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The propagation of acoustic waves through a suspension of spherical particles in a viscous liquid is

investigated, through application of a multiple scattering model. The model is based on the multiple

scattering formulation of Lupp�e, Conoir, and Norris [J. Acoust. Soc. Am. 131, 1113–1120 (2012)]

which incorporated the effects of thermal and shear wave modes on propagation of the acoustic wave

mode. Here, the model is simplified for the case of solid particles in a liquid, in which shear waves

make a significant contribution to the effective properties. The relevant scattering coefficients and

effective wavenumber are derived in analytical form. The results of calculations are presented for a

system of silica particles in water, illustrating the dependence of the scattering coefficients, effective

wavenumber, speed, attenuation on particle size and frequency. The results demonstrate what has

already been shown experimentally; that the shear-mediated processes have a very significant effect

on the effective attenuation of acoustic waves, especially as the concentration of particles increases.
VC 2017 Author(s). All article content, except where otherwise noted, is licensed under a Creative
Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
[http://dx.doi.org/10.1121/1.4974142]
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I. INTRODUCTION

The investigation of low frequency (long wavelength)

acoustic propagation problems in inhomogeneous media

has been pursued for many different systems and applica-

tions. Often the objective is to obtain the effective proper-

ties of the equivalent homogeneous medium, for ordered or

disordered structures. Whilst many acoustic studies focus

on ordered structures such as crystals or periodic arrays, the

materials of interest in this paper are disordered inhomoge-

neous media, with random distributions of scatterers in a

homogeneous matrix. In elastic systems such as composite

materials containing fibers or nanoparticles, homogeniza-

tion schemes1 such as effective medium models,2–4 multi-

ple scattering models5–8 and the representative volume

element approach,9 as well as computational schemes of

various types,10 have been applied. Related propagation

problems occur in porous materials, for which analysis is

often based either on Biot-type models,11–13 effective

medium models,14 multiple scattering approaches,15 or

other homogenization schemes.16,17 Propagation in systems

of resonant scatterers, including bubbles in liquids, have

been investigated using multiple scattering models by a

number of workers.18–20 Further interest in the problem of

propagation in inhomogeneous media has been prompted

by the development of the field of acoustic metamaterials,21

for which resonant scatterers may be used to achieve modi-

fied acoustic properties.22–25 Some such studies use multi-

ple scattering models to predict wave propagation in the

long wavelength system with resonant scatterers.22,26

The work reported here concerns propagation through

liquid suspensions of solid particles, where the particle loca-

tions are only weakly correlated, the particles are non-

resonant, and propagation is in the long wavelength region.

This type of system has application for particle characteriza-

tion, for determination of particle size, concentration or den-

sity,27–31 as well as for monitoring processes, such as

crystallization,32–34 and slurries.35 A number of approaches

have been developed for acoustic characterization of disper-

sions of particles. These include the scattering and absorp-

tion models of Dukhin;36,37 the diffusive acoustic wave

spectroscopy method of Aubry and Derode,38 Leroy and

Derode,39 and Viard and Derode;40 the combined ballistic/

multiple scattering model of Page41 for resonant scatterers;

and backscattering methods (with semi-empirical multiple

scattering) such as those developed by Stintz’s group.42,43

Other workers have used the multiple scattering models of

Foldy,44 Waterman and Truell,45 Fikioris and Waterman,46

and Lloyd and Berry,47 to interpret ultrasound measurements

in bubbly liquids,19 particles in liquid suspensions,22,48,49

and emulsions.27,50–52 It is these multiple scattering models

which form the basis for the present work.

Although liquids are not considered to sustain shear

wave propagation, the scattering of compressional waves by

particles produces rapidly decaying shear waves in the

regions close to the particle surfaces. These contribute sig-

nificantly to the effective attenuation of the compressional

wave mode passing through the suspension of par-

ticles.49,53,54 The effects of the production of shear wave

modes and thermal modes at the particle have been incorpo-

rated into multiple scattering models45–47 by use of the

Epstein and Carhart55 or Allegra and Hawley56 (ECAH) for-

mulations for the scattering coefficient of each individuala)Electronic mail: v.pinfield@lboro.ac.uk
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particle.48 But the influence of shear and thermal waves on

neighboring particles has commonly been neglected in the

multiple scattering models, which consider only the acoustic

(compressional) mode in the multiple scattering analy-

sis.45–47 Although the effect of shear waves on compres-

sional wave propagation has been addressed for solid

materials (cylindrical scatterers),8 these effects have rou-

tinely been neglected in liquid systems, although experimen-

tal evidence for their importance has been known for some

time.49

Hipp et al. proposed a core-shell model to account for

thermal and shear effects on neighboring particles, through

an effective scattering coefficient.57 Their model compared

favorably with experimental data.49 Thermal effects were

also considered many years ago by Isakovich,58 and later

incorporated into a multiple scattering formulation through

a core-shell model by Hemar et al.59 and McClements

et al.60 Other workers (including one of the current authors)

have applied an effective medium approach to the problem

of shear wave interactions, through the use of an effective

density and viscosity for the material surrounding the scat-

terers.53,54 However, it proved difficult to identify effective

properties which provided the correct limiting behavior

where shear and thermal effects are negligible. Alba used a

stochastic numerical solution to the multiple scattering

problem with three wave modes (compressional, thermal,

and shear)61 and the associated software is commercially

available.

In 2012, Lupp�e et al. published a new multiple scatter-

ing model62 based on the Waterman and Truell model,45 but

including the effects of thermal and shear wave modes on

multiple scattering. One of the current authors has since

applied the model to emulsions (liquid droplets in a liquid),

in which thermal effects are the dominant mode-conversion

mechanism contributing to multiple scattering.63,64 More

recently, the current authors have studied the shear wave

multiple scattering by applying the model of Lupp�e et al. to

suspensions of solid particles in a liquid. In this system,

shear waves are believed to have a significant effect on com-

pressional mode propagation. Papers presenting the compari-

son of the model with experimental results have already

been published,65,66 but here the model of the propagation is

examined in more depth, demonstrating the dependence of

scattering coefficients on the shear wavenumber, and the

resulting influence on the effective wavenumber. In Sec. II,

the model for scattering in a liquid suspension of solid par-

ticles is presented, developed from the formulation of Lupp�e
et al. for an effective wavenumber.62 Analytical solutions

for the relevant scattering coefficients (transition factors) are

presented in Sec. II C and II D. The mathematical model is

then explored through numerical calculations in Sec. III,

illustrating the dependence of the scattering coefficients and

effective properties on particle size and frequency. Finally,

velocity and attenuation spectra are presented to demonstrate

the impact of shear effects on spectroscopy measurements,

in comparison with the Lloyd-Berry model without these

shear effects. Comparison with experimental data is pre-

sented elsewhere.65,66

II. THE MODELS

A. Multiple scattering

The development follows closely the approach adopted

for thermo-elastic scattering detailed in a previous paper,63

which was based on the multiple scattering formulation of

Lupp�e et al.62 Only the main results are outlined here and

the reader is referred to the previous papers for a fuller

explanation. Taking the “low concentration expansion” pre-

sented by Lupp�e et al.62 [Sec. V A, Eqs. (29)–(32)], the

effective wavenumber, K1, for compressional wave propaga-

tion is written as

K2
1 ¼ k2

1 þ eyð1Þ1 þ e2y
ð2Þ
1 ; (1)

where k denotes the wavenumber of the continuous phase

and the numerical subscript denotes the wave mode, taking

the values 1, 2, 3 for compressional, shear, and thermal wave

modes, respectively. The concentration is represented by e
¼ �4in0 ¼ �3i/=ðpa3Þ which relates to the number density

of particles in the suspension, n0, where / is volume fraction

and a is the particle radius. The contributions to the effective

wavenumber are expressed in terms of the transition factors,

which define the scattering process and mode conversions, at

a single particle. The transition operator TpqðrjÞ defines the

scattered field at a single particle due to an exciting field,

thus

uðqÞS ðr; rjÞ ¼ TpqðrjÞuðpÞE ðr; rjÞ; (2)

where uðqÞS ðr; rjÞ is the potential of the scattered wave field

of mode q at location r produced by a scatterer at rj due to

an exciting field of mode p with the potential uðpÞE ðr; rjÞ. If

the exciting and scattered fields are defined in terms of

Rayleigh partial wave expansions (solutions of the

Helmholtz equation in spherical polar coordinates), the tran-

sition operator can then be replaced with a transition factor
Tpq

n for each partial wave order, thus giving

TqpðrjÞjnðkqqjÞPnðcos hÞ ¼ Tqp
n hnðkpqjÞPnðcos hÞ; (3)

where jnðkrjÞ and hð1Þn ðkrjÞ are the spherical Bessel and

Hankel functions (of the first kind throughout), respectively,

qj ¼ r� rj, and Pnðcos hÞ are the Legendre polynomials.The

contributions to the effective wavenumber at the first order

in concentration include only compressional-compressional

transition factors; these are all included in the Lloyd-Berry

multiple scattering formulation47 and are defined by the

terms

y
ð1Þ
1 ¼ M

ð0Þ
11 ; (4)

where

M 0ð Þ
qp ¼

pffiffiffiffiffiffiffiffiffi
kpkq

p X1
n¼0

2nþ 1ð ÞTqp
n : (5)

No mode conversion terms appear at first order in concentra-

tion. However, at second order in concentration, mode
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conversion terms are significant, and appear through y
ð2Þ
1 [for

compressional mode propagation, Eq. (1)],62

y 2ð Þ
1 ¼ M 1ð Þ

11 þ
X
q 6¼1

M 0ð Þ
1q M 0ð Þ

q1

k2
1 � k2

q

� � ; (6)

M 1ð Þ
pp ¼

p
kp

X3

q¼1

X1
n¼0

X1
�¼0

�1ð Þnþ� 2nþ 1ð Þ

� 2� þ 1ð ÞTqp
n

�Q
qð Þ

n� kpð ÞTpq
� : (7)

In order to identify the mode-conversion contributions, only

the terms with transition factors Tpq
n with p 6¼ q are presented

here. It has previously been shown that the low concentration

expansion of Lupp�e et al.62 leads to the Lloyd-Berry

expression for effective compressional wavenumber when

only compressional-compressional scattering coefficients are

retained, and particles are assumed to be randomly distributed

outside the excluded volume of the hard sphere particles.

These terms are not considered further in this work. For p 6¼ q,

�Q
qð Þ

n� kpð Þ ¼
ipb

k2
p � k2

q

� � �1ð Þnþ� i

kqb
þ
X1
l¼0

G 0; �; 0; n; lð Þ
(

� kpbj0l kpbð Þhl kqbð Þ � kqbjl kpbð Þh0l kqbð Þ
� �)

;

(8)

where b is radius of the excluded volume around a single

particle.62 The subscripts and indices n and � denote partial

wave orders, and Gð0; �; 0; n; lÞ are the Gaunt coefficients

defined by

Pm
n ðcos hÞPl

�ðcos hÞ ¼
X1
l¼0

Gðm; n; l; �; lÞPmþl
l ðcos hÞ:

There is no summation over repeated indices in these

expressions.

The equations in this section (from Lupp�e et al.62) are

the basis for the determination of the additional contributions

of shear-acoustic multiple scattering to the effective com-

pressional wavenumber in a suspension of solid particles.

B. Shear-acoustic multiple scattering

Now, the contributions of compressional to shear mode

conversions (and vice versa) are identified in the effective

compressional wavenumber. At second order in concentra-

tion, the relevant contributions are those representing the

production of a shear wave at a particle due to scattering of

the incident compressional wave, followed by the interaction

of that shear wave at a nearby particle, causing an outgoing

compressional wave. At both scattering events, scattered

(outward propagating) waves of all three modes are pro-

duced. For clarity, wave mode indices p and q are replaced,

from here on, by letters C and S (for compressional and

shear wave modes, respectively). The wavenumbers for the

liquid continuous phase are given by

kC ¼ x=cþ ia; kS ¼ ðxq=2gÞ1=2ð1þ iÞ; (9)

where x is the angular frequency, c is the speed of the com-

pressional wave, a is the attenuation, q is the density, and g
is the viscosity. It should be noted that the particles may be

solid and therefore have a real shear wavenumber

kS ¼ xðq=lÞ1=2
, where l is the shear modulus. TCS

n is the

transition factor for an incident compressional wave, produc-

ing a scattered shear wave, and TSC
n for an incident shear

wave, producing a scattered compressional wave, for partial

wave order n.

The following assumptions have been used to derive the

additional contributions to the effective wavenumber due to

compressional-shear multimode scattering.

(1) The compressional wavelength is much longer than the

particle radius; thus only partial wave orders of 0 and 1

need be retained in the effective wavenumber. The shear

mode has no zero order partial wave, and therefore only

shear contributions from order 1 are considered.

(2) The scattering of the coherent shear wave (the ensemble

averaged scattered shear wave fields) by a particle pro-

duces a scattered compressional wave field which is

dominated by the first partial wave order. Therefore,

only the first order transition factor is considered for the

incident shear wave field.

(3) Thermal-elastic multiple scattering contributions to the

effective wavenumber are omitted here, but could be

included as an additional term based on the results which

were presented previously.63

(4) The coherent wave for the pseudo-shear wave mode has

the same symmetry as the shear field produced by the

scattering of a planar compressional wave by a single par-

ticle. In other words, the vector displacement-potential or

velocity-potential has only a non-zero z-component where

the z defines the incident compressional wave propagation

direction.

(5) No transverse coherent wave is produced by the multiple

scattering events. Thus, the transverse wave velocity

potential w (defined by the expansion vT ¼ r�r
�r� w) is assumed to be zero.

No assumption is made regarding the magnitude of the

shear wavelength relative to the particle radius. Assumption

(2) is related to the scattering of an incident shear wave, a

problem which has been studied in solid continuous media,67

but not, to our knowledge, in liquid continuous media. The

first order partial wave is the lowest order at which shear

waves contribute. Since transition factors occur in combina-

tion (i.e., products TCS
n TSC

m ) in the compressional effective

wavenumber, the dominant contributions must arise from

orders with a significant transition factor for the incident com-

pressional wave TCS
n . Assumption (1) states that the compres-

sional wavelength is much larger than the particle radius, and

therefore partial wave orders higher than 1 can be neglected

for incident compressional waves; hence only TCS
1 makes a

significant contribution. Therefore, only shear-incidence tran-

sition factors, TSC
m , which appear in combination with the first

order factor TCS
1 are included in the analysis.
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Assumption (3) is related only to the multiple scattering

effects of compressional-thermal mode conversions; the

standard first-order Lloyd-Berry47 multiple scattering formu-

lation includes any single-particle thermal effects through

the transition factors TCC
1 which were determined using the

full Epstein and Carhart55 or Allegra and Hawley56 single

particle scattering analysis with all three modes included.

For many suspensions of solid particles in a liquid, thermal

effects are negligible. Assumptions (4) and (5) are made in

the multiple scattering formulation of Luppe et al.62 based

on symmetry arguments, and in order to establish the defini-

tion of the transition factor [see Eq. (3)]. Further discussion

of the shear coherent field symmetry can be found in Sec.

II C below.

The additional contribution of compressional-shear

mode conversions to the effective compressional mode

wavenumber has been separated from the standard Lloyd-

Berry multiple scattering result as follows:

K2
C

k2
C

¼ K2
C

k2
C

" #
LB

þ DCS

¼ K2
C

k2
C

" #
LB

þ /2DCS
2

K2
C

k2
C

 !
þ /3DCS

3

K2
C

k2
C

 !
; (10)

where ½K2
C=k2

C�LB is the Lloyd-Berry expression for an effec-

tive compressional wavenumber47 which includes only com-

pressional wave multiple scattering, given by

K2
C

k2
C

" #
LB

¼ 1� 3i/

kCað Þ3
TCC

0 þ 3TCC
1 þ � � �

� �

� 27/2

kCað Þ6
TCC

0 TCC
1 þ 2TCC

1 TCC
1 þ � � �

� �
:

Here /2DCS
2 ðK2

C=k2
CÞ and /3DCS

3 ðK2
C=k2

CÞ represent the addi-

tional terms in the second and third order in concentration,

respectively, relating to the multiple scattering contributions

from compressional-shear mode conversion and back again.

The multiple scattering formulation of Lupp�e et al., 62

presented in Sec. II A, is now simplified with the assump-

tions stated above, taking only the transition factors for the

first order partial wave in Eqs. (1) and (6)–(8). Using DCS
2 ðvÞ

to represent the additional terms in the function or parameter

v which arise from the compressional-shear mode-conver-

sion terms in the second order in concentration, gives

DCS
2 y 2ð Þ

1

� �
¼ DCS M 1ð Þ

CC

� �
þ M 0ð Þ

CS M 0ð Þ
SC

k2
C � k2

S

� � (11)

with

M 0ð Þ
CS ¼

pffiffiffiffiffiffiffiffiffi
kCkS

p 3TCS
1 ; M 0ð Þ

SC ¼
pffiffiffiffiffiffiffiffiffi
kCkS

p 3TSC
1 ; (12)

and

DCS
2 M 1ð Þ

CC

� �
¼ 9

p
kC

TSC
1

�Q
Sð Þ

11 kCð ÞTCS
1 (13)

if only the terms in the first partial wave order transition fac-

tors are selected, i.e., n ¼ � ¼ 1. The only non-zero contri-

butions in �Q
ðSÞ
11 ðkCÞ are those with l ¼ 0; 2,

�Q
Sð Þ

11 kCð Þ ¼
ipb

k2
C � k2

S

� � i

ksb
þ G110YCS

0 þ G112YCS
2

	 

;

(14)

where the relevant Gaunt coefficients Gn�l � Gð0; �; 0; n; lÞ
take numeric values G110 ¼ 1=3, G112 ¼ 2=3, and

YCS
n ¼ kCbj0nðkCbÞhnðkSbÞ � kSbjnðkCbÞh0nðkSbÞ: (15)

There are no other contributions in the effective wavenum-

ber at second order in concentration that include the first

order transition factor for compressional to shear mode con-

version, TCS
1 .

Following some simplification, the additional second-

order (in concentration) term is given by

DCS
2 y 2ð Þ

1

� �
¼ 3p2bi

kC k2
C � k2

S

� � YCS
0 þ 2YCS

2

� �
TCS

1 TSC
1 (16)

and thus the additional terms in the effective wavenumber

are given by

DCS
2

K2
C

k2
C

 !
¼ �9

p2a6
DCS

2 y 2ð Þ
1

� �h i

¼ � 27i

kCað Þ6
� k2

C kCbð Þ
k2

C � k2
S

� � YCS
0 þ 2YCS

2

� �
TCS

1 TSC
1 :

(17)

For the calculations reported here, the radius of the exclusion

volume is taken to be twice the particle radius, i.e., b ¼ 2a.

If the assumption (1) can be extended such that jkCbj � 1

(the compressional wavelength is much larger than the

radius of the excluded volume b) then YCS
2 =YCS

0 ¼ OðkCbÞ
and thus YCS

2 can be neglected.

Equation (17) defines the dominant additional

compressional-shear multiple scattering contributions to the

effective compressional wavenumber in a suspension of

solid particles. Analytical expressions for the third order

contribution were provided to the authors by Dr. Francine

Lupp�e, and were further simplified by the authors through

the application of further assumptions similar to assumption

(1), thus retaining only the first order partial wave order tran-

sition factors for compressional-shear, shear-compressional,

and shear-shear mode conversions. The third order terms

represent the initial interaction of the incident compressional

wave with a particle, producing a scattered shear wave,

which scatters at a nearby particle, producing another scat-

tered shear wave, which then scatters at another particle to

produce a compressional wave. This scattered compressional

wave then contributes to the coherent compressional wave in

the system. The simplified analytical form of the third order

term was presented in a previous paper, of which Dr. Lupp�e
was co-author.65 Both second and third order terms combine

with the Lloyd-Berry terms using Eq. (10) to obtain the full

shear-acoustic effective wavenumber for propagation of a

compressional wave through the suspension of particles.
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C. Transition factors

The additional contributions of compressional-shear mode

conversion to the attenuation (through the effective wavenum-

ber) are defined in terms of the transition factors (alternatively

denoted scattering coefficients) for these mode conversions.

These can be obtained following the ECAH formulation55,56

for scattering by a single particle using either an incident com-

pressional wave (as in the original ECAH method), or an inci-

dent shear wave. This formulation results in a boundary

condition matrix equation which can be solved for the scatter-

ing coefficients. The compressional-shear transition factor TCS
1

can be obtained from the ECAH solution for an incident com-

pressional wave (there denoted C1), although the coefficient of

the scattered shear wave was not previously required for the

effective wavenumber. For the transition factor involving an

incident shear wave, the incident wave was expressed through

the vector potential and the general solutions to the Helmholtz

equation in spherical polar coordinates as

uS;inc ¼ r� A ¼ r� ðr � wS;incrr̂Þ; (18)

where the general solution is

wS;inc ¼
X1
n¼0

Xn

m¼�n

inð2nþ 1ÞjnðkSrÞPm
n ðcos hÞ expðim/Þ:

(19)

For an incident compressional plane wave (the ECAH solu-

tion55,56), symmetry arguments require that m ¼ 0 for the

scattered shear field, so that only the azimuthal component

A/ of the potential is non-zero. Here, the same symmetry

requirement is imposed on the incident shear field, following

Lupp�e et al.62 [listed in Sec. II B as assumption (4)], so we

consider potentials of the form

wS;inc ¼
X1
n¼0

inð2nþ 1ÞjnðkSrÞPnðcos hÞ: (20)

The boundary condition matrix equation is identical in form

to that of the ECAH model,48,55,56 with only the right hand

side (the incident wave components) replaced by the corre-

sponding shear wave terms. The thermal contributions have

been neglected, since they are negligible at order n ¼ 1 and

above.68 Equation (9) of Challis et al.48 (with a corrected

minus sign) can be re-expressed to give

½MAH4�

AS
n

CS
n

A0Sn

C0Sn

0
BBBB@

1
CCCCA

¼

nðnþ 1ÞjnðkSaÞ

jnðkSaÞ þ kSaj0nðkSaÞ

�2nðnþ 1Þ½kSaj0nðkSaÞ � jnðkSaÞ�=ðkSaÞ2

½ðkSaÞ2j00n ðkSaÞ þ ðn2 þ n� 2ÞjnðkSaÞ�

0
BBBBBB@

1
CCCCCCA
;

(21)

where the boundary condition matrix MAH4 can be found in

the appendix of Challis et al.,69 or from Refs. 55 and 56, and

only the first four rows and columns are used here due to the

neglect of thermal contributions.

In order to explore the dependence of the transition

factors on ðkCaÞ and ðkSaÞ, analytical solutions have

been derived in the long compressional wavelength limit

jkcaj � 1 [assumption (1)]. The reduced boundary matrix

equation (4� 4) was solved using the symbolic software

MAPLE
VR

(MapleSoft) to obtain the transition factor for both

incident compressional and shear waves. The resulting tran-

sition factors were then expanded as a series in ðkCaÞ by tak-

ing series expansions of the spherical Bessel and Hankel

functions in the compressional wavenumbers both inside and

outside the particle. The leading order terms are

TCC
1 ¼ i kCað Þ3 q̂ � 1ð ÞbhS

3D
; (22)

TCS
1 ¼

kCa q̂ � 1ð Þ
D � h1 kSað Þ ; (23)

TSC
1 ¼ �

2i kCað Þ2kSa q̂ � 1ð Þj1 kSað Þ
D

� h01 kSað Þ
h1 kSað Þ �

j01 kSað Þ
j1 kSað Þ

� �
; (24)

TSS
1 ¼ �

b3bjS þ 2 q̂ � 1ð ÞdjSc
D

j1 kSað Þ
h1 kSað Þ ; (25)

where q̂ ¼ q0=q and

D ¼ 3bhS þ 2ðq̂ � 1ÞdhS�;½ (26)

bhS ¼ kSa
h01 kSað Þ
h1 kSað Þ � 1; bjS ¼ kSa

j01 kSað Þ
j1 kSað Þ � 1; (27)

dhS ¼ kSa
h01 kSað Þ
h1 kSað Þ þ 2; djS ¼ kSa

j01 kSað Þ
j1 kSað Þ þ 2; (28)

where a prime denotes the dispersed phase and unprimed

quantities the continuous phase, except on Bessel and

Hankel functions where the prime represents the derivative.

D. Scaling of transition factors

In order to stabilize the numerical solution of the matrix

boundary equation, the coefficients are defined in a scaled

form, thus,

TCS
1 scaled ¼ TCS

1 � h1ðkSaÞ; (29)

TSC
1 scaled ¼

TSC
1

j1 kSað Þ ; (30)

TSS
1 scaled ¼

TSS
1 h1 kSað Þ
j1 kSað Þ ; (31)

which removes the dominant functional dependence due to

the Hankel and Bessel functions which can be oscillatory,

and differ by many orders of magnitude. A similar scaling

J. Acoust. Soc. Am. 141 (1), January 2017 Valerie J. Pinfield and Derek Michael Forrester 653



was proposed for the stabilization of the ECAH matrix

boundary equation by Pinfield previously.69 These scaled

coefficients will also be used to illustrate the functional

dependency of the transition factors more conveniently in a

graphical manner in Sec. III A.

The equations presented in Sec. II enable the contribu-

tion of shear-acoustic multiple scattering to be calculated for

propagation of a compressional wave through a suspension

of particles. Equations (10) and (17) can be used to deter-

mine the effective wavenumber in a suspension, using either

the numerical solution of the matrix boundary equations or

the analytical solutions presented in Eqs. (22)–(24) in the

long wavelength region jkcaj � 1. The speed and attenua-

tion for coherent compressional waves through the suspen-

sion are related to the effective compressional wavenumber

by

KC ¼
x

ceff

þ iaeff : (32)

III. RESULTS OF CALCULATIONS

Calculations of the shear-acoustic transition factors and

contributions to multiple scattering have been carried out

using MATLAB
VR

, for a system of silica in water at 25 �C, over

a frequency range 0.01–100 MHz. The physical properties

used in the calculations are specified in Table I. This system

is known to have minimal thermal scattering contributions,

and is dominated by dipole scattering, producing shear

waves, due to the density difference between the two phases.

Compressional wave scattering was accounted for by includ-

ing transition factors for n¼ 0 (monopole) and n¼ 1 (dipole)

and these were obtained using the full ECAH single particle

scattering model48,55,56 which includes conversion into shear

and thermal waves. First, the transition factors for scattering

at a single particle are examined (Sec. III A), followed by the

additional contributions to the effective wavenumber due to

the shear-acoustic mode conversions (Sec. III B), and finally

their effect on the effective speed and attenuation are pre-

sented in Sec. III C.

A. Transition factors (scattering coefficients)

Figure 1 shows the dependence of the transition factors

relating to shear-compressional multi-mode scattering on the

dimensionless shear wavenumber ReðkSaÞ. The transition

factors are scaled by the spherical Bessel or Hankel func-

tions (Sec. II D) and also with the dominant dependence on

kCa removed. The product TCS
1 TSC

1 varies as ðkCaÞ3 [Eqs.

(23) and (24)], a factor which is cancelled in the effective

wavenumber [Eq. (17)], noting that jk2
Sj 	 jk2

Cj. The remain-

ing terms in the scaled transition factors are functionally

dependent on ReðkSaÞ in the long compressional wavelength

limit kCa� 1.

TABLE I. Physical properties of silica and water at 25 �C used in the simu-

lations (Ref. 48).

Water Silica

Sound velocity/m s�1 1497 5968

Density/kg m�3 997 2100

Shear viscosity/Pa s 0.000891

Shear modulus/GPa 30.9

Thermal conductivity/J m�1 s�1 K�1 0.595 1.6

Heat Capacity Cp/J kg�1 K�1 4179.0 729.0

Expansivity/K�1 0.00021 1.35� 10�6

Attenuation factor/Np m�1 MHz�2 0.023 2.6� 10�10

FIG. 1. The real and imaginary parts (solid and dashed lines, respectively) of

the scaled transition factors as a function of the real part of the shear

wavenumber-radius product ReðkSaÞ calculated using 250lm diameter

silica particles in water at 25 �C: (a) the compressional-shear conversion,

TCS
1 h1ðkSaÞ=kCa, (b) the shear-compressional conversion, TSC

1 =½ðkCaÞ2j1ðkSaÞ�,
and (c) the shear-shear conversion, TSS

1 h1ðkSaÞ=j1ðkSaÞ.
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The results shown in Fig. 1 were calculated for a large

particle of 250 lm diameter to ensure that the full range of

ðkSaÞ could be explored within the long compressional

wavelength region ðkCaÞ � 1. At the upper limit shown, i.e.,

ReðkSaÞ ¼ 100, the compressional dimensionless wavenum-

ber is ReðkCaÞ ¼ 0:097. Calculations using smaller particles

(of diameters 200 nm and 2 lm) showed that the results were

identical within the long wavelength limit, and the curves

were indistinguishable where ðkCaÞ < 0:1 and often at

higher values of ðkCaÞ. This confirms the dependence of the

scaled transition factors with the dimensionless shear wave-

number ðkSaÞ in the long compressional wavelength region.

The analytical results for the transition factors [Eqs.

(22)–(24)] were also found to be indistinguishable from

those obtained by numerical matrix inversion of the bound-

ary equations within this region. Beyond the long wave-

length region, the curves are truncated, and the dependence

of the transition factors will be a function of both compres-

sional and shear dimensionless wavenumbers, ðkCaÞ and

ðkSaÞ, respectively. The numerical solution of the boundary

equations remains valid in that case but the analytical solu-

tions deviate from the true solution, since they are only valid

for small ðkCaÞ.
In all cases, the scaled transition factors approach a con-

stant value at the lower and upper limits of ðkSaÞ but undergo

significant changes with respect to ðkSaÞ around the

“resonance” region ReðkSaÞ 
 1. In the case of an incident

compressional wave conversion to a scattered shear wave

[Fig. 1(a)] both real and imaginary parts of the transition fac-

tor approach zero at the upper limits of ðkSaÞ, and a constant

value at low ðkSaÞ, but the imaginary part has a peak around

ReðkSaÞ 
 1. This is consistent with the previous observa-

tion56 that a peak in attenuation per wavelength occurs

around ReðkSaÞ 
 1, where the scattered shear wave has the

greatest impact, and the relative motion of particle and sur-

rounding fluid is greatest. The other transition factors also

show the greatest changes at ReðkSaÞ 
 1. Since it is the

combination of transition factors which contributes to the

effective wavenumber for the suspension [Eq. (17)], the

effects are likely to be most significant around ReðkSaÞ 
 1

but the limits at low and high ðkSaÞ are difficult to establish

from the individual transition factors.

B. Effective wavenumber

Having explored the dependence of the transition factors

for mode conversion on kSa, the effect of such mode conver-

sions on the effective wavenumber are now investigated. The

additional contributions to the effective wavenumber (in the

form K2
C=k2

C) are presented in Fig. 2. The figure shows both

second and third order effects in concentration due to mode

conversion between acoustic (compressional) and shear waves.

The additional contributions to K2
C=k2

C depend only on the

shear wavenumber kSa, because factors of kCa cancel (see

Sec. III A) since jkCj2 � jkSj2. The real part of K2
C=k2

C pre-

dominantly affects the effective compressional wave speed

and the imaginary part the effective attenuation. The calcula-

tions were carried out using a particle radius of 1 lm; in

this case, the long wavelength criterion ReðkCaÞ < 0:1

corresponds to ReðkSaÞ < 9:2, and this covers the range of

interest for the additional contributions to the effective

wavenumber since they approach zero at large ðkSaÞ. For

smaller particles, the long wavelength limit truncates the

validity of this curve and some dependence on ðkCaÞ as well

as ðkSaÞ would be expected outside this region.

All additional mode-conversion effects tend to zero at

the large ðkSaÞ limit, which is equivalent to high frequency

for a fixed particle size. Thus, the model predicts that the

effective wavenumber approaches the Lloyd-Berry wave-

number at large ðkSaÞ. There are two factors which affect

this limit; first, there is little conversion to shear waves in the

large ðkSaÞ limit [see Fig. 1(a)] and second, the shear wave

decay length tends to zero in the high frequency limit so

shear waves do not reach neighboring particles. Hence multi-

ple scattering with mode conversion between acoustic and

shear waves has declining influence on the effective com-

pressional wavenumber at high frequency, large ðkSaÞ.
In the limit of small ðkSaÞ, where the shear wavelength

is long compared with the radius of the particle, the imagi-

nary parts of both the second and third order mode conver-

sion contributions tend to zero. These terms therefore have

no effect on attenuation in this limit. The real parts, however,

tend to a constant value, leading to a persistent effect on

effective wave speed in the long shear wavelength limit.

Primarily, the trends in the additional mode conversion con-

tributions DCS appear to be determined by the dependence of

the transition factor TCS
1 corresponding to the production of

scattered shear waves from the incident compressional wave

[see Fig. 1(a)]. The amplitude and phase of the scattered

shear wave determines the strength of its interaction with

neighboring particles. The greatest energy conversion into

the shear mode occurs in the region ReðkSaÞ 
 1. The multi-

ple scattering events are also affected by the shear wave

decay length which is long at small ðkSaÞ, so that shear

waves can reach neighboring particles even at relatively low

concentrations, and become vanishingly small at the large

ðkSaÞ limit, so that the waves do not reach neighboring par-

ticles. The combination of the amplitude of the scattered

FIG. 2. The real and imaginary parts of the additional contribution to the

effective wavenumber due to shear-acoustic multiple scattering, DCS [Eqs.

(10) and (17)] as a function of ReðkSaÞ for a 10%v/v silica-in-water emul-

sion with particle radius of 1 lm at 25 �C. The black lines are the second

order term /2DCS
2 and the gray lines the third order term /3DCS

3 , with the

solid and dashed lines showing the real and imaginary parts, respectively, in

each case.
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shear wave, and the distance over which it decays both con-

tribute to the dependence of the effect of shear-acoustic mul-

tiple scattering on shear wavelength [through ðkSaÞ].
The only third order terms (in concentration) included

here correspond to three-stage scattering events relating to the

sequence of mode conversions as follows: compressional-

shear, shear-shear, and shear-compressional corresponding to

the product of transition factors TCS
1 ; TSS

1 ; and TSC
1 . Other

three-stage events were found to have negligible effect on the

effective wavenumber in comparison.

C. Effective speed and attenuation

The effective wave speed and attenuation can be

expressed approximately as

DCS ceffð Þ
ceff

� �Re DCS K2
C=k2

C

� �� �
; (33)

DCS aeffð Þ ¼
xceff

2c2
Im DCS K2

C=k2
C

� �� �
: (34)

Therefore, both the effective speed, ceff , and the effective

attenuation divided by frequency, aeff=f (proportional to

attenuation per wavelength of the compressional wave in the

continuous phase medium) are functions of the dimension-

less shear wavenumber kSa. These are plotted in Fig. 3 for a

suspension of particles of radius 1 lm.

In the short shear wavelength limit (large kSa), both

speed and attenuation approach the limit given by the

acoustic-only multiple scattering model (Lloyd and Berry)

for the reasons noted in Sec. II. In this case, the second order

(in concentration) multiple scattering contributions in the

Lloyd-Berry formulation are small (though significant in

speed), but the additional effects due to compressional-shear

mode conversions are relatively large, even at this concen-

tration (10v/v%). The contributions to effective speed are

dominant in the long shear wavelength region, causing a

fixed increase in the speed in the low kSa limit. This corre-

sponds to the real part of the effective wavenumber contribu-

tion shown in Fig. 2. In this system, the mode-conversion

terms have little effect on the speed above ReðkSaÞ 
 1.

The effect of mode conversion is to reduce the attenua-

tion [Fig. 3(b)] across the range of kSa but with rapidly

reducing effect at large kSa. The second order terms due to

mode conversion reduce the attenuation because the energy

in the scattered shear waves, which was assumed to be dissi-

pated near the scatterer in the Lloyd-Berry model, is recon-

verted in part into the compressional wave mode, thus

reducing the effective losses. The third order terms increase

the attenuation, accounting for the incomplete nature of the

retrieval of the shear wave energy when only second order

(two-stage) scattering events are considered. The curve of

attenuation divided by frequency [Fig. 3(b)] also displays a

shift in the value of ReðkSaÞ at which the peak occurs.

Inclusion of multimode multiple scattering reduces the level

of the peak and shifts it to a higher value of ReðkSaÞ.
Having studied the dependence of the effective speed

and attenuation over several decades of the dimensionless

shear wavenumber, these properties are now shown over a

more limited frequency range typical of experimental meas-

urements (Fig. 4). The results are shown for a silica in water

suspension with 400 nm diameter particles at 25 �C for fre-

quencies up to 20 MHz and for concentrations up to 20% by

volume. In the frequency range 1–20 MHz, the value of

ReðkSaÞ ranges from 0.38 to 1.68, covering the region in

which shear effects are expected to be strong. It is clear that

above 5% concentration, the effect of the shear mode multi-

ple scattering on the attenuation spectra is very significant,

causing a reduction of 20% in the attenuation at 20 MHz

when the concentration is 20v/v%. The reduction in attenua-

tion is persistent across the entire spectrum in the range

shown. However, the effect on speed is most significant at

the lower frequency end of the spectrum, and indeed the

spectra with shear multiple scattering converge to those for

the Lloyd-Berry model at the upper frequency limit shown.

At the highest concentration shown (20% by volume), the

reduction in speed is around 20 m s�1 for a 20v/v% suspen-

sion at 2 MHz.

These results show that the contributions of shear wave

modes must be accounted for by any multiple scattering

model used to interpret experimental measurements where

ReðkSaÞ is not large. The Lloyd-Berry model works well

(accounting only for acoustic multiple scattering) only where

FIG. 3. Effective speed (a) and attenuation divided by frequency (b) as a

function of the real part of the shear wavenumber-radius product ReðkSaÞ
for a 10v/v% silica-in-water emulsion with a particle radius of 1 lm at

25 �C. The lines shown are for Lloyd and Berry to first order in concentra-

tion (gray dotted line), Lloyd and Berry to second order in concentration

(gray line), with shear-acoustic multiple scattering to second order in con-

centration (black dashed line), and to third order in concentration (black

solid line).
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ReðkSaÞ is very large, i.e., short shear wavelength and very

small shear decay length or at low concentrations. Here, the

shear multiple scattering model does not deviate strongly

from the Lloyd-Berry model when the concentration is only

5v/v% and therefore the Lloyd-Berry model could be used at

low concentrations. However, this concentration limit

becomes more restrictive at lower frequencies and/or smaller

particle sizes, since, in these conditions, the shear decay

length is increased or the distance between particles is

reduced (at the same volume fraction), respectively.

IV. DISCUSSION

A recent experimental study of silica in water suspen-

sions65 demonstrated that the multi-mode multiple scattering

model agrees well with experimental measurements for a

frequency range 1–20 MHz and particle diameters in the

range 100–1000 nm up to concentrations of 20v/v%. The

additional contributions in the model appear to account well

for the effects of multiple scattering events involving mode

conversions between acoustic and shear wave modes. The

model provides an analytical solution for the effective wave-

number (although the boundary equations for the transition

factors are often solved numerically). Previous attempts to

solve the multiple mode scattering problem involved either a

stochastic numerical method61 or a complex 12� 12 matrix

boundary equation within a hybrid multiple scattering/effec-

tive medium model.57 Hence the model can be considered

successful within a defined range of frequency, particle size

and concentration.

However, under some conditions, the shear multi-mode

scattering model predicts speed and attenuation which is not

considered physically realistic. The problems occur particu-

larly where the shear mode effects are strong, namely, at low

frequency, small particle size, and high concentrations. As

an example, Fig. 5 shows the predicted attenuation as a func-

tion of concentration (in the form of volume fraction) at

selected frequencies from 1 to 10 MHz [0:38 < ReðkSaÞ
< 1:19] for the same silica in water suspension studied pre-

viously (Fig. 4) with particle diameter 400 nm. Although the

Lloyd-Berry elastic multiple scattering model predicts a

near-linear trend of attenuation with concentration, the shear

scattering model predicts a non-linear dependence, with a

much-reduced attenuation. The attenuation curves reach a

peak at a certain concentration, above which the attenuation

decreases with increasing concentration. This feature is, in

itself, physically realistic. As the concentration increases,

the loss of energy from the compressional (acoustic) wave

mode becomes stronger as more particles are present per

unit volume; scattering at each particle leads to a conversion

into shear modes, resulting in viscous dissipation. Thus, an

increase in concentration results in higher attenuation in

both the acoustic-only multiple scattering model, and in the

shear scattering model, at low concentrations. The shear

wave multiple scattering enables some of the energy

assumed to be lost in viscous dissipation, to be reconverted

into a compressional wave, resulting in reduced attenuation.

However, above a certain concentration, the effects of

increased scattering due to the addition of more particles is

more than balanced by the reduction in the separation

between the particles, which permits shear waves to be scat-

tered at neighboring particles. Thus, the attenuation starts to

decrease as the concentration increases. Such dependence

FIG. 4. Effective speed (a) and attenuation (b) as a function of frequency for

a silica-in-water emulsion with a particle radius of 100 nm at 25 �C compar-

ing the Lloyd-Berry model (gray lines) with the shear multiple scattering

model to second order in concentration (black lines). The speed and attenua-

tion are shown for concentrations of 10% (dotted), 20% (dashed), and 30%

(solid) by volume.

FIG. 5. Effective attenuation as a function of concentration (volume frac-

tion) for a silica-in-water emulsion with a particle radius of 200 nm at 25 �C
comparing the Lloyd-Berry model (grey lines) with the shear multiple scat-

tering model to second order in concentration (black lines). The attenuation

spectra are shown for frequencies of 1 MHz (solid), 5 MHz (dotted), and

10 MHz (dashed).
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has been observed experimentally; see, for example, the data

of Hipp et al. for silica in water suspensions.49

However, the shear wave model over-predicts the

strength of the effects, resulting in attenuation/concentration

curves which turn right over to meet the axis, so that the

attenuation is predicted to be zero. This occurs at around

40v/v% at 5 MHz and 22v/v% at 1 MHz for the system

shown in Fig. 5. Above the concentration at which the curve

meets the axis, the model predictions are interpreted as a

negative velocity, in order to ensure positive attenuation (the

imaginary part of K2
C=k2

C is negative), and the attenuation

increases sharply again. This behavior, beyond 40v/v%, is

not shown in Fig. 5. Although negative phase velocities have

been predicted and obtained experimentally for other partic-

ulate suspensions in the study of acoustic metamaterials,22

the effect is not considered to be physically reasonable here.

This is because the predicted reduction in attenuation in the

shear mode multiple scattering model is a result of reclaim-

ing the energy in the scattered shear wave modes, by recon-

verting it to the compressional wave in subsequent scattering

events at nearby particles. Therefore, it can only be possible

to reduce the attenuation by an amount which represents the

total energy lost from the compressional wave by viscous

dissipation in an acoustic-only multiple scattering model.

Hence, the attenuation must not be reduced to zero.

The over-prediction of the shear wave multiple scatter-

ing effects are also observed in the effective speed. Figure

4(a) showed the effective speed as a function of frequency,

and the curve was truncated for the highest concentration

(30 v/v%) to omit the region where the predicted speed is

negative. However, the speed can be seen to increase as the

frequency decreases just before the truncation point at

10 MHz. A plot of effective speed against concentration is

not shown here since it does not illustrate any further effects.

Effectively, the shear mode multiple scattering model has a

lower frequency limit, a lower particle size limit, and an

upper concentration limit to its range of validity. Beyond

these ranges the model makes unphysical predictions. The

third order (in concentration) terms in the shear mode multi-

ple scattering model do alleviate the problem somewhat, but

only act to shift the validity limits slightly. A formula defin-

ing the limits of the range of validity has not yet been

established.

The causes of the limitations in the model are not yet

well understood, but are believed to lie in the non-random

nature of the particle locations as the concentration

increases. The effective wavenumber formulation obtained

by Lupp�e et al.62 assumed that all particle locations were

equally likely outside an excluded volume of radius 2a
around each particle. The results reported here have been

obtained using the Lloyd-Berry model for acoustic multiple

scattering (in addition to the multimode contributions), and

this neglects the excluded volume (taking the limit of infi-

nitely small particles). The effects of excluded volume, and

other weak correlations, on acoustic multiple scattering have

been investigated by other workers, showing only small

effects in the long compressional wavelength region.18,70,71

However, at the high concentrations studied here (especially

where the unphysical predictions occur), the effects may be

significant and this will subsequently be explored. In addi-

tion, the assumption of a simple weak correlation for the

multi-mode scattering contributions may be unrealistic for

highly concentrated systems. Such an assumption is likely to

be increasingly inaccurate as the concentration increases,

and a more realistic pair correlation function may be

required. The influence of correlations on the effective wave-

number in the long wavelength region may be much stronger

in the shear multiple scattering case, in which the distance

between neighboring particles is critical to the decay of scat-

tered shear waves, and therefore the exciting shear field at

the neighboring particle. An increased or decreased probabil-

ity of particle pairs being within the shear wave decay length

is therefore expected to have a significant effect on the effec-

tive wavenumber. The investigation of the influence of the

pair-correlation function on the effective wavenumber is

therefore an area for further study. It may also be the case

that some neglected contributions to the effective wavenum-

ber become significant in this region where other terms

become much smaller. This needs to be investigated in con-

junction with tests of the assumptions made in the analysis

(Sec. II B).

V. CONCLUSIONS

This paper has presented a model for propagation of

acoustic waves through suspensions of solid particles in a

liquid medium, accounting for the effects of shear waves and

their contributions to multiple scattering. The model, based

on the formulation of Lupp�e et al.,62 results in an analytical

solution for the additional contributions to the effective

wavenumber due to the dominant effects of shear wave

mode conversion and scattering. Analytical expressions

[Eqs. (22)–(25)] have been presented for the transition

factors (scattering coefficients) which contribute to the

shear-acoustic multiple scattering in the long compressional

wavelength region, although numerical solutions can also be

obtained.

Calculations using the model show that the shear-

acoustic multiple scattering reduces the attenuation, as antic-

ipated, and is consistent with experimental findings. The

model correctly approaches the Lloyd-Berry elastic multiple

scattering model in the limit of large ðkSaÞ (short shear

wavenumber and decay length). A recent experimental

investigation65 showed very good agreement between the

new model and experimental measurements over certain

ranges of particle size, concentration, and frequency.

However, this paper has also highlighted some difficulties

with the model, in which unphysical predictions occur at

high concentrations, small particle sizes, and low frequen-

cies. These are believed to be a result of the assumption of a

uniform probability distribution function for particle loca-

tions, outside the hard-sphere exclusion zone. Further inves-

tigation is required to explore the range of validity of the

model and the effect of different particle distributions

through the pair correlation function. However, the model

has provided a formulation and a workable method for the

interpretation of ultrasound spectra for smaller particles and

higher concentrations than was previously possible using the

658 J. Acoust. Soc. Am. 141 (1), January 2017 Valerie J. Pinfield and Derek Michael Forrester



elastic-only multiple scattering models. This represents a

significant step forward in the application of ultrasonics for

process monitoring and for characterization at the nanometer

length scales.

VI. DATA

The data for the calculations for silica in water suspen-

sions in this paper are available in Ref. 72.
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