AFN Model with SNV 

ZC house CC house ZC house CC house 

MBE 

(%) 

CVR

MSE 

(%) 

ΔTavg 

(°C) 

MBE 

(%) 

CVR

MSE 

(%) 

ΔTavg 

(°C) 

MBE 

(%) 

CVR

MSE 

(%) 

ΔTavg 

(°C) 

MBE 

(%) 

CVR

MSE 

(%) 

ΔTavg 

(°C) 

         =model improved                           =model not improved 

Base 
case 

 

23 

  

45 

 

1.8 

 

11 

 

44 

 

1.3 

 

8 

 

35 

 

2.2 

 

-0.4 

 

39 

 

1.8 

 

1 
20 
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43
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1.6
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8 

 

42
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 

6 
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2.1
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40
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1.4

 

2 
16 

 

40
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1.6

 

10 

 

43

 

1.2

 

13 

 

38

 

2.3 

 

2 

 
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 

1.6

 
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20 

 
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1.8
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44 
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 
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 
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 
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 
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Therefore, variants 1, 2 and 10 were combined using AFN to construct the refined 

model which improved the predictions of both energy and indoor air temperature 

(Table  6-10). 

Table  6-10: Comparison of MBE (%) and CVRMSE (%) and ΔTavg (°C) between the 

base case model and the refined model 

House 

Base case model Refined model 

MBE 

(%) 

CVRMSE 

(%) 

ΔTavg 

(°C) 
MBE (%) 

CVRMSE 

(%) 

ΔTavg 

(°C) 

ZC 23 45 1.8 3.8 22 0.9 

CC 11 44 1.3 3.9 28 0.5 

These results met the acceptance criteria for hourly calibration of building energy 

simulation models according to the ASHRAE Guideline 14: MBE calculated for the 

house with ZC and CC house were reduced to 3.8% and 2.9% respectively for the 

refined model which both were below the 10% limit outlined by ASHRAE guideline 

14; CVRMSE (%) of houses with ZC and CC were also reduced to 22% and 28% 

respectively which were both below the 30% acceptance limit. As can be seen from 

Figure  6-13 and Figure  6-14, the heating demand predictions were similar to those 

measured with a total difference of only 3.9% for both houses. The refined model 

predicted a reduction of 14.5% in heat demand for the house with ZC compared to 

the house with CC during the HT1, which is in exact agreement with the measured 

percentage of savings. 
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Figure  6-13: predicted daily boiler heat output against measured boiler heat output 

for the 28 days of HT: ZC 

Figure  6-14: predicted daily boiler heat output against measured boiler heat output 

for the 28 days of HT: CC 
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There was a reasonable agreement between the measured and predicted indoor air 

temperatures of each room (Figure  6-15 and Figure  6-16). The volumetrically 

weighted whole house average air temperatures predicted were 0.5 °C and 0.9°C 

lower than those measured for the house with CC and ZC, respectively. In addition, 

MBE (%) and CVRMSE (%) of the predicted volumetrically weighted whole house 

average air temperatures before and after calibration were calculated for both 

houses. MBE and CVRMSE for the house with CC were reduced from 7.3% to 3.1% 

and 9.8% to 6% respectively. MBE and CVRMSE for the house with ZC were 

reduced from 10% to 5.6% and from 11% to 6.9% respectively. 

The co-heating test model was re-run in order to test the implications of adding 

thermal mass to the energy use of the houses for the version of the model using 

AFN. It was found that MBE of House 1 and House 2 were reduced from 9.0 % and 

5.4% respectively, to 3.8% and 0.15%, respectively. CVRMSE of the two houses 

were also reduced from 10.7% and 8.0% to 7.0% and 5.8% respectively. This gave 

further confidence in the revised model. 
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Figure  6-15: Indoor air temperatures measured and predicted by the refined model 

for the ZC house along with measured outdoor air temperatures; 27 Feb to 1 March 

2014 
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Figure  6-16: Indoor air temperatures measured and predicted by the refined model 

for the CC house along with measured outdoor air temperatures; 27 Feb to 1 March 

2014 
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6.5 Summary 

This chapter compared the energy use and indoor air temperatures measured at the 

LMP1930 test houses during the co-heating test and HT1 with those predicted by 

DTM using two different air flow modelling strategies: Scheduled Natural Ventilation 

(SNV) and Air Flow Network (AFN). The base case model could reasonably predict 

the energy use of both houses for the co-heating test using both air flow modelling 

strategies. However, the predictions were better using SNV compared to the AFN. 

The base case model was not able to reasonably predict the energy use and indoor 

air temperatures of the test houses for the case of the HT1 using either of the two 

airflow modelling strategies. Differences between the measured and predicted 

results were investigated and potential parameters which could have contributed to 

the differences observed were identified. Sensitivity analysis was then conducted for 

these parameters and the parameters which could improve the predictions of energy 

use and indoor air temperatures were identified. 

Based on the results of the sensitivity analysis, a refined model was calibrated 

against the ASHRAE guidelines for hourly calibration of building simulation programs. 

The model could be considered calibrated only when using AFN and it did not meet 

the calibration criteria when using SNV. The calibrated model could closely predict 

the energy savings of ZC measured during the HT1. The model will be used in 

chapter 7 to predict the energy savings of ZC which could be achieved in homes in 

different UK regions or in better insulated homes. 
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7 Potential savings in other UK locations and 
better insulated houses 

7.1 Introduction 

This chapter discusses the implication of the findings for the annual energy savings 

potential of ZC in different UK houses. Firstly, in section  7.2, the empirical results 

from the heating trials were evaluated for houses built and occupied in a similar way 

to the test houses, but located in different regions of the UK. Then, in section  7.3, the 

evaluations in different locations were repeated using the calibrated DTM of the test 

houses constructed as described in chapters  5 and  6. Section  7.3 also explores any 

difference between the predictions of the empirical model and DTM model and 

discusses the potential reasons for the discrepancies observed. In section 7.4, the 

calibrated DTM is used and the potential savings of ZC in better insulated homes are 

investigated. Finally, section  7.5 provides a summary of the findings in this chapter. 

7.2 Evaluation of the empirical results for different UK 
locations 

7.2.1 Annual heating fuel and cost savings in different UK locations 

To extend the measured gas consumptions with CC and ZC to annual values, and to 

make an initial estimate of the effect of the weather in different parts of the UK, the 

results of the space heating trials were normalised and then evaluated using a 

Heating Degree Days (HDD) method. 

Firstly, the base temperature (Tbase) to be used for calculating the HDD was 

determined using the experimental results and then the relationship between the 

weekly HDD and the measured gas consumption was determined. This linear 

relationship was then used to estimate the weekly, and so annual, gas consumption 

for UK regions with different HDD. 
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7.2.2 Relationship between measured gas use and weather 
conditions 

The measured weekly gas consumption (WGC) during the trials was strongly 

correlated with the weekly average outdoor air temperature (T_wao) for both ZC and 

CC (see Figure 7-1, 𝑅𝑅𝑍𝑍𝑍𝑍2 = 0.72 𝑎𝑎𝑎𝑎𝑎𝑎 𝑅𝑅𝐶𝐶𝐶𝐶2 = 0.78). The linear relationship for the two 

control strategies was similar, but subtlety and importantly different. The regression 

lines indicate that for any average weekly ambient temperature below 13.4ºC, ZC will 

use less gas than CC. During the heating season, say September to April, the 

weekly average ambient is virtually always below 13.4ºC in all regions of the UK. It is 

also evident that the energy saved by ZC increases as the weekly average ambient 

temperature falls. 

The base temperatures of the houses, i.e. the external temperature at which no heat 

is needed, is the intercept with the x-axis of best fit line; this was 18.2ºC for ZC and 

17.3ºC for CC (Figure  7-1). However, the difference in intercepts is perhaps due to 

the limited range of weekly ambient temperatures, to which the two systems were 

exposed, leading to poor definition of the x-axis intercepts as reflected in Figure  7-1 

by wide 95% confidence intervals for both systems at the x-axis intercept. Thus, the 

same base temperature of 17.8ºC, which is the mean value of 17.3ºC and 18.2ºC, 

was selected as the base temperature for houses with both ZC and CC. However, 

the sensitivity of energy consumption predictions to the HDD base temperature was 

investigated using a lower base temperature of 15.5ºC and a higher base of 20ºC 

and this will be presented later. 
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Figure  7-1: Weekly gas consumption of the houses with ZC and CC against weekly 

average outdoor air temperature for 8 weeks of monitoring, best fit lines and 95% 

confidence intervals 

The base temperatures for CC and ZC were used to calculate the HDD during the 

heating trials (equation ( 7-1)). 

 

 𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊 𝐻𝐻𝐻𝐻𝐻𝐻 = �
(𝑇𝑇𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 − 𝑇𝑇𝑜𝑜𝑜𝑜𝑜𝑜)𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚((𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇−𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇)>0)

60 ∗ 24

𝑑𝑑𝑑𝑑𝑑𝑑 7 

𝑑𝑑𝑑𝑑𝑑𝑑 1

 ( 7-1) 

 

Where: 

 𝑇𝑇𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 = the base temperature for CC and ZC houses (i.e. 17.8ºC for this analysis) 

 𝑇𝑇𝑜𝑜𝑜𝑜𝑜𝑜= outdoor air temperature (ºC) measured outside the test houses 

The subscript shows that only positive differences are summed and if (𝑇𝑇𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 −

𝑇𝑇𝑜𝑜𝑜𝑜𝑜𝑜)𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 < 0 , then it is set to 0 for that minute in equation ( 7-1). 

ZC 
WGC = -40.4*(T_wao)  + 737.3 

R² = 0.72 

CC 
WGC = -50.0*(T_wao) + 866 

R² = 0.78 
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Weekly HDD were used in preference to daily HDD because different heating 

patterns were used for weekdays and weekends. The weekly gas consumption was 

then plotted against the weekly HDD for each control configuration. Least squares 

regression analysis was used to determine the equation of the performance line.  

There was a strong correlation between the 8 measured weekly gas consumption 

measurements and the weekly HDD for both ZC and CC (Figure  7-2, 𝑅𝑅𝑍𝑍𝑍𝑍2 = 0.73 

and 𝑅𝑅𝐶𝐶𝐶𝐶2 = 0.79). If the regression was forced through the origin, the correlation 

remained strong and the change in gas consumption per unit change in HDD was 

very similar (ZC - 6.03kWh/HDD, 𝑅𝑅𝑍𝑍𝑍𝑍2 = 0.73; CC - 6.85kWh/HDD , 𝑅𝑅𝑐𝑐𝑐𝑐2 = 0.79).  

 

Figure  7-2: Measured weekly gas consumption plotted against calculated weekly 

HDD for the houses with ZC and CC 

7.2.3 Effect of different UK locations 

The performance lines (as in Figure  7-2 and not forced through the origin) were used 

to estimate the likely gas consumption for ZC and CC as if houses were built and 

occupied in a similar way to those measured, but were located in different regions of 

the UK.  The HDD were calculated for seven UK regions using the base 
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temperatures of 17.8ºC, for the heating months, October to April. To achieve this, 

“typical weather year” data from the International Weather for Energy Calculations 

(IWEC) (ASHRAE, 2001) were used for each region: London, the East of England, 

the West Midlands, Yorkshire, the Northwest, Northern Ireland and Scotland.  

The calculated energy use for heating with each system shows that, regardless of 

the location, for the particular house and occupancy tested, ZC saves 11.8-12.5% of 

annual gas consumption for heating compared to CC (Table  7-1). 

In order to explore the sensitivity of the results to different base temperatures, the 

calculations were repeated with a lower base temperature of 15.5ºC, as this is often 

used by convention for UK homes (CIBSE, 2006b) and also with 20.0oC, which, 

given the set-point temperature of 21oC would seem to be a plausible maximum 

value. The relationship between weekly gas consumption and weekly HDD was 

determined with these new base temperatures and the energy use recalculated. The 

regression coefficients with the new base temperature of 20oC were very similar to 

those achieved with a base temperature of 17.8oC. However, for the base 

temperature of 15.5oC the regression coefficients were much poorer (𝑅𝑅𝑍𝑍𝑍𝑍2 = 0.55, 

𝑅𝑅𝐶𝐶𝐶𝐶2 = 0.63). However, it can be seen that the energy savings of ZC is not very 

sensitive to the base temperature selected (Table  7-1). 

To estimate the impact on annual space heating costs, the Department of Energy 

and Climate Change (DECC, 2012b) energy & emissions projections central 

scenario for residential gas prices was used (Figure  7-3). 

 

Figure  7-3: projected residential gas prices between 2014 and 2028 (DECC, 2012b) 
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A discounted cash flow analysis was conducted, using a modest discount rate of 5%, 

to calculate the Net Present Value (NPV) after 15 years (assumed lifespan of the 

system) of upgrading a same size house with conventional heating controls to zonal 

heating control in each of the 7 regions. The zonal heating kit is a recently developed 

commercial system and therefore the life span of the system is not exactly known, 

however, a typical normal TRV has a life span of 15 years and therefore a life span 

of 15 years was assumed for the programmable TRVs as well. The cost of batteries 

with a life span of two years was included in the total price of the system. The 

Internal Rate of Return (IRR), which stays the same regardless of the discount rate, 

was also calculated for each region as it is an indication of the discount rate 

necessary to pay back the investment within the 15 years. Two ZC systems with 

different capital costs were considered for the calculation of NPV: a ‘Luxury type 1’ 

ZC system with a touch screen central controller (which costs £1200 including 

installation costs) and a ‘basic type 2’ ZC system with no central controller in which 

PTRVs need to be programmed individually by the household (which costs £120).  

The calculations show that, 15 years after upgrading to the Luxury ZC system, 

houses in Scotland will have a positive NPV while the houses in all other regions will 

have a slightly negative NPV with the houses in more Southern regions having larger 

negative NPVs (Table  7-1). This indicates that ZC is a more profitable energy 

efficiency measure for the homes in the colder more northerly parts of the UK. The 

IRR calculations show that discount rates of up to about 6% is imaginable for the 

house in Scotland, whereas the upgrade to luxury ZC would only be financially 

worthwhile in London at discount rates of below 3.5% (Table  7-1). In contrast, if 

households buy the basic ZC system, which is 10 times cheaper than the luxury 

system, they can save about £1000 (present value) after 15 years, regardless of the 

location of their house (Table  7-1). 

Calculations using the base temperature of 15.5oC and 20oC show that the NPV and 

IRR are sensitive to the base temperature selected. This is due to the fact that NPV 

and IRR are dependent on the actual kWh of gas saved when using ZC rather than 

the percentages of gas savings. It was found that considering a base temperature 

lower than 17.8oC, results in lower annual space heating energy use for both 

systems, thus lower kWh gas saved by ZC and correspondingly lower NPV and IRR 



 

180 
 

while using a higher base temperature results in exactly opposite results. However, 

irrespective of the HDD base, ZC was found to be a more cost effective measure in 

Northern regions of the UK based on the empirical approach discussed. 

Table  7-1: Estimated gas use for heating the test house, with the same occupancy, 

in seven different regions of the UK, using either ZC or CC and, the NPV, IRR or 

financial savings, for both a basic and a luxury ZC systems 

Region 

(Weather 

station) 

Annual 

heating 

energy use 

CC1 

(kWh) 

Annual 

heating 

energy use 

ZC1 

(kWh) 

Reduction in 

heating 

energy use 

(%) 

NPV after 

15 years: 

Luxury 

system2 

(£) 

IRR 

Luxury 

system3 

(%) 

NPV after 

15 years: 

Basic 

system2 

(£) 

London 

(Gatwick) 
15685 

14884, 15950 

13839 
13217, 14053 

11.8% 
11.2% , 11.9% 

-£109 
-£214, -£79  

3.4% 
1.8%, 3.9%  

£971 
£866, £1001 

East of 
England 

(Hemsby) 

15696 
14875,15963 

13848 
13210, 14064 

11.8% 
11.2%, 11.9% 

-£108 
-£216, -£77 

3.4% 
1.8%, 3.9% 

£972 
£864, £1003 

Northwest 
(Aughton) 

15805 
14973, 16073 

13936 
13286, 14152 

11.8% 
11.3%,11.9% 

-£95 
-£203, -£65 

3.6% 
2.0%, 4.1% 

£985 
£877, £1015 

West 
Midlands 

(Birmingham) 

16354 
15460, 16623 

14379 
13667, 14596 

12.0% 
11.6%, 12.2% 

-£33 
-£140, -£2 

4.5% 
2.9%, 5.0% 

£1,047 
£940, £1078 

Ireland 
(Belfast) 

16374 
15471, 16642 

14395 
13675, 14611 

12.1% 
11.6% , 12.2% 

-£30 
-£139, £0 

4.6% 
3.0%, 5.0% 

£1,050 
£941, £1080 

Yorkshire 

(Finningley) 
16507 

15604, 16774 
14503 

13780, 14718 

12.1% 
11.7%, 12.2% 

-£15 
-£121, £15 

4.8% 
3.2%, 5.2% 

£1065 
£959, £1095 

Scotland 

(Aberdeen) 
17346 

16334,17616 
15180 

14349 ,15397 

12.5% 
12.1% ,12.6% 

£80 
-£27, £111 

6.1% 
4.6%, 6.6% 

£1,160 
£1053, £1191  

Calculated based on HDD base temperature of 17.8ºC in large regular fonts; Calculated based on 

15.5ºC and 20.0ºC in small italic font. 

1 For a typical weather year with heating months being October to April.  
2 Based on Department of Energy and Climate Change (DECC, 2012b) energy & emissions 

projections central scenario for residential gas prices and discount rate of 5% 
3 Based on the life span of 15 years for TRVs 
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7.3 Evaluation of the DTM results for different UK locations 
and comparison with empirical evaluation 

A calibrated DTM of the LMP1930 test houses which could reasonably predict the 

potential savings from ZC compared to CC during the HT1 was constructed as 

discussed in chapters  5 and  6. In this section, this model was used to investigate the 

effects of weather in different regions of the UK on potential annual space heating 

energy savings of ZC. These results were then compared with the results of the 

empirical approach described in section  7.2. 

The typical weather year data used in the empirical work were also used with the 

DTM for the same seven UK regions: London, the East of England, the West 

Midlands, Yorkshire, the Northwest, Northern Ireland and Scotland. The same 

heating season was also considered: from 1st of October to end of April. The heating 

season averages of air temperature, wind speed and global horizontal radiation in 

each region are presented in Table  7-2. Each simulation took more than 1 hour to 

complete (computer used: HP ProBook 6460b, 2.5 GHz processor, 4.0 GB RAM) 

due to the complexity of the model and AFN calculations. 

Table  7-2: Average air temperature, wind speed and global horizontal radiation in 

each region during the heating season 

Region 
Average air 

temperature (°C) 

Average wind 

speed (m/s) 

Average global 

horizontal solar 

radiation (Wh/𝑚𝑚2) 

London 6.74 3.3 64.9 

East of England 6.73 5.8 65.0 

Northwest 6.65 4.5 59.7 

West Midlands 6.3 4.0 66.7 

Ireland 6.28 5.1 55.8 

Yorkshire 6.2 4.5 59.5 

Scotland 5.65 5.1 54.0 

Annual gas use of the LMP1930 test houses predicted by the DTM was compared to 

annual gas use estimated by the empirical model (Table 7-3). For all the regions, the 
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annual gas use of both houses with CC and ZC predicted by the DTM was more 

than the annual gas use estimated by the empirical model. The difference between 

the annual gas use of the house with CC predicted by DTM and empirical model 

varied from 8.3% in London to 15.0% in the East of England. For the house with ZC, 

this difference varied from 6.4% in London to 16.9% in Scotland. 

The differences found between the predicted energy use by the empirical model and 

DTM could be explained due to their different methodology for estimating the annual 

gas use. The HDD method used in the empirical model took into account only the 

outdoor air temperature for predicting the annual energy use. Therefore, as it can be 

seen in Table  7-2 and Table 7-3, as the average air temperature decreased from 

region to region, the estimated annual gas use by the empirical model increased for 

both houses. In case when two regions had very similar average air temperatures 

(for example London and the East of England) (Table  7-2), the gas use predictions 

by the empirical model was also very similar (Table 7-3). However, this was not the 

case for the DTM. For example, although London and the East of England had about 

the same average air temperature during the heating season (Table  7-2), DTM 

predicted 7.3% more energy use for the house with CC and 9.6% for the house with 

ZC for the East of England compared to the houses in London. Since their average 

global horizontal solar radiations were also very similar (Table  7-2) for these two 

locations, this could be explained due to considerably higher average wind speed in 

the East of England (5.8 m/s) compared to London (3.3 m/s). 

Another example could be observed when comparing the North West and the West 

Midlands regions. The air temperature was on average colder in the West Midlands 

by 0.35°C (Table  7-2). However, the average wind speed was lower by 11% and the 

average global horizontal solar radiation was higher by 10% compared to the 

Northwest. Since, the empirical model only considered the outdoor air temperature; it 

predicted higher annual gas use for house with CC in the West Midlands compared 

to the house with CC located in the Northwest. However, DTM which took into 

account the effects of wind speed and solar radiation predicted slightly higher annual 

gas use in the house with CC in the slightly warmer but windier and less sunny 

region; The North West. 
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As discussed, the effects of wind speed and solar radiation on the estimation of 

annual gas use were not considered in the empirical model. Therefore, the DTM 

have the advantage to take into account the variations of the solar radiation and the 

wind speed from region to region and could potentially provide more robust 

estimations. 

Although the absolute amount of gas use predicted by the empirical model and DTM 

were up to 17% different, the predicted percentage of energy savings from applying 

ZC was closely matched between the two approaches for all the regions. While the 

empirical approach predicted the energy savings to vary from 11.8% to 12.5% 

among different regions of the UK, the DTM model predicts that to vary from 10.7% 

to 13.6%. The largest difference between the predicted percentage savings from ZC 

by empirical model and DTM was 1.8 pp which was found for the warmest and 

coldest regions (i.e. London and Scotland). This is remarkably close prediction 

especially when considering the differences between the two methodologies and the 

uncertainties involved in both models.  

As discussed in section  7.2.3, the empirical model predicted that as we move 

towards the more northerly regions of the UK, the percentages of savings slightly 

increases. However, the difference between the percentages of savings from ZC in 

the warmest and coldest region (i.e. London and Scotland) was below 0.3 pp.  DTM 

did not show such trend. In contrast, percentages of savings often predicted lower in 

more northerly regions of the UK. For example, the percentage savings in London 

were 2.9 pp higher than in Scotland.  

These differences between the two model predictions prevent any conclusions been 

drawn on the effect of UK location on the potential savings. However, the effect of 

UK location was found to be small by either the empirical model or the DTM. More 

importantly, both models showed that ZC could save more than 10% of annual gas 

use in a typical un-furbished 1930s house regardless of the UK location. 
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Table  7-3: Total annual gas use for house with ZC and CC and annual percentages 

of savings by ZC in different regions of the UK predicted by DTM and Empirical 

Model (EM) and their differences 

 
Annual gas use (KWh) CC Annual gas use (KWh) ZC % Savings from ZC 

Region Empirical DTM 
% diff 
(DTM-
EM)1 

Empirical DTM 
% diff 
(DTM-
EM)1 

Empirical DTM 

London 15685 17106 8.3% 13839 14781 6.4% 11.8% 13.6% 

East of 

England 
15696 18468 15% 13848 16351 15.3% 11.8% 11.5% 

Northwest 15805 17994 12.1% 13936 15566 10.5% 11.8% 13.5% 

West 

Midlands 
16354 17985 10.0% 14379 15745 9.5% 12.1% 12.5% 

Ireland 16374 19227 14.8% 14395 16980 15.2% 12.1% 11.7% 

Yorkshire 16507 18468 11.9% 14503 16398 13.1% 12.1% 11.2% 

Scotland 17346 19870 14.6% 15180 17741 16.9% 12.5% 10.7% 
1 Percentage difference between the predictions of energy use by DTM and Empirical Model (EM) 

The cost analysis conducted using the same approach as discussed in section  7.2.3, 

but based on the energy savings predicted by DTM suggests that ZC is a cost 

effective retrofit measure across all the UK regions particularly when the basic 

system is employed (Table 7-4). The highest NPV after 15 years was found in the 

Northwest (£235 for the luxury and £1315 for the basic system) and the lowest was 

found in the Yorkshire (£24 for the luxury and £1104 for the basic system). In 

contrast with the empirical approach, DTM did not show clear relationship that 

suggests if the houses in the South or the North could be more financially benefited 

from installing the system. 
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Table  7-4:  NPV, IRR or financial savings for both a basic and a luxury ZC systems 

calculated for seven different regions of the UK based on modelling results for the 

un-furbished houses 

Region 

(Weather station) 

NPV after 15 years: 

Luxury system2 

(£) 

IRR Luxury 

system3 

(%) 

NPV after 15 years: 

Basic system2 

(£) 

London 

(Gatwick) 
£174 7.4% £1254 

East of England 

(Hemsby) 
£51 5.73% £1131 

Northwest 
(Aughton) 

£235 8.3% £1315 

West Midlands 

(Birmingham) 
£124 6.7% £1204 

Ireland 

(Belfast) 
£128 6.8% £1208 

Yorkshire 
(Finningley) 

£24 5.3% £1104 

Scotland 
(Aberdeen) 

£59 5.8% £1139 

 

7.4 Implications for better insulated homes 

To explore how savings might change in a better insulated house, the building 

envelope of the LMP1930 house was upgraded in the DTM. The following changes 

were made to the model: 

• The air gap between the two layers of the external walls was filled with XPS 

Polystyrene (Table  7-5). This reduced the U-value of the external walls from 

1.666 to 0.392 W/𝑚𝑚2𝐾𝐾. 

• 300 mm of mineral wool insulation was added to the roof construction, on top 

of the first floor ceiling (Table  7-5). This reduced the U-value of the ceiling 

(calculated by DesignBuilder) from 3.1 to 0.13 W/𝑚𝑚2𝐾𝐾. 
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• All the windows were replaced by double glazed windows with 6 mm clear 

glass sheets and 13 mm air between the glass sheets. This reduced the U-

value of the windows from 5.9 to 2.67 W/𝑚𝑚2𝐾𝐾. 

• Changing the windows would also improve the air tightness. As described in 

section  5.3.2, when using AFN, the length of the cracks are fixed (i.e. around 

the perimeter of the windows) and could not be changed without changing the 

sizes of the windows. However, the air flow coefficient (kg/s. m crack at 1 pa) 

could be changed to reflect the lower air leakage from the new double glazed 

windows. Therefore, the flow coefficients of the cracks around the windows 

which were adopted from DesignBuilder’s “poor” template for the un-furbished 

model were changed to those for DesignBuilder’s “good” template. This meant 

that the flow coefficients were changed from 0.001 to 0.00006 kg/s. m crack 

at1 pa. 

Table  7-5: Thermal properties of the insulating materials used in the refurbished 

model 

Material Conductivity  
(W/m. K) 

Density 
(kg/𝑚𝑚3) 

Specific heat 
capacity (J/kg. K) 

XPS Polystyrene 0.034 35 1400 

mineral wool; stone wool rolls 0.04 30 840 

The revised DTM predicted reduced annual gas use in all the regions as expected. 

The annual gas use of the house with CC was reduced by between 42% and 47% 

across different regions (Table  7-6). Similarly, the annual gas use of the house with 

ZC was reduced by between 42% and 46% (Table  7-6). The percentage of savings 

from refurbishment for houses with CC and ZC were very similar for each region. For 

both houses, the savings were higher in London and the West Midlands (45 to 47%) 

and lower in Scotland (42%). 

To test the reliability of model predictions, the results were compared with those from 

another modelling tool: the Standard assessment procedure (SAP) (BRE, 2014). The 

house with CC was modelled in London and Scotland before and after refurbishment 

as SAP does not enable the modelling of ZC. The SAP model predicted 50% and 46% 

of savings after refurbishment for the house in London and Scotland respectively. 
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These were slightly higher than the predictions by the DTM; though remarkably close 

and in the same direction (i.e. higher savings after refurbishment in London 

compared to Scotland). Previous research by Yilmaz et al. (2014) had also shown 

that SAP tends to overestimate the percentages of savings which could be achieved 

by applying different refurbishment measures compared to EnergyPlus. This result 

adds confidence to the findings from the DTM. 

The percentage savings of gas use from applying ZC predicted by DTM was found to 

be lower in the better insulated house compared to the un-furbished house in all the 

regions (Table  7-6). However, the percentage of savings from ZC was reduced more 

in the warmer regions (for example 2pp in London) compared to the colder regions 

(for example 0.2pp in Scotland) after refurbishment. The percentages of savings 

from applying ZC in the better insulated house were found to range from 9.3% in the 

East of England to 11.8% in the Northwest. The results from the model showed that 

considerable amounts of energy which is used for space heating could be saved 

even in refurbished (better insulated) UK houses and in all regions; although to a 

less extent compared to un-furbished houses. 

Table  7-6: Annual gas use and percentages of savings from refurbishment for ZC 

and CC houses for different regions of the UK along with percentage of savings from 

ZC after refurbishment and its differences compared to the savings in un-furbished 

house  

Region 

Annual 

gas use 

(KWh) 

CC 

% Savings 

from 

refurbishment 

Annual 

gas use 

(KWh) 

ZC 

% Savings 

from 

refurbishment 

% 

Savings 

from ZC 

pp difference 

in savings 

from ZC 

compared to 

un-furbished 

London 9028 47 7981 46 11.6 -2.0 
East of 

England 10306 44 9351 43 9.3 -2.2 

Northwest 10026 44 8842 43 11.8 -1.7 
West 

Midlands 9788 46 8672 45 11.4 -1.1 

Ireland 10791 44 9756 43 9.6 -2.1 
Yorkshire 10300 44 9235 44 10.3 -0.9 
Scotland 11551 42 10334 42 10.5 -0.2 
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The cost analysis which was conducted similar to the case of un-furbished houses 

suggests that a luxury ZC system would not be a cost effective retrofit measure for 

homes when refurbished similar to this study (Table  7-7). NPV after 15 years for all 

the seven regions were negative; ranging from -£481 in Scotland to -£635 in the East 

of England. IRR was also negative for all the regions for the luxury system which 

shows that the investment is not profitable. However, a basic ZC system would still 

be a cost effective measure across all UK regions even after refurbishment as it was 

confirmed by positive NPV across all the regions. 

Table  7-7:  NPV, IRR or financial savings for both a basic and a luxury ZC system 

calculated for seven different regions of the UK based on DTM results for better 

insulated houses 

Region 

(Weather station) 

NPV after 15 years: 

Luxury system2 

(£) 

IRR Luxury 

system3 

(%) 

NPV after 15 years: 

Basic system2 

(£) 

London 

(Gatwick) 
-£581 -4.5% £499 

East of England 

(Hemsby) 
-£635 -5.6% £445 

Northwest 

(Aughton) 
-£500 -3.0% £580 

West Midlands 

(Birmingham) 
-£540 -3.7% £540 

Ireland 

(Belfast) 
-£588 -4.7% £492 

Yorkshire 

(Finningley) 
-£570 -4.3% £510 

Scotland 

(Aberdeen) 
-£481 -2.6% £599 

7.5 Summary 

In this chapter, two models were used: 

(a) An empirical model which was developed using the HDD method based on 

the data measured over the 8-week period of the space heating trials; and  
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(b) A calibrated DTM which was created as described in chapters 5 and 6. 

They were used to predict the annual energy savings which could be achieved by 

applying ZC instead of CC in houses built and occupied in similar way to the 

LMP1930 but located in different UK regions. 

The empirical model predicted that: 

• ZC could save 11.8% to12.5% of the annual space heating gas use compared 

to the CC regardless of the geographical location. 

• The amount of savings is likely to be more in Northern regions of the UK. 

The DTM model predicted that: 

• ZC could save 10.7% to13.6% of the annual space heating gas use compared 

to the CC regardless of the geographical location.  

• There is no clear relationship between the potential energy savings of ZC and 

the geographical location of the house. 

The differences between the predictions of DTM and empirical model were 

considered to be due to their different level of details incorporated in the 

methodology of the two models. 

The DTM was also used to predict the savings for better insulated homes with cavity 

and loft (attic) insulation and double glazing instead of single glazing located in 

different regions. DTM predicted that savings from ZC would be slightly (between 0.2 

to 2.2 percentage points) lower in a better insulated house across all the regions. 

It was found that ZC is a profitable energy efficiency measure for both un-furbished 

and refurbished UK homes across all the regions when a cheap basic system is 

employed. 
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8 Discussion and future work 

8.1 Introduction 

Saving energy in the residential sector and in particular heating energy is essential to 

achieve the UK’s 2050 carbon emissions reduction target. In recent years, 

development and deployment of new space heating control strategies, which could 

enable households to more efficiently control the delivery of heat, has commanded 

the attention by the academics, industry and the government. In the UK, two-zone 

space heating control has become mandatory for new homes, and the effect of time 

and temperature zone control has been considered in the UK government’s 

Standard Assessment Procedure (SAP) for the energy performance assessment of 

dwellings. Zonal space heating control (ZC) using programmable TRVs is one of 

such emerging systems and allows households with low pressure wet central heating 

systems to heat only the occupied spaces of their house instead of all the spaces 

and therefore potentially save energy. A range of such products is currently available 

on the UK market. The systems are easy to retrofit making them a valuable energy 

efficiency measure provided the claimed energy savings can be realised in practice.  

Prior to this research, there was no peer reviewed published literature to indicate 

how much energy ZC might save in UK homes. Without such information, 

households could only rely on the claims of the manufacturers which could be 

misleading. A reliable and repeatable method has therefore been developed to 

measure the energy saving potential of a ZC system compared to a conventional 

control (CC) system. The results from the measurement campaign are discussed in 

section  8.2. A Dynamic Thermal Model (DTM) was then used to predict the savings 

in the same house. The model was calibrated using the measured data. The findings 

from the DTM analysis are discussed in section  8.3. The potential for energy savings 

with ZC was then assessed for different UK houses using an empirical model based 

on the measured data and the DTM and their predictions were compared. The 

results are discussed in section  8.4. Finally, section  8.5 provides a summary of this 

chapter. 
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8.2 Measuring the energy savings potential of ZC in a UK 
home 

To the best knowledge of the author, this is the first study that directly measured the 

impacts of ZC on energy use and indoor air temperatures in UK houses. The side-

by-side comparison method adopted for the space heating trials is a powerful 

technique by which the effects of home energy efficiency measures on building 

energy use and thermal comfort can be independently assessed whilst controlling for 

the effects of the other influential factors, such as the outdoor weather, occupant 

behaviour and heating system characteristics. The method enables relatively small 

differences in energy demand caused, for example, by energy efficiency measures, 

to be identified.  Although this method was used in the late 1970s and 1980s, for 

example in a couple of studies by the UK Building Research Establishment (BRE) 

(Rayment et al. 1983 and Rayment & Morgan 1984), the method has rarely been 

used since. A literature review showed that lack of such comparisons was one of the 

main factors which limited the availability of consistent evidence on the energy 

savings potential of new space heating controls (Munton et al. 2014). The lack of 

recent studies is believed to be because paired full-size test facilities are not widely 

available; they can be expensive to construct or buy, the creation of synthetic 

occupancy regimens is expensive and time consuming, and the need to match the 

buildings can take time and effort. Pairs of old un-furbished homes, as used in the 

trials reported here, are very hard to find and secure for research purposes. 

Much effort was put into matching the two existing, un-furbished, 1930 houses, at 

Loughborough (LMP1930) by using the same heating systems and synthetic 

occupancy equipment and profiles, minimizing the effects of different morning and 

afternoon solar gains and by switching the space heating control strategies between 

the two space heating trials. However, although the houses showed remarkably 

close thermal performance during the characterisation tests, they cannot be 

considered to be 100% matched due to factors which could not be controlled such as 

the wind effects on the East and West facades and small inherent differences in their 

constructions. 



 

192 
 

The need to record occupants’ behaviour when measuring the energy saving 

potential of heating controls was encouraged by recent studies (Munton et al. 2014). 

However, synthetic occupancy can eliminate the variability in the behaviour of people, 

which can dominate patterns of domestic energy demand. It also allows measures 

that are intrusive or potentially damaging to property or occupants. Examples of such 

disruptive measures in this study were using wired thermistors in every room, 

installing heat flow meters to measure boiler heat outputs, and insulating the 

windows in the East and West facades. However, health and safety concerns may 

constrain the behaviours that are simulated. For example, turning on and off gas 

ovens and hobs, the automatic opening and closing of doors can pose dangers when 

researchers are working in the house and the operation of outside windows and 

doors can compromise security.  

A number of assumptions were made in undertaking the experiments which place 

caveats on the generality of the results. First of all, a single occupancy profile was 

considered based on the time use data (ONS, 2002). However, the way occupants 

behave in their houses can be very different from this. For example, it was assumed 

that the occupants close the doors of the living room, dining room and bedrooms 

when they are ‘occupied’. This is perhaps the best scenario for saving energy with 

ZC while maintaining comfort as it minimizes the heat transfer from occupied rooms 

to other rooms. In reality, the occupants might not wish to change their internal door 

opening habits, even if they know it is the best way to get the most benefit from ZC. 

The effect of different internal door opening behaviours on the energy savings by ZC 

is a useful area for future research. 

The trials assumed a household with two working adults and two children, occupying 

all the rooms except one, who heat their home intermittently. It was found that ZC is 

likely to provide the greatest benefits with intermittent heating rather than continuous 

heating. This suggests that, if a house is occupied by a household that spends most 

of its time in a heated house, then ZC would save less energy. However, if that 

household tended to occupy only one or two rooms, rather than the whole house, 

then this could increase the energy savings from ZC. Future work is needed to 

consolidates the findings of this study and further investigate the effects of occupants’ 

space use on the energy savings potential of ZC. 
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In this study, houses could achieve adequate fresh air by infiltration through the 

leaky fabric and so window opening was not mimicked. In practice, however, people 

may choose to open windows or trickle vents even in winter, for example at night in 

occupied bedrooms.  The additional heat loss may extend the time needed to 

achieve comfort temperatures after the heating has switched on, thus reducing the 

benefits of ZC. In addition, it would further reduce the (already low) night time 

bedroom air temperatures when the heating is off and so could cause thermal 

discomfort. 

The already complex, expensive and time consuming instrumentation curtailed the 

use of equipment for the detailed assessment of thermal comfort. Thus, indoor air 

temperature was taken as a proxy for thermal comfort. However, thermal comfort is 

better assessed using operative temperature, which combines air temperature and 

mean radiant temperature (MRT) (CIBSE, 2008). Although the difference between 

MRT and air temperature is usually small in well insulated homes, it is likely to be 

greater in thermally massive buildings which are intermittently heated. Further work 

is needed to better understand thermal comfort implications of ZC in different types 

of homes. 

The forgoing discussion has indicated where there is scope for further useful work in 

LMP1930 or similar test houses to explore different occupancy schedules, heating 

regimes and thermal comfort measures. There are, however, matters that might 

more usefully be explored in other facilities or by other types of study. For example, 

this study only examined the potential savings from a house with a heating system 

that already complied with the building regulations. If houses have poorly controlled 

heating systems, i.e. no TRVs, or even no thermostat (PRT), then applying ZC could 

save considerably more energy. Moreover, this study used type 2 ZC systems in 

which the boiler operation is controlled using a master room thermostat. The 

consequences of the boiler control mechanism used by type 1 ZC systems (in which 

each PTRV can call for heat) on the energy savings and boiler efficiency needs 

further investigation. 

The 11.8% gas savings achieved by ZC compared to CC in the LMP1930 were 

based on data collected over an 8-week period and were only reliable for houses of 

the same size, type, thermal mass and thermal efficiency and under the same 
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weather conditions. The space heating trials did not measure the annual gas savings, 

or savings in refurbished houses or those located in different UK regions. Conducting 

longer or larger field trials was not possible in this work. However, even in large field 

trials, results are limited only to the homes and households from which the data are 

gathered. Therefore, dynamic thermal modelling was employed to explore the 

performance of ZC more thoroughly. 

8.3 Dynamic thermal modelling and calibration of a UK 
home with ZC 

This is believed to be the first study in which a DTM has been used to simulate zonal 

space heating control with actual measured data being used to calibrate the model. 

DTM allow the performance of energy efficiency measures to be investigated. 

However, a large number of inputs are required to construct a model, and these are 

often very difficult to measure and unavailable even for well characterised buildings. 

Input parameters are assumed by the modeller and simplifications are inevitable. 

The documentations provided with DTMs provide guidance on the values that can be 

used, or assumptions that can be made by modellers. However, the guidance is 

often very general, insufficient or unsuitable for a particular building. Hence, the 

modeller’s art is to make the “best guess” for the missing parameters in absence of 

any rigorous measured evidence. The inaccuracies of the assumed parameters are 

a major contributor to the inaccuracies of the DTM’s predictions and the differences 

between the predicted and measured performance of buildings, known as the 

“performance gap”.  

A number of assumptions were made when constructing DTMs to simulate the co-

heating test and space heating trials which their potential implications on the results 

should be carefully considered. For example, the party wall cavity was modelled as a 

partition wall. However, there is evidence in literature (Lowe et al., 2007) which 

shows significant heat losses from air movement through the party wall cavities. 

Since the overall heat loss from each house matched the measured heat loss in the 

co-heating test, this would suggest that the model over-predicted the heat loss by 

other means (e.g. conduction through external walls or infiltration) to compensate for 

the unaccounted heat loss through the party wall cavity. In addition, this would 

suggest that the model under-predicted the heat loss through the rooms adjacent to 
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the party wall and as a result over-predicted the heat loss from other rooms to match 

the predicted overall heat loss to those measured. However, in this work, it was not 

possible to measure the heat loss from individual rooms and future work is needed to 

support more evidence. 

A futher example of model simplifications is that chimneys and chimney breasts were 

not explicitly modelled. Although, passive air vents located at original fire places 

were sealed to minimise the air flows through chimney breasts, still air could have 

been escaping through small cracks. This could result in higher heat loss via 

infiltration in rooms which had a chimney compared to the predicted infiltration heat 

loss when chimney breasts were not considered. On the other hand, chimneys are 

non-insulated ventilated cavities which could potentially have insulating effect and 

therefore reduce the heat loss through the party wall. Reduced fabric heat loss and 

increased infiltration heat loss would have cancelling effect considering the overall 

heat loss of the room. In addition, the model without chimneys did not consider the 

thermal mass of the bricks used in construction of the chimneys which is believed to 

be relatively small compared to the rest of the house. To accurately model existing 

buildings, reconciliation of the model predictions with the known, measured, 

performance, which is known as model calibration, is essential. Such calibration 

provides greater confidence in a model’s predictions. Using test house facilities with 

synthetic occupancy instead of real occupied homes greatly assisted the process of 

model construction and calibration. It eliminated the uncertainties in model inputs 

related to occupancy, which determine the operation of doors, windows and window 

blinds as well as the time, location and magnitude of the equipment heat gains. In 

addition, the characteristics of the heating system components and their operation, 

including the heating regimes and nominal set-point and set-back temperatures, 

were fully known. In this research it was also possible to undertake whole house 

characterisation tests and use these to calibrate the DTM’s representation of the 

buildings’ envelope. This is not practical in occupied houses as it needs the houses 

to be vacated for a long period. 

Modelling the performance of the houses when they were subject to a co-heating 

test, in which all the spaces of the house are continuously heated to the same 

temperature, was significantly easier than modelling multi-zone, intermittently used, 



 

196 
 

wet heating systems. The base case model created in EnergyPlus showed 

reasonable predictions of the energy use in both houses when the co-heating test 

was simulated. However, when Heating Trial 1 (HT1) was simulated using the 

calibrated building envelope model, the model could not predict the energy use and 

indoor air temperatures with reasonable accuracy. The predicted energy saving of 

ZC was considerably higher than the measured savings. This clearly shows the risks 

involved in trusting predictions of complex models without rigorous calibration of the 

model using actual measured data. 

Achieving a good model of the intermittently heated multi-zone house controlled by 

ZC was difficult. One of the main challenges was to model the air flows in the 

building. Both simplified, and a more detailed air flow modelling strategy was tested 

and each had its own advantages and disadvantages. A Scheduled Natural 

Ventilation (SNV) method which included defining the infiltration rate to each room, 

could not model the wind and buoyancy driven air flows but it did allow the use of the 

measured whole house air tightness value in the model. The simplified assumption 

of SNV that equal amounts of air are exchanged between zones was found to be a 

good approximation when all the zones were heated to the same temperature. 

However, in this study, SNV was found to be unsuitable for modelling the air flows in 

the house with ZC. For this case, inter-zone heat transfer via natural convection was 

better represented using an Air Flow Network (AFN). Although AFN provides a more 

detailed approach, it requires a large number of model inputs particularly envelope 

leakage and wind pressure coefficients which are difficult to measure even in test 

facilities. A standard blower door test provides no information regarding the 

distribution of air leakage paths, the ventilation rates in individual zones or inter-zone 

air flows. These can, in principle, be determined using tracer gas techniques or by 

conducting a number of air tightness tests using more than one fan (Liddament, 

1996). Multi-tracer gas techniques have also been previously used to determine the 

air exchange between zones. However, according to Liddament (1996), 

“Measurements using more than three tracers are rare and the practical maximum is 

probably restricted to five. This limits the number of zones in which measurements 

can be made”.  Increasing the number of zones in a ZC house would cause the 

instrumentation and computer controlled feedback and injection system required for 
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these methods to become extremely complex and bulky16. Given these difficulties, it 

was not possible to calibrate the AFN. In fact, except for a very limited number of 

validation projects, reconciliation of measurements with an AFN model has not been 

done with “any degree of scientific rigor” (Armstrong, Hadley, Stenner, et al., 2001). 

This could place caveats on accuracy of the room-by-room infiltration rate 

predictions as well as inter-zone air flows. However, it should be noted that although 

the predicted heat loss via infiltration or heat losses from individual rooms could not 

be tested, the overall heat loss from the houses was in good agreement with the co-

heating test. Developing improved methods which could measure the air flows in the 

buildings is essential for rigorous calibration of multi-zone dynamic thermal models. 

It was also difficult to reliably model the thermal effects of intermittent heating. 

Intermittent heating requires prediction of heat up and cool down rates, which are 

highly dependent on accurate modelling of a building’s thermal inertia as well as 

other parameters such as heating power and internal heat gains. Thermal inertia is a 

measure of the responsiveness of materials to variations in temperatures and 

includes the mass of the building envelope as well as partitions, furniture, equipment, 

etc. inside the building (Pupeikis, Burlingis & Stankevičius, 2010). These parameters 

are difficult to measure and accurately account in thermal models.  

The radiator model in EnergyPlus is not able to model the dynamic behaviour of 

radiators (i.e. the time delay as the water warms or cools when the radiator is 

switched on or off) which resulted in much higher rates of heat up and cool down 

being predicted by the model than were measured. Because of this modelling error, 

it was difficult to accurately predict the air temperatures of the rooms during the 

periods of rapid changes in the load (i.e. when the heating was switched on or off). 

Others such as Booten & Tabares-Velasco (2012) have made similar observations. 

Future work is needed in this area. Accurate prediction of indoor air temperatures 

during the heat up periods would be particularly beneficial for the studies looking at 

thermal comfort in intermittently heated buildings. Without this ability, DTMs might 

not be able to realistically predict occupants’ thermal comfort during the early hours 

of occupancy. 

                                            
16 Liddament (1996) suggest the maximum number of zones that can be injected with gas is approximately ten. 
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Another challenge was to realistically model the performance of the Programmable 

Thermostatic Radiator Valves (PTRVs). Currently the operation of the PTRVs cannot 

be modelled in DTMs. The nominal set-point and set-back temperatures used in the 

base case model failed to realistically represent the variations observed in the room 

air temperatures during the heating hours. This was partially because the PTRVs 

were unable to maintain the nominal set-point temperatures in most of the rooms. 

This was worse when a room had closed doors or when high levels of internal heat 

gains were present in the room. It was due to the poor sensation of the air 

temperature of the room by the temperature sensors located on the PTRV heads 

which would be influenced by the heat from the radiators or other heat sources. 

Therefore, in this study, the mean air temperature measured during the occupied 

hours was used as the set-point temperature of each room for the purpose of model 

calibration. However, some discrepancies inevitably remained between the predicted 

and achieved air temperatures during the heating hours.  

Modelling the operation of PTRVs is important for accurate predictions of energy 

demand and indoor air temperatures. Future research should be focused on 

implementing realistic TRV and PTRV operation in DTM tools. In addition, 

manufacturers should produce PTRVs which are able to receive temperature 

information from an external temperature sensor which is located in a position that 

better represents the mean room air temperature. Meanwhile, studies which aim to 

measure the energy savings which could be achieved by efficient space heating 

control systems could benefit from using a heating system in which the nominal set-

point temperature is accurately achieved and maintained, perhaps using electrical 

heating. Electrical heating would also allow the heat input to each zone to be 

accurately and easily measured which would be beneficial for validation purposes. 

Limitations and underlying assumptions in DTM tools also caused difficulties for 

reconciliation of the measured and predicted energy use and indoor air temperatures. 

For example, the AFN poorly represented the natural convective heat transfer via air 

flow through horizontal openings such as staircases. This was important as it did not 

allow accurate predictions of the air temperatures in the ground floor and first floor 

hallways. The ground floor hallway is where the master thermostat which controls 

the boiler operation is often located.  Accurate prediction of the air temperature is 



 

199 
 

essential for modelling heating systems with a master thermostat (such as type 2 ZC 

systems) as used in this study. Without accurate prediction of the air temperature of 

the zone with the master thermostat, EnergyPlus’s Energy Management systems 

(EMS) could not improve the accuracy of the model predictions. Future work is 

needed to develop DTM tools which can accurately model the air flows through 

horizontal openings and allow heating systems with a master thermostat to be 

accurately modelled. 

The core assumption of the heat balance equation in the multi-zone thermal models 

such as EnergyPlus is that zone air is well mixed with a uniform temperature 

distribution. This simplified assumption cannot reflect reality well because the room 

air temperature will vary throughout the room due to the various heat gain and 

stratification effects. In this study, the measured air temperature in the volumetric 

centre of each room was assumed to reasonably represent the room mean air 

temperature. However, using more than one temperature sensor in each room could 

have given more confidence in this assumption. Therefore, the comparison which 

was made between the measured and predicted room air temperatures should be 

only considered approximate. In recent years a number of advanced numerical 

models such as zonal models (Megri & Haghighat, 2007) have been developed and 

in very limited cases they were integrated into multi-zone DTMs in order to increase 

the accuracy of air temperature predictions within a zone. In addition, in a limited 

number of studies, computational fluid dynamics which is a more complex and 

computationally intensive method for simulating fluid flow, has been employed and 

integrated with DTM tools for this purpose (Negriio 1998, Beausoleil-Morrison 2000, 

Bartak et al. 2002 and Tan & Glicksman 2005). However, more work is needed in 

this area. 

Differences in the weather file used in the model and the actual weather conditions 

during the tests also contributed to the discrepancies between the model predictions 

and the measured data. Except for the outdoor air temperatures, none of the input 

parameters used in the weather file was measured on site. Data was collected from 

three different weather stations which were between 2 to 26 km away from the 

houses. In particular, on site measurements of solar radiation could have been 

beneficial as discrepancies were observed between predicted and measured indoor 
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air temperatures during the hours of high solar radiation. Global horizontal radiation 

can be measured on site using a pyranometer (Kotti, Argiriou, & Kazantzidis, 2014). 

However, it is more difficult to measure direct horizontal radiation which is measured 

using a pyranometer positioned horizontally on support equipped with an adjustable 

device such as a shadowband or shade disk that blocks the direct component from 

the sensor (Kotti et al., 2014). Future calibration studies should be designed to 

collect as many of the weather parameters as possible on site with particular 

attention to solar radiation data. 

Of course, the precision of all the measurements made in the houses depends on 

the accuracy of the monitoring devices (as indicated in chapter 4) and the 

measurement methods adopted. This would also contribute to a part of the 

discrepancies between predictions and measurements. 

Plotting room-by-room hourly air temperatures and inspecting the discrepancies 

between the measured and predicted values proved to be a useful method for 

identifying potential reasons for discrepancies between the measured and predicted 

performance. Combining this method with sensitivity analysis, which is a well 

established technique, would form a powerful procedure to assist with the calibration 

of multi-zone dynamic thermal models. 

Despite the difficulties in calibration, a DTM of test houses could reasonably predict 

the energy use and indoor air temperatures during the first heating trial. The model 

predicted a very similar ZC gas savings to that actually measured. The model was 

validated according to the criteria recommended in ASHRAE guideline 14 (ASHRAE, 

2002) for the hourly calibration of building simulation models. The model was then 

used to predict the savings in different regions of the UK and for a better insulated 

home. 

8.4 Predicting the energy savings potential of ZC in 
different UK houses 

Two different models were employed to predict the annual gas savings of ZC 

compared to CC in houses in different UK regions. Each model has its own 

advantages and disadvantages.  The empirical model which was based on a Heating 
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Degree Day (HDD) analysis had substantial benefits over other simplified methods 

that use mean outdoor temperatures to calculate energy demand such as BSEN ISO 

13790 (BSI, 2004) since the “HDD method accounts for fluctuations in outdoor 

temperature and can capture extreme conditions in a way that mean temperature 

methods cannot” (CIBSE, 2006b). The model developed was based on relationships 

found between the weekly gas use and the average outdoor air temperatures of 

each house during both space heating trials. Therefore, the empirical model’s 

predictions did not directly take into account other influential factors such as solar 

radiation and wind. DTM is significantly more detailed and allows the effects of wind 

and solar radiation to be accounted in model predictions. However, DTM has its own 

limitations as discussed in section  8.3. 

Employing two models for evaluation of the results was a powerful technique which 

allowed inter-model comparison in order to find confidence in the model predictions. 

The empirical model predicted that the energy savings by ZC would be greater in 

colder regions. It predicted that the annual gas savings of ZC varies from 11.8% in 

the warmest UK region (i.e. London) to 12.5% in the coldest region (i.e. Scotland). In 

contrast, the DTM did not show a trend for higher gas savings in colder regions. In 

fact, it showed lower savings in Scotland (10.7%) compared to London (13.6%). 

Since the results from the two models were not in agreement, this study was not able 

to conclude whether ZC would be more suitable for colder climates or warmer 

climates. Both models were based on data collected during a short winter period 

which did not include many warm days. This increased the uncertainty in the models 

used to extrapolate the measurements to warmer periods of the year and to other 

locations. Further trials, in milder weather conditions are needed to further 

investigate the effect of weather on the potential savings of ZC. 

The evaluation using the DTM showed that the energy savings which could be 

achieved by ZC in a better insulated home would be slightly lower than for poorly 

insulated homes. It was estimated that ZC could save between 9.3 to 11.8% of 

annual gas use in a better insulated home across the UK regions. Findings were in 

line with previous forecasts by Utley & Shorrock (2008) that argued savings from 

heating certain spaces instead of the whole house could be higher for a house with 

poor levels of insulation while it would be lower for a well-insulated house where heat 
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transfer from the heated spaces can often achieve the comfort temperatures 

throughout the house. There was a tendency for more reduction in the potential 

savings of ZC after refurbishment of the houses in warmer regions compared to 

houses in colder regions. For example, the annual gas saving of a house with ZC in 

London was estimated to reduce from 13.6% to 11.6% after refurbishment while it 

was only reduced from 10.7% to 10.5% for the house in Scotland. However, the 

reduction after refurbishment was small across all the regions (between 0.2 to 2.2 

pp). More work using a DTM is needed to investigate the effects of different 

interventions on the potential energy savings of ZC. 

Despite the fact that the empirical model and DTM were not in agreement regarding 

the effect of different UK region on the energy savings, both models predicted that 

ZC is able to save between 10-14% of annual gas use regardless of the UK location 

for the particular house and occupancy tested. In addition, the percentage of savings 

would not drop below 9% in any region even after the house was refurbished. This 

clearly shows that retrofitting of ZC to existing houses in the UK offers an opportunity 

for reducing energy demand for space heating. It is also much easier, cheaper, 

faster and non-disruptive for the households (but less energy efficient) than other 

retrofit measures such as external wall insulation, double glazing etc. The cost 

analysis also shows that upgrading to ZC could be a good investment for homes in 

the UK, especially when purchasing the cheaper basic system. However, the 

cheaper system does not have a user friendly interface with a touch screen central 

controller. This might influence how much households actually get involved with the 

control of their heating system and could shrink the potential cost savings of 

installing such systems. Large field trials are essential to investigate the occupants’ 

interaction with ZC systems. 

8.5 Summary 

In this chapter, the results from the experimental, dynamic thermal modelling and 

evaluation campaigns have been discussed. The advantages of using test house 

facilities with synthetic occupancy rather than real occupied homes have been 

presented. On the other hand, this approach limits the generality of the results to 

other houses in other locations with different fabric energy efficiency. Areas for future 
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work in similar test houses to further develop our understanding of the potential 

energy savings of ZC have been outlined.  

The results of comparing predicted and measured energy use and indoor air 

temperatures during the heating trials have been discussed and the importance of 

model calibration prior to wider scale evaluation was argued. The difficulty of 

creating reliable multi-zone DTMs of houses with ZC have been presented and some 

limitations of current dynamic thermal modelling tools that could be be addressed in 

future work have been noted.  

Finally, the strengths and weaknesses of the empirical and predictive evaluation 

techniques used in this study have been discussed. The results predicted by both 

techniques, for houses in different UK locations have been compared and the 

reasons for any discrepancies explored. 
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9 Conclusions 

9.1 Introduction 

In this thesis, the potential energy savings from using zonal space heating controls 

instead of conventional space heating controls in a UK home have been investigated 

and quantified. This was achieved by completing the three objectives. Firstly, a pair 

of test houses were instrumented and shown to be well matched in thermal 

performance using a side-by-side co-heating test. The houses were then automated 

to replicate the impacts of an occupant family (two adults and two school aged 

children). Over a winter period, the energy use and indoor air temperatures of the 

two houses were measured when the space heating had Conventional Control (CC) 

in one house and ZC in the other house. The control strategies were swapped half 

way through the test in order to avoid any differences between the thermal 

performances of the two houses. Then, a dynamic thermal model (DTM) of the same 

houses with the same occupancy pattern was constructed and calibrated against the 

measured data. Finally, the results from the experimental work and the DTM were 

evaluated and the potential energy savings of ZC in different UK climates or in better 

insulated homes was investigated. This chapter summarises and concludes the main 

findings from each of the three components of this study and provides 

recommendations based on this research.  

9.2 Measuring the energy savings potential of ZC in a UK 
home 

Zonal control heating was compared with conventional control in a matched pair of 

1930s -era UK semi-detached houses with synthetic occupancy over an 8-week 

winter test period (16 February to 21 April 2015; including 9 days in which the test 

was stopped due to equipment failure and swapping the control strategies). It was 

found that: 

• Daily boiler heat output of the house with ZC was lower than in the house with 

CC on every single day of the tests. On average, over the test period, ZC, 

compared to CC, provided a 14.1% reduction in measured boiler heat output.  
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•  ZC reduced the average daily boiler efficiency by 2.4 percentage points.  

• The resultant effect was that ZC produced an 11.8% saving in gas 

consumption over the 8-week monitoring period, compared with CC.  

• The average air temperature in all of the rooms, and on average for the whole 

house, was lower with ZC than with CC during: the whole day, the period 

when the heating system was on, and the period when the heating was off. 

There was little or no reduction in the average air temperature in rooms while 

they were occupied and the occupants were awake, although during sleeping 

hours bedroom temperatures were up to 1.8ºC cooler on average with ZC. 

The average air temperatures of bedrooms in both houses during the sleeping 

period were below the air temperatures recommended by CIBSE.  

• The average gas saving of ZC was found to be higher during the intermittently 

heated weekdays rather than the weekends when the houses were heated for 

longer periods. 

• The PTRVs did not maintain their nominal set-point temperatures in most of 

the rooms as the average air temperature measured during the occupied 

period when the heating was on was different than the nominal set-point 

temperatures. 

9.3 Dynamic thermal modelling and calibration of a UK 
home with ZC 

A DTM of the test houses was constructed and the co-heating test and heating trial 

were simulated using two different air flow modelling strategies: Scheduled Natural 

Ventilation (SNV); and an Air Flow Network (AFN). Comparing the predicted energy 

use and indoor air temperatures with those measured during the tests revealed that: 

• Both air flow modelling strategies were able to reasonably predict the energy 

use of the test houses under the co-heating test. However, for this case 

study, the simple SNV strategy provided energy use predictions which were 

closer to the measured energy use compared to when AFN was used. 

However, this does not provide definitive evidence on which of the two air 
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flow modelling strategies would be more accurate or appropriate considering 

the assumptions and limitations incorporated in each approach. 

• For the case of the heating trial, the energy use and indoor air temperatures 

predicted by the DTM prior to calibration were poor using either of the two air 

flow modelling strategies.  

• Achieving a well calibrated DTM of an intermittently heated multi-zone house 

with a wet central heating system controlled by ZC was very difficult. This 

was due to: difficulties in accurately modelling air flows in the houses; 

limitations of the current dynamic thermal modelling tools such as difficulties 

in modelling the PTRV operation; underlying assumptions within the DTM 

regarding the fully mixed air temperature in a zone; inaccuracies of the 

measurements; and the availability of important model inputs. 

• Hourly comparison of the measured and predicted indoor air temperatures 

and sensitivity analysis were found to be useful techniques for the calibration 

of the multi zone DTMs. 

9.4 Predicting the energy savings potential of ZC in 
different UK houses 

The potential savings from ZC for houses in different UK regions were calculated 

using an empirical heating degree day (HDD) method and also using the calibrated 

DTM. The empirical model suggested that: 

• Regardless of geographic location, ZC, in houses built and occupied in a 

similar way to the test houses, could save about 11.8% to12.5% of the annual 

space heating energy, compared to CC. 

• ZC is potentially a more cost-effective measure in Northern regions of the UK, 

compared with Southern regions. However, the financial costs and benefits of 

upgrading from CC to ZC are subject to many uncertainties. 

The calibrated DTM suggested that: 
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• Regardless of geographic location, ZC, in houses built and occupied in a 

similar way to the test houses, could save about 10.7% to13.6% of the annual 

space heating energy, compared to CC. 

• There is no clear relationship between the potential energy savings of ZC and 

the geographical location of the house. 

• The DTM was also used to predict the savings for the houses after installing 

double glazed windows and insulating the cavity wall and the loft (attic) space. 

The DTM predicted that savings from ZC would be between 0.2 to 2.2 

percentage points lower after refurbishment across all the regions. This was in 

agreement with the forecasts of previous studies. 

The differences between the predictions of DTM and empirical model were believed 

to be because: 

• The simplified HDD method employed in the empirical model only took into 

account the outdoor air temperature as the factor which determined the gas 

use while the more detailed DTM considered other influential parameters such 

as solar radiation and wind speed. 

• Development of the empirical model and validation of the DTM model were 

based on data collected during a short winter period which did not include 

many warm days. This increased the uncertainty when extrapolating to 

warmer periods of the year and to other locations. 

9.5 Overall conclusions and recommendations for future 
work 

Annual gas savings of ZC compared to a house heated conventionally is in the range 

of 10-14% for a typical un-insulated 1930s UK family home. ZC is likely to save more 

energy in un-insulated and intermittently heated homes compared to refurbished, 

continuously heated homes. ZC could be considered as a cost effective energy 

efficiency measure for UK homes in all regions particularly when cheaper ZC 

systems are employed. Further studies in the Loughborough matched pair homes 

are suggested to enable the effects of different occupancy and heating schedules on 
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energy savings to be investigated. Further work, using a dynamic thermal model 

calibrated against data which is measured for long period including warmer periods, 

will enable the energy saving potential of zonal control to be explored more fully.
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A.1 Appendix 1: Blower door test reports 

A.1.1 House 1 

 

Figure A-1: Blower door test report for House 1 
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A.1.2 House 2 

 

Figure A-2: Blower door test report for House 2 
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A.2. Appendix 2: EMS Code for boiler control 

! Boiler thermostatic control of 207 house 

EnergyManagementSystem:Sensor, 

   Hallway_Air_Temperature207,     !- Name 

   GroundFloor:Hallway207,       !- 

Output:Variable Index Key Name 

   Zone Mean Air Temperature;       !- 

Output:Variable Name 

 

EnergyManagementSystem:Actuator, 

  Actuator_Loop,        !- Name 

  HW LoopZC,         !- Actuated 

Component Unique Name 

  Plant Loop Overall,        !- Actuated 

Component Type 

  On/Off Supervisory;        !- Actuated 

Component Control Type 

 

EnergyManagementSystem:Actuator, 

  PumpFlowOverride,        !- Name 

  HW LoopZC Supply Pump,       !- Actuated 

Component Unique Name 

  Pump,         !- Actuated 

Component Type 

  Pump Mass Flow Rate;       !- Actuated Component 

Control Type 

   

EnergyManagementSystem:GlobalVariable, 

  PumpFlowOverrideReport; 

 

EnergyManagementSystem:OutputVariable, 

  EMS Boiler Flow Override On [On/Off],     !- Name 
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  PumpFlowOverrideReport,       !- EMS Variable 

Name 

  Averaged,        !- Type of Data in 

Variable 

  SystemTimeStep;        !- Update Frequency 

 

EnergyManagementSystem:ProgramCallingManager, 

  HW LoopZC OnOff Management,      !- 

Management type 

  InsideHVACSystemIterationLoop,     !- Calling time 

  BoilerControl;       !- Program 

 

EnergyManagementSystem:Program, 

  BoilerControl,       !- Name 

  IF (Hallway_Air_Temperature207 > 21.0),    !- Conditional 

statement 

   SET Actuator_Loop = 0.0, 

   SET PumpFlowOverride = 0.0, 

   SET PumpFlowOverrideReport = 1.0, 

  ELSE, 

   SET Actuator_Loop = Null, 

   SET PumpFlowOverride = Null, 

   SET PumpFlowOverrideReport = 0.0, 

  ENDIF; 

  Output:Variable, 

  *, 

  EMS Boiler Flow Override On,      !- Output 

variable name 

  Hourly; 

 

! Boiler thermostatic control of 209 house 

EnergyManagementSystem:Sensor, 

   Hallway_Air_Temperature209,      !- Name 
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   GroundFloor:Hallway209,       !- 

Output:Variable Index Key Name 

   Zone Mean Air Temperature;       !- 

Output:Variable Name 

 

EnergyManagementSystem:Actuator, 

  Actuator_Loop1,        !- Name 

  HW LoopCC,         !- Actuated 

Component Unique Name 

  Plant Loop Overall,        !- Actuated 

Component Type 

  On/Off Supervisory;        !- Actuated 

Component Control Type 

 

EnergyManagementSystem:Actuator, 

  PumpFlowOverride1,        !- Name 

  HW LoopCC Supply Pump,       !- Actuated 

Component Unique Name 

  Pump,         !- Actuated 

Component Type 

  Pump Mass Flow Rate;        !- Actuated 

Component Control Type 

   

EnergyManagementSystem:GlobalVariable, 

  PumpFlowOverrideReport1; 

 

EnergyManagementSystem:OutputVariable, 

  EMS Boiler1 Flow Override On [On/Off],     !- Name 

  PumpFlowOverrideReport1,       !- EMS Variable 

Name 

  Averaged,        !- Type of Data in 

Variable 

  SystemTimeStep;        !- Update Frequency 
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EnergyManagementSystem:ProgramCallingManager, 

  HW LoopCC OnOff Management,      !- 

Management type 

  InsideHVACSystemIterationLoop,     !- Calling time 

  BoilerControl1;       !- Program 

 

EnergyManagementSystem:Program, 

  BoilerControl1,       !- Name 

  IF (Hallway_Air_Temperature209 > 21.0),    !- Conditional 

statement  

   SET Actuator_Loop1 = 0.0, 

   SET PumpFlowOverride1 = 0.0, 

   SET PumpFlowOverrideReport1 = 1.0, 

  ELSE, 

   SET Actuator_Loop1 = Null, 

   SET PumpFlowOverride1 = Null, 

   SET PumpFlowOverrideReport1 = 0.0, 

  ENDIF; 

  Output:Variable, 

  *, 

  EMS Boiler1 Flow Override On,      !- Output 

variable name 

  Hourly; 
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