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A B S T R A C T

The modelling, benchmarking and selection process for non-contact 3D imaging systems relies on the ability to
characterise their performance. Characterisation methods that require optically compliant artefacts such as
matt white spheres or planes, fail to reveal the performance limitations of a 3D sensor as would be encountered
when measuring a real world object with problematic surface finish. This paper reports a method of evaluating
the performance of 3D imaging systems on surfaces of arbitrary isotropic surface finish, position and
orientation. The method involves capturing point clouds from a set of samples in a range of surface orientations
and distances from the sensor. Point clouds are processed to create a single performance chart per surface
finish, which shows both if a point is likely to be recovered, and the expected point noise as a function of surface
orientation and distance from the sensor. In this paper, the method is demonstrated by utilising a low cost pan-
tilt table and an active stereo 3D camera. Its performance is characterised by the fraction and quality of
recovered data points on aluminium isotropic surfaces ranging in roughness average (Ra) from 0.09 to 0.46 µm
at angles of up to 55° relative to the sensor over a distances from 400 to 800 mm to the scanner. Results from a
matt white surface similar to those used in previous characterisation methods contrast drastically with results
from even the dullest aluminium sample tested, demonstrating the need to characterise sensors by their
limitations, not just best case performance.

1. Introduction

The process of selecting the optimal 3D imaging system for a
particular industrial application is a challenging one [1,2]. This is
because of the range of variables that have to be considered.
Parameters such as acquisition time, acquisition rate, scanning volume,
physical size, weight and cost are straightforward to use as selection
criteria; they are typically the first things to be constrained by project
specifications and budget. What is more challenging to understand is
the performance that can be expected from a particular imaging
system. The project may require specific performance parameters such
as point accuracy, resolution and repeatability, which are often
available on manufacturer data sheets. The problem arises that these
values are usually best case parameters and do not reflect the real-
world performance of a system when utilised in one of the wide array of
industrial applications for 3D imaging systems [3–7]. This makes
comparisons between competing devices very challenging.

The parameters in data sheets are usually derived from tests on

idealised metrological artefacts or are limited to discussions of the
theoretical maximum resolution based on the number of pixels in the
imaging system. For instance, the VDI/VDE 2634 standard [8]
recommends using matt textured spheres, planes and ball-bars to
assess a variety of metrological parameters. Such artefacts are com-
pletely unrepresentative of objects encountered in most industrial
applications in terms of surface finish, and therefore cannot provide
accurate predictions of scanner performance. The reason for this is that
most modern 3D vision systems are active, and hence rely on the return
of projected light from a surface to measure it. The amount of light
returned, and hence the signal to noise ratio of the signal and quality of
the measurement is determined by the Bi-directional Reflectance
Distribution Function (BRDF) [9,10], which depends, amongst other
factors, on surface finish.

Whilst the theoretical limits of sensor performance are developed
from fundamental laws of physics [11,12], understanding their real-life
performance has been an active area of research. Guidi [13] has
presented a thorough review of developments in the field of 3D imaging
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system evaluation. The primary focus in literature is on achieving
traceable measurements of metrological parameters such as accuracy,
precision and repeatability. A few studies have dealt with the issue of
surface inclination on performance [14–16], but only with regard to
surfaces of optically compliant finish or varying colour. The National
Physical Laboratory (NPL) offer a 3D sensor characterisation service
which includes the evaluation of scanner performance on a selection of
material coupons at different orientations relative to the sensor [17].
NPL also produce a freeform artefact [18] for the evaluation of shape
reproduction under different lighting conditions. These services are
useful to industry, particularly manufacturers of 3D sensors as a
benchmarking service. However, the expense of the freeform artefact
limits its use more generally and the limited set of orientations that are
possible with a set of coupons inherently limits the evaluation of
dimensional sensitivity to surface finish without an excessively large
experimental set. Despite the lack of published investigations into
characterising the effect of surface finish on general sensor perfor-
mance, its importance is clearly appreciated, otherwise evaluation
methodologies would not recommend the use of vapour blasted, or
matt painted surfaces as test artefacts.

A further issue is the limited set of standards for scanner evalua-
tion. Two standards are of particular relevance: VDI/VDE 2634 [8] and
ASTM E2919-14 [19]. VDI/VDE 2634 is primarily concerned with
determining errors by the measurement of three standard artefacts: a
sphere, ball-bar and plane, which should first be vapour blasted to
produce optically diffuse surfaces for optimal measurement. ASTM
E2919-14 specifies a test method for evaluating systems that measure
pose (position and orientation) of a rigid test object. There are no
limitations placed on the test object itself, in fact, it recommends using
one that is representative of the final application in terms of geometry
and material. This is useful for assessing performance, but it is only
valid for the test object chosen and as there is no specification for the
object, the replication and comparison of results for different systems
by third parties is difficult.

In previous work [20], the authors presented a methodology for
collecting point cloud data from a sensor for samples of varying surface
finish and inclination only. The work is extended here to incorporate
samples at varying distances and tolerating small deviations of the
sample from the centre of the field of view. The main focus however has
been improvements of the data processing techniques and performance
metrics to allow straightforward comparison of sensors in real world
conditions.

It is envisaged that if a standard methodology for the collection of
this information were conceived, it would allow manufacturers to
provide their customers with significantly improved levels of informa-
tion to make scanner selection considerably more straightforward. It
would also allow third party organisations to be able to collect
comparable performance evaluation data.

Section 2 gives details on the data collection methodology including
sample preparation, validation, test apparatus and the calculation of
performance metrics from the data. Section 3 details the presentation
of results into a format that allows easy comparison of sensor
performance on different surfaces.

2. Methodology for 3D imaging system evaluation

This section describes the methodology for evaluating the perfor-
mance of a 3D imaging system. The process begins with preparing a
selection of flat samples with different surface finishes. These samples
are then placed on a pan tilt table and point clouds are collected at as
many surface orientations and distances from the scanner as practical.
Finally, the data is processed to calculate the performance of the
scanner. It is important to note that the data processing method is
based on point cloud data only. This is to ensure a third party can
evaluate any scanner that produces point cloud output.

By using flat samples, the number of measurements that must be

taken to rigorously sample the gradient space is large; 1008 measure-
ments taking approximately one hour per sample and distance were
typical in our tests. Other sample shapes, such as hemispheres and
cylinders were considered instead of flat planes, which could poten-
tially yield information for many sample orientations in a single scan.
Such a shape would have significant drawbacks however. Firstly, the
cost and difficulty of producing and validating a set of artefacts with
different, consistent, isotropic surface finishes is far greater than for flat
plates. Secondly, the quantity of data representing a particular surface
normal on a curved surface is technically infinitely small. A point
grouping technique would therefore be required to select points
covering a range of similar gradients, limiting the amount that can
be collected and the ability to assess its quality.

The choice of sample surface finish is arbitrary, however it is best to
match it as closely as possible to the types of object the scanner will be
used on. The methodology and data processing steps described rely on
the assumption that the samples are isotropic, so it is most important
to select an appropriate finishing process, such as shot blasting, barrel
finishing or random action abrasive sanding.

When deciding on the set of surface orientations to test, more
orientations should be taken about the direction where self-blinding is
expected to occur, as this is where the quality of scan is most sensitive
to changes in surface orientation. The sample preparation and valida-
tion, test apparatus and setup and data processing steps are explained
in Sections 2.1, 2.2 and 2.3 respectively.

2.1. Sample preparation

Four samples were prepared on which to evaluate the performance
of the scanner. However, if the sample exhibits periodic texture, say
from a turning or milling process, it will generate a directional
diffraction grating effect and a non-isotropic BRDF [21]. This would
introduce sample rotation and the nature of the periodicity as addi-
tional experiment variables. In this investigation, this degree of
complexity was removed by considering samples with isotropic surface
finish only.

Samples were manufactured from 60×60×2 mm aluminium sheet.
The selection of sample size depends on many factors, including the
scanner field of view, resolution, distance and the range of surface
normals to be tested. Through these factors, sample size affects the
number of data points that can be recovered in each scan. More data
points improve the confidence of the performance metrics, especially at
orientations where the sample is viewed from highly oblique angles.
However, if the sample is too large relative to the sensor field of view
then incidence angle will vary significantly across the sample surface.
Size selection is therefore a compromise between the number of points
on the surface and the variation of the viewing angle over the sample,
as shown in Fig. 1. A large sample also requires a large pan-tilt table to
orient it, which may be limiting. The criteria for selecting a 60 mm
square plate for this evaluation is that the relative surface angle varies
by no more than 5° over the sample surface at the minimum distance
scanned (400 mm), and more than 500 points are still collected on a
matt white surface at the maximum angle and distance tested.

The data processing step involves fitting a plane to point clouds of
the sample. As such, the plate should be approximately an order of
magnitude flatter than the possible resolution of the scanner in order to
prevent errors of form in the sample being misinterpreted as measure-
ment noise. At 400 mm, the Ensenso is quoted as having a depth
resolution of 0.34 mm. Therefore, the flatness of the samples should
ideally be less than 34 µm.

A random action orbital abrasive process using various grades of
wet-dry sandpaper was used to create a range of surface finishes. Fig. 2
shows the manufactured samples. A matt white sample, sample 4, was
prepared to act as a benchmark, optically compliant, surface akin to
characterisation artefacts prescribed in other methods. Table 1 details
the surface roughness parameters of the samples, as measured in the X
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and Y directions using five equally spaced profiles 55 mm long using a
Talysurf CLI 2000 profilometer. To calculate Ra and Rq, a cut off
wavelength of 0.8 mm was used according to EN ISO 4288. The
flatness was measured by taking the maximum range of heights from
the five profiles in each direction. The flatness of all four samples is
acceptably close to the 34 µm required by the depth resolution of the
scanner. The range of surface roughness was chosen to transition
between the expected specular and diffuse behaviour of the sample in
response to the Ensenso pattern projector. Sample three has an Rq «λ
and is therefore predominantly specular, whilst sample four has an Rq
≈λ and is therefore diffuse.

2.2. Apparatus

The sensor selected to demonstrate the evaluation method is an
Ensenso N10-304-18. The Ensenso is an active stereo vision camera
that uses a pattern projector that operates in the infrared. The pattern

projector augments stereo matching performance on surfaces with little
texture of their own. The illuminant is not coherent, however the
overall intensity of a returned coherent pattern such as one produced
by a laser projection system is governed by the surface BRDF in the
same way as a non coherent pattern. The only difference being the
intensity of the return is modulated by the phases of photons arriving
at the pixel to produce a speckle pattern. As the speckle pattern itself is
unpredictable unless a priori knowledge of the surface texture is
known, the method proposed should adequately allow the comparison
of both coherent and non-coherent 3D measurement sensors.
Hardware specifications of the Ensenso based on the datasheet values
[22] are given in Table 2. The datasheet does not specify what surface
finish the sensor will function on, nor what surface any performance
evaluation has been conducted on. Stereo vision is a mature technology
and as such details of the operation of the Ensenso will not be entered
into here. An interested reader can refer to [23] for further details.

Any method is appropriate to control the sample orientation,
providing it allows sufficient repeatability over a requisite range of
angles. The angle range of the table must be adequate to expose the
performance limitations of the sensor on the sample surface finishes.
From previous experience of characterising sensor performance,
diffuse surfaces require large changes of surface orientation to notice-
ably change scanner performance parameters. Shiny surfaces however
have much higher rates of change. On the shiniest sample tested (a
near mirror finish), the transition between maximum and minimum
performance occurs over a range of approximately 20° of sample tilt. If
we assume we require at least 10 points to adequately describe this
transition, this places a modest limit on tilt table resolution of 2°. As
such, low cost pan-tilt tables can be used in this characterisation
method. The table may be manually or computer controlled, although
the speed benefits of an automatable system cannot be overstated.
Regardless of the orientation method, it must be possible to define a
surface normal with respect to the camera co-ordinate system. This
requires knowledge of the transformation between the tilt table and
camera coordinate frames.

In this evaluation, a simple pan-tilt table, constructed using Lego®,
was used to orient the samples as shown in Fig. 3. The table is
controlled using the RWTH - Mindstorms NXT Toolbox for MATLAB®

[24]. The toolbox provides control over motor movement and access to
encoder positions. Functions were written to control of the sample
normal, n, by specifying polar co-ordinates azimuth, θ, and polar angle,
Φ, up to a maximum of 55°. The table has a repeatability of ± 1.5°. The
co-ordinate systems of the pan-tilt table and the Ensenso camera are
shown in Fig. 4. The transformation between the coordinate systems C
and T consists of a translation, V, and a rotation of 180° about the y-
axis. The exact value of V is determined during the data processing
stage, but the rotation is fixed using an alignment jig on the table top,
positioned carefully with reference to the camera mounting frame to
ensure that yT and yc are parallel. This jig also coarsely locates OT, the
origin of the tilt table, along the axis zC. The relative angle between the
sample normal, n, and V is ΦR. The angle between V and zc is β.

The sensor mounting frame performs two functions, the first is to
maintain geometry; axis zC remains perpendicular to the table top and

Fig. 1. The compromise of sample size on the number of points acquired and the angular
size of the sample.

Fig. 2. Photograph of samples. The reflection of the checkerboard pattern on the
samples demonstrates their relative surface finish.

Table 1
Sample surface roughness and flatness parameters.

Sample

1 2 3 4

Ra (μm) X 0.46 0.39 0.09 0.82
Y 0.46 0.34 0.09 0.66

Rq (μm) X 0.59 0.54 0.13 1.04
Y 0.59 0.45 0.13 0.83

Flatness (μm) X 15.5 20.2 11.9 24.6
Y 39.9 13.9 30.8 19.7

Table 2
Ensenso N10-304-18 specifications from manufacturer's datasheet.

General specifications

Working distance 170–2000 mm
Optimum working distance 500 mm
Image resolution 752 × 480
Baseline 100 mm

Performance at optimum working distance (500 mm)
Z Resolution 0.523
View Field Size 569 × 401 mm
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axis yC parallel to yT. The second is to allow the translation of the
sensor along the zC, to change the distance between the sensor and
sample. For each of the four samples, sets of point clouds were
recorded at distances of 400–800 mm in increments of 100 mm.
Each set consists of point clouds measured at azimuths of 0–350° in
steps of 10° and polar angles of 1° to +55° in increments of 2°. Point

clouds were captured in synchrony with the MATLAB control script
using the Ensenso SDK [25] and stored in text files. The Ensenso is
capable of capturing at 30 Hz. The rate determining step in the
experimental process is the movement speed of the pan-tilt table,
which was able to capture an image on average every four seconds. A
set of scans for a given surface and distance therefore took approxi-
mately one hour. A more consistent pan-tilt table would reduce this
significantly however, as the table used had to undergo a recalibration
procedure every 50 scans to compensate for drift in positioning
accuracy.

2.3. Point cloud processing

The raw point clouds require processing to extract parameters
describing the quality of the data measured from the sample surface at
each surface normal. This is achieved in three steps. First, the points
acquired from the sample surface must be segmented from the rest of
the scene. Second, a plane is fitted to the remaining points. Finally, the
performance metrics are calculated based on the number of points
acquired and point noise. All processing was performed in MATLAB.

2.3.1. Point cloud segmentation
For each point cloud the origin of the tilt table, OT, must be located

in order to reliably segment the point cloud. This is the centre of
rotation of the sample, and hence remains the same for every point
cloud for a particular sample and distance experiment. The sample
surface itself lies 4 mm above the axis of rotation due to the design of
the tilt table. As such, the sample both translates and rotates as it
sweeps through polar angle. The centre of the sample, S, can therefore
be calculated as S=OT+nd, where d=4 mm. A point is segmented from
the cloud if it lies within a distance of r=22 mm from S, as shown in
Fig. 5. The origin was selected manually for each sample and distance
combination, such that the point S consistently lies on the sample
surface for all orientations.

2.3.2. Measurement noise
Following segmentation, a plane, W, is fitted to the data points in

the least squares sense as shown in Fig. 6a. The perpendicular distance,
D, from each point to the plane is calculated as follows:

n P WD = ˆ ∙( − )Wk k 0

Where Pk are the co-ordinates of a point in the point cloud with index
k, nW is the normal of the planeW andW0 is an arbitrary point on the
plane.

Point standard deviation, σ, is used as a measure of point noise.
This is calculated as the standard deviation of the perpendicular
distances from each point to the plane, where N is the number of
points in the segmented point cloud:

∑σ
N

D D= 1
−1

−
k

N

k k
=1

2

Where Dk is the mean distance from each point to the plane. As the
plane was fitted to the points in the least squares sense, the value of Dk
is zero. A histogram showing the distribution of perpendicular dis-
tances from each point to the plane is shown in Fig. 6b. A Gaussian
probability density function (pdf) with a mean of zero and standard
deviation σ is overlaid. The pdf of D is well represented by the Gaussian
for this particular case, however on some surface and scanner
combinations it may differ and a large number of tests are required
to determine the underlying pdf. Due to the lack of a general noise
model for 3D sensors, standard deviation is taken to be the measure-
ment noise metric.

2.3.3. Fraction of recovered points
The measurement noise alone is not sufficient to characterise the

Fig. 3. The camera and tilt table co-ordinate systems, denoted by subscript C and T
respectively.

Fig. 4. Photograph of the experimental setup.
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performance of a 3D sensor. It is equally important to know the
probability of actually acquiring a point on a particular surface. A
simple measurement of this may be to calculate the point density, ρ,
with units of points/mm2, by counting the number of points recovered
and dividing it by the area over which they were measured. This value
could then be used to predict the number of points it is possible to
measure on a given surface at a given distance and orientation.
However, this parameter cannot be used to compare relative perfor-
mance over different variables, as it says nothing about the number of
points it is actually possible for the scanner to measure. For instance, a
sample at zero inclination may yield 0.5 points/mm2 at 800 mm
distance, and 2 points/mm2 at 400 mm distance. The scanner does
not necessarily perform 4 times better at 400 mm. If ρmax is the
maximum density of points possible and we assume that at 800 mm
ρmax=1 point/mm2 and at 400 mm ρmax=2 point/mm2, then our
scanner has recovered 50% of possible points at 800 mm and 100%
at 400 mm, so in fact only performs twice as well at 400 mm. This
normalised point density is referred to as the fraction of recovered data
points, and is calculated as F=ρ/ρmax. If the point density is not
normalised in this way it masks where the sensor actually reaches its
performance limits and starts to recover less data than expected.
Provided ρmax can be calculated, F is independent of both sample
orientation and distance.

To calculate ρmax, the Ensenso is modelled as a pinhole camera to
determine the area imaged by a pixel at a given distance, d, and angle β
from the sensor. Fig. 7 shows the geometry of a pinhole camera
imaging a small square sample area, Δ2 on a pixel with real size, s. The
camera focal length is f and the angle subtended by a pixel on the
sample is γ. For the Ensenso camera, f=3.6 mm and s=6 µm from the

manufacturers datasheet. From the cosine rule, we can calculate the
angle γ:

⎛
⎝⎜

⎞
⎠⎟γ cos b c s

bc
= + −
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Fig. 5. Method for determining OT and S. Point clouds showing a segmented region (blue) for various sample orientations. Data is of sample 4 at 500 mm. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)
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Fig. 7. Pinhole camera geometry imaging a small square area Δ2.
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Where by Pythagoras, b2=a2+f2 and c2=(a+s)2+f2. The angle
V kβ = cos ( ˆ ∙ )−1 and a f β= tan . k is the unit vector along the zC axis;

[0 0 1].
Using the small angle approximation, the size of the surface

element Vγd γΔ= = | |. It follows that surface points will be recovered
on the sample in a grid with a spacing of Δ, therefore the maximum
point density, ρmax=1/Δ

2. However, this point density is only correct
for surfaces which are perpendicular to the vector V. To account for
this, the calculation of ρ is simply the number of points in the
segmented cloud, N, divided by the projected sample area, A′, as
shown in Fig. 8. In the case of this segmentation method,
ρ Nπr β= cos2 .

There are two disadvantages with this model. The first is that it does
not take into account radial distortion of the camera optics, and hence
should only be used for objects close to the centre of the field of view.
To correct for this, it would be necessary to perform an intrinsic camera
calibration. Whilst possible with the Ensenso, it would make the
method impossible to implement on a 3D scanner that does not allow
the capture of raw images from the camera. The second is that it
requires knowledge of the focal length and pixel size of the camera,
which is not always available in a 3D scanner's datasheet. An
alternative approach would be to take the point density from a matt
white sample as ρmax. Doing so removes the need for a priori knowl-
edge of the camera, but increases the number of tests required to
characterise a sensor.

3. Analysis of characterisation data and presentation of
results

During the experimental phase of the sensor evaluation, a large
volume data is collected. In our evaluation, with only four samples and
five sample distances, over twenty thousand point clouds were cap-
tured. Each point cloud was processed to extract the parameters
described in Section 2.3. Careful consideration must be given to
present the results in a way that allows the meaningful comparison
of different scanner systems. This section describes the methodology
and reasoning to arrive at such results. The point clouds from this
evaluation are available with the http://dx.doi.org/10.17028/rd.lboro.
4258274.

Fig. 9 shows contour plots of results for F and σ for sample 1 at a
distance of 500 mm. The results are linearly interpolated onto a grid
with a 2.5° spacing. The graph is plotted on axes of X and Y angle,
where if n is defined as:

n n n n=[ ]x y z
T

The x and y angles for this normal are therefore:

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟α tan n

n
α tan

n
n

= =x
x

z
y

y

z

−1 −1

Of particular interest is the central region of self-blinding resulting
in significant point uncertainty, as indicated by the high standard
deviation. This is the region of angles where the sample is reflecting the
light from the projector directly back into one of the two cameras,
resulting in image saturation and/or poor contrast of the projected
pattern. A drop in the fraction of recovered points at high inclinations
is visible, dropping to 0.3 at angles of 50°, due to a poor return of the
projected light pattern from the projector back to the camera. The point
uncertainty is seen to degrade far more gradually over the same range.

All projected light systems must cope with self-blinding and adverse

Fig. 8. The projection of area A onto area A′ along the direction of V.

Fig. 9. Contour maps for sample 1 at 500 mm for (a) point fraction recovery, F and (b)
point standard deviation, σ.
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scattering. The variation in measurement systems in terms of lighting
and imaging strategies and processing methods mean that systems will
vary in performance; for example some high-end industrial systems
make use of multiple exposure imaging, and use multiple cameras to
extend dynamic range and reduce sensitivity to surface texture and
form. However, the functionality offered by such systems usually comes
at significant extra cost and without a method to directly compare like
for like performance, there is no way for a user to assess if the extra
cost is warranted, or indeed what the limits of any technology are.

Ideally, the contour plots should be perfectly symmetrical.
However, the experiments were performed in a laboratory with no
controls over ambient light, as this is the condition the sensor is used in
on a day to day basis. As such, the uneven features are due to windows
and overhead lights reflecting on the sample and different orientations
and reducing the signal to noise ratio of the images.

Whilst the contour plots are useful for analysing results at a
particular sample at a given distance, 40 charts (5 distances, 4 samples,
2 metrics) are required to fully display the data from all the
characterisation experiments. For ease of use and efficient compar-
isons, it is therefore necessary to reduce the dimensionality of the data,
with the aim of reducing the results to a single performance chart per
surface type, incorporating both F and σ.

The first step to achieve this is to plot F and σ versus relative surface
angle, ΦR, therefore reducing the need for 2 angles, αx and αy, to
describe a surface orientation. This is possible as the samples are
isotropic and hence have a BRDF that is independent of the sample
rotation about n. This is exploiting the axial symmetry present in
Fig. 9. Figs. 10 and 11 show the results of doing this for samples 1 and
4 respectively. Each line represents how the value of a performance
parameter, F or σ, changes as a function of sample angle, ΦR, for a

Fig. 10. Sample 1 results for (a) Fraction of recovered points, F, showing the 90% level as the dashed line and (b) standard deviation, σ.

Fig. 11. Sample 4 (matt white) results for (a) Fraction of recovered points, F, showing the 90% level as the dashed line and (b) standard deviation, σ.

Fig. 12. The selection of Φmax and Φmin for different numbers of intersections.
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particular distance, d, and sample. Each data series is filtered by a 20
point moving average. For sample 1, this reveals an increasing drop off
in F as a function of both distance and sample angle, which is
accompanied by an increase in point noise. In addition, the effect of
self-blinding is seen to be small after a distance of 600 mm. The matt
white surface, sample 4, shows nearly 100% point recovery over the
range of distances tested, and a point standard deviation below 1.5 mm
for all measurements, compared to 4 mm for sample 1. No self-
blinding occurs on the matt white sample.

To further reduce the number of graphs required to describe the
sensor performance, it is assumed that they need not show the
probability of recovering a point at an arbitrary surface angle, but
rather show where there is a probability above a certain threshold of
recovering a point. As such, the parameters Φmax and Φmin are
determined for each distance curve at the intersection of the line
F=Flim. The selection of the cut off Flim is somewhat arbitrary and can
be chosen to reflect the performance requirements for a particular
application. In this characterisation, it is taken as 0.9. Fig. 12 shows the
selection process of Φmax and Φmin for different numbers of intersec-
tions, i.

Finally, Φmax and Φmin can be plotted for each sample as a function
of distance. The region bounded by Φmax and Φmin represents the range
of surface angles where fractions of points greater than Flim are

expected to be recovered. Each point in this region has co-ordinates
(d, ΦR) and therefore has a standard deviation associated with it, which
can be calculated by interpolating between the curves for σ vs ΦR at the
corresponding ΦR coordinate. Once the region is mapped by standard
deviation, it can be colour mapped and displayed as seen in Fig. 13. The
graph therefore describes the expected standard deviation on any
surface orientation where more than Flim points are expected to be
recovered. For example, to plot the standard deviation at a distance of
550 mm and a sample angle of 20°, the value of σ is calculated by
interpolating between the 500 and 600 mm curves on the plot of σ vs
ΦR.

As is to be expected, the self-blinding at low values of ΦR becomes
more severe on shinier samples, and at shorter distances. Similarly,
shiny surfaces cease to yield a useful number of points at shallower
inclinations than dull ones. This is not surprising to anyone who has
even a modest experience with 3D scanners. However, outcomes of this
methodology enables a user to easily identify the optimum scanner
orientation for a given surface, distance and scanner combination, or
indeed determine without trial and error if a particular scan will be
possible. For a particularly challenging surface, such as sample 3, it
identifies the narrow range of conditions at which it is possible to get
useful information. It is envisaged that this data could be used to
predict the statistical properties of a point cloud if the surface finish of

Fig. 13. Performance charts for F≥0.9 for samples (a)1 (b) 2 (c) 3 and (d) 4, coloured by point standard deviation. Inset photographs are of a checkerboard reflecting in the
corresponding sample to illustrate relative shininess. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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the subject were known, and subsequently predict the optimum
position to scan an object from.

Crucially, the method also shows the contrast in performance
between even the dullest metallic sample and the matt white sample
representative of typical characterisation artefacts. Performance de-
grades gradually across the relatively large range of surface roughness
tested as the surface transitions from diffuse to specular behaviour. In
these results, performance similar to that on the ideal sample is only
achieved over a very narrow band of surface orientations for sample 1,
and never for samples 2 and 3. Therefore, it is essential to perform any
characterisation on surfaces similar to those to be used in the final
application. In addition, any performance metric should always be
quoted with details of the surface finish of any artefact used to measure
it.

As the presented methodology stands, providing care is taken to
control lighting and sample position, it allows for a direct comparison
of 3D imaging systems under the same circumstances. The range of
surface finishes available from manufacturing process is vast however,
and producing a representative set of samples for characterisation is a
significant challenge. This presents a limitation for predicting perfor-
mance on an arbitrary object, as a sample must either be manufactured
to the same surface specification of the object or a sample with similar
optical properties must be used instead. Determining surface proper-
ties which will allow either the interpolation between data sets from
known samples, or the selection of similarly performing samples would
therefore be a beneficial area for future work. Due to the complexity of
dealing with anisotropic surfaces, the work so far has been based on
isotropic surfaces only; this is in line with almost all other metrological
artefacts used to assess the performance of 3D vision systems, which
have isotropic surface finishes.

A potential future application for this method is the ability to
predict the statistical properties of a point cloud based on knowledge of
an objects surface properties and geometry. This could allow the
optimisation of scanner location on production lines or in freeform
assembly or reverse engineering applications, where an estimation of
object position could be used to find the optimum location to perform a
more detailed scan. The characterisation method presented in this
paper would be completely appropriate for any object with an isotropic
finish, for example, metal parts that have been cast, forged, sand-
blasted, shot-peened, selective laser sintered, injection moulded, or the
vast majority of moulded plastic parts or ceramic parts. Characterising
and modelling the effects of anisotropic surface finish is the primary
challenge to achieving sensor simulation on parts with completely
arbitrary surface finish, which will be investigated in future work.

It is important to note that this paper is intended to present
guidelines of a method to produce performance metrics that are generic
to any 3D sensor. The Ensenso is used to demonstrate the procedure; it
was not the intention to present a comparison of sensors as to do so
would be cumbersome and detract from the presentation of the method
itself. In future work, studies will be undertaken to evaluate multiple
3D imaging systems and technologies with the proposed methodology.
The authors also invite other researchers active in the field of 3D vision
system design and characterisation to consider the use of this
methodology and metric.

4. Conclusions

This paper presents a methodology that fills a critical gap in the
characterisation procedures for 3D imaging systems; it allows the
evaluation of sensor performance in a way that is representative of real
world measurements, and exposes a sensors’ limitations in terms of
measureable surface types and orientations. Two metrics allow a
simple and pragmatic approach to sensor comparison and a convenient
method for visualisation of sensor performance with respect to these
metrics was defined. The only constraint on the sensor technology is

that it must be possible to produce point cloud output and no intimate
working knowledge of the sensor is required. Combined with the low
cost of sample manufacture and apparatus, this allows manufacturers
and third parties alike to characterise and compare sensors, and assess
sensors capability for different applications.
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