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ABSTRACT
In the last decades the research community has shown an increasing interest in the engineering applications of

fractional calculus, which allows to accurately characterize the static and dynamic behaviour of many complex me-
chanical systems, e.g. the non-local or non-viscous constitutive law. In particular, fractional calculus has gained
considerable importance in the random vibration analysis of engineering structures provided with viscoelastic
damping. In this case, the evaluation of the dynamic response in the frequency domain presents significant advan-
tages, once a probabilistic characterization of the input is provided. On the other hand, closed-form expressions
for the response statistics of dynamical fractional systems are not available even for the simplest cases. Taking
advantage of the Residue Theorem, in this paper the exact expressions of the spectral moments of integer and com-
plex orders (i.e. fractional spectral moments) of linear fractional oscillators driven by acceleration time histories
obtained as samples of stationary Gaussian white noise processes are determined.

1 Introduction
There is an increasing amount of research on the use of fractional operators to describe viscoelastic properties of materi-

als in structural dynamics [1]. In fact, it has been shown that fractional integrals and derivatives are suited to mathematically
model constitutive equations of viscoelastic materials, returning creep and relaxation functions whose general shapes well
fit experimental data [2–9].
In civil and mechanical engineering, when fractional operators are used to model dissipative forces in dynamic systems, the
latter are indicated with the term fractional oscillators. Several numerical methods to integrate the equations of motion of
fractional systems have been proposed. A comprehensive review of papers dealing with the dynamic behaviour of fractional
linear and nonlinear systems, single and multi-degrees-of-freedom, including vibration of rods, beams, plates and shells,
among others, can be found in [1] and [10].
Among the various studies on fractional oscillators in literature, Rüdinger [11] proposes their use as viscoelastic tuned mass
dampers to reduce vibrations of systems excited by an external white noise. The fractional oscillator is constituted by a
mass linked to the main structure through a linear spring placed in parallel to a viscoelastic damping element exerting a force
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proportional to the fractional derivative of the relative displacements of the damper mass and the primary structure. Recently,
a variation of this vibration absorber with no linear spring has been proposed as Fractional Tuned Mass Damper in [12–15].
In the initial approaches to this dynamic problem, numerical integration methods have been used to characterise the system
stochastic response to the white noise excitation.
However, given the stationary nature of the problem, a complete description of the random response process can be actually
done in terms of Power Spectral Density (PSD) and its derived parameters. Among the latter, the spectral moments (SMs),
defined by VanMarcke [16] as the moments of the one-sided PSD with respect to the frequency origin, have significant
importance since they represent statistics of the response and allow determining characteristics of the stochastic response
process that can be used for the probabilistic assessment of structural failure and to determine the distribution of the response
peaks or barrier crossing rates in reliability analysis. Moreover, the SMs are related to geometric parameters of the PSD,
such as the central frequency and the bandwidth factor, that can be used as distinctive indicators between narrowband and
broadband processes [17]. Additional information on SMs can be found, for example, in [18–20].
Although the SMs return important information on the nature of a stochastic process, they do not allow fully describing
the PSD or the correlation of the process itself [21]. Cottone and Di Paola [22] proposed an extension of the traditional
integer order SMs to complex order moments, by defining the so-called Fractional Spectral Moments (FSMs) as the Mellin
transform of the one-sided PSD of a stochastic process. The advantage of these complex quantities is that they are able
to reconstruct both the PSD and the correlation functions, and, therefore, can be seen as an alternative representation of
the process itself [22, 23]. Additionally, Cottone and Di Paola [24] have shown that FSMs can be used as coefficients of a
time series defined in terms of the Riesz fractional derivatives of a white noise for the digital simulation of realizations of a
stochastic process with assigned PSD.
In this paper, the SMs and FSMs of a fractional oscillator excited by a Gaussian stationary white noise are evaluated in exact
closed-form solution. The latter require the computation of an improper integral, not accessible with standard integration
techniques. A powerful tool for solving not only real improper integrals, but also a wide range of problems arising in applied
mathematics and engineering, is the Residue Theorem. The latter implies that the mathematical description of real phenom-
ena can benefit from their translation in the complex domain. The theory of residues is applicable to various mathematical
fields, such as theory of equations, theory of numbers, matrix analysis, evaluation of real definite or improper integrals, sum-
mation of finite and infinite series, expansions of functions into infinite series and products, ordinary and partial differential
equations, mathematical and theoretical physics, finite differences and difference equations [25, 26].
Herein, the Residue Theorem is initially used to compute the integer order SMs of a classic linear oscillator excited by a
white noise, showing how the technique returns exact expressions well-known in literature. Then, the exact closed-form
FSMs for the same system are determined. It is demonstrated that the integer order SMs can be obtained as limit values
of these FSMs. To the best of the authors’ knowledge, these expressions have never been presented in literature. Finally,
using a similar methodology, the SMs and FSMs for a fractional oscillator with no linear spring and excited by a white noise
are determined in exact form, as well. Also for this case, the authors’ are not aware of previous publications reporting such
expressions. The proposed formulas have been validated by comparison with results obtained through numerical integration.
To conclude, a sensitivity analysis of the FSMs with respect to the parameters involved in the definition of the fractional
oscillator is reported.

2 Theoretical background
The evaluation of the statistical properties of a system excited by a stochastic process can be, in general, a very difficult

task. For the stationary case, the full characterization of a process in the frequency domain is achieved by determining its
PSD function. Several significant statistics, such as the variance and its time derivatives, the central frequency, the bandwidth
parameter, first-passage problems and the estimation of statistical distribution of peaks can be determined from the SMs.
The SMs, firstly introduced by Vanmarcke [16], can be defined as the moments of the unilateral process PSD function with
respect to the frequency origin. Therefore, the generic m-th order SM of a stochastic process is defined as:

λm,X =
∫ +∞

0
ω

mGX (ω) dω, m ∈ N (1)

where GX (ω) is the one-sided PSD function of the process X (t).
Recently, the FSMs have been proposed as the extension of the concept of SMs to complex order [24]. The FSMs are defined
as the moments of order γ of the one-sided PSD function of the process:

λγ,X =
∫ +∞

0
ω

γGX (ω) dω, γ ∈ C (2)
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Closed-form solutions for the integrals in eqs. (1) and (2) are available, to the best of the authors’ knowledge, only for few
particular cases of stochastic processes, and numerical integration is often required for their evaluation, restricting their use
in stochastic analysis. In this paper, the authors propose the use of the Residue Theorem in order to solve the integrals in
eqs. (1) and (2) and to determine exact analytic expressions for both SMs and FSMs for single-degree-of-freedom (SDOF)
oscillators excited by stationary white noise processes.

2.1 Integer order SM
In several cases of practical interest, such as white noise excitations or when the seismic stochastic input is modelled by

a Tajimi-Kanai filter, the SMs in eq. (1) belong to the following class of integrals:

Im =
∫ +∞

0
f (ω)dω =

∫ +∞

0

ωm

P(ω)
dω, m ∈ N (3)

in which P(ω) is a polynomial of degree N. Generally, the integrand function is not symmetrical with respect to the real
axis, so it is not possible to relate Im to a whole real line integral. Herein, the authors propose to consider a new function
g(z) = f (z)Log(z), defined in the complex domain, and to compute its integral along the boundary Γ of an opportunely
selected keyhole shaped domain (see Fig. 1):

IΓ =
∫

Γ

g(z) dz =
∫

Γ

f (z)Log(z) dz (4)

The keyhole contour Γ = L1∪CR∪L2∪Cr has the following parametrization:

1. L1: z = ωeiθ, r ≤ ω≤ R and θ→ 0;
2. CR: z = Reiθ, 0 < θ < 2π;
3. L2: z = ωeı(2π−θ), r ≤ ω≤ R and θ→ 0;
4. Cr: z = reıθ, 0 < θ < 2π.

Thus, the contour integral has to be computed as the sum of the following 4 contributions:

∫
Γ

g(z) dz =
∫

CR

g(z) dz+
∫

Cr

g(z) dz+
∫

L1

g(z) dz+
∫

L2

g(z) dz (5)



It has to be stressed that the function Log(z) = ln |z|+ iθ is a multi–valued function in the complex domain and its value
depends on the branch cut used to compute its imaginary part (θ = arg(z)). If, as usually done, the principal value of Log(z)
is computed (i.e. the non positive real axis is used as branch cut, −π ≤ θ < π), then a discontinuity is introduced in the
keyhole shaped domain. Instead, to have a single-valued continuous function in the considered domain, the non negative real
axis has to be used as branch cut (0≤ θ < 2π).
For m+1 < N, it can be demonstrated that, along CR and Cr, the following limits hold true:

lim
R→+∞

∫
CR

zmLog(z)
P(z)

dz = 0; lim
r→0

∫
Cr

zmLog(z)
P(z)

dz = 0 (6)

Along the line segments L1 and L2 the integrals assumes the following values:

∫
L1

g(z) dz = lim
θ→0

∫ R

r
f (ωeiθ)(ln |ω|+ iθ)dω (7)

∫
L2

g(z)dz = lim
θ→0

∫ r

R
f
(

ωei(2π−θ)
)
[ln |ω|+ i(2π−θ)]dω (8)

Taking the limits r→ 0 and R→ ∞ in eqs.(7)-(8), substituting them and (6) into eq. (5) and taking into account eq. (4):

lim
r→0

R→+∞

∫
Γ

f (z)Log(z)dz =
∫ +∞

0
f (ω) ln |ω|dω−

∫ +∞

0
f (ω)(ln |ω|+2πi)dω =

=−2πi
∫ +∞

0
f (ω)dω =−2πiIm

(9)

Hence, denoting zk,(k = 1,2, . . . ,N) the simple zeros of the function P(z) and applying the Residue Theorem to the integral
IΓ:

Im =−
N

∑
k=1

Residue [ f (z)Log(z) ,zk] (10)

2.2 Fractional spectral moments
In this section a technique, based again on Residue Theorem, is proposed to evaluate the FSMs in the form:

Iγ =
∫ +∞

0

ωγ

P(ω)
dω, γ ∈ C\N (11)

where P(ω) is, also in this case, a polynomial of degree N. Again, the same keyhole shaped domain and parametrization are
considered. However, in this case, the function f (z) = zγ/P(z) is integrated along the keyhole contour Γ= L1∪CR∪L2∪Cr
. Note that zγ is a multi–valued function in the complex domain, since

zγ = eγ Log(z) = eγ(ln |z|+iθ) = |z|γ eiγθ (12)

Moreover, the origin as well as z =+∞ are branch points for the function f (z). Therefore, the positive real axis is chosen as
branch cut (0≤ θ < 2π). Then:

∫ +∞

0

ωγ

P(ω)
dω = lim

r→0
R→+∞

∫
Γ

f (z)dz (13)



If Re [γ]+1 < N, it can be demonstrated that:

lim
R→+∞

∫
CR

f (z)dz = 0; lim
r→0

∫
Cr

f (z)dz = 0 (14)

Under these hypotheses, it follows:

∫
Γ

f (z)dz =
∫

L1

f (z)dz+
∫

L2

f (z)dz (15)

and, taking into account the parametrization of L1 and L2, the following relationships are obtained:

∫
L1

f (z)dz = lim
θ→0

∫ R

r
f
(

ωeiθ
)

eiθdω =
∫ R

r
f (ω)dω (16)

∫
L2

f (z)dz = lim
θ→0

∫ R

r
f
(

ωei(2π−θ)
)

ei(2π−θ)dω =−e2πiγ
∫ R

r
f (ω)dω (17)

Thus, taking the limits R→+∞ and r→ 0, substitution of eqs.(16) and (17) into eq.(15) leads to:

∫
Γ

f (z)dz =
(
1− e2πiγ)∫ +∞

0
f (ω)dω =

(
1− e2πiγ) Iγ (18)

Recalling that zk,(k = 1, . . . ,N) are the simple zeros of P(z), according to the Residue Theorem, eq. (18) may be rewritten
as:

Iγ =
2πi

1− e2πiγ

N

∑
k=1

Residue [ f (z) ,zk] (19)

3 SMs and FSMs of a SDOF system excited by a white noise
Exact closed-form expressions for the SMs and FSMs for two SDOF linear systems, namely the classic linear oscillator

and the fractional oscillator, both subjected to a white noise Gaussian random accelerations are here determined using the
methodology proposed in the previous section.
In the first case, all the forces involved in the dynamic equilibrium of the system are related to integer-order derivatives of
the response displacements x(t). In this case, in fact, the equation of motion is retained in the form:

ẍ(t)+2ζω0ẋ(t)+ω
2
0x(t) = f (t) (20)

where ζ is the viscous damping ratio, ω0 is the natural circular frequency, f (t) is a sample of the white noise process and
upper dots means time derivatives.
The second system under consideration, depicted in Fig. 2 is a fractional oscillator, in which a mass is supported by a
springpot, i.e. a viscoelastic link whose exerted force is proportional to the fractional derivative of the response displacements
x(t). The equation of motion of this linear fractional oscillator can be expressed as:

ẍ(t)+η

(
CDβ

0+x
)
(t) = f (t) (21)

being β the order of the fractional derivative, η > 0 a real coefficient and the fractional operator
(

CDβ

0+x
)
(t) the so-called

Caputo’s fractional derivative of order β of the displacements x(t), defined as:

(
CDβ

0+x
)
(t) =

1
Γ(1−β)

∫ t

0
(t− t̄)−β ẋ(t̄) dt̄ (22)
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Fig. 2. Fractional oscillator

Since both systems in eq. (20) and eq. (21) are linear time-invariant systems, the PSD of the system response can easily be
determined by rewriting the equation of motions in the frequency domain. In fact, by taking the Fourier transform of both
sides of eqs. (20) and (21), the PSD of the response is obtained as:

GX (ω) = |H (ω)|2 G0 (23)

where GX (ω) is the one-sided PSD function of the response process, G0 is the white noise intensity, and H (ω) is the transfer
function of the oscillator which, in turn, assumes the following expressions for classic and fractional oscillators, respectively:

Hc (ω) =
1

ω2
0−ω2 +2iζω0ω

; H f (ω) =
1

−ω2 +η(iω)β
(24)

3.1 SMs and FSMs for classic SDOF oscillators
In this case, the m-order SM is expressed as:

λm,X =
∫ +∞

0

ωmG0(
ω2

0−ω2
)2

+(2 ζ ω0 ω)2
dω (25)

The singularities of the integrand function in eq.(25) are:

zk =±ω0

(√
1−ζ2± iζ

)
k = 1, . . . ,4 (26)

In this case, non-divergent SMs exist only for m < 3. Using eq. (10), the following expressions for the SMs are obtained:

λ0,X =
πG0

4 ω3
0 ζ

; λ1,X = G0
π−2α

4 ω2
0 ζ
√

1−ζ2
; λ2,X =

πG0

4 ω0 ζ
(27)

in which α = arctan
(

ζ/
√

1−ζ2
)

. It should be stressed that these closed-form expressions for the SMs are well-known in
literature, and here they are reported to demonstrate the ease and correctness of the methodology.
The proposed approach can also be applied for the evaluation of γ-order FSMs (−1 < Re [γ]< 3 and γ 6= 0,1,2), defined as:

λγ,X =
∫ +∞

0

ωγG0(
ω2

0−ω2
)2

+(2 ζ ω0 ω)2
dω (28)

The singularities in eq. (28) are the same reported in eq. (26) and, after some algebraic manipulation, the exact closed-form
FSMs are obtained as:

λγ,X =
πG0

4 ζ ω
3−γ

0

sec
(

π γ

2

)[
cos
(

αγ− π γ

2

)
+

ζ√
1−ζ2

sin
(

αγ− π γ

2

)]
(29)
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To the best of the authors’ knowledge, eq. (29) has never been presented in literature. It is worth noting that the well-known
expression in eq. (27) can be directly obtained by taking the limit of eq. (29) as γ approaches 0, 1 and 2, respectively.
Moreover, the proposed methodology applies for integrand functions with simple singularities.
Fig. 3 reports γ-order FSMs against γ for three selected values of the damping ratio ζ, considering ω0 = 2 rad/s and unitary
value of G0. These FMSs are determined for γ ∈ R, but for complex-order moments similar results can be obtained.

3.2 SMs and FSMs for fractional SDOF oscillators
For the fractional oscillator depicted in Fig. 2, the FSMs are defined as the following integral:

λγ,X =
∫ +∞

0

ωγG0

ω4−2cos
(
β

π

2

)
ηωβ+2 +η2ω2β

dω, (30)

where β ∈ (0,1) is the fractional derivative order. The integral in eq. (30) can be written, by considering the substitution of
variables t = ηωβ−2, as follows:

λγ,X =
G0η

3−γ

β−2

2−β

∫ +∞

0

th

t2−2cos
(
β

π

2

)
t +1

dt (31)

where h = (γ−β−1)/(β−2). The domain of existence of the integral in eq. (30) is depicted in Fig. 4, i.e. the FSMs for
this system exists only if 2β−1 < Re [γ]< 3.
The singularities zk of the integrand function in eq. (31) are determined as:

zk = η
1

β−2 e±i π β

2(2−β) k = 1,2 (32)

for every γ 6= β+1. Since h ∈ C, the evaluation of FSMs is performed by applying eq. (19), resulting in the following exact
closed-form expressions:

λγ,X =
πG0η

γ−3
β−2

β−2
csc(πh)

sin
[
πh β−2

2

]
sin
(

π

2 β
) (33)

In the particular case γ = β+1, i.e. h = 0 and the FSMs are determined by eq. (10), which leads to

λ(γ=β+1),X =
πG0

2η
csc
(

πβ

2

)
(34)
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Fig. 5 shows γ-order FSMs for three selected β and for unitary G0 and η. The FSMs reported in Fig. 5 are restricted to γ∈R,
although similar results can be obtained for complex-order moments.
As specific cases of eq.(33), the SMs from order zero to two can be derived in exact form as:

λ0,X =
πG0η

3
β−2

β−2
csc
(

π
β+1
β−2

)
cot
(

π
β

2

)
(35)

λ1,X =
πG0η

2
β−2

β−2
csc
(

π
β

β−2

)
(36)

λ2,X =
πG0η

1
β−2

β−2
csc
(

π(1−β)

β−2

)
cot
(

πβ

2

)
(37)

It is worth reminding that λ0,X and λ2,X are equal to the variances of the displacements and velocities of the fractional system,
respectively. Moreover, these SMs can be used straightforwardly to determine the central frequency and bandwidth factor of
the response process.
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Fig. 6. SMs of order 0, 1 and 2 for fractional oscillators

The SMs in eqs. (35)–(37) are shown in Fig. 6 against the fractional derivative order β, for three selected values of the
coefficient η. It is worth to remark that λ0,X in eq. (35) exists only for 0 < β < 1/2, while λ1,X and λ2,X converge at least for
0 < β < 1.

4 Concluding remarks
This paper presents novel exact closed-form solutions for the spectral moments (SMs) of integer and complex order,

i.e. fractional spectral moments (FSMs), for two distinct SDOF linear systems, excited by a white noise process. The
mathematical problem has been approached using the Residue Theorem. In particular, the integrand function has been
extended to the complex domain, and its line integral has been performed on the boundary of an opportunely defined keyhole
shaped domain.
A classic dynamic system, with linear stiffness and viscous damping, has been considered at first. For this case, the SMs
of integer order are well-known in literature and have been evaluated to show the ease of the mathematical approach. Then,
the extended exact formula for the FSMs has been obtained, and it has been shown that their limit value return exactly the
integer order SMs.
In the second case, a fractional oscillator has been analysed. The latter is constituted by a mass, linked to the ground through
a viscoelastic element (springpot) exerting a force proportional to the fractional derivative of the mass displacements. Also
for this system, the FSMs have been evaluated in exact closed-form, while the integer order SMs have been obtained as their
particular cases.
To the best of the authors’ knowledge, the exact solutions for the FSMs of classic and fractional oscillators have been
unknown till now, as well as the SMs for the fractional case. It is worth stressing that these results also imply the knowledge
of the exact solutions for the variance of the displacements and velocities of the fractional system, while the exact form of
the SMs of classic dynamic systems allow to analytically approach problems as first passage or barrier cross rates. Moreover,
in both cases, the FSMs act as alternative complete representation of the power spectral density of the system response and
can be adopted for digital simulation techniques.
The mathematical approach used to determine both the SMs and FSMs is absolutely general and could be applied to other
stationary excitations. In fact, further studies are currently in progress to determine similar exact SMs and FSMs for systems



excited by different stationary stochastic processes, as well as extending the results to multi-degrees of freedom systems with
and without fractional elements.
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