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ABSTRACT

A micro-machining process becomes increasingly important with the continuous miniaturization of com-
ponents used in various fields from military to civilian applications. To characterise underlying microm-
echanics, a 3D finite-element model of orthogonal micro-machining of f.c.c. single crystal copper was
developed. The model was implemented in a commercial software ABAQUS/Explicit employing a user-
defined subroutine VUMAT. Strain-gradient crystal-plasticity and conventional crystal-plasticity theories
were used to demonstrate the influence of pre-existing and evolved strain gradients on the cutting pro-
cess for different combinations of crystal orientations and cutting directions.
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1. Introduction

Owing to continuous miniaturization, many modern high-tech-
nology applications such as medical and optical devices, thermal
barrier coatings, electronics, micro- and nano-electro-mechanical
systems increasingly use components with sizes of a few microns
or smaller [1]. To manufacture such components, often with
complex geometries, mechanical micro-machining is widely used
[2-5]. A machining process such as cutting at the micro-scale
differs significantly from its macro-scale counterpart in terms of
cutting forces, chip formation and surface morphology [6,7]. Due
to the very nature of the micro-machining process, its process
zone is limited to a single or a few grains of machined material.
Since single crystals are known to be highly anisotropic in their
physical properties, it is not surprising that several experimental
studies demonstrated dependence of cutting behaviour on crystal-
lographic orientation, slip system and dislocation activity [8].

Compared to experimental studies, a limited number of mod-
elling studies for single-grain micromachining is reported in the
literature. Among the analytical models, Sato et al. [9] used a
Schmid factor to obtain active slip systems during machining,
Lee and Zhou [10] used an effective Taylor factor to predict the
effective shear angle in single-crystal cutting and studies in
[11,12] considered minimization of the total power in the process
zone to determine the shear angle and specific cutting energy.
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Pen et al. [13] and Komanduri et al. [14] used quasi-continuum
and molecular-dynamics simulation methods, respectively, to
study the effect of crystal orientation and cutting direction on
the deformation mechanism in nanometric cutting. Zahedi et al.
[15] used smoothed particle hydrodynamics to model single-
grain cutting process. Recently, Tajalli et al. [16] analysed
orthogonal micro-cutting of f.c.c. materials based on conventional
crystal plasticity.

It is well known that the presence of strain gradients associated
with non-uniform plastic deformation in small volumes becomes
prominent at the micron or sub-micron scales [17,18], which is
often used to explain the observed size effect phenomena in bend-
ing [19], indentation [20] and other macroscopically inhomoge-
neous deformation regimes. In this context, it becomes
imperative to account for strain gradients to accurately predict
micro-scale material removal in machining models. To this end,
this paper presents a 3D non-local elastic-viscoplastic crystal-plas-
ticity finite-element (FE) model for micro-machining of f.c.c. sin-
gle-crystal copper. To the authors’ knowledge, this is the first
study in the literature demonstrating the influence of strain gradi-
ents on the deformation response of crystalline materials in the
machining process.

This paper is organized as follows: the theory for a strain-gradi-
ent crystal-plasticity theory with governing equations and details of
the developed finite-element model of micro-cutting are intro-
duced in Section 2. Section 3 demonstrates its predictive capabilities
for different parameters such as crystallographic orientations, cut-
ting directions and dimensions of a workpiece material including
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its validation against experimental data. The paper ends with con-
cluding remarks in Section 4.

2. Simulation procedure
2.1. EMSGCP constitutive model

An enhanced modelling scheme for a strain-gradient crystal-
plasticity (EMSGCP) theory proposed by Demiral [21] was used in
the simulations. The essential equations of EMSGCP are summa-
rised below. In the following, a bold symbol denotes a vector or a
tensor and a dot superposed on a symbol indicates a material time
derivative. The operator x is a vector product, a gradient operator
is indicated by V, incremental changes in variables due to tempo-
ral evolution are indicated by a 4 symbol. A subscript G indicates
geometrically necessary dislocations (GNDs) and S implies statisti-
cally stored dislocations (SSDs).

In the EMSGCP theory, the initial strength of a slip systems
(8%|,_o), i.e. the critical resolved shear stress (CRSS), is governed by
pre-existing GNDs in the workpiece together with SSDs, i.e.
8Fli—o = &8li—o + &¢li—o- In this theory, g¥|,_, and g¥|,_, were linked
with initial SSD (p%|,_,) and GND (pZ|,_,) densities as

8¥i0 = K\/P¥ o) 8Eli0 = I(\/p\[:o(g/V)2 via the constant, K, sim-
ilar to the Taylor relation. The GND density term was expressed
as a function of the normalized surface-to-volume (5/V) ratio
(hence, dimensionless) for the component under study [22]. In
the study the surface-to-volume ratio of the workpiece materials
was normalized with an idealised workpiece geometry corre-
sponding to S/V=1 pm™".

The evolution of slip resistance during loading is the result of
hardening due to the SSDs (Ag%) and GNDs (AgZ) on the slip sys-
tem, which follows,
g% = 88lio +8elo + /(881 + (Ag2)°
where

N
Agg = Zh“/fAyﬂv Agé = Ot g \V bné

p=1

(1)

Here h,g, or, W, b and n% corresponds to the slip-hardening modu-
lus, the Taylor coefficient, the shear modulus, the Burgers vector
and the effective density of geometrically necessary dislocations,
respectively.

The hardening model proposed by Peirce et al. [23] is used to
represent h,g, as follows:

hoy

2

h.y = hosech”|—————
o O Ol

8%lsar — &Flizo

t
s hag = qhy, (0#B), 7 = Z/O |7*|dt,
(2)

where hy is the initial hardening parameter, g§|,,, is the saturation
stress of the slip system o,q is the latent hardening ratio, and 7 is
the Taylor cumulative shear strain on all slip systems. The effective
GND density (nZ) is given by

, 3)

n% = ‘m“ x Y syl m”
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where s is the slip direction, m” is the slip-plane normal, $*/ = §*.§*
and V9”# is the gradient of shear strain in each slip system. To calcu-
late Vy*# the scheme proposed in Demiral et al. [22] is followed. The
model was implemented in the implicit finite-element code ABA-
QUS/Explicit using the user-defined material subroutine (VUMAT)
[24]. Relevant details can be found in [22].

In Eq. (2), y* is the shearing rate on the slip system o.. A power-
law representation was chosen for *:

o |

7 =gsen(t) || (4)
T

where 7% is the reference strain rate, n is the macroscopic rate-sen-
sitivity parameter, t* is the resolved shear stress, g% is the strength
of the slip system o at the current time, and sgn (&) is the signum
function of &.

It should be noted that unlike the proposed EMSGCP theory the
contribution of pre-existing GNDs in the workpiece is neglected in
the mechanism-based strain-gradient crystal-plasticity (MBSGCP)
theory proposed by Han et al. [25], i.e. the influence of pre-existing
strain gradients is insignificant; hence, the CRSS value of slip sys-
tems depends only on SSDs. Consequently, in the classical CP the-
ory the contribution from both incipient and evolving GNDs is not
accounted for, i.e. the instantaneous strength of slip system is
given by g% = g¥|,_o + Ag}.

To demonstrate the relative contribution of the evolution of
GNDs to the local hardening of the material in EMSGCP, an
enhanced model of crystal-plasticity (EMCP) was introduced,
where the incipient density of GNDs in the experimental samples
is accounted for, but not GNDs evolving in the course of deforma-
tion. This model is recovered from the proposed EMSGCP theory by
setting Ag% = 0. A summary of the contribution from GNDs and
SSDs from the various theories discussed here is given in Table 1.

Here, machining in a single crystal of copper, which has a f.c.c.
crystalline structure, is studied. In such materials slip may occur on
12 individual slip systems represented by the family {111} <110>.

2.2. Finite-element implementation

A FE model of orthogonal micro-machining cutting was devel-
oped. Dimensions of the workpiece sample used in the FE model
were 20 pm x 20 pm x 0.48 um (Fig. 1). To discretise the sample
29600 eight-node linear brick elements (C3D8) were used
(Fig. 2). A minimum element size of 60 nm was chosen in the pro-
cess zone based on a compromise between accuracy and computa-
tional time. The cutting tool was modelled as a rigid body with a
rake and clearance angles of 0°. The tool was displaced in the neg-
ative x-direction with velocity of 1300 mm/s (Fig. 1). A depth of cut
(ap) was set at 2 um, and the maximum cutting length of 2.25 um
was considered in the simulations. The bottom (xz plane, y = 0), left
(yz plane, x = 0) and part of the right face (yz plane, x = 20 um and
0 <y <18 um) of the workpiece were constrained from displacing
in all directions, while the front and back face (xy plane, z=0 and
z=-0.48 um, respectively) was constrained from displacing in the
z direction only (Fig. 1). Friction was neglected throughout the
simulation.

Chip separation from the workpiece material was achieved with
the use of element-deletion module available in ABAQUS/Explicit.
The magnitude of Taylor cumulative shear strain on all slip sys-
tems was considered as parameter for the failure criteria. Shear
failure occurred in the damageable zone when 7 reached a critical
value, similar to one in [26],

~>=;/0' [571dt = 3. (5)

Table 1
Summary of different strain-gradient and conventional CP theories.
8%li—o 8¢li-o Agg Agg
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Fig. 1. Dimensions and orientations for orthogonal machining of single-crystal
workpiece material (width of the tool, the arrow of the cutting).

The mesh of the workpiece with the advancing tool is shown in
Fig. 2. A narrow band of elements with a height of 0.07 pm suffers
maximal damage during machining, which was deleted with
increasing accumulated strain.

Three material parameters, C;;=168.0 GPa, Ci;=121.4 GPa,
C44=75.4 GPa, were used to define the elasticity tensor for a f.c.c.
crystal [27]. Plasticity parameters used in the simulations are listed
in Table 2.

3. Results and discussion

In this section, the results of FE simulations for orthogonal
micro-machining of single crystal of Cu are presented. To study
the influence of cutting direction and crystallographic orientation
on the cutting force, two cutting directions, viz. 0° and 90°, on
three crystal planes, viz. (110), (111), (100) were chosen. The
corresponding values are listed in Table 3. The simulations were

Table 2
Plastic parameters used in FE simulations for copper single-crystal [21,27,28].

V% (571) n q ho (Mpa) g%lsat (MPa) oxr

1073 20 1 180 240 0.7

K (MPamm) s (GPa) b (mm) psli-o (Mm2)  pleco (mm~2) /¥

0.04 42.0 255x 1077 9x10° 108 4.36
Table 3

Cutting direction setup ([def]) for different crystallographic orientations ([abc]) (see
Fig. 1).

Crystal orientation [abc] [110] [111] [100]
Cutting directions [def] 0° [1-10] [-110] [011]
90° [001] [11-2] [01-1]

performed using different types of strain gradient crystal plasticity
theories and conventional crystal plasticity theory.

3.1. Effect of crystal orientation and cutting direction

Evolution of the calculated cutting forces with an increasing
cutting length for the combination of three cutting planes and
two cutting directions is shown in Fig. 3. The cutting force was
found to vary for different crystallographic orientations and cut-
ting directions. For instance, while cutting on the (110) plane,
the measured value of the cutting force at the [1-10] direction is
larger compared to that in the [001] direction. The variation is less
pronounced when cutting in the (111) plane. On the other hand,
when cutting on the (100) plane, the cutting forces were found
to be identical for the cuttings at 0° and 90°. This is due to the
increased crystallographic symmetry of (100) plane in comparison
to the other planes [11]. These findings are in good agreement
qualitatively with the experiments performed by [10] for cutting
of single-crystal copper. In this study, the obtained values are not
compared quantitatively with those in [10] due to differences in
the cutting conditions, which include tool geometry and contact
conditions between tool and workpiece.

Fig. 3(d)-(f) demonstrate the obtained chip morphologies for
different cutting planes and cutting directions of single-crystal
copper. The chip shape was observed to be heavily influenced by
crystallographic orientations and the cutting direction for cutting
performed on the (110) and (111) planes. For cutting on the
(100) plane the chip shape was found to be independent of the

Damagable zone

Fig. 2. 3D FE model of micro-machining with details of element-deletion module.
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Fig. 3. Evolution of cutting forces (a-c) obtained using EMSGCP and EMCP theories and chip shapes (d-f) at cutting length of 2.25 um for different combinations of cutting

planes and cutting directions.

cutting direction, which manifests in the identical cutting-force
responses (Fig. 3(c)).

To characterise the contribution of strain gradients and its evo-
lution during the inhomogeneous cutting process, numerical
experiments were carried out using the EMSGCP theory, which
was then compared against EMCP (Fig. 3(a)-(c)). The results dem-
onstrate that EMSGCP theory predicts a cutting force that increases
with an increase in the cutting length; in contrast to the EMCP the-
ory. These observations are valid irrespective of the crystal orienta-
tion and cutting directions. The difference in the predicted cutting
force for the two theories was due to the fact that in the EMSGCP
theory the strain-hardening rate was higher due to accounting
for the evolution of strain gradients during deformation. The

specific cutting energy, defined as the average of force magnitudes
for the cutting lengths of 0.25 pm and 2.25 pum, is normalized by
the depth of cut a, and the workpiece’s width w (the resulting
parameter is F/(a,w)); it is listed in Table 4 as Fgmscep and Femcp
for EMSGCP and EMCP, respectively. As expected, this value pre-
dicted with the EMSGCP theory was noticeably larger (12-17%)
when compared to the predictions based on the EMCP theory. It
should be noted that the difference between the average energy
magnitudes for the EMSGCP and EMCP theories becomes even lar-
ger when the cutting-energy values at larger cutting lengths are
considered in calculating the average energy values. This difference
(Table 4) demonstrates that the influence of strain gradients was
sensitive to the crystallographic orientations of the single crystal



Table 4

Specific average cutting energies obtained with experiments [28], EMSGCP and EMCP theories and their relative differences for different crystallographic orientations and cutting

planes.
Orientation Cutting direction Fexp (MPa) Femscer (MPa) Femcp (MPa) (Femscer—Femcp)/Femscep (%)
[110] 0° 2300 2777 2430 12.50
90° 2035 1772 12.92
[111] 0° 2371 1966 17.07
90° 2571 2220 13.68
[100] 0° 2253 1872 16.83
90° 2253 1872 16.83
Average value 2300 2376 2022 14.89
being cut and to the cutting direction; especially when cutting on 3000 B Model A
the (111) plane. The obtained results were compared with the E SVodelE
experimental data in [28] (unfortunately, orientation of the cop- S 2500 1
per-crystal sample investigated in this experiment was not men- 5
tioned). This comparison demonstrates that for all the studied s 2000
crystal orientations and cutting directions the average cutting o
energy Femscep Was in good agreement with the experimentally g
obtained value of specific cutting energy (Fexp.) (Table 4). Conse- 5 15001
quently, the predictions based on the EMCP theory was found to go
be lacking in accuracy. 8 1000 1
o
3.2. Effect of workpiece size in machining E 500
o
In this section, the influence of workpiece size on the machining m 0l
response is studied. The modelled workpiece consisted of a single EMSGCP EMCP MBSGCP CcpP

crystal of copper oriented in the (111) plane being cut in the 90°
direction. In addition to the workpiece with dimensions introduced
in Section 2.2 (henceforth known as model A), an additional FE
model of a workpiece with dimensions of 40 pm x 40 pm x
0.96 um (known as model B) was developed. The plastic parame-
ters for each model are presented in Table 5. The finite-element
size and machining parameters are identical in both models.

The specific average cutting-energy values for models A and B,
obtained using different theoretical assumptions, are presented
in Fig. 4. It is observed that the F/(a,.w) value for model A is higher
compared to that for model B when predictions are based on the
EMSGCP theory. The difference in specific cutting energies is less
pronounced when predictions are based on the EMCP theory as
the evolving strain gradients are not accounted for in this theory.
On the other hand, the MBSGCP theory predicts a limited size effect
in the simulations due to the fact that it accounts for the evolving
strain gradients, with their magnitudes inversely proportional to
the width of the workpiece material. Finally, the CP theory, as
expected, does not predict any size effect as it does not account
for any kind of GNDs or their evolution in its constitutive
description.

Our study indicates that the EMSGCP theory is capable of cap-
turing the classic ‘size-effect’ in machining problems which is
otherwise widely reported in micromechanics. In traditional
machining studies, an increase in a specific cutting force is typi-
cally reported when the cutting depth becomes comparable to
the tool nose radius (i.e. transition to ploughing). This is typically
attributed to the effect of geometry and friction at smaller cutting
depths [29]. The modelling approach, as discussed here, elucidates
the physical basis for higher cutting forces at smaller cutting
depths. There is a need for further in-depth experimental studies

Table 5
Material parameters for models A and B.

Fig. 4. Specific average cutting-energy values obtained for models A and B of single-
crystal (111) copper cut with direction of 90° obtained using different theories.

of micromachining of single-crystal samples with different sizes.
Once this is accomplished, validation/calibration tests will be
implemented with the model.

4. Concluding remarks

In this paper, the influence of strain gradients and their evolu-
tion in the micro-machining of f.c.c. single-crystal copper for differ-
ent crystallographic orientations and cutting directions was
investigated using various flavours of strain-gradient theories
and conventional crystal-plasticity theory. Clearly, there is a need
for further experimental studies, which can then be used to vali-
date our numerical predictions.

From our study, the following observations were made:

1. Strain gradients developing in the micro-machining process
influence evolution of the cutting-force magnitude, more signif-
icantly at larger cutting lengths. This is sensitive to the crystal-
lographic orientation of the single crystal being cut and also
dependent on the cutting direction, especially for cutting on
the (111) plane.

2. For cutting in the (110) crystal orientation, the 90° cutting
direction is preferable to 0° due to a lower cutting force
imposed on the cutting tool in the former direction, which, in
turn, is expected to yield better surface finish and a longer tool
life. At the same time, for the (111) and (100) orientations both
cutting directions lead to similar force levels.

Model Dimension (I x h x w) (um) 1% 8%,—o (MPa) 8%l—o (MPa) &Fli—o (MPa) 8%Flsac (MPa)
A 20 x 20 x 0.48 4.36 120 174.66 211.91 239.91
B 40 x 40 x 0.96 2.18 120 87.33 148.41 176.41




3. The dimensions of the workpiece at micro-scale play an impor-
tant role in its deformation response to the machining process.
It was observed that smaller workpiece samples were harder to
cut when compared to larger samples.

The developed scheme will be extended to machining of poly-
crystalline materials, accounting for different orientations of
neighbouring grains in the workpiece. One important challenge
on this way is a development of an adequate model of the grain
boundary, which - as experiments demonstrate - affect the cutting
process, especially at low depths of cut.
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