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Abstract 
Although many publications dealing with Tesla transformers have appeared, most are confined to detailed 
investigations of the transformer performance based on a lumped equivalent circuit. The present paper differs 
widely from these in being concerned with the very practical and important issue of the degree of magnetic 
coupling between the two transformer windings and considers in detail the importance of the coupling factor for 
a range of applications of these transformers. The constructional features that may be adopted in various 
practical implementations are explained. 
Keywords: Tesla transformers, high-voltage techniques, pulsed power supplies 
1. Introduction 
Tesla transformers are high-voltage doubly-resonant air-cored transformers frequently adopted in applications 
requiring a pulsed voltage exceeding 100 kV with an extremely short rise time. Although used initially for the 
high-voltage testing of domestic and industrial power insulation and switchgear, in recent years they have become a 
vital requirement in many research areas, particularly those involving particle and plasma physics, as well as high 
power systems that involve the generation of microwave and X-ray radiation. Despite the original experiments 
being performed by Nikola Tesla (Lomas, 2000) well over a hundred years ago, with the typical and very 
spectacular results evident in Figure 1, important new applications still continue to arise in technically active 
countries worldwide e.g (Peng, Liu, Song, & Su, 2011; Novac, Wang, Smith, & Senior, 2014; Su et al., 2016). 
  

 
Figure 1. Example of Tesla’s experiments at Colorado Springs, USA 

 
Tesla transformers are produced in several different constructional forms and they can be classified in a number of 
ways depending on the sometimes competing output requirements of extremely high voltage or high average power. 
It is frequently asserted that the ideal primary/secondary winding coupling factor k is 0.6, despite many practical 
transformers being deliberately designed with values of k that are far from this figure. In a recent investigation at 
Loughborough University (Craven, 2014), the distinction was drawn between ‘loosely coupled designs’ (in which 
the value of k may be as low as 0.1 to 0.2) and ‘tightly coupled designs’ (where the value may in fact be around 0.6 
or higher), and it is on this distinction that the considerations below are based. Little attempt has previously been 
made to explain the different constructional forms that a practical implementation of the Tesla transformer may take. 
Based on the authors’ many combined years of experience in this area, the present paper seeks to provide an insight 
into these important aspects. It is hoped that the paper will be of interest both to those already working in the area 
and those concerned with the education of prospective engineers in this fascinating field. 
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2. Equivalent Circuit of the Tesla Transformer  
The very familiar equivalent circuit for a Tesla transformer is shown in Figure 2. Typically the primary winding 
L1 has few turns, designed to be able to conduct a pulsed current of several hundred amperes, and is coupled to 
the secondary winding L2 which is normally a single-layer solenoid able to conduct a few amperes of current. 
The transformer secondary winding length normally exceeds the diameter, and the shape is generally cylindrical 
but occasionally conical. Detailed circuit analyses can readily be found elsewhere e.g. (Glasoe & Lebacqz, 1948; 
Sargeant & Dollinger, 1989). 
 

 
Figure 2. Lumped equivalent circuit for a Tesla transformer 

 
If the primary circuit of Figure 2 is excited in isolation by closure of the primary switch, the current discharge I1 
from the high-voltage capacitor C1 is at a resonant frequency of typically several hundred kilohertz, as determined 
by the primary circuit inductance L1. The secondary circuit inductance L2 is tuned to the same frequency in isolation, 
generally by a distributed capacitor C2, comprising the self-capacitance of the secondary winding together with that 
of a high-voltage terminating electrode and the surroundings. The lower end of the secondary winding is often 
earthed and the top end feeds the load through a high-voltage terminal (sometimes termed a corona nut, a bung or a 
corona hat) and possibly a sharpening spark gap. In many typical systems a pulsed forming line (PFL) is fed and 
thus charged by the secondary winding current I2, with the additional capacitance introduced lowering the 
secondary resonant frequency to well below that associated with the self-capacitance of the secondary winding 
alone. On this basis, an overall lumped circuit model will frequently enable an adequately accurate prediction of the 
performance of the transformer to be obtained. In a more detailed and exact physical model, the circuit is described 
by a transmission line analysis, with the secondary winding capacitance and inductance both comprised of 
distributed values and taking both skin and proximity effects into account.  
3. Coupling between Primary and Secondary Windings 
When the objective is for the Tesla transformer to produce an extremely high fast-pulse output voltage the 
insulation needed, together with the current requirement and the sharpness of the pulse, often preclude the use of 
ferromagnetic materials, and it is difficult to achieve a high coupling coefficient k. Selection of the type of 
closing switch, whether a spark gap, a solid state or a thermionic device, is governed primarily by the degree of 
coupling that is sought and the peak and average powers to be switched, and thereby ultimately determines the 
performance of the transformer, impinging particularly on the overall power efficiency and the total losses. 
Generally speaking, transformers in which k is low (say 0<k<0.3) will have a low energy transfer efficiency, 
whilst when k is high, (say 0.6<k<1), the efficiency is correspondingly higher. The time for the energy transfer to 
the load is inevitably shorter in a closely-coupled (high k) transformer and the power output is comparatively 
high. Effective design of the primary switch governs the ultimate secondary voltage that is delivered, since 
during the time the secondary is free to deliver an output, the primary is effectively an open circuit. If this fails to 
happen, out-of-phase currents are induced in the secondary winding, whose vector sum with the in-phase 
components results in lower amplitude current which leads to a reduction of the secondary voltage. Nevertheless, 
in extremely loosely-coupled transformers (0<k<0.2) (Scott, O’Loughlin, & Copeland, 1989; Skeldon, 2000) the 
degree of damping that the secondary winding experiences due to the presence of the primary winding is 
extremely low, and since the Q-factor of the secondary winding is likely to be greater than if the windings were 
tightly-coupled, a higher secondary output voltage may be achieved. In summary, a tightly-coupled Tesla 
transformer will achieve a high average power output but at a lower ultimate voltage, whereas a loosely-coupled 
transformer will provide a higher output voltage at the expense of a lower power transfer efficiency. The 
efficiency can however be restored by operating the transformer in the pulsed resonant mode, when the 
maximum energy transfer is obtained only after a certain number of resonant half cycles have been completed.  
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3.1 Construction with Tightly-Coupled Windings 
The winding geometries of tightly-coupled Tesla transformers often differ significantly from those of 
loosely-coupled transformers and usually take one of three forms: cylindrical, heliconical and (less often) flat 
spiral. 
3.1.1 Cylindrical Design 
This is the simplest form, with the secondary wound on a cylindrical former as a single-layer solenoid and 
surrounded by the primary winding as a coarse helix. Inter-winding insulation is provided either by layers of 
high dielectric strength material or by a fluid with similar properties such as transformer oil. Coupling 
coefficients k ≥ 0.7 can be achieved when using ferrite loading of the solenoidal core or even k ≥ 0.9 by either a 
very experienced designer or by the use of a metallic core, although voltage gradient and insulation strength 
issues then sometimes arise. Figure 3(a) illustrates the outline of a Tesla transformer (Martin, 1971) having this 
cylindrical format. 
3.1.2 Heliconical Design 
This form provides considerable scope for the ingenious designer. In the basic arrangement the secondary is 
again in the form of a single-layer solenoid, but the surrounding primary has a conical cross-section tapering 
upwards and outwards. Although easing the voltage gradient and insulation problems of the cylindrical design, 
the maximum coupling coefficient is inevitably reduced. In an alternative approach (Abramyan, 1971) the 
primary winding, constructed from copper sheet, couples into the lower end of the internal secondary, which has 
a base diameter slightly smaller than that of the primary winding and an apex diameter about 10% smaller than 
the base diameter. The distributed capacitance of such a winding is lower than that of a conventional single-layer 
winding. In a further alternative (Buttram & Rohwein, 1979) a heliconical primary winding is surrounded by a 
single-layer solenoidal winding with several hundred turns. An unusual feature of this design is that hydrogen 
thyratron switches running with a PRF of several hundred per second replaced the traditional spark gap in the 
primary circuit. With a k of approximately 0.6 and a resonant frequency of tens of kHz, the extremely high 
efficiency claimed was 95%. Another design (Sarkar et al., 2006) employs a conical secondary winding and is 
shown in Figure 3(b). To ensure both adequate insulation for the 0.5 MV secondary winding and optimisation of 
the coupling where k = 0.54, the secondary was wound on a conical polyethylene mandrel, immersed in 
transformer oil and contained in a cylindrical housing. 
 

  
(a) (b) 

Figure 3. Tightly-coupled design (a) cylindrical (b) heliconical 
Spiral design. In this design the primary and secondary windings are both constructed in the form of flat 
Archimedean spirals, with the primary and secondary stacked upon one another. Although high coupling 
coefficients can be obtained without the need for any core material, this is at the expense of high electrical 
stresses at the copper edges. In practice the insulation coordination that is required to hold off the high secondary 
voltage proves difficult to implement successfully.  
In all tightly-coupled transformers, the primary switch may operate at several hundreds of Hz or more, and 
careful design is necessary to ensure that quenching of the primary current occurs at the instant at which 
complete energy transfer from the primary to the secondary winding has taken place. The time required for this 
is termed the filling time, and since this reduces as the coupling becomes tighter the need for quenching becomes 
ever more stringent. Several techniques to achieve this are available, based on two-terminal self-breakdown gaps, 
trigatron switches and field distortion and rail gaps. Other more complex techniques include air blast cooling, 
which minimises thermal electron emission and sweeps out uncombined electron pairs to increase the channel 
length and so force the conducting arc to extinguish and return the gas to the off state. Operation in a pressurised 
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gas medium (H2, N2 or SF6) may also either be used to increase the electron mobility so enabling rapid 
recombination, or to decrease mobility so that the conducting channel self-extinguishes rapidly. 
3.2 Construction with Loosely-Coupled Windings 
The windings of loosely-coupled transformers can take either a cylindrical or a spiral form, but with the 
proportions and geometries of the two windings changed to suit the value of coupling coefficient required. In the 
most typical geometry shown in Figure 4 the primary winding is in the form of a flat Archimedean spiral that 
begins with an inner radius r1 and ends with an outer radius r2, and is orientated horizontally with the secondary 
winding standing vertically at the centre of the spiral. The base of the secondary winding can be in the same 
plane as the primary winding, or raised above or depressed below it as a method of tuning, and with the radius 
less than r1 for this to be possible. In practice the plane of the primary winding is often positioned within the 
lower 25% of the secondary winding height. 
 

 
Figure 4. Typical loosely-coupled design 

 
The aspect ratio (height/diameter) of the secondary winding lies typically between 4 and 6, as a compromise 
between the Q factor, wire diameter for a given design inductance, self-capacitance and voltage grading. A short, 
large diameter coil with an aspect ratio of 0.5 may give the highest Q for a given inductance, but the 
high-voltage end of the winding may not be separated sufficiently far from the earthed end, and surface 
breakdown along the winding surface is a risk. If the ratio is 0.4, the winding will have maximum inductance 
(Grover, 1947), thus minimising both the amount of copper wire required and the corresponding copper losses. 
The height is again prohibitively short and surface breakdown a hazard, although this can be overcome by the 
used of pressurised gas. An alternative configuration uses a heliconical primary coil similar to that of the 
tightly-coupled design, in which the circular diameter tapers both outwards and upwards. The secondary is again 
a single-layer solenoid. Voltage grading and insulation problems are reduced by the increased winding 
separation at the high-voltage end, but although higher coupling coefficients can be obtained mechanical design 
considerations make the construction more difficult. In practice the insulation requirement is often realised by 
housing both windings in a container filled with transformer oil or a gas such as SF6 at high pressure. If the walls 
of the container are metallic, a high degree of shielding is provided for surrounding equipment (Hoffmann, 1975; 
Andreev et al., 1997). The values of the transformer parameters are also affected, with both the resonant 
frequency and the coupling factor being reduced. 
In a design optimised for maximum spark length, a ‘topload’ in the form of a conducting toroid is connected to 
the high-voltage end of the secondary winding. This provides both an electric field grading structure that controls 
the field in the vicinity of the winding, and forms a charge storage area that allows conduction of the 
accumulated charges into the spark channel as it is forming. The transformer design has to take the ‘topload’ 
capacitance into account when implementing the secondary winding, such that the secondary resonance is at the 
desired frequency. Since the coupling coefficient may be as low as 0.2, or sometimes even 0.1, the degree of 
damping is lower and the secondary Q higher so that a greater voltage is achieved than if the coupling was 
tighter.  
In practice, loosely-coupled transformers are often of an ‘open’ construction, using simple geometry and 
unpressurised air insulation. This is in sharp contrast to tightly-coupled transformers, which frequently employ 
an ‘enclosed’ design, utilising metal pressure vessels within which both windings are housed in a pressurised 
insulating gas atmosphere.  
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4. Conclusions 
The magnetic coupling between the windings of Tesla transformers varies considerably between zero and one, 
despite the frequent assertion that the ideal value is 0.6. The actual value selected depends on the requirements of 
the application and in turn has a very significant effect on the constructional form adopted in any practical 
implementation and the different reliability issues that are brought about. The details illustrated in the paper are 
thus an essential addition to the many readily available theoretical studies, and provide a valuable background 
awareness to both those already working in the area and to anyone in the early stages of designing or using a 
Tesla transformer for the first time.  
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