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Abstract  18 

This paper examines the forecasting skill of eight Global Climate Models (GCMs) from the North-19 

American Multi-Model Ensemble (NMME) project (CCSM3, CCSM4, CanCM3, CanCM4, GFDL2.1, 20 

FLORb01, GEOS5, and CFSv2) over seven major regions of the continental United States. The skill of the 21 

monthly forecasts is quantified using the mean square error skill score. This score is decomposed to assess 22 

the accuracy of the forecast in the absence of biases (potential skill) and in the presence of conditional 23 

(slope reliability) and unconditional (standardized mean error) biases. We summarize the forecasting skill 24 

of each model according to the initialization month of the forecast and lead time, and test the models’ ability 25 

to predict extended periods of extreme climate conducive to eight ‘billion-dollar’ historical flood and 26 

drought events.  27 

Results indicate that the most skillful predictions occur at the shortest lead times and decline rapidly 28 

thereafter. Spatially, potential skill varies little, while actual model skill scores exhibit strong spatial and 29 

seasonal patterns primarily due to the unconditional biases in the models. The conditional biases vary little 30 

by model, lead time, month, or region. Overall, we find that the skill of the ensemble mean is equal to or 31 

greater than that of any of the individual models. At the seasonal scale, the drought events are better 32 

forecasted than the flood events, and are predicted equally well in terms of high temperature and low 33 

precipitation. Overall, our findings provide a systematic diagnosis of the strengths and weaknesses of the 34 

eight models over a wide range of temporal and spatial scales.   35 
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1. Introduction 36 

The North American Multimodel Ensemble (NMME) is an experimental project which was established in 37 

response to the U.S. National Academies’ recommendation to support regional climate forecasting and 38 

decision-making over intraseasonal to interannual timescales (National Research Council, 2010). 39 

Participating North-American agencies, which include the National Oceanic and Atmospheric 40 

Administration (NOAA)’s National Centers for Environmental Prediction (NCEP) and Geophysical Fluid 41 

Dynamics Laboratory (GFDL), the International Research Institute for Climate and Society (IRI), the 42 

National Center for Atmospheric Research (NCAR), the National Aeronautics and Space Administration 43 

(NASA)’s Global Modeling and Assimilation Office (GMAO), the Rosenstiel School of Marine & 44 

Atmospheric Science from the University of Miami (RSMAS), the Center for Ocean-Land-Atmosphere 45 

Studies (COLA), and Environment Canada’s Meteorological Service of Canada - Canadian Meteorological 46 

Center (CMC), have been contributing model predictions from their hindcasts (dating back to the early 47 

1980s) and real-time forecasts since August 2011. Each model consists of between 6 and 28 “members,” 48 

and the forecasts are provided at lead times that range between 0.5 and 11.5 months ahead of the forecast 49 

(Table 1). The two key advantages of the NMME, in comparison with other projects, are that the data are 50 

made freely available and that the focus is not just on retrospective forecasts, but also on real-time 51 

information.  52 

A central component of the NMME project consists in quantifying model ensemble skill (Kirtman et al., 53 

2014) to generate the most reliable climate forecasts. Model accuracy can be measured on several levels, 54 

by comparing each model’s individual members, each model’s ensemble mean (of model members), or the 55 

multi-model ensemble mean, against the observed climate data. Typically, multi-model means are found to 56 

have greater skill than single models (Hagedorn et al., 2005). Such averaging schemes are usually computed 57 

either by giving the same weight to each model’s ensemble mean, or by giving equal weight to all members 58 

(thus assigning more weight to the models with more members) (e.g., Tian et al., 2014). The first 59 

assessments of NMME skill consistently suggest that the multi-model ensemble mean performs as well as, 60 

or better than, the best model (Becker et al., 2014, DelSole and Tippett 2014, Wood et al., 2015, Ma et al. 61 

2015a, Thober et al., 2015). This increased skill of the NMME multi-model ensemble in contrast with the 62 

individual models appears to be related to the addition of new signals (from new models), rather than to the 63 

reduction of noise due to model averaging (DelSole et al., 2014).  64 

However, because of the broad spatial and temporal scope of the NMME, most analyses of model skill are 65 

limited by necessity to specific lead times, regions, or seasons. Global, 1°-by-1° resolution studies tend to 66 

focus either on just one model, or on the shortest available lead time. For instance, Jia et al. (2015) 67 

characterize the skill of the high-resolution GFDL model FLOR, while Saha et al. (2014) investigate the 68 
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skill of the NCEP Climate Forecast System (CFSv2) at the global scale. Conversely, Becker et al. (2014) 69 

provide a comprehensive analysis of temperature, precipitation, and sea surface temperature forecasts for 70 

multiple models at the global scale, but focus mainly on the shortest available lead time. Wang (2014) 71 

examines the global skill of NMME precipitation forecasts for the summer months and only at the shortest 72 

lead time. Mo and Lettenmaier (2014) interpolate the NMME forecasts bilinearly to a 0.5° grid over the 73 

continental United States to evaluate runoff and soil moisture forecasts, but only up to the 3-month lead 74 

time.  75 

In contrast, analyses of the NMME conducted at the sub-continental scale often allow for a more 76 

comprehensive examination of model skill and of the relationship between ensemble forecasts and climate 77 

oscillations, and reveal regional agreement between models (Infanti and Kirtman 2015). In the southeastern 78 

United States, for example, it is shown that temperature and precipitation forecasts become increasingly 79 

skillful in the winter months at short lead times (Infanti and Kirtman, 2014). Studies found that the 80 

predictability of precipitation (Mo and Lyon, 2015), and/or temperature (Roundy et al., 2015) and drought 81 

(Ma et al., 2015b) generally improves in regions that are significantly affected by El Niño-Southern 82 

Oscillation (ENSO). In North America, the highest correlations between temperature/precipitation forecasts 83 

and observations are found in the south-east (SE), south-west (SW), and north-west (NW) during strong 84 

Eastern Pacific El Niño events (Infanti and Kirtman 2015). Such analyses also help determine which models 85 

are the most useful at the regional/seasonal scale; for instance, over continental China, the CFS models 86 

performed the best, followed by GFDL and NASA, the Canadian models, with the IRI and CCSM3 models 87 

in the final position (Ma et al. 2015b) (see Table 1 for an overview of models and acronyms – note that we 88 

did not include IRI’s fourth-generation atmospheric GCM (ECHAM4p5) in our model selection because it 89 

no longer issues real-time forecasts). In an analysis of four NMME models over the continental United 90 

States and the Atlantic Warm Pool (AWP), the CFSv2 and GFDL models showed the most skill for 91 

predicting seasonal rainfall anomalies in the July-October season (Misra and Li, 2014).   92 

Thus, despite an increasing number of analyses focused on the quantification of NMME models’ skill, a 93 

systematic investigation across different models, regions, seasons, and lead times is still lacking. 94 

Additionally, very little is known regarding the skill of these models for forecasting extended periods of 95 

high temperature and/or low precipitation leading to drought conditions, as well as extreme precipitation 96 

leading to flooding. For instance, we know that most NMME models were not able to forecast the 2012 97 

North American drought correctly, while those that correctly predicted its occurrence did so fortuitously, 98 

and “for the wrong reason” (Kam et al. 2014). Therefore, a thorough evaluation of the NMME models’ 99 

ability to forecast the occurrence of different extremes over extended periods of time is also missing.  100 

To fill these gaps, the research questions that we address in this study are the following: 101 
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- At the intraseasonal scale, what is the skill of the eight individual NMME model ensembles in 102 

predicting precipitation and temperature patterns, for every available lead time, every month of the 103 

year, and for every sub-region of the continental United States? How do their biases compare? Do 104 

certain models perform better than others for certain regions, lead times, and months, and does the 105 

eight-model ensemble mean outperform the individual models? 106 

- At the seasonal scale, what is the ability of these eight models to forecast extended periods of high 107 

temperature and low precipitation leading to drought conditions, as well as prolonged periods of 108 

extreme precipitation leading to flooding? 109 

To answer these questions, we conduct a systematic decomposition of the forecasting skill of the eight 110 

individual model ensembles (computed as the mean of all members in each model) as well as of the eight-111 

model ensemble mean (computed by assigning the same weight to each model’s mean), using the NMME 112 

forecast data and observed monthly data for verification. Section 2 presents the forecast and observed data, 113 

and Section 3 provides an overview of the statistical methods used to perform forecast verification and the 114 

diagnosis of each model’s ability to predict seasonal extremes. The results are presented in Section 4, while 115 

Section 5 summarizes the main findings and conclusions of the study. 116 

2. Data 117 

2.1. NMME Temperature and Precipitation Data 118 

Here we focus on eight GCMs from the NMME project, for which temperature and precipitation forecasts 119 

are available from the early 1980s to the present. The GCMs we consider are: CCSM3 and CCSM4 from 120 

NCAR, COLA and RSMAS; CanCM3 and CanCM4 from Environment Canada’s CMC; CM2.1 and 121 

FLORb01 from NOAA’s GFDL; GEOS5 from NASA’s GMAO; CFSv2 from NOAA’s NCEP. The 122 

characteristics of the different models are summarized in Table 1. Of these models, CCSM3 and CCSM4 123 

are from Phase I of the NMME project, while all of the others are from Phase II. 124 

The data were downloaded from the IRI/Lamont Doherty Earth Observatory (LDEO) Climate Data Library 125 

(http://iridl.ldeo.columbia.edu/) in netCDF format, on a 1.0° latitude by 1.0° longitude grid. Monthly total 126 

precipitation (variable name “prec”, in mm/day) and monthly reference mean temperature at 2 meters 127 

(variable name “tref”, in Kelvin units) were obtained for all available lead times and ensemble members 128 

over the continental United States. Temperature data were converted from Kelvin units to degrees Celsius. 129 

For CanCM3, CanCM4, and CFSv2, the hindcast and forecast data were downloaded separately and 130 

combined for the analysis. In the case of CFSv2 we used the pentad realtime forecasts which match the 131 

pattern of the CFSv2 hindcasts.  132 
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Data were extracted for each model from netCDF files in R using the ncdf4 package (Pierce, 2014). The 133 

files typically contain five dimensions, which are the longitude, latitude, member, lead, and forecast 134 

reference time. The number of ensemble members ranges from 6 for COLA to 12 for GEOS5 and 135 

FLORb01, and 28 for CFSv2 (Table 1). To limit the scope of the analysis, we consider the mean of each 136 

model’s ensemble members, rather than analyze each model member individually. The focus of our analysis 137 

is monthly to seasonal predictions, ranging from 0.5 to 11.5 month leads. The term “lead” indicates the 138 

period between the forecast initialization time and the month that is predicted (so a “0.5-month lead 139 

forecast” refers to a monthly forecast that was made about 15 days ahead of the forecast period). Model 140 

forecast lead times vary from 0.5-9.5 months for GEOS5, and up to 11.5 months for all of the other models 141 

(Table 1). Here, the expression “forecast reference time” refers to the date when the forecasts were issued 142 

(e.g., July 2015).  143 

To analyze forecast skill at the regional scale, we define seven major regions of the United States based on 144 

the boundaries described in Kunkel et al. (2013), which are a modification of the regions that were originally 145 

used in the 2009 National Climate Assessment Report (Karl et al., 2009) by dividing the Great Plains 146 

Region into North and South (Figure 1). The NMME data are projected as stacked rasters and cropped to 147 

the dimensions of these seven regions using the ‘raster’ package in R (Hijmans, 2015), to extract the mean 148 

weighted forecast value of all of the grid cells falling within each region (as defined by the polygons) for 149 

every month and lead time.  150 

2.2. Reference Temperature and Precipitation Data 151 

To verify model skill, we use temperature and precipitation data from the Parameter-elevation Regression 152 

on Independent Slopes Model (PRISM) climate mapping system (Daly et al. 2002), which represents the 153 

reference dataset for the continental United States. PRISM’s temporal and spatial resolutions are monthly 154 

and approximately 4 km. The data are freely available from the web (http://www.prism. 155 

oregonstate.edu/index.phtml) and cover the period from 1890 to the present. We divide precipitation 156 

monthly totals by the number of days in each historical month to obtain daily values, and to match the units 157 

of the NMME models. Extracted precipitation and temperature data time series are plotted against reference 158 

PRISM data for every model, region, month, and lead time for verification purposes (see Supplementary 159 

materials, pp.2-25). 160 

Other studies (e.g., Becker et al., 2014, Infanti and Kirtman, 2014) have used as verification field the station 161 

observation–based Global Historical Climatology Network and Climate Anomaly Monitoring System 162 

(GHCN+CAMS) for temperature, and the Climate Prediction Center (CPC) global daily Unified Raingauge 163 

Database (URD) gauge analysis for precipitation rate. Here we chose to use PRISM data instead because 164 
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they account for elevation in the interpolation scheme and have a fine spatial resolution. Moreover, they 165 

are the official product for the U.S. Department of Agriculture.  166 

 167 

3. Methodology 168 

3.1. Forecast verification 169 

Different approaches and methods have been developed to quantify the skill of a forecast system. Here we 170 

quantify the accuracy of the forecast relative to the climatology (used as reference) using the mean square 171 

error (MSE) skill score SSMSE (e.g., Hashino et al. 2007):  172 
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components (Murphy and Winkler 1992): 178 

22

2








 











x

xf

x

f

fxfxMSESS







  (2) 179 

where ρfx is the correlation coefficient between observations and forecasts and quantifies the degree of linear 180 

dependence between the two; µf and µx are the forecast and observation means, respectively; σf represents 181 

the standard deviation of the forecasts. Based on this decomposition, the value of the correlation coefficient 182 

(or its squared counterpart, the coefficient of determination) reflects the forecast accuracy only in the 183 

absence of biases. For this reason, it represents the potential skill (PS), which is the skill we could achieve 184 

if there were no biases. Without the quantification of the biases, the forecast skill is inflated. Thus, it is 185 

commonly assumed (e.g., Boer et al., 2013, Younas and Tang, 2013) that the difference between the 186 

potential and actual skill represents “room for model improvement”; however, as explained by Kumar et 187 

al. (2014), there is not necessarily a relationship between the potential and the actual skill of climate models, 188 

and assuming that there should be one amounts to expecting that the real-world data should behave 189 

identically to the model predictions. 190 

The second term in the right hand side of equation (2) quantifies the conditional biases and is referred to as 191 

the slope reliability (SREL). The last term quantifies the unconditional biases and it is referred to as the 192 

standardized mean error (SME). 193 
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Forecast verification using the skill score and its decompositions in equation (2) is a diagnostic tool that 194 

produces a more realistic quantification of the forecast skill compared to taking the correlation coefficient 195 

at face value. Moreover, the decomposition of the skill in different bias sources can provide model 196 

developers with feedback about strengths and weaknesses of their models. In general, unconditional biases 197 

(large SME) can easily be removed with bias-correction methods (Hashino et al. 2007). Conditional biases 198 

(large SREL), on the other hand, may require more sophisticated calibration. However, forecasts with low 199 

potential skill (PS) will have limited predictability, even if biases are eliminated. 200 

To perform the skill verification of the NMME data, we tailor the PRISM and NMME data to cover the 201 

same months between January 1982 and December 2014. The verification is carried out for each model 202 

ensemble mean, region, and lead time following the above procedure, as also described in Bradley and 203 

Schwartz (2011). A separate skill verification is conducted on the eight-model ensemble mean, which is 204 

the mean forecast of all models (where one model already represents the arithmetic mean of its own 205 

ensemble members), for each region and lead time.  206 

3.2. Extreme event diagnosis 207 

The second part of the diagnosis is the assessment of each model’s ability to predict extreme floods and 208 

droughts at the seasonal scale. To do this, we investigate the models’ capacity to capture prolonged periods 209 

of extreme precipitation and temperature lasting several months. Eight extreme flood and drought events 210 

affecting different parts of the continental United States were selected based on their severity and duration. 211 

The event had to last at least one full month, and less than a year, so that we might evaluate its predictability 212 

for multiple lead times. The severity of the events was evaluated using the NOAA’s Billion Dollar Weather 213 

and Climate Disasters Table of Events (https://www.ncdc.noaa.gov/billions/events). The chosen events 214 

include four floods (July-August 1993, January-March 1995, June-August 2008, and March 2010) and four 215 

droughts (June-August 1988, March-November 2002, March-August 2011, and May-August 2012). For 216 

the flood events, we focus on positive precipitation anomalies (high rainfall), and for the droughts, we 217 

observe positive temperature anomalies and negative precipitation anomalies (high temperature and lack of 218 

rainfall).  219 

We first define the extent of each event based on the description given in the Billion Dollar Weather Table. 220 

The PRISM data are aggregated over the entire continental United States at the 1°×1° resolution to match 221 

the spatial resolution of the NMME data. At each 1-degree pixel and for the period of interest for a given 222 

event, we compute the standardized anomalies with respect to the mean and standard deviation computed 223 

over the 1983-2014 period (the years 1982 and 2015 are excluded systematically because not all models 224 

have a complete forecast for 1982, and 2015 forecast data were not yet available for all events at the time 225 

of the analysis). We then extract all the cells with standardized anomalies larger than 1 and smaller than −1 226 



9 
 

(depending on whether we are considering excess temperature/precipitation or lack of rainfall). The 227 

resulting raster contains only the grid cells for that event which were “anomalously” high or low with 228 

respect to the 1983-2014 climatology. The boundaries of the event are tailored to the locations indicated in 229 

the Billion Dollar Weather Table (Figure 2). We then average all the pixels within this identified region for 230 

the months characterizing each event (e.g., total rainfall for the June-August 2008, for each year between 231 

1983 and 2014) and compute the “domain averaged” standardized anomalies. Confidence intervals are 232 

computed around the anomaly for the given extreme event using the approach described in Stedinger et al. 233 

(1993, section 18.4.2).  234 

Last, we use a similar procedure to calculate the corresponding NMME anomalies within the defined region. 235 

One mean (spatially-averaged) model forecast is extracted for the entire region for the selected months 236 

between 1983 and 2014, for each lead time. To obtain a seasonal forecast value we compute the sum of 237 

forecasts initialized ahead of the entire season. Thus, for an event such as the June-August 2008 flood, the 238 

seasonal forecast initialized in June 2008 (just before the event) is calculated as the sum of the 0.5-, the 1.5-239 

, and the 2.5-month lead forecasts initialized in June. If we initialize the forecast one month earlier, in May, 240 

the forecast can be calculated as the sum of the 1.5-, the 2.5- and the 3.5-month lead forecasts initialized 241 

that month. The forecast is calculated for increasingly long initialization times by going back in monthly 242 

time steps, as far the available lead times will allow. The resulting seasonal forecasts are then computed as 243 

anomalies, to allow a direct comparison with the average PRISM climatological anomaly for the event. 244 

4. Results 245 

4.1. Regional temperature and precipitation forecast skill  246 

4.1.1 Temperature 247 

The potential skill of the eight-model ensemble mean, as measured by the squared correlation coefficient 248 

between model forecasts and PRISM observations, ranges between 0 and 0.6 (Figure 3a). We find that the 249 

highest skill is displayed at the shortest lead time (0.5-month lead) and declines rapidly thereafter, so most 250 

regions and months display a skill smaller than 0.1 by the 1.5-month lead time (Figure 3a). The Northwest 251 

and Southwest tend to show better skill than the other regions at longer lead times, e.g., over the January-252 

March and June-July periods respectively, possibly because of the good predictability of temperature 253 

anomalies arising from ENSO conditions during the same months (see e.g., Wolter and Timlin 2011, and 254 

mapping of the likelihood of seasonal extremes by the NOAA/ESRL Physical Science Division at 255 

http://www.esrl.noaa.gov/psd/enso/climaterisks/). Other regions such as the Midwest show almost no skill 256 

beyond the shortest lead time, possibly because of the weaker relationship with ENSO states. 257 
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Overall, the ensemble mean displays better ability than any of the individual models, with potential skill 258 

maxima that exceed that of any single model (see for example April temperatures in the Midwest at the 0.5-259 

lead time, Figures 3-4), in agreement with other assessments of NMME model skill (Infanti and Kirtman 260 

2014, Kirtman et al. 2014). There is not one model that clearly outperforms any of the others, although 261 

CCSM4, CanCM3, CanCM4, GEOS5 and CFSv2 do display better skill than CCSM3, GFDL2.1, and 262 

FLORb01 (Figure 4). The same seasonal and regional patterns can be seen for the individual models as for 263 

the ensemble mean, with a clear peak in potential skill in the Southwestern region in the summer months 264 

(CCSM4, CanCM4).  265 

The actual skill score is relatively low for all models and is mainly driven by the large unconditional biases 266 

(SME) in the models. The influence of the unconditional biases on the skill score is clearly detectable in 267 

the mirror-image pattern between the two (Figures 3-4). Dark blue colors indicating low skill score are 268 

reflected by the dark red colors indicating a high unconditional bias. Overall, the skill score tends to be 269 

higher at the shortest lead times. For the ensemble mean, it can be quite high in specific regions such as the 270 

Midwest at the 0.5-month lead time during the cold season. Individual models, however, exhibit low skill 271 

scores over most regions and months, with values reaching below −10 most of the time (see Supplementary 272 

Materials pp.26-29 for additional graphs indicating skill decomposition for the eight-model ensemble mean 273 

and for each individual model).  274 

The unconditional biases display strong seasonal variability: they tend to be the lowest (white) in most 275 

regions in the winter/spring months, and tend to increase dramatically (red) in the summer. By contrast, the 276 

Northwest and Southwest exhibit systematically higher biases in the winter and spring (particularly in the 277 

model ensemble). Therefore, as a result of this seasonality (e.g., better characterization of initial land surface 278 

conditions in the cold seasons), the unconditional biases also show some lead-dependence: during the 279 

summer months, they are the highest at the shortest leads (dark red), and decrease progressively with lead 280 

time (as is visible in the case of CanCM4/CanCM3, and to a lesser extent CFSv2). These seasonal 281 

fluctuations have a notable influence on the overall skill score, and suggest that forecasts made in the 282 

summer months could generally be improved by eliminating the unconditional biases. 283 

The conditional biases (SREL) tend to range between 0 and 1, and are thus about an order of magnitude 284 

lower than the unconditional biases, which are mostly between about 0 and 10. Conditional biases are 285 

typically very low during most of the year (Figure 3), and they do not vary notably by lead time for most 286 

of the models (Figure 4). One visible exception is the case of CanCM3 and CanCM4, which exhibit a 287 

‘stepped’ appearance, so the conditional biases increase (become redder) as lead time increases. These 288 

biases in the Canadian models tend to develop more rapidly in the earlier months of the year than in the 289 
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later months (see CanCM4 conditional biases in the Southwest, for an example). Some of the other models, 290 

like GFDL2.1 and GEOS5, also reveal some seasonality in their conditional biases.  291 

4.1.2 Precipitation 292 

Precipitation forecasts generally have lower potential skill than temperature (Figure 3B), as expected and 293 

found in other studies, due to the greater variability in rainfall patterns (e.g., Infanti and Kirtman 2015). 294 

The eight-model ensemble mean has better skill than each of the individual models (Figure 3B vs Figure 295 

5), and the regions with the highest eight-model potential skill reflect the ability of the most skillful models 296 

(e.g., CCSM4, CFSv2 in the Southeast). However, all of the individual models display relatively low 297 

potential skill, especially after the 0.5-month lead (consistent with results found by Mo and Lyon (2015)), 298 

and little spatial variation on the regional scale (Figure 5). The models with the poorest forecasting ability 299 

(e.g., CCSM3 and FLORb01) do not even display potential skill at the 0.5-month lead. Other models (e.g., 300 

CCSM4, the Canadian models, GEOS5 and CFSv2) display some skill at longer lead times, but only for 301 

specific months, such as July in the Northwest (for CCSM4, GFDL2.1, CanCM4, and FLORB01), or May 302 

in the Southwest (e.g., CanCM4, GEOS5).  303 

Similarly to temperature, the skill score for precipitation is mainly driven by unconditional biases in the 304 

models: the positive unconditional biases (red patterns) are mirrored by the negative skill score (blue 305 

patterns). Overall, however, the skill score for precipitation displays slightly less extreme (positive and 306 

negative) values than for temperature. This ‘subdued’ behavior could be caused by the greater variability 307 

in precipitation rates (i.e., lower agreement among forecast patterns) in space and time, for different months, 308 

lead times, and models. In other words, because of the small spatial scales of precipitation forecasts 309 

(compared to temperature), better results might be achieved by focusing on smaller spatial regions than the 310 

seven broad regions used here.  311 

Interestingly, the seasonality of model skill also varies regionally for precipitation, but is different from the 312 

regional patterns for temperature. For the Northwest, Southwest, Great Plains North, Midwest, and 313 

Northeast regions, the highest unconditional biases in the precipitation forecasts tend to occur more 314 

frequently (lower skill) in the winter months (Figure 3B). The Great Plains South and Southeast regions, 315 

on the contrary, display lower unconditional biases (higher skill) in the winter months. This finding is 316 

consistent with that of Infanti and Kirtman (2014) for the southeastern United States, and suggests that 317 

improved model skill in the winter months may well be related to the influence of ENSO (e.g., Mo and 318 

Lyon, 2015, Roundy et al., 2015). In some regions, the unconditional biases tend to increase as the lead 319 

time of the forecast increases, so the color maps become progressively redder towards the right side of the 320 

plots (e.g., the Northwest region for CanCM3, FLORb01, or CFSv2) (Figure 5). Elsewhere the biases 321 
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decrease with increasing lead time (e.g., Great Plains South, FLORb01). All eight models display 322 

considerable biases, but CCSM3 displays the largest biases, specifically in the Great Plains North region.  323 

The conditional biases are again much lower than the unconditional biases, and much more variable, 324 

displaying little regularity by month or by lead time. Some months display slightly higher conditional biases 325 

(e.g., April or July), but such patterns are infrequent. CCSM3 and CCSM4 have the largest conditional 326 

biases (red), followed by GFDL2.1, while the Canadian models, GEOS5 and CFSv2 tend to show lower 327 

conditional biases. Regionally, there seem to be slightly greater biases in the Southwest and Great Plains 328 

North.  329 

4.2. Individual extreme events  330 

4.2.1. Floods 331 

We evaluate the skill of the eight NMME models in predicting four flood events (the 1993 July-August 332 

flood, the 1995 January-March flood, the 2008 June-August flood, and March 2010) by comparing the 333 

observed climatology (Figure 2, A-D) to the model precipitation forecasts (positive anomalies). As a caveat, 334 

it should first be conceded that we do not expect the models to reflect the observed historical precipitation 335 

anomalies perfectly over such broad spatial scales, even in the best-case scenarios, because of convection 336 

patterns that occur at local scales (and that cannot be captured in the same way as extreme temperature 337 

anomalies, which exhibit more spatially-consistent patterns). Overall, results indicate that the four flood 338 

events were relatively poorly predicted by all eight models (Figure 6, A-D). The 1993 Midwest flooding 339 

stands out as the least poorly forecasted, since all models with the exception of CCSM3 predicted positive 340 

anomalies. CanCM4, CCSM4, FLORb01, CFSv2 and CanCM3 all forecasted anomalies that were more 341 

than 2 times greater than their own average seasonal value (Figure 6A). However, the actual historical 342 

anomaly was much greater than any of the predicted values, at 3.80. Generally speaking, skillful predictions 343 

tend to occur in regions that have strong air-sea coupling, so the initial condition of the atmosphere plays 344 

an important role in the forecast for several months (Materia et al., 2014). In the case of the 1993 flood, it 345 

is likely that the good skill of the models is due to the strength of the El Niño, which displaced the storm 346 

track over the central United States, with atmospheric rivers transporting large amounts of moisture from 347 

the Gulf of Mexico over the Mississippi River basin (Trenberth and Guillemot, 1996; Lavers and Villarini, 348 

2013). The El Niño conditions also likely explain why the ability of the eight models to predict the 1993 349 

flood visibly decreased here with initialization time (i.e., the further ahead of the event, the less able the 350 

models were to forecast the high rainfall).  351 

The other three events were relatively less well forecast, although CFSv2 performed better than all other 352 

models in 2008 (Figure 6C), as did FLORb01 in 2010 at the shortest lead time (Figure 6D). The observed 353 
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event anomalies (PRISM data) were of 2.34, 2.55, and 2.78 while the model forecasts, at best, attained 1.8 354 

(GFDL2.1 – 1995 flood), 1.5 (CFSv2 – 2008 flood) and 2.3 (CFSv2 – 2010 flood), but somewhat 355 

fortuitously, since some of the highest anomalies were predicted many months ahead of the actual events. 356 

In fact, for all three of these flood events (Figure 6B-D), the eight-model ensemble mean is near zero, or 357 

below zero, and half of the individual model forecasts predicted a “drier-than-average” season. Figure 6B-358 

D indicates that most models fluctuate between positive and negative anomalies, and in 2008 were wrong, 359 

predicting a drier-than-average season overall; as for the other flood events, the predicted anomalies were 360 

as low as -1.5 (1995 flood - GEOS5), -2.5 (2008 flood – CanCM4), and -2.4 (CFSv2 – 2010 flood). Thus, 361 

no model consistently outperformed any of the others, and no single model was reliable in terms of 362 

consistently predicting these three flood events (Figure 6B-D).   363 

4.2.2. Droughts 364 

Droughts tend to develop more slowly than floods, since it can take between five and eight months for the 365 

water deficit to drop beneath a certain threshold and begin a drought (Mo, 2011). Hence, skillful 366 

intraseasonal to interannual forecasts may prove particularly vital ahead of major drought events. 367 

Additionally, droughts also tend to be more predictable than floods because of the influence of the Pacific 368 

Decadal Oscillation (PDO) and the Atlantic Multi-decadal Oscillation (AMO) (McCabe et al. 2004) and 369 

the effects of land surface/atmosphere coupling (e.g., Koster et al., 2006, Seneviratne et al., 2010). Thus, 370 

droughts that are strongly influenced by initial conditions tend to be well-forecast (Roundy and Wood, 371 

2014).  372 

Here we evaluate the ability of NMME models to predict droughts as high temperature anomalies (excess 373 

heat Figure 2, E-H) on the one hand, and low precipitation anomalies (lack of rainfall, Figure 2, I-L) on the 374 

other, in comparison with the observed climatology (red shades for excess temperature, blue shades for lack 375 

of rain). The comparison between temperature and precipitation predictions for drought events also allows 376 

us to determine whether the NMME models are more accurate in predicting excess heat or deficient rainfall, 377 

and to what extent temperature actually contributed to drought severity for each of these events. For 378 

instance, in the case of the 2014 California drought, it was shown that while low precipitation was the main 379 

driver of the event, temperature contributed strongly to intensifying the drought (Shukla et al., 2015).  380 

The comparison between observed extreme temperature and observed extreme precipitation anomalies 381 

reveals a relatively good overlap in spatial extents (Figure 2) with the exception of the 2002 March-382 

November drought, which was also the least predictable of the four droughts (only small isolated parts of 383 

the south-east and south-west United States were affected by the positive temperature anomaly, Figure 2F). 384 

During droughts, strong precipitation deficits and high heat anomalies tend to occur over the same regions, 385 

as was the case during the 1934, 1936, 2011 and 2012 events (Donat et al., 2016). The discrepancies 386 
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between temperature and precipitation patterns tend to be relatively limited in space and are mainly caused 387 

by the noise associated with the precipitation signal; for instance, localized thunderstorms that occur in 388 

spring and summer may influence the rainfall anomalies computed for an entire season.  389 

Of the four drought events, it appears that the 1988 drought was remarkably well predicted at the shortest 390 

initialization time by four models (GEOS5, CFSv2, CanCM3 and GFDL2.1) in terms of high temperature 391 

(Figure 6E). The first two of those models actually exceeded the observed anomaly (PRISM=2.1), with 392 

forecast values of 2.6 and 2.4. However, the skill of all models decreases rapidly with increasing lead time, 393 

indicating that they were unable to predict the event more than one month ahead of its actual occurrence. 394 

For the same event, the precipitation forecasts (lack of rainfall) were also relatively successful in June 1988 395 

(anomaly values of −3.2 for GEOS5, −2.3 for CFSv2, −2.2 for GFDL2.1, in comparison with the observed 396 

−2.8) but the skill declined when predicted further ahead (Figure 6E). CCSM3 performed the least well 397 

among all models, while CanCM3 predicted the drought successfully both in terms of temperature and 398 

precipitation eight months ahead of the actual event (Figure 6E). Overall, the good predictability of the 399 

1988 drought is likely a result of the strong La Niña conditions (e.g., Trenberth and Guillemot, 1996) that 400 

occurred in conjunction with a cooling phase of the PDO and the warming phase of the AMO (McCabe et 401 

al. 2004).  402 

The other three droughts were relatively less well predicted. For 2002, the eight-model ensemble mean is 403 

close to climatology (anomaly value around 0), and in the month preceding the event, only GEOS5 404 

predicted a positive temperature anomaly of 1.3 vs. 1.77 for the observed climatology, while half of the 405 

models actually predicted excess rainfall (Figure 6F). In 2011, the March-August forecasts were slightly 406 

more accurate, likely because the drought resulted from a strong La Niña (Seager and Hoerling, 2014) and 407 

the mean flow moisture divergence anomalies driven by the negative North Atlantic Oscillation of the 408 

previous winter (Seager et al. 2014). GFDL2.1 and FLORB01 both consistently predicted high positive 409 

temperature anomalies and low negative precipitation anomalies, even at the longer times before the event, 410 

and the eight-model ensemble mean correctly predicted positive/negative anomalies (Figure 6G). Last, the 411 

2012 drought was relatively well predicted, with slightly better results for temperature than precipitation. 412 

However, contrary to model forecasts, Pacific sea surface temperature (SST) did not play a major role in 413 

the drought (Kumar et al. 2013, Hoerling et al. 2013), so the skillful prediction of the drought was in fact 414 

"fortuitous, due to the erroneous coupling with pan-Pacific SSTs" (Kam et al. 2014). CanCM3 and CanCM4 415 

display good results, but they become less skillful as one approaches the beginning of the event (Figure 416 

6H). As suggested by Roundy and Wood (2014), the varying skill of drought forecasts among years implies 417 

that they are driven by different mechanisms; atmospheric and land initial conditions, SST and radiative 418 

forcing may have varying influences to strengthen/weaken the predictability of events (Jia et al. 2016). 419 
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Overall, it is interesting to note that the precipitation and temperature forecasts are more similar than one 420 

might expect in terms of their ability to forecast the extreme events. In fact, comparing the positive 421 

temperature anomalies with the negative precipitation anomalies (Figure 6E-L) indicates that seasonal 422 

precipitation and temperature forecasts do tend to reflect one another to a certain extent. When the 423 

temperature forecast is skillful, the precipitation forecast tends to be also (e.g., GEOS5 and CanCM3 in 424 

1988, or GFDL in 2011, Figure 6G). Likewise, the lack of skill is also mirrored for both temperature and 425 

precipitation (e.g., CCSM3 in 2011, Figure 6G).  426 

Comparing our results with historical ENSO forecasts suggests that when the land surface/atmosphere 427 

interaction is well represented, events tend to be better predicted; hence, the lack of land surface/atmosphere 428 

coupling in 2002 may explain why the drought was poorly predicted and why there was little consistency 429 

between temperature and precipitation patterns. Therefore, as different models have different abilities 430 

depending on seasonality and lead times, strategic multi-model averaging procedures may help increase the 431 

forecasting skill of these extreme flood and drought events (e.g., Luo and Wood 2008, Bradley et al. 2015), 432 

especially in locations with strong antecedent ENSO signal (e.g., Yuan and Wood, 2013). 433 

5. Summary and conclusions 434 

By decomposing the skill score of the individual climate models into potential skill, unconditional and 435 

conditional biases, we have assessed the strengths and weaknesses of the eight GCM ensemble means and 436 

of the eight-model ensemble mean over a range of lead times and initialization months. Our findings provide 437 

a diagnostic tool that can give model developers feedback about strengths and weaknesses of their models, 438 

and help develop better model-averaging strategies. 439 

The results can be summarized as follows: 440 

1. The highest potential skill in temperature and precipitation forecasts is displayed at the shortest 441 

lead time (0.5 month) and declines rapidly thereafter. For both temperature and precipitation, the 442 

potential skill of the eight-model ensemble mean does tend to surpass the skill of the best model 443 

within the ensemble. However, there is room for more sophisticated model averaging approaches 444 

(i.e., weighting individual models based on their strengths and weaknesses) to improve the model 445 

ensemble skill. Overall, the skill score is quite low for all models. The eight-model ensemble 446 

displays positive values mostly in the shortest lead times, and there is not one model that clearly 447 

outperforms any of the others.  448 

2. The biases in these eight models are predominantly unconditional (SME), with strong seasonal- 449 

and lead-dependent biases driving the negative skill scores (which are likely dependent on the 450 

initialization conditions in different regions and seasons). For temperature, in most regions, the 451 
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unconditional biases tend to be the lowest in the winter/spring months, and to increase in the 452 

summer (while the reverse is true in the Northwest and Southwest). For precipitation, the 453 

unconditional biases tend to be the lowest in the summer and fall (while the reverse is true in the 454 

Great Plains South and Southeast). Thus, it appears that the skill of these forecasts could be 455 

improved by attenuating the unconditional biases that are specific to certain regions and seasons. 456 

The conditional biases (SREL) are generally about an order of magnitude smaller than the 457 

unconditional biases, and display much more variability across all regions, months, and lead times. 458 

3. Overall, the skill of the eight NMME models in predicting four flood events and four drought events 459 

shows some inconsistencies. The droughts tend to be better forecast than the floods, even in terms 460 

of precipitation, likely because they are more tightly connected to SST-driven climate conditions 461 

(McCabe et al. 2004). However, air-sea coupling may also lead to fortuitous forecasts (Kam et al. 462 

2014): here, some of the best forecasts occur randomly, sometimes many months ahead of the actual 463 

event. While some models were able to predict specific events well, and sometimes months in 464 

advance (e.g., CFSv2 for the 1988 drought, or CanCM3 for the 2012 drought), no model 465 

consistently outperformed any of the others, or was reliable in terms of consistently predicting 466 

events. 467 

4. Perhaps more unexpectedly, although average temperature forecasts tend to outperform average 468 

precipitation forecasts, we find that the seasonal positive temperature anomalies for the droughts 469 

were not more accurately predicted than negative precipitation anomalies. In fact, the ability of the 470 

models to forecast drought is remarkably similar in terms of temperature and precipitation. 471 

Generally speaking, most forecasted anomalies were at least one standard deviation beneath the 472 

observed anomaly, suggesting that the ensemble means of models cannot accurately forecast 473 

strongly deviating departures from the climatology over such broad spatial scales. Thus, in future 474 

work, extreme values may be better forecast by individual model members and over smaller 475 

regions, particularly in the case of precipitation, to avoid the influence of noise arising from 476 

localized convective events.  477 

These findings highlight some of the strengths and weaknesses of the NMME models across all lead times, 478 

months, and for seven major regions of the United States. One of the remaining challenges is our ability to 479 

extend precipitation forecast skill beyond the shortest lead time, as is recognized in similar studies (Wood 480 

et al. 2015). The overall skill of the eight-model ensemble shows promise for multi-model averaging 481 

procedures (e.g., Luo et al 2007, Bradley et al. 2015) that might enable more skillful forecasts at longer 482 

lead times. Moreover, future studies should examine whether it is possible to utilize these precipitation and 483 

temperature forecasts for impact studies including seasonal discharge forecasting.  484 

  485 
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Table 1: Summary of the characteristics of the eight NMME models. The available period does not 654 
reflect the presence of gaps in the forecasts. The number of ensemble members indicates the largest number 655 
of members per GCM and is not reflective of missing data for one or more members. The 0.5-lead time is 656 
the shortest available lead time and refers to the forecast for a month issued at the beginning of the month 657 
itself (e.g., the 0.5 lead time forecast for January 2000 is issued at the beginning of January 2000).  658 

Model name Modeling Center 
Available 

Period 

Ensemble 

Size 

Lead Times 

(months) 
Reference Retrieved from 

PHASE I models       

CCSM3 
(Community 

Climate System 

Model, version 3) 

National Center for 

Atmospheric Research 

(NCAR); Center for Ocean–
Land–Atmosphere Studies 

(COLA); Rosenstiel School 

for Marine and Atmospheric 
Science, University of Miami 

(RSMAS) 

1982 - 

Present 
6 0.5 – 11.5 

Kirtman and 

Min 2009 

http://iridl.ldeo.colu

mbia.edu/SOURCES

/.Models/.NMME/.C
OLA-RSMAS-

CCSM3/ 

CCSM4 

(Community 

Climate System 

Model, version 4 – 
subset of CESM1) 

NCAR / COLA / RSMAS (as 

above) 

1982 - 

Present 
10 0.5 – 11.5 

Lawrence et 

al. 2012 

http://iridl.ldeo.colu

mbia.edu/SOURCES

/.Models/.NMME/.C

OLA-RSMAS-
CCSM4/ 

PHASE II models       

CanCM3 
(3rd Generation 

Canadian Coupled 

Global Climate 
Model) 

Environment Canada’s 

Meteorological Service 
of Canada - Canadian 

Meteorological Centre (CMC) 

1981 - 
Present 

10 0.5 – 11.5 
Merryfield et 

al. 2013 

http://iridl.ldeo.colu

mbia.edu/SOURCES
/.Models/.NMME/.C

MC1-CanCM3/ 

CanCM4 
(4th Generation 
Canadian Coupled 

Global Climate 

Model) 

CMC (as above) 
1981 - 

Present 
10 0.5 – 11.5 

Merryfield et 

al. 2013 

http://iridl.ldeo.colu

mbia.edu/SOURCES

/.Models/.NMME/.C
MC2-CanCM4/ 

CCSM4 

(Community 

Climate System 

Model, version 4 – 
subset of CESM1) 

NCAR / COLA / RSMAS (as 

above) 

1982 - 

Present 
10 0.5 – 11.5 

Lawrence et 

al. 2012 

http://iridl.ldeo.colu
mbia.edu/SOURCES

/.Models/.NMME/.C

OLA-RSMAS-
CCSM4/ 

CFSv2 

(operational 

Climate Forecast 

System version 2) 

NOAA’s National Centers for 

Environmental Prediction 

(NCEP) 

1982 – 

Present  

28 (24 used / 

4 are 

incomplete) 
0.5 – 9.5 

Saha et al. 

2014 

http://iridl.ldeo.colu

mbia.edu/SOURCES

/.Models/.NMME/.N
CEP-CFSv2/ 

GEOS5 

(Goddard Earth 

Observing System 

Model, version 5) 

National Aeronautics and 

Space Administration 
(NASA)’s Global Modeling 

and Assimilation Office 

(GMAO) 

1981 - 

Present 
12 0.5 – 8.5 

Vernieres et 

al. 2012; 

Molod et al. 
2012 

http://iridl.ldeo.colu

mbia.edu/SOURCES
/.Models/.NMME/.N

ASA-GMAO-

062012/ 

GFDL2.1 
(Climate Model, 
version 2.1) 

National Oceanic and 

Atmospheric Administration 

(NOAA)’s Geophysical Fluid 
Dynamics Laboratory 

(GFDL) 

1982 - 

Present 
10 0.5 – 11.5 

Zhang et al. 

2007; 

Delworth et 

al. 2006 

http://iridl.ldeo.colu

mbia.edu/SOURCES

/.Models/.NMME/.G

FDL-CM2p1-aer04/ 

FLORb01 

(Climate Model 
version 2.5) 

NOAA’s GFDL (as above) 
1982 - 

Present 
12 0.5 – 11.5 

Vecchi et al. 

2014 

http://iridl.ldeo.colu

mbia.edu/SOURCES

/.Models/.NMME/.G
FDL-CM2p5-FLOR-

B01 

 659 
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 660 

Figure 1. Location of the seven regions across the continental United States. Black outline indicates 661 

the extent of the regions. Pale gray outline indicates the states within each region. Colored topographic 662 

shaded relief is shown in the background.   663 
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 664 

Figure 2. Location of the studied flood and drought events across the continental United States. 665 

Computed climatological anomalies are indicated as red shades for temperature, and as blue shades for 666 

precipitation. Thick black outline indicates the spatial extent of the event. Color intensity indicates the 667 

anomaly of the observed climatology for the given season (greater than 1 or less than -1), as calculated on 668 

a pixel-by-pixel level across the entire United States. (A) 1993 July-August Flood, precipitation anomalies. 669 

(B) 1995 January-March Flood, precipitation anomalies. (C) 2008 June-August Flood, precipitation 670 

anomalies. (D) 2010 March Flood, precipitation anomalies. (E) 1988 June-August Drought, temperature 671 

anomalies. (F) 2002 March-November Drought, temperature anomalies. (G) 2011 March-August drought, 672 

temperature anomalies. (H) 2012 May-August drought, temperature anomalies. (I) 1988 June-August 673 

Drought, precipitation anomalies. (J) 2002 March-November Drought, precipitation anomalies. (K) 2011 674 

March-August Drought, precipitation anomalies. (L) 2012 May-August drought, precipitation anomalies.  675 

 676 
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 677 

Figure 3. Color maps indicating average skill of the eight-model ensemble mean for (A) Temperature 678 

and (B) Precipitation. For each individual color map (1 box), x-axis indicates the lead time of the climate 679 

forecast, ranging from 0.5 to 11.5 months; y-axis indicates the month that is forecasted, ranging from 1 680 

(January) to 12 (December). Labels at the top of the figure indicate each of the 7 regions shown in Figure 681 

1 (Northwest, Southwest, Great Plains North, Great Plains South, Midwest, Northeast, and Southeast). 682 

Right side of the figure indicates the computed components of the ensemble’s skill: Potential skill, Skill 683 

score, Unconditional biases (SME), and Conditional biases (SREL). The color scale on the right side of the 684 

figure is used for all components of the skill score, and ranges from less than -10 (blue shades) to more than 685 

10 (red shades).  686 

 687 
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 688 

Figure 4. Skill of the eight individual GCMs in forecasting temperature (CCSM3, CCSM4, CanCM3, 689 

CanCM4, GFDL2.1, FLORb01, GEOS5, and CFSv2). The layout of the panels is the same as described in 690 

Figure 3. Note that GEOS-5 and CFSv2 only have 9 and 10 lead times, respectively, in comparison with 691 

the other models.  692 
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 693 

Figure 5. Skill of the eight individual GCMs in forecasting precipitation. (CCSM3, CCSM4, CanCM3, 694 

CanCM4, GFDL2.1, FLORb-01, GEOS5, and CFSv2). Layout of the panels is the same as described in 695 

Figure 4.  696 
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697 

Figure 6. Skill of the eight NMME models in predicting four flood and four drought events, in 698 

comparison with the observed climatology. Flood and drought events (A-L) are the same as in Figure 2. 699 

Thick horizontal black line indicates the PRISM observed climatological anomaly, with 95% confidence 700 

intervals indicated as shaded grey rectangles in the background. NMME anomalies are indicated as colored 701 

lines. Long/short-dashed black line indicates the eight-model ensemble mean. Panels F and J: note that 702 

GEOS5 only exhibits one lead time and CFSv2 two, because the event lasted for nine months and these 703 

models only issue nine- and ten-month lead times, respectively. Panels G and K: note that the two Canadian 704 

models have data gaps in 2011, so are not included in the evaluation of the 2011 March-August drought.  705 


