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We present a study of the spreading of liquid droplets on a solid substrate at very small scales.
We focus on the regime where effective wetting energy (binding potential) and surface tension effects
significantly influence steady and spreading droplets. In particular, we focus on strong packing and
layering effects in the liquid near the substrate due to underlying density oscillations in the fluid
caused by attractive substrate-liquid interactions. We show that such phenomena can be described
by a thin-film (or long-wave or lubrication) model including an oscillatory Derjaguin (or disjoin-
ing/conjoining) pressure, and explore the effects it has on steady droplet shapes and the spreading
dynamics of droplets on both, an adsorption (or precursor) layer and completely dry substrates. At
the molecular scale, commonly used two-term binding potentials with a single preferred minimum
controlling the adsorption layer height are inadequate to capture the rich behaviour caused by the
near-wall layered molecular packing. The adsorption layer is often sub-monolayer in thickness, i.e.,
the dynamics along the layer consists of single-particle hopping, leading to a diffusive dynamics,
rather than the collective hydrodynamic motion implicit in standard thin-film models. We therefore
modify the model in such a way that for thicker films the standard hydrodynamic theory is realised,
but for very thin layers a diffusion equation is recovered.

I. INTRODUCTION

The spreading of liquid droplets is a fascinating and
highly consequential phenomenon which has received
great attention for over a century [1–4]. When a small
volume of liquid is placed on a solid substrate, it can
spread to form a hemispherical drop with a free sur-
face and three-phase equilibrium contact angle θ. This
is referred to as partial wetting. However, if the liquid
molecules are strongly attracted to the substrate the liq-
uid spreads as much as it can, forming a pancake shaped
ultrathin drop. This is referred to as complete wetting.
This wetting behaviour influences phenomena that arise
in everyday life, such as in the sliding of rain drops on
windows or plant leaves, paint coating a wall or tear films
in the eye [5]. As well as being a simple day to day
process, static and dynamic wetting behaviour also in-
fluences many industrial processes. Critical applications
such as coating, printing and lubrication have motivated
many scientists to understand the evolution of thin liq-
uid films and drops on substrates and to develop models
for their dynamics [4, 6]. All these wetting phenomena
are governed by surface and interfacial interactions that
occur over length scales varying from the very small (Å)
molecular distances to a few nm for van der Waals or elec-
trostatic forces to the mesoscopic (µm) scale for capillary
forces. Understanding the interplay of all these interac-
tions and their influence on the interfacial fluid dynamics
and thermodynamics is at the core of understanding the
behaviour and properties of droplets and thin liquid films
on a solid substrate.

Here, we develop a thin-film model in the form of a par-
tial differential equation (PDE) that describes the time
evolution of the local amount of liquid on a substrate.
It includes many aspects of the microscopic interactions
between the liquid molecules and the substrate. Note,
that from the microscopic (statistical mechanics) view-
point, adsorption is a better defined and arguably more
useful measure of the amount of liquid on the substrate
than film thickness [7]. This is because when the amount
of liquid on the substrate is small (sub monolayer), then
talking about a film height that is a fraction of a molecule
does not make physical sense, whilst the adsorption is
well-defined. In fact, when the vapour pressure is non-
zero, the adsorption on the substrate can in principle
even be negative, so in this case, talking about a film
height is meaningless.

Consider a fluid confined in a volume V, in contact
with a planar substrate with area A and with density
distribution ρ(r). The total adsorption on the substrate
is calculated from the fluid density profile as

Γ̂ =
1

A

∫
V

(ρ(r)− ρb) dr, (1)

where ρb is the bulk fluid density, which in our context
is the vapour density ρv.

If the planar substrate is assumed to correspond to the
z = 0 plane in a Cartesian coordinate system, then we
can define the local adsorption as

Γ(x, y) =

∫ ∞
0

[ρ(x, y, z)− ρv] dz, (2)



2

Area 1

Area 2
Area 3

FIG. 1. A sketch of the molecular configurations in a cross
section through the contact line region of a drop of liquid
which exhibits strong layering effects. The contact angle is
θ ≈ 0. We identify three distinct regions, Areas 1-3, where
the adsorption takes three distinct values due to the fact that
when the substrate adsorption is low, the influence of molec-
ular packing becomes important. The dashed line gives the
corresponding effective film height. In Area 1, the amount
adsorbed on the substrate is low, so the effective film height
h� σ, the diameter of the molecules.

which is roughly proportional to the film height h, since
Γ ≈ h(ρl− ρv). In fact, following Ref. [7], one can define
the film height

h(x, y) ≡ Γ(x, y)

(ρl − ρv)
, (3)

where ρl is the density of the bulk liquid.
When the cohesive forces between the molecules that

form the liquid are short ranged compared to the size
of the molecules σ, then strong layering at the substrate
is possible, particularly at low temperatures [5, 8–14].
See also the molecular dynamics simulation results in
Ref. [15]. Consider the contact line region of a drop of
such a system, that is close to the wetting transition,
with θ ≈ 0◦. A sketch of a configuration of the molecules
is displayed in Fig. 1. Three distinct regions, Areas 1–3
can be identified, based on the amount adsorbed. The
thickness of the individual layers is approximately equal
to the diameter of the liquid molecules, σ. In Area 1,
there are just a few molecules adsorbed on the substrate,
so the film height h � σ, as defined via Eq. (3). In
Areas 2 and 3, the film height is roughly an integer num-
ber of molecular layers, since the strong intermolecular
attractions favour complete layers. In Refs. [13, 14], den-
sity functional theory (DFT) for a simple model system
was used to calculate the density distribution of a liquid
at a substrate exhibiting this type of layered structure
formation, which is remarkably similar to the terraced
spreading drops observed in the experiments reported in
[9]. In Refs. [13, 14], using the method developed in Ref.
[7] the binding (or wetting) potential g(h) was also cal-
culated. This binding potential g(h), together with the
interfacial tensions, gives the excess free energy for hav-
ing a liquid film of thickness h adsorbed on the substrate

(see Eq. (6) below). It was found that in the types of sit-
uations sketched in Fig. 1, the binding potential is oscil-
latory. In this paper we consider the influence of such an
oscillatory binding potential on the shape of steady drops
and also on the dynamics of drop spreading. The estab-
lished thin film models describe the advective motion [16]
of the liquid over the substrate, sometimes also incorpo-
rating slip [4, 17]. However, normally, such models do
not include the diffusive particle-hopping dynamics that
one should expect when the adsorption is low [18, 19],
such as in Area 1 in Fig. 1. Thus, we also develop here
an augmented thin-film equation that incorporates this
effect, with the principal aims of this work being (a) in-
corporating well-founded structural disjoining pressures
into thin-film modelling, and (b) to propose and probe a
model that switches between diffusion and hydrodynam-
ics.

This paper is structured as follows: The relevant
physical concepts of interfacial science are introduced in
Sec. II. In Sec. III the mathematical description of steady
and spreading drops is derived and the solution method-
ology that is used to solve the model are introduced. An
extension to include diffusive effects into the dynamics is
discussed in Sec. IV and results are presented in Sec. V.
Finally, our concluding remarks are made in Sec. VI.

II. WETTING BEHAVIOUR AND THE FORM
OF THE BINDING POTENTIAL

When a liquid drop is placed onto a dry solid substrate,
it spreads a certain extent until equilibrium is reached
and the free energy of the system is minimised. The
extent of the spreading is determined by the equilibrium
contact angle θ, given by Young’s equation [20]

γlv cos θ = γsv − γsl, (4)

where γsv, γsl and γlv are the interfacial tensions (ex-
cess free energy per unit area) of the solid/vapour,
solid/liquid, and liquid/vapour interfaces, respectively.
These are defined when three phases are in equilibrium
with each other [21]. For large enough droplets, θ is the
inner angle the liquid-vapour interface makes with the
substrate.

Complete wetting occurs when θ = 0◦. The system
is in equilibrium when a uniform macroscopically thick
liquid layer covers the whole solid substrate. Partial wet-
ting occurs when 0◦ < θ < 180◦. In this case, small
droplets form a spherical cap due to dominant capil-
lary effects. Deviations from a spherical cap shape oc-
cur if the radius of the drop is larger than the capillary
length κ =

√
γlv/(ρg), so that gravity can no longer be

neglected. Unless the vapour pressure of the liquid is
zero, at equilibrium the substrate surrounding the drop
is covered by a microscopically thin layer of thickness
h0 adsorbed on the substrate. This adsorbed layer is
generally sub-monolayer [c.f. Fig. 1], so the popular ter-
minology ‘precursor film’ is potentially misleading. For
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non-wetting to occur, θ = 180◦. The wetting behaviour
is determined by the molecular interactions (e.g. van der
Waals, electrostatic forces, etc.). For very small drops
and for length scales below a few hundred nm these in-
teractions become important and can extend across the
thickness of the film and contribute extra forces that de-
termine the shape of the drop and how it spreads. For a
film of thickness h, these interactions result in additional
contributions to the free energy g(h), often referred to as
the binding potential. It can be expressed in terms of the
Derjaguin (or disjoining/conjoining) pressure [22, 23],

Π(h) = −∂g(h)

∂h
. (5)

The interaction between the two interfaces can also be
discussed in terms of this pressure. The total excess free
energy per unit area of a system with a film of liquid with
uniform thickness h is:

4F
A

= γlv + γsl + g(h), (6)

where A is the area covered by the film. Thus, g(h)
gives the contribution to the free energy from the in-
teractions between two interfaces, and has the limiting
values g(∞) = 0 and [5]

g(h0) = γsv − (γlv + γsl). (7)

The disjoining pressure gives the difference between the
pressure P in a thin liquid layer with thickness h and
P (∞), the pressure when the liquid film is macroscopi-
cally thick. Thus,

Π(h) = P (h)− P (∞). (8)

In general, three main contributions to the disjoin-
ing pressure Π are identified [24–27]: (i) a long-range
van der Waals contribution due to the interaction be-
tween dipoles (either permanent or induced) of the liq-
uid molecules and the substrate molecules. It can be at-
tractive or repulsive; (ii) Long-range electrostatic forces,
from charge double layers overlapping during thinning.
The like charged surfaces of the film repel each other;
(iii) Short-range steric forces, which stem from the repul-
sive interactions between molecules when they are pushed
close together.

The van der Waals force is characterised by the
Hamaker constant H [25–27], originating from the at-
tractive (London) potential between individual pairs of
molecules which at large r is ∼ r−6, where r is the dis-
tance between molecules. It gives the longest range con-
tribution to Π. The leading order term that dominates
for large h is

Π ≈ − H

6πh3
. (9)

If H > 0, it means the two interfaces attract each other
and the film thins; on the other hand if H < 0, the

two interfaces repel each other. Thus, the van der Waals
force often determines the wetting behaviour. In the case
H > 0, one must include additional terms in Π. A com-
monly used expression that describes a partially wetting
situation and allows for a stable precursor film is

Π1(h) =
5a

h6
− 2b

h3
, (10)

where b = H/12π and a is a positive constant. The
corresponding binding potential is

g1(h) =
a

h5
− b

h2
. (11)

The positive term represents the short range repulsive
forces, while the second term describes the longer range
van der Waals forces contribution. This form has been
frequently used in thin-film models, e.g., in Refs. [28–30].
However, as can be deduced from considering the h→ 0
limit, it is clear that this expression is really only valid
for large film thickness.

Similarly, for model systems with only short range
forces one finds that for large h the binding potential
decays exponentially: g(h) ∼ a1e

−h/ξ + a2e
−2h/ξ + · · · ,

where ξ is the bulk correlation length in the liquid phase
wetting the wall and coefficients ai depend on the temper-
ature [31, 32]. The progress made in Refs. [7, 13, 14] was
to develop a DFT based method for calculating g(h), or
strictly speaking g(Γ), that is valid over the whole range
of values of h. Note that one can also use a molecular
dynamics computer simulation based method for calcu-
lating g(h) [33–37]. For simple Lennard-Jones like fluids
it was shown [7, 13, 14] that the following form gives a
good fit to the binding potential over the whole range:

g(h) =
H(e−p(h) − 1)

12πh2
, (12)

where p(h) = h2(a0e
−a1h + a2 + a3h+ a4h

2 + a5h
5). Eq.

(12) gives the correct decay for h → ∞, namely that in
Eq. (9), but remains finite in the limit h→ 0. However,
as also shown in Ref. [13], Eq. (12) is not appropriate for
all liquids as it does not capture any layering effects. It is
then shown that for a simple fluid with only short-range
attractive interactions between the molecules (i.e., no van
der Waals contribution, H = 0), the following form gives
a good fit to the binding potential data obtained using
DFT:

g2(h) = e−
h
a0 [a5 + a4 cos(a1h+ a2)] + a6e

−2 h
a0

+a7e
−3 h

a0 + a8e
−4 h

a0 + a9e
−5 h

a0 + a10e
−6 h

a0 . (13)

a0 is the bulk correlation length in the liquid phase
at the interface, and the other ai’s corresponds to fur-
ther constants, determined via fits to the DFT data and
for the particular treated case take the following values:
a0 = 0.907508, a1 = −7.35183, a2 = 5.90059, a3 = 0,
a4 = −0.011038, a5 = −0.000147646, a6 = 0.0449827,
a7 = 0.422683, a8 = −0.7673, a9 = −0.230683 and
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FIG. 2. A plot of the binding potential in Eq. (13), calculated
in [13] using DFT. The global minimum is labelled ‘0’, as this
state corresponds to Area 1 in Fig. 1, where the film thickness
is almost zero. The local minima at larger h are labelled
‘1, 2, 3, 4’ and represent one, two, three and four layers of
molecules, respectively.

a10 = 0.559131 [13]. These are all in units where the par-
ticle diameter σ = 1 and the thermal energy kBT = 1,
where kB is the Boltzmann constant and T the temper-
ature of the system. Henceforth, these are the units in
which all lengths and energies are given.

Eq. (13) has a damped oscillatory decay as h → ∞.
The oscillations lead to the presence of multiple minima
in g2(h), which result in the formation of ‘steps’ or ‘ter-
races’ in the vicinity of the contact line at the droplet
edge – examples are displayed later in Sec. V. Each sub-
sequent minimum in g2(h) corresponds to the addition of
a further layer. In Fig. 2 we display a plot of g2(h), ap-
propriately scaled with σ2/(kBT ). The global minimum
is labelled ‘0’, where the film thickness (adsorption) is
very small, and there are almost zero molecules on the
substrate, so the system is partially-wetting, but with
small contact angle θ, since g(h0) is only slightly nega-
tive. The boxed labels ‘1’, ‘2’, ‘3’, and ‘4’ indicate the
local minima corresponding to the respective number of
complete layers of molecules on the substrate. We can see
from Fig. 2 that in this system, one layer of molecules
is not as favourable as two or more complete layers of
molecules. Note that the oscillatory behaviour in g2(h)
is also seen in the corresponding liquid density profiles in
the full DFT calculations [13].

Eq. (13) contains many parameters and is the binding
potential for a particular liquid on a particular substrate
at a particular temperature [13]. Here we seek to un-
derstand the overall effects of oscillatory binding poten-
tials on liquid drop shapes and the spreading behaviour.
Therefore we truncate the expression in Eq. (13) to ob-
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FIG. 3. A plot of binding potential g3(h) in Eq. (14) with
a = 0.01, b = π/2, c = 1, k = 2π, d = 0.02 (solid red line)
d = 0 (dotted black line) and d = −0.02 (dashed blue line).

tain the following simplified expressions,

g3(h) = a cos(hk + b)e−
h
c + de−

h
2c , (14)

and

g4(h) = a cos(hk + b)e−
h
c + de−

2h
c , (15)

where a, b, c, d, k are coefficients that we vary to de-
termine the generic types of behaviours that one can ob-
serve. These simpler expressions retain the overall char-
acter of the expression in Eq. (13), but contain fewer
parameters. In Figs. 3 and 4 we display plots of the
binding potentials (14) and (15), respectively, with the
typical parameter values that we use in our study, namely
a = 0.01, b = π/2, c = 1, k = 2π, and varying the param-
eter d, such as d = 0.02 (red) which represents a wetting
situation, d = 0 (black) refers to a partially-wetting case
but close to the wetting transition, and d = −0.02 (blue)
partially-wetting.

These two binding potentials g3(h) and g4(h) are some-
what more generic than g2(h), but at the same time they
retain the oscillatory behaviour of g2(h), which gives the
layering. The lowest (positive) local minimum of g3(h)
for d = 0.02 is at h = 0.2522 which is similar to the local
minimum of the full expression g2(h) with the param-
eter values obtained from the DFT results in Ref. [13],
namely h = 0.1081. For relatively large h, both g3(h) and
g4(h) tend to zero but with different limiting behaviours.
For g3(h), the exponential decay dominates whereas for
g4(h), the sinusoidal oscillations dominate. Note that the
ultimate asymptotic decay is determined by the form of
the decay into bulk of the liquid density profiles that are
in contact with a substrate [13, 14, 38, 39]. Whether the
decay is monotonic or damped oscillatory depends on the
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FIG. 4. A plot of binding potential g4(h) in Eq. (15) with
a = 0.01, b = π/2, c = 1, k = 2π, d = 0.02 (solid red line)
d = 0 (dotted black line) and d = −0.02 (dashed blue line).

state point (i.e. temperature and density) and on which
side of the Fisher-Widom (FW) line this state point is.
The FW line is the locus in the phase diagram at which
the asymptotic decay of the radial distribution function
crosses over from monotonic to damped-oscillatory decay
[38–40].

III. THIN FILM EQUATION

The time evolution of a thin liquid film on a surface
can be derived from energetic considerations. The free
energy of the system is

F [h] =

∫∫ [
g (h) +

γlv
2

(∇h)
2
]

dxdy. (16)

This contains two contributions: (i) the binding poten-
tial contribution from the molecular interactions with the
substrate and (ii) the energy of the free surface (surface
tension), where ∇ = ( ∂

∂x ,
∂
∂y ) is the 2D gradient opera-

tor. The latter is proportional to the fluid surface area
and the approximation

√
1 + (∇h)2 ≈ 1 + 1

2 (∇h)2, ap-
propriate when the gradients are small, has been made in
Eq. (16). We have also neglected an irrelevant constant
term.

The quantity

δF

δh
= −Π− γlv∇2h (17)

is the negative of the local pressure in the film and so any
gradients in this quantity give the thermodynamic force
which drives the flow of liquid over the substrate. There
is therefore a current j = −Q(h)∇ δF

δh , where Q(h) is the

mobility coefficient. Combining this with the continuity
equation, we obtain [30, 41]

∂h

∂t
= −∇ · j = ∇.

[
Q(h)∇δF [h]

δh

]
. (18)

The mobility coefficient Q(h) depends on the film thick-
ness. Often the expression Q(h) = h3/(3η) is assumed,
where η is the fluid viscosity. This is what emerges from
the long-wave approximation of the Navier-Stokes equa-
tions with no-slip boundary conditions [42], giving

∂h

∂t
= ∇ ·

(
h3

3η
∇
(
−γlv∇2h−Π (h)

))
. (19)

Assuming some slip, then Q(h) can acquire additional
terms, for example, Navier-slip [43] results in Q(h) =
βh2 + h3/3η [42, 44]. In the next section we discuss fur-
ther mobilities Q(h) which describe diffusion effects.

Equilibrium (steady state) drop profiles are those
which minimise F [h] subject to the constraint that the
volume of the liquid V =

∫∫
hdxdy is fixed, i.e. which

minimise

Ω[h] ≡ F [h] + λ

∫∫
hdxdy, (20)

where λ is the Lagrange multiplier associated with the
volume constraint. The minimising curve satisfies

δΩ

δh
= 0, (21)

which is equivalent to

−Π− γlv∇2h = λ. (22)

From this we can identify λ as the pressure difference
across the interface due to the Laplace and disjoining
pressures. If we consider a 1D droplet such that h = h(x)
and let u = h, v = u′, we have

u′ = h′, (23)

v′ =
1

γlv

(
dg

dh
− λ
)
, (24)

which can be used to plot the phase plane diagram
of equilibrium solutions, as shown in Fig. 5 (for stan-
dard Derjaguin pressures such plots can be found in
Refs. [41, 45] where also the influence of λ is discussed).
In this figure closed loops correspond to periodic solu-
tions – i.e. the solutions that one obtains on finite do-
mains with periodic boundary conditions. This allows
one to determine at a glance the range of equilibrium pro-
files that one may expect to obtain from the model. The
oscillations in the ‘streamlines’ in Fig. 5 correspond to
steps or terraces in the contact line region of the droplet
solutions. Such droplet profiles are obtained below as
stationary solutions of our PDE model.
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FIG. 5. A phase plane diagram when the binding potential
is g2 in Eq. (13) and γlv = 0.51, which shows all possible
equilibrium solutions of our thin film equation as the maximal
drop height is varied, with the Lagrange multiplier having the
value λ = 9.8× 10−4.

IV. INCORPORATING THE EFFECTS OF
DIFFUSION INTO THE MOBILITY

In droplet spreading simulations with the advective
mobility, we see that on some occasions a very thin pre-
cursor film can extend ahead of the bulk of the main
droplet. Physically, when this film is very thin, in partic-
ular when the film thickness is much less than the order
of a particle diameter σ, such as illustrated in Area 1
in Fig. 1, we would expect the motion to be dominated
by diffusion. Currently our model only describes the ad-
vective motion over the substrate – recall that Eq. (19)
is obtained from a long-wave approximation to Navier-
Stokes plus no-slip boundary conditions.

We now seek to modify the thin-film equation in a
simple way such that both, diffusion and advection, occur
throughout the droplet, but for where the adsorbed film
is very thin (i.e. less than roughly a monolayer or two),
diffusion dominates, but for where the film thickness is
larger, advection dominates. Thus, the two limiting cases
we require are: (i) the diffusion equation

∂h

∂t
= ∇ · (D∇h), when h� σ, (25)

where D is the diffusion coefficient for particles moving
over the surface, and (ii) the thin-film equation

∂h

∂t
= ∇ ·

[
h3

3η
∇δF
δh

]
, when h� σ, (26)

which is Eq. (19). Both Eqs. (25) and (26) can be ob-
tained as appropriate limits of the more general Eq. (18),

if the mobility Q(h) is suitably generalised, as we now
show.

To see how a diffusion equation can be obtained, we
consider the case when h is close to 0. From the Maclau-
rin series expansion of g(h) we obtain −Π(h) = g′(0) +
g′′(0)h+ . . ., which, together with Eq. (17), gives

δF

δh
= g′(0) + g′′(0)h− γlv∇2h+ . . . . (27)

If we assume

Q(h) = α0 + α1h+ α2h
2 + h3/(3η), (28)

then in the h→ 0 limit we have Q(h) ≈ α0 and so from
Eqs. (18) and (27) we obtain

∂h

∂t
≈ α0∇2

(
g′′(0)h− γlv∇2h

)
, (29)

which in the limit where the first term dominates (for
example if scaling into regions near contact lines), yields
Eq. (25), together with the result that α0 = D/g′′(0).

In the limit when h is large, Eq. (28) gives Q(h) ≈
h3/(3η), and so the desired result, Eq. (26), is recovered.
Thus, our final model is

∂h

∂t
=∇ ·

[(
D

g′′(0)
+
h3

3η

)
∇
(
−γlv∇2h−Π (h)

)]
, (30)

where we have set the coefficients α1 and α2 to zero.
If we kept the terms involving α1 and α2 we would ef-
fectively be also investigating the effect of slip at the
substrate, which at these molecular scales is usually seen
as a coarse grained method to account for any number
of physical processes that allow for contact line motion
[46]. In particular, as mentioned previously α2 can be
associated with the popular Navier-slip model, and α1

with a nonlinear slip model [44]. Detailed comparisons
between slip models in the thin-film setting can be found
elsewhere [47–49].

We note that other authors have discussed the mod-
elling of diffusion or diffusive regimes in thin films [50–
52]. Ref. [50] used a piece-wise mobility for diffusive
and advective regimes in a mesoscopic hydrodynamic ap-
proach to droplet motion due to surface freezing/melting.
The authors of Ref. [51] have a discussion on adiabatic
and diffusive films, but they talk about them in a differ-
ent context than the present work. In [51] the argument
is that when the edge of the film is very thin it becomes
approximately flat so that curvature effects are negligi-
ble. In this case the thin film equation can be written in
the same form as the diffusion equation with an (approx-
imately constant) height-dependent diffusion term being
D(h) = −h3/(3η)∂hΠ. Clearly this is quite different to
our proposed implementation where we wish to model
a diffusive region of the droplets where height increases
from zero or a negligible value h � σ to h ≈ σ rapidly.
Finally, Ref. [52] compares the time evolution of relaxing
liquid ridges employing various different mobility func-
tions, including a diffusive one.
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Returning to our governing equation (30), we now
nondimensionalise, by scaling

∇ =
1

σ
∇∗, h = σh∗, t = τt∗, Π =

kBT

σ3
Π∗,

γlv =
kBT

σ2
γ∗lv, F = kBTF

∗, (31)

where we recall that σ is the diameter of particles on the
substrate, and ∇∗, h∗, t∗, Π∗ and γ∗lv are the dimension-
less quantities, and we have also given a scaling for the
total free energy as its dynamic evolution is investigated
in our numerical results presented below. By taking

τ =
3ησ3

kBT
, ᾱ0 =

3α0η

σ3
=

3Dη

g′′(0)σ3
, (32)

we obtain

∂h∗

∂t∗
= ∇∗ ·

[(
ᾱ0 + h∗3

)
∇∗
(
−γ∗lv∇∗2h∗ −Π∗

)]
. (33)

Subsequently, we drop the ‘*’ for simplicity. This is our
new equation which describes the evolution of the liquid
film, incorporating both advection and diffusion.

V. RESULTS AND DISCUSSION

A. Spreading on a non-zero background adsorption

The results presented in this section are obtained for
the four binding potentials introduced in section II. The
time simulations are initiated at the instant when the
droplet is released onto the substrate and are carried out
until the droplet comes to rest, at the equilibrium steady
state. The initial condition is assumed to be a drop shape
which is modelled with a Gaussian function of the form

h(x, t = 0) = Ce
−
[

(x−xf/2)

E

]2
+ hb, (34)

where the parameter hb is the background value of h, i.e.
the imposed layer height far away from the droplet, which
can be set to a value 6= h0 if desired. Recall that the
height h0 is the height of the ‘precursor’ film/foot that
extends away from the droplet during its approach to
equilibrium. It is the height at which the lowest (positive)
minimum of the binding potential occurs. In particular,
h0 corresponds to the global minimum of g1 (the com-
monly investigated spreading situation) and g2 (the ter-
raced spreading situation), but not necessarily the global
minimum of g3 or g4 (the generalised versions of g2), de-
pending on their parameter values.

In Eq. (34), the parameter C is the amplitude of the
initial droplet, i.e. it is the height of the droplet above
the background film at time t = 0. E controls the width
of the initial droplet, and xf is the length of the domain.

This initial condition specifies the height h(x, t = 0) in
the z-axis, and it is assumed uniform in the y-direction
to create a 2D droplet. The spreading of 2D droplets

has been investigated extensively [42, 49] as they give
qualitatively the same behaviour as for 3D axisymmetric
droplets, particularly in the important region near the
contact line. Periodic boundary conditions are applied,
so that h(x = 0, t) = h(x = xf , t), and the symmetry
of the droplet is preserved in the dynamics due to the
symmetric initial condition of Eq. (34).

All computations are performed using a method of
lines technique, using finite difference approximations
for the spatial derivatives, trapezoidal numerical inte-
gration for computing integrals (for the free energy and
for confirming mass conservation), and the ode15s Mat-
lab variable-step, variable-order (VSVO) solver [53]. A
convergence test was applied, with the conclusion that a
small enough grid size should be applied—typically here
dx = 0.2, details are given in the Appendix.

To be able to compare the spreading dynamics of
droplets with the two binding potentials g1 and g2, given
by Eqs. (11) and (13) respectively, we first must find the
values of parameters a and b in g1 which make the con-
tact angle and h0 for both binding potentials the same.
Combining Eq. (7) and Young’s equation (4), gives the
following relationship between the minimum of the bind-
ing potential and the equilibrium contact angle [1, 54, 55]

θ = cos−1
(

1 +
g(h0)

γlv

)
. (35)

For g2 in Eq. (13), with the coefficients given by
DFT calculation [13], the minimum of g2 is −0.0028 at
h0 = 0.1081, and the corresponding surface tension (also
from the DFT [13]) is γlv = 0.5101. This value of γlv is
kept fixed throughout this section to enable a fair com-
parison between other effects such as the form of bind-
ing potential. The effect of surface tension is to smooth
out gradients in the liquid-vapour film height h, thus a
smaller surface tension would enhance the influence of
the oscillatory binding potentials and give sharper ter-
races at equilibrium. Substituting these values back to
Eq. (35) gives the equilibrium contact angle θ = 6.006◦.
By equating the value and location of the minimum of
g1 in terms of the parameters a and b, with the respec-
tive numeric values for g2, we find a = 2.756× 10−8 and
b = 5.453 × 10−5, which allow a direct comparison be-
tween binding potentials g1 and g2, and the investigation
of the effect of oscillatory binding potentials.

Fig. 6 shows the time sequence of drop profiles for a
liquid drop spreading on a substrate already covered by
an equilibrium background film, with binding potential
g1 given by Eq. (11), with a = 2.756 × 10−8 and b =
5.453 × 10−5. The diffusive mobility coefficient ᾱ0 = 0.
The parameters in the initial condition are chosen as hb =
0.1081, C = 60 and E = 10. The t = 0 profile is centred
at x = 200 and then spreads. The liquid spreads rapidly
from rest until t ≈ 104 under the effect of surface tension
due to the significant difference between effective imposed
initial contact angle and the equilibrium contact angle.
The spreading then slows as the droplet equilibrates, as
expected. The curves for times t = 106 and t = 107
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FIG. 6. A time sequence of drop profiles for a liquid drop
spreading on a substrate, with binding potential g1 given by
Eq. (11) with a = 2.756 × 10−8 and b = 5.453 × 10−5. The
parameters in the initial condition are chosen as hb = 0.1081,
C = 60 and E = 10. The t = 0 profile is centred at x =
200 and then spreads until reaches equilibrium. The diffusive
mobility coefficient ᾱ0 = 0.

are overlapped and virtually indistinguishable, indicating
that equilibrium has been reached.

The results in Fig. 6 are for the single-well binding po-
tential of g1. Fig. 7 shows the equivalent time sequence
of drop profiles for the oscillatory binding potential g2
in Eq. (13). The spreading dynamics initially follows a
very similar trajectory until approximately t ≈ 105. The
height at the centre of the droplet continues to equilibrate
at a similar rate to the case in Fig. 6 (with g1) but for
t & 104 we notice the emergence of a foot, or terrace, in
the droplet near the contact line at a value h ≈ 2 corre-
sponding to the third minimum in the oscillatory binding
potential g2 (with label ‘2’ in Fig. 2), corresponding to a
thickness of two particle layers.

From these comparisons we see that the dynamics is
predominately driven by the relaxation of the contact
angle to its equilibrium, and finer details of the binding
potential do not dramatically change the timescales of
spreading—especially when monitoring the equilibration
of the maximal droplet height. However, significant dif-
ferences near the contact line can occur where oscillations
lead to terracing of the droplet. We see a reduction in
wetting length for equilibrium droplets: the right con-
tact line location at approximately x = 325 and x = 315
in Figs. 6 and 7, respectively. A more detailed compar-
ison of the two equilibrium droplet profiles is given in
Fig. 8. We see a marginal difference in maximal height,
with more pronounced differences in the contact line re-
gion, with the final drop shape with binding potential g2
having obvious ‘steps’, or terraces. This is caused by the

x
200 220 240 260 280 300 320

h
(x

)

0

5

10

15

20

25

30

t=0
t=10
t=102

t=103

t=104

t=105

t=106

t=107

FIG. 7. A time sequence of drop profiles for a liquid drop
spreading on a substrate, with binding potential g2 given by
Eq. (13). The initial condition is the same as for Fig. 6 and
also ᾱ0 = 0. The t = 0 profile is centred at x = 200 and then
spreads.
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FIG. 8. A comparison of the final equilibrium droplets with
binding potentials g1 and g2, corresponding to Figs. 6 and 7.
The equilibrium contact angle θ, the surface tension γlv and
the initial condition are the same for both cases.

oscillations in the binding potential g2, with each ‘step’
corresponding to one layer of fluid particles (recall that
whilst one layer is a local minimum in g2, it is far less
preferable than for h = h0 or for two or more complete
layers of particles).

Fig. 9 shows the time evolution of the total free ener-
gies given by Eq. (16), appropriately nondimensionalised
as in Eq. (31), corresponding to the two spreading sit-
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FIG. 9. The time evolution of the free energy (16) as a droplet
spreads to equilibrium with binding potentials g1 and g2, cor-
responding to Figs. 6 and 7. The equilibrium contact angle θ,
the surface tension γlv and the initial condition are the same
for both cases.

uations in Figs. 6–7. This shows that the timescales of
spreading are unaffected by the choice of g1 or g2 in the
case where coefficients were chosen to fix identical h0
values and equilibrium contact angles. In this particu-
lar example then, it appears as though the formation of
the terraces seen in Fig. 8 (with g2) does not change the
speed of approach to equilibrium. However, further in-
vestigation with a variety of initial conditions has shown
that other events unique to oscillatory binding potentials
can have significant effects, which we detail later.

Having demonstrated that oscillatory binding poten-
tials are worthy of greater scrutiny through visualising
the difference between the commonly used g1 form to the
specific g2 one taken from a particular DFT calculation,
we now analyse the more generic behaviour of binding po-
tentials with oscillations, as given by the simplified forms
g3 and g4.

In Fig. 10 we display equilibrium drop profiles when
the binding potential is g3 in Eq. (14), for various val-
ues of the parameter d, namely d = {0.02, 0,−0.02} (c.f.
Fig. 3). The other parameters take the values a = 0.01,
b = π

2 , c = 1 and k = 2π. The parameters in the initial
condition are chosen as C = 6, E = 10, xf = 200, and
hb = {0.2522, 0.2282, 0.1921} for d = {0.02, 0,−0.02},
respectively. These give the lowest (positive) local min-
imum at a similar value to that of g2, to allow for di-
rect comparison. As discussed in Sec. II, d = 0.02 is
wetting whereas the other two are partially-wetting (al-
though d = 0 is close to the wetting transition). From
Fig. 10 we see the influence of this, as the drops for higher
d spread out further, and thus have lower maximal height.
The height spacing of the steps seen in these equilibrium
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FIG. 10. Equilibrium drop profiles with binding potential g3
in Eq. (14) as the parameter d is varied and with a = 0.01,
b = π

2
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FIG. 11. The normalised free energy difference for droplet
spreading under the influence of binding potential g3, for var-
ious values of the parameter d. The expression of g3 is given
by Eq. (14), with a = 0.01, b = π

2
, c = 1, and k = 2π.

drop profiles also corresponds to the spacing of the min-
ima in g3.

To explore the dynamics of spreading using g3, in
Fig. 11 we plot the time evolution of the normalised free
energy difference

∆(t) =
F (t)− F (t =∞)

F (t = 0)− F (t =∞)
, (36)

where the free energy F is given by Eq. (16). One might
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FIG. 12. A time sequence of drop profiles for a liquid drop
spreading on a substrate, with binding potential g3 given by
Eq. (14), with a = 0.01, b = π

2
, c = 1, k = 2π, d = 0.02. The

initial condition is chosen as hb = 0.2522, C = 6, E = 10 and
xf = 200. The corresponding free energy time evolution is
displayed as the solid (red) line in Fig. 11.

expect a smooth approach to equilibrium, as observed in
Fig. 9. Instead, we see a number of stages to the dynam-
ics, including the usual initial spreading/relaxation from
the initial condition; the formation of terraces; a ‘pop-
ping’ event where a rapid reduction of the free energy re-
sults from a sudden jump of the droplet free surface from
one minimum of the binding potential to another; and
then finally the usual long-time approach to equilibrium.
The small jump for d = 0.02 happens at t ≈ 104 and there
are not any obvious jumps for d = 0 and d = −0.02.

To understand the dynamics more clearly, in Fig. 12
we plot the time sequence of drop profiles for binding po-
tential g3 with d = 0.02. The time is chosen from where
the ‘popping’ event is about to happen till it finishes.
The drop starts to form two ‘terraces’ from t = 103, in
the corresponding normalised free energy difference curve
displayed in Fig. 11 this behaviour is shown as the first
inflection point where the normalised free energy differ-
ence ≈ 0.1. As the drop spreads from t = 3 × 103 to
t = 5 × 103, the top part of the drop becomes ‘sharper’
and then it suddenly jumps down to form a flat top to
minimise the free energy. This is an example of a ‘pop-
ping’ events that leads to the sudden decreases observed
in Fig. 11. After t = 104 the drop keeps spreading and
reaches equilibrium.

Fig. 13(a) shows a sequence of equilibrium droplet pro-
files using binding potential g3 with fixed d = 0.02 and
various values of a. The time evolution of the normalised
free energy differences leading to the formation of these
drops is displayed in Fig. 13(b) and the corresponding
binding potentials are displayed in Fig. 13(c). All of

these drops have the same values of C = 6, E = 10 and
xf = 200. Smaller values of a lead to broader droplets
with flatter tops and fewer steps. This is due to the
amplitude of the oscillations in the binding potential be-
ing smaller and the correspondingly higher value of the
lowest positive local minima. As a increases, the system
undergoes a wetting transition, so the most obvious effect
on the droplets is the extent of spreading, which is con-
trolled by the equilibrium contact angle which in turn is
determined by the height of the lowest positive minimum
in the binding potential.

Fig. 13(b) shows the corresponding normalised free en-
ergy differences for spreading on these binding potentials.
As before, steps in this quantity correspond to popping
events or the emergence of terraces. There are overall
trends as a is varied, such as secondary (and higher)
terracing events are harder to see in curves for large
a. Also, in general, the spreading to equilibrium occurs
more quickly for greater a, as would be expected from
the binding potentials and equilibrium droplet profiles,
given that the distance the droplet has to spread is less.
However, there are exceptions to this trend such as the
case with a = 0.04, where the ‘popping’ event takes an
unusually long time to occur. Thus, it is possible for the
crossing of the normalised free energy difference curves
for different values of a, where at a particular stage of the
dynamics certain evolutions are slowed by the formation
of terraces (e.g. by being ‘pinned’ to particular heights),
whereas at the same time such an event does not occur
in an otherwise slower (larger difference between initial
and equilibrium contact angles) spreading situation. We
believe the occurrence of slow dynamics in the system
corresponds to parts of the profile having to pass over
saddles in the free energy.

Comparing the normalised free energy difference
curves for a = 0.1 and a = 0.3 in Fig. 13(b), we see the
curves cross and are rather different in shape, indicating
that the different stages of the dynamics occur on dif-
ferent timescales. Interestingly, however, both take the
same overall time to finally equilibrate. The a = 0.3 case
initially decreases much more rapidly, due to the high
barrier in the binding potential between the minimum
at h0 and the next minimum at h1, corresponding to 1
layer of particles [see Fig. 13(c)]. The free energy cost
of having h ≈ 1

2 (h0 + h1) is high, so the system chooses
h = h0 or h = h1 as quickly as it can. Following this,
there is a slower relaxation over a longer timescale. In
contrast, for a = 0.1 the energy difference between the
first positive local maximum and the neighbouring min-
imum is much less, so there is only one timescale visible
in the relaxation to equilibrium.

Having investigated the dynamics of spreading for g3, a
binding potential with oscillations but also having mono-
tonic exponential decay at larger h, we now focus on g4,
which has oscillatory decay for h→∞.

Final equilibrium drop profiles with the binding poten-
tial g4 for various values of the parameter d are shown in
Fig. 14(a). The initial drop profile (34) has C = 6, E =
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FIG. 13. (a) A sequence of equilibrium droplet profiles with binding potential g3 and varying a, as given in the legend. We also
have d = 0.02, and hb is set as the lowest positive minimum of the binding potential (for a = 0.01, hb = 0.2523, for a = 0.02,
hb = 0.2402, for a ≥ 0.04, hb = 0.2282). (b) A plot of the time evolution of the normalised free energy differences of the
dynamics leading to the formation of the drops in (a). (c) Shows the corresponding binding potentials.

10, xf = 200, and hb = {0.3, 0.2402, 0.2282} which are
the corresponding minima (h0) for d = {0.02, 0,−0.02}.
Similar to the drop profiles with binding potential g3,
higher values of d lead to broader droplets and flatter
tops, as the system passes through the wetting transi-
tion. However, instead of having two complete layers of
particles for d = 0.02 as shown in Fig. 10 for g3, the final
equilibrium shape with binding potential g4 has only one
particle layer. This is in agreement with intuitive analy-
sis of the plot of g4 against h in Fig. 4, since the global
minimum of g4 with d = 0.02 is at h ≈ 1 and thus one
layer of particles is preferred.

To investigate the dynamics of spreading with bind-
ing potential g4, in Fig. 14(b) we plot the corresponding
normalised free energy difference over time for the same
three values of d. In the two d 6= 0 cases the drop take a
much longer time to reach equilibrium than the cases in
Fig. 13 (with g3). Also, there are two obvious ‘popping’
events on the d = 0.02 curve. At the first inflection point
(at t ≈ 103), the drop starts to form terraces and the
centre of the drop ‘pins’ to a particular height until the
first jump (‘popping event’) occurs between t = 103 and
t = 104, where the normalised energy difference drops
down from ≈ 0.26 to ≈ 0.22, during which the top part
of the droplet flattens. A similar process occurs again
at t ≈ 7 × 104 because one layer of particles is slightly
more favourable than two or more layers of particles (see
Fig. 4). We believe that in this case the dynamics is par-
ticularly slow because the difference in the free energy of
the different minima of g4 for d = 0.02 are rather small.

The slow dynamics for the case d = −0.02 in Fig. 14(b)
is for a different reason. Looking at the time evolution of
the drop profile (not displayed), the drop initially seems
to reach equilibrium with a background film height equal
to h0. However, this leaves the top of the droplet on
a maximum in the binding potential, and so the back-
ground film height raises up slightly to allow the top of
the drop to move off the maximum. In the final equilib-
rium neither the background film nor the top of droplet

are in any binding potential minima, but nonetheless the
state is the best overall equilibrium for the entire droplet.

In Fig. 15(a) we display a sequence of equilibrium
droplet profiles for binding potential g4 and various val-
ues of a. As a is increased the amplitude of the oscilla-
tions in g4 increases and also the the system is further
from the wetting transition with a larger contact angle,
since the primary minimum in g4 at h = h0 becomes
lower as a is increased. In Fig. 15(b) we display the cor-
responding time evolution of the normalised free energy
difference and in (c) the binding potential. The over-
all behaviour is somewhat similar to that displayed in
Fig. 13 for binding potential g3. However, the overall
time it takes to equilibrate varies even more in this case,
being anywhere in the range 103 – 106. As before, this
is due to the slow dynamics that occurs due to popping,
pinning and other such events as the droplet evolves in a
complex free energy landscape having many long ‘valleys’
and saddle points.

B. Spreading versus dewetting towards equilibrium

In view of the apparent complexity in the underly-
ing free energy landscape in which the spreading droplet
evolves, a natural question to arise is: does that land-
scape exhibit multiple minima? All the results presented
so far correspond to spreading droplets, so to address this
question, we also consider cases where the initial condi-
tion consists of a pancake-like drop that is spread out
more than the expected final equilibrium state, so that
the evolution towards equilibrium consists of a dewetting
dynamics, with the contact line of the droplet receding.

In some cases, identical equilibrium profiles are found
from both spreading and dewetting simulations. How-
ever, it is also not uncommon for different equilibria to
be realised. In Fig. 16 we highlight a case of this lat-
ter situation, where the initial profiles for spreading and
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FIG. 14. (a) Equilibrium drop profiles with the binding po-
tential g4 in Eq. (15), as the parameter d is varied. We take
a = 0.01, b = π

2
, c = 1, k = 2π and d = {0.02, 0,−0.02}. (b)

The corresponding normalised free energy difference for the
spreading of the droplets.

dewetting were given as

h(x, t = 0) = 18.00 e
−
[

(x−xf/2)

6

]2
+ hb, (37)

and

h(x, t = 0) = 1.694 e
−
[

(x−xf/2)

60

]8
+ hb, (38)

respectively, and where xf = 200, hb = h0 = 0.1081,
and the binding potential g2 is used. Specifically, in
Fig. 16(a) we present the final equilibrium states of two
droplets with the same volume that have evolved to at-
tain different equilibrium profiles—although as expected
given both simulations are for identical substrates with

the same binding potentials, the effective contact angle
made with the background film is seen to be in agree-
ment in both equilibria. We further note that the drops
have dynamically evolved to find the locally lowest en-
ergy configuration for their height profile across the en-
tire domain. As the effective domain is finite (due to
the periodic boundary conditions), this means that the
background height at equilibrium is not exactly h0, the
lowest (positive) minimum value for the imposed bind-
ing potential (in this case g2(h)). Indeed, the two cases
in Fig. 16(a) have slightly different values for the back-
ground film height, corresponding to different values of
λ [defined in Eq. (22)]. In Fig. 16(b) the correspond-
ing evolutions of the normalised free energy differences
are depicted to highlight the very different approaches
to equilibrium for these two situations. We further note
that they have not approached the same free energy equi-
librium. In particular the spreading case has been able
to find a lower minimum in the energy landscape, since
it has reached F (∞) = 0.046, compared to F (∞) = 0.15
for dewetting.

In our simulations, it is noticed that dewetting usu-
ally proceeds less rapidly than spreading, as has been
reported previously for droplet motion simulations [56].
Alongside the fact that the relative depth of the minima
in the binding potentials are mostly greater for smaller
values of film height, we see that popping events are much
less common in dewetting than in spreading and the ter-
races are formed in a more gradual evolution.

C. Including diffusion

All results presented thus far are for spreading onto
a substrate already covered with a film of thickness h0,
essentially like conducting a spreading experiment on an
ostensibly dry substrate but that already has a few par-
ticles adsorbed on it. We have modelled this situation
assuming that the droplet evolution proceeds with ad-
vection only – i.e. the case where ᾱ0 = 0 in our gov-
erning equation (33). However, as discussed in Sec. IV,
when the amount adsorbed on the substrate is a single
monolayer or less, we expect the dynamics to be diffusive.
This is even more true when thin films advance onto a
substrate that is completely dry, with no particles at all
present on the substrate before the droplet is introduced.
Therefore, we now consider the case ᾱ0 > 0.

We first consider the case where the binding potential
is g2. In Figs. 17 and 18 we show cases where the droplet
is initiated on a background film of thickness hb = h0 (as
previously) and hb = 0 (a totally dry initial substrate),
respectively. We see two main effects: (i) increasing dif-
fusion (larger ᾱ0) speeds up the evolution in all cases;
(ii) diffusion has a far greater impact when the droplet
is spreading on a totally dry substrate, as in Fig. 18,
compared to when spreading on an already present ‘pre-
cursor’. In these plots, a relatively large initial droplet
is chosen (with C = 60), hence most of the droplet has
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FIG. 15. (a) A sequence of equilibrium droplet profiles with binding potential g4 and varying a, as given in the legend. We
also have d = 0.02, and hb is set as the lowest positive minimum of the binding potential (for a = 0.01, hb = 0.300, for
a = 0.02, hb = 0.2642, for a = {0.04, 0.05}, hb = 0.2402, and for the remaining values of a, hb = 0.2282). (b) A plot of the time
evolution of the normalised free energy differences of the dynamics leading to the formation of the drops in (a). (c) Shows the
corresponding binding potentials.

h � σ throughout the evolution. Thus, as anticipated
in the model development discussion in Sec. IV, diffusion
does not have a dramatic effect for large drops initially
and O(1) times. However, for drops of any size, the lat-
ter stages of the approach to equilibrium ultimately re-
quires a reshaping of the height profile along terraces (at
small multiples of σ) caused by the oscillatory binding
potential. In these latter stages, diffusion then speeds up
this reshaping process, and even for large droplets can
decrease the time to reach equilibrium by orders of mag-
nitude (e.g. see the behaviour of the free energy in Fig. 18
for F (t) . 5).

For much smaller droplets, however, where the aver-
age height of the drop is small, the diffusion is much
more influential across the entire evolution, speeding up
the equilibration. In Figs. 19 and 20 we plot the evolu-
tion of the free energy for a particular set of parameters
in g3 and g4 for a small initial droplet on a totally dry
substrate (C = 6, hb = 0). In these cases the spread-
ing happens more rapidly when ᾱ0 > 0. It can be many
orders of magnitude faster than the case ᾱ0 = 0. This
shows that (i) including diffusion is essential in situations
where the physics dictates that it has an effect, and that
(ii) the order in which parts of the droplets evolve can
be reversed. For example, consider the extreme cases
of ᾱ0 = 0 and ᾱ0 = 100 in Fig. 20. For high diffu-
sion the early time dynamics consists of the precursor
foot spreading out rapidly, before a final popping event
to reach equilibrium for the larger part of the droplet
centre. In contrast, when there is no diffusion ᾱ0 = 0,
the spreading occurs as usual with the main part of the
droplet evolving to very close to the final shape before the
precursor foot eventually is formed in the final approach
to equilibrium.

VI. CONCLUDING REMARKS

In this paper we have investigated thin liquid films
spreading on a flat solid substrate, including effects such
as surface tension, oscillatory binding potentials, advec-
tive flow dynamics and surface diffusion. Lubrication
theory and dimensional analysis have been used to de-
rive a model governing equation (30) for the drop height
profile. From this one can also obtain the pressure and
velocity profile. Solving numerically using the Finite Dif-
ference Method has allowed us to simulate the thin film
droplet spreading.

The oscillatory binding potentials that we have used
model the molecular packing that can occur in certain liq-
uids at interfaces [5, 8–14]. These occur in systems that
exhibit layering transitions near to the wetting transition.
Note that spreading nanoparticle-laden drops [57] have
previously been modelled with thin-film models incor-
porating oscillatory disjoining pressures [58–60]. These
dynamical models describe the time evolution of two cou-
pled fields: the height of the liquid film and the local
concentration of nanoparticles. In Ref. [59] it is shown
that the presence of nanoparticles can also lead to ter-
raced droplets and steps emerging from the contact line.
In the context of the gradient dynamics form presented
here in (18) it should be noted that such a form also ex-
ists for nanoparticle-laden or surfactant-laden films [61–
63]. Such a model shows that a oscillatory nanoparticle-
dependent wetting potential does not only result in an
oscillatory disjoining pressure but also in an correspond-
ingly amended chemical potential for the particles.

We have shown that having an oscillatory binding po-
tential leads to a rich and varied droplet spreading dy-
namics. The time evolution towards equilibrium can of-
ten exhibit several stages. There is the usual spreading
and relaxation from the initial condition, but there is
also the formation of terraces and ‘popping’ events where
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FIG. 16. (a) The final equilibrium state obtained for the same
volume of liquid on the surface undergoing both spreading
and dewetting on a background film h = h0. The binding
potential used is g2, with initial conditions that were evolved
to reach these final equilibria given in (37) for the spreading
situation, and (38) for dewetting. (b) shows the corresponding
evolutions of the normalised free energy differences, noting
that for spreading F (0) = 16.89 and F (∞) = 0.046, whereas
for dewetting F (0) = 0.44 and F (∞) = 0.15.

there is a rapid drop in the free energy due to a jump of
the droplet free surface from one minimum of the bind-
ing potential to another. There is also the usual final
long-time approach to equilibrium. We believe this rich
behaviour is due to the complexity of the underlying free
energy landscape that exhibits multiple minima, long val-
leys along which the dynamics is slow and saddle points.
To better understand the underlying free energy land-
scape, we expect a systematic phase plane analysis is
required – i.e. a systematic examination how diagrams
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FIG. 17. The free energy over time during droplet spreading
on a substrate with binding potential g2 covered by a film of
thickness hb 6= 0, for various values of the diffusion coefficient
ᾱ0. The initial condition has hb = h0 = 0.1081, C = 60,
E = 10 and xf = 400.
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FIG. 18. The free energy over time during droplet spreading
on a totally dry substrate with binding potential g2, for vari-
ous values of the diffusion coefficient ᾱ0. The initial condition
has hb = 0, C = 60, E = 10 and xf = 400.

like that in Fig. 5 vary as the parameters in the system
are changed. Work in this direction is currently under
way.

Our extended thin-film hydrodynamic model (30) is
also capable of describing the crossover from advective to
diffusive dynamics that must occur when the film thick-
ness is of order one particle thick or less. Such a crossover
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FIG. 19. The free energy over time during droplet spreading
on a totally dry substrate with binding potential g3, for vari-
ous values of the diffusion coefficient ᾱ0. The initial condition
is hb = 0, C = 6, E = 10 and xf = 200.
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FIG. 20. The free energy over time during droplet spreading
on a totally dry substrate with binding potential g4, for vari-
ous values of the diffusion coefficient ᾱ0. The initial condition
is hb = 0, C = 6, E = 10 and xf = 200.

must occur [18]. We have shown that when diffusion is
included, the droplet spreading is faster, particularly for
very small droplets and for all droplets in the latter stages
of their approach to equilibrium. Incorporating diffusion
can also change the dynamic pathway taken – c.f. the
discussion above around Fig. 20 and Ref. [52] where the
nonlinear dynamics of the Plateau-Rayleigh instability of
a liquid ridge is investigated comparing pathways occur-

ing for different mobility functions. Note however that
incorporating a small amount of diffusion does not change
Tanner’s law [64]. Recall that Tanner’s law states that
over a significant portion of the spreading time of a radi-
ally symmetric liquid drop (puddle), the radius R grows
in time as R ∼ tn, with exponent n = 1/10. For 2D
spreading drops like those studied here, the law still ap-
plies, but with exponent n = 1/7 [64]. We have checked
that including moderate diffusion does not change Tan-
ner’s law, however it does change the pre-factor, so that
the overall time for the drop to equilibrate is less with dif-
fusion incorporated. The extent of the time period that
Tanner’s law holds (usually after initial transient relax-
ations to a quasistatic shape up until a change to expo-
nential behaviour during the latter stages of approach to
equilibrium) can also be significantly reduced in our os-
cillatory binding potential simulations. This happens, as
would be expected, when the majority of the droplet pro-
file lies in the region where terraces form and the greater
range of dynamical features occur, creating the rich evo-
lutions we have explored. A final note on the relevance of
Tanner’s law, however, is that if a very large diffusion co-
efficient is imposed then the overriding asymptotic struc-
ture of the bulk of the droplet moving with a h3 mobility
would break down, and in this situation we could expect
an entirely different evolution. We leave this diffusion
dominated regime for possible future work.

The work presented here has largely focused on the
simplified oscillatory binding potentials g3(h) and g4(h).
Recall that the more complex g2(h) in Eq. (13) is the one
that was obtained as a fit to the DFT data [13]. Addi-
tionally, all of these have the Hamaker constant H = 0.
There is therefore clearly much more work to do under-
standing the spreading behaviour when realistic binding
potentials are used that are valid for all values of film
thickness. Comparison of different binding potentials
could also be performed for a wider range of fluids, e.g.
colloidal fluids, oils, polymeric solutions etc.

Other extensions to the present work that would be
fruitful include solving for the droplet spreading dynam-
ics in 3D, including gravity, e.g. to also consider slid-
ing droplets, which exhibit extremely rich behaviour [65].
Preliminary results indicate that it would also be inter-
esting to study what happens when the initial condition
is not symmetric, and also the droplet dynamics in the
presence of other droplets.

Appendix: Convergence test

As a prerequisite to generating the results presented
above, we of course conducted convergence tests in order
to be certain of the accuracy of the solutions of our nu-
merical analysis. There are some interesting results from
this analysis relating to the choice of spatial grid spacing
in the discretisation that readers should be aware of if
trying to reproduce our results.

To test accuracy, we calculate droplet evolutions for a
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FIG. 21. Equilibrium droplet profile with g3 and with xf =
200, d = 0.02, a = 0.3, hb = 0.2282, discretising with various
grid spacings dx to obtain the numerical solution, where dx =
xf
N

and where N is the total number of grid points. The values
used are N = 100, N = 200, N = 400, N = 667, N = 1000,
N = 2000, N = 2500, and N = 3333. The last four of these
are virtually indistinguishable.

series of different mesh discretisations, going to increas-
ingly finer meshes (i.e. an increase of the number of points
within the interval) and compare the results with the pre-

vious one. If the results are equal within a small percent-
age error, the first mesh is good enough. On the other
hand, if the results differ by a large amount, the same
process must be repeated for a finer mesh. A finer mesh
generally results in a more accurate solution and lowers
the convergence error, however it requires progressively
larger memory and takes more time to compute – partic-
ularly for the time evolution given the effective number
of ODEs to be solved increases with the number of grid
points. Thus a desirable mesh would combine acceptable
accuracy with economical cost.

Fig. 21 shows the sequence of the droplet profiles for
g3 with d = 0.02, a = 0.3, C = 6 and E = 10, with
different dx, where dx is the grid spacing dx =

xf

N , where
N is the number of grid points and is chosen as N =
100, N = 200, N = 400, N = 667, N = 1000, N =
2000, N = 2500, and N = 3333. There is a greatly
elongated terrace of height h(x) ≈ 1 for the curves with
the coarsest three discretisations, which disappears as dx
decreases. Also, the terraces in these curves are more
pronounced compared to the others. Thus in this case, a
poor mesh grid results in a very different final equilibrium
droplet shape. There is also sometimes a loss of volume
during the time evolution when the grid spacing is too
large, i.e. the algorithm does not accurately capture the
conservation of mass, which must be satisfied in our non-
volatile system.
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