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Abstract This paper proposes an optimal positioning and trajectory planning al-
gorithm for unmanned aerial vehicles (UAVs) to improve a communication quality
of a team of ground mobile nodes (vehicles) in a complex urban environment. In
particular, a nonlinear model predictive control (NMPC)-based approach is pro-
posed to find an efficient trajectory for UAVs with a discrete genetic algorithm
while considering the dynamic constraints of fixed-wing UAVs. The advantages of
using the proposed NMPC approach and the communication performance metrics
are investigated through a number of scenarios with different horizon steps in the
NMPC framework, the number of UAVs used, and heading rates and speeds.

1 Introduction

Ensuring communication amongst a group of mobile ground agents in a terrain
with various obstacles is a difficult task due to obstructions and occlusions of sig-
nals, the restricted bandwidth and the limited communication range. In particular,
in urban environments, numerous buildings cause line-of-sight (LOS) obstructions
between mobile agents which may degrade communication signal strength signific-
antly [1]. As a consequence, a ground-based radio can only be used over relatively
short distances, rendering this type of solution inefficient and even infeasible. Satel-
lite communication (SATCOM) is one of the alternatives to ground-based radios,
however, it has limited availability as satellites follow pre-planned orbits with a
certain spatiotemporal resolution and they can also be obstructed by buildings and
other objects. So, this study proposes the use of small, low-flying and low power
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(in terms of communication) UAVs as urban communication relays. UAVs are able
to solve most of the aforementioned shortcomings of SATCOM and ground-based
radios using their mobility as they can: i) reach a mission area quickly without
being confined to the ground road or limited availability and ii) rapidly change
their position to mitigate a LOS obstruction problem once ground nodes change
their position. Besides, the use of multiple smaller UAVs instead of a single larger
one increases robustness of the network in case of partial platform (i.e. UAV or
communication equipment) failures.

In order to determine the effective trajectory for UAVs to perform a com-
munication relay mission, it requires the information on the ground node mo-
tion/behaviour. The ground node motion can be categorised into two scenario
types: i) static, where ground nodes remain at a fixed position (or, at least, time
needed for a change of position of ground nodes is much longer than that of
UAVs) and ii) dynamic, where ground nodes change their position as the mission
progresses. Both scenario types were explored in literature previously.

Static scenarios were widely covered in the literature. The algorithm described
in [2] used UAVs to increase the second smallest eigenvalue of Laplacian matrix of
the network graph leading to improved connectivity in a wireless sensor network.
De Freitas et al. [3] showed an approach where the UAV is attracted to the last
known neighbour, if the number of connection drops to one or less. Another ap-
proach was shown in [4] where a gradient following controller for a rotary wing UAV
was developed. The algorithm was used to find the UAV position which improves
all connections among a group of ground nodes. Dixon et al. [5] used a measured
SNR and a gradient following technique to guide multiple UAVs to optimal posi-
tions between two ground nodes. Ho et al. [6] used the particle swarm optimisation
(PSO) method to guide the UAV to the energy minimising path while maximising
the connection time between the UAV and ground nodes. A data ferrying concept
was explored by [7].

The majority of algorithms for static scenarios are not well-suited to mobile
nodes as they do not consider dynamic constraints of UAVs. If the ground nodes
change their positions, then a corresponding efficient communication structure can
change quickly compared to time it takes for the fixed-wing UAV to react to that
situation, particularly in an urban environment where obstacles (e.g. buildings)
often cause a significant change in the communication performance. Thus, the
need for different algorithms for mobile scenario arises. Mobile scenarios remains
largely unexplored area and a few approaches were considered in the literature
so far. Basu et al. [8] combined the number of connections to each UAV with a
flocking algorithm to maximise the number of connected nodes at any given time.
Approaches from [9,10] tested several communication metrics to find the best po-
sition or trajectory for a team of UAVs. Dubins path and a simple communication
disc model (which is based on a maximum communication radius) was used by [11]
to find trajectories for a group of relay UAVs between a mobile ground node and a
ground control station. Choi et al. [12] used UAVs to manoeuvre to minimise the
ergodic link capacity amongst the UAV and a group of moving ground nodes. LOS
obstruction by buildings in the urban environment has been rarely considered in
the area of autonomous path/trajectory planning [13]. It is worthwhile noting that
the presence of LOS obstructions introduces discontinuities and non-linearities into
the communication quality between nodes as they cause significant signal quality
reduction.
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This paper presents an optimal trajectory planning algorithm for communic-
ation relay UAVs to address the problem of mobile ground nodes in an urban
environment. The new algorithm is built upon our previous approach [14]. The al-
gorithm used in that paper was intended for static scenarios with the rotary-wing
UAV (e.g. multi-rotors or helicopter type). Although the rotary-wing aircraft have
a capability of being able to to hover around or over a single spot, they gen-
erally suffer from short endurances and low maximum speed. To mitigate these
issues, fixed-wing UAVs are considered in this work. The algorithm proposed here
is designed to: i) maximise communication performance with consideration of sig-
nal quality reduction due to obstacles (i.e. LOS obstruction), ii) obey dynamic
constraints of fixed-wing UAVs and iii) be run as fast as possible for the online
implementation.

To fulfil first two requirements, the nonlinear model predictive control (NMPC)
trajectory planning algorithm proposed in [9] is adopted. The third condition is
fulfilled by simplifying the algorithm by assuming a constant speed and discrete
heading change of the UAV. The NMPC framework was chosen since the kin-
ematic constraints of the UAV and obstacles can be easily incorporated into the
problem formulation, while being adjustable to allow the real time implementa-
tion. Besides, as the NMPC updates the trajectory periodically, it can account for
future deviations of initially predicted trajectories of ground nodes. To quantify
the communication performance, this study uses the same communication model
from [10] with three different communication performance metrics: the global mes-
sage connectivity (GMC), the worst case connectivity (WCC) and the modified
global message connectivity (mGMC). The GMC is used to improve the over-
all communication performance of the entire team while the WCC focuses the
poorest/weakest link only. Meanwhile, the proposed mGMC uses a certain num-
ber of weak connections based on the desired communication quality requirement
by combining the benefit of the GMC and the WCC.

The contributions of this paper can be summarised as: i) the urban environ-
ment with a large number of buildings which may obstruct the line-of-sight between
nodes is explicitly considered in the communication cost; ii) the new communica-
tion performance metric, mGMC, is proposed, which can meet the communication
requirement set by users; iii) the effective motion strategy for multiple relay UAVs
is proposed to maximise the communication performance of the entire team us-
ing the proposed metric; and iv) the NMPC framework is used to address the
underactuated fixed-wing UAV having dynamic constraints.

The paper is structured as follows. Section 2 describes a problem scenario and
the overview of a trajectory planning algorithm. Section 3 provides details of a
communication model and performance metrics. Section 4 discusses the proposed
trajectory planning algorithm in detail. Section 5 provides numerical simulation
results. Finally, section 6 provides conclusions and future work.

2 Scenarios and Algorithm Overview

Figure 1 shows a sample scenario considered for trajectory planning in this study.
The yellow circles represent ground nodes/vehicles which are assumed to be per-
forming their own individual missions, black dotted lines represent the trace of
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ground vehicles, aircraft models represent UAVs and blue cuboids represent build-
ings. Assumptions made in this work are listed as:

i) The urban environment is known prior to the mission;
ii) The UAVs can obtain the current position of the ground vehicles via commu-

nication; and
iii) If a line-of-sight (LOS) is obstructed by buildings between two nodes, a com-

munication quality is reduced proportionally to the length of the obstruction.

Figure 1: A sample scenario of the proposed approach.

The flow chart of the proposed trajectory planning algorithm for communication
relay UAVs in an urban environment is shown in Fig. 2. Firstly, each UAV estim-
ates states and also predicts the future position of ground vehicles for a certain
time steps ahead with the Kalman filter and the GPS position of ground vehicles
as sensor measurements. Based on position estimates, UAVs then calculate the
communication cost in consideration of the communication range, signal-to-noise
ratio and line-of-sight obstruction. The trajectory and the minimum spanning tree
(MST) for a given UAV is found using a discrete genetic algorithm (GA)-based
optimisation with the desired communication performance metric.

3 Communication Modelling and Performance Metrics

3.1 Communication Model

3.1.1 Communication Probability

Finding an optimal position requires establishing a node-to-node communication
quality. In this work, a communication quality is represented as a probability of
successful communication using an open space communication model [9, 10]. In
this model, node i has the transmission power of Pi and observes a noise σ2

i while
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Figure 2: Flow chart of the NMPC-based trajectory planning algorithm for com-
munication relay UAV.

receiving a signal from other members of the group. Then, the received signal-to-
noise ratio (SNR) Γij for a signal transmitted from the i-th node and received by
j-th node is given as:

Γij =
PiGij
σ2
i

(1)

where Gij is a channel gain and can be expressed as:

Gij =
Cij |hij |2

Dαij
(2)

where Cij is a constant accounting for antenna gains and shadowing, hij is re-
sponsible for multipath fading, α is a path loss factor and Dij is the distance
between two nodes.

For the computation of a probability of successful communication, a minimal
acceptable link quality γ needs to be determined. If Rayleigh fading is assumed i.e.
hij is the complex Gaussian with zero mean and unit variance, then the probability
of successful transmission from i-th node to j-th node is equal to:

Pr
ij (Γij ≥ γ) = exp

(
−
σ2
jγD

α
ij

CijPi

)
(3)

It is worthwhile noting that, at this time, the model does not consider effects like
diffractions and reflections of wireless signal, as this would significantly increase
the computational load.

3.1.2 Communication Cost

For optimisation purposes, a probability calculated in Eq. (3) is transformed into a
cost. Then, effects of LOS obstructions are added. The weighted edge cost between
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two nodes (i.e. i and j) is defined by using the above probability of successful
transmission as:

W o
ij = − ln

(
P ijr

)
(4)

Above equation implies that the higher the probability of successful communica-
tion is, the lower the cost is, and this weight will be used as a cost to be minimised.
In order to consider buildings, an additional weight is added whenever a connection
passes through the building. This weight has a relatively high value to strongly
discourage connections through buildings and is represented as:

W b
ij =

{
W pb
ij if the LOS is blocked

0, otherwise
(5)

where W pb
ij is a penalty cost due to LOS block. The computation of LOS block

is explained in the next section. Note that, non-smooth characteristic of W pb
ij can

make the solution space highly non-convex with many local minima, as illustrated
in Fig. 3(a). This figure shows a certain communication performance metric when
using a single relay UAV at different grid locations at a constant altitude (dif-
ferent communication performance metrics will be explained in Section 3.1.3). To
mitigate the issue, a new weight is introduced by using the length of LOS block
lb inside the building (i.e. the length of the intersection/overlap between the LOS
and the obstructing building as illustrated in Fig. 4) as:

W b
ij =

{
W pb
ij lb if the LOS is blocked

0, otherwise
(6)

where lb is the distance of LOS intersection with an obstructing building and W pb
ij

is a base cost. Figure 3(b) clearly shows a much smoother cost function, which
facilitates an optimisation process. Matlab library written in IRNA [15] is used to
find the intersection and he distance lb between the LOS line and the building.

(a) Non-smooth weight due to discrete LOS
obstruction.

(b) New weight considering the length of
overlap.

Figure 3: Surface plot for the communication performance function at different
relay UAV locations.

For static scenarios, the weight for the UAV height restriction is also added.
As in Eq. (3), a communication quality is better if nodes are close to each other,
implying it is likely that UAVs’ optimal position would be dangerously close to the
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Figure 4: Illustration of new weight computation. The case on the left would result
in a higher cost than that on the right since the longer portion of the LOS line
overlaps with the building.

ground and buildings in order to maximise the communication quality. To prevent
this from happening, a minimum allowable UAV height is imposed as:

Wh
ij =

{
W ph
ij , if below minimum height

0, otherwise
(7)

where W ph
ij is a penalty cost due to the height restriction. It is worthwhile noting

that this weight is not related to the communication in a strict sense; it only serves
as a barrier to prevent UAVs from flying too low.

Finally, the total communication weight, W t
ij , can then be expressed as:

W t
ij = W o

ij +W b
ij +Wh

ij . (8)

As the number of nodes involved in a scenario increases, the number of connections
in the network increases significantly. As a result, efficient sharing of information
becomes a problem. To deal with this issue, this work uses a minimum spanning
tree (MST) concept. The MST is defined as a subset of graph where all nodes are
connected to each other but there are no loops, having a minimum (or at least
the same as minimum, as there can be several minimum spanning trees in a single
scenario) sum of edge weights [16]. In simple terms, the MST finds the least costly
and least number of connections to connect all the members in the group.

3.1.3 Communication Performance Metrics

In the team of networked nodes, optimal UAV position or trajectory will be dif-
ferent depending on performance metric (index) used in optimisation. This work
considers three communication metrics: the global message connectivity (GMC),
the worst case connectivity (WCC), and the modified global message connectivity
(mGMC).

Global message connectivity (GMC) The GMC is defined as a probability of mes-
sage being successfully transmitted to all nodes within the minimum spanning
tree (MST) [10]. As all positions of ground nodes, UAVs and buildings are known,
Eq. (8) can be used to find node to node communication cost. With those indi-
vidual link weight, the MST can be constructed. Let the Adjacency matrix of the
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MST be represented as A
′
∈ R(n+m)×(n+m), where n is a UAV number and m

ground vehicle number, then A
′

ij = 1 if the link from node i to node j is the part

of the MST, and A
′

ij = 0, otherwise. In the MST, a probability of message being
successfully transmitted to all nodes is a sum of all connections within the MST,
thus the performance index can be denoted as:

JGMC(x̄pos, x̄g,pos) =

n+m∑
i=1

n+m∑
j=1

A
′

ijW
t
ij . (9)

Note that W t and consequently A
′

depend on 3-D location of UAVs (represented
as x̄pos ∈ R3×n) and ground nodes (represented as x̄g,pos ∈ R3×m). thus by
minimising the GMC performance index (JGMC(x̄pos, x̄g,pos)) with respect to
UAV position, the communication relay optimal position can be found as:

min
x̄pos

JGMC(x̄pos, x̄g,pos) = min
x̄pos

n+m∑
i=1

n+m∑
j=1

A
′

ijW
t
ij . (10)

A simple illustration of using the GMC as a performance index is shown in Fig. 5.
This metric improves global communication quality rather than focusing only on
a particular link(s).

Figure 5: Cost function with the GMC explained on a simple example. The blue
square is a building, blue circles are nodes and red lines is the MST.

Worst case connectivity (WCC) The WCC is defined as the link with the lowest
probability of successful communication of all the links within the MST [10]. Using
the MST definition from previous paragraph, UAV relay position can be found by
minimising the weight of worst link within the MST with respect to UAV locations
x̄pos as:

min
x̄pos

JWCC(x̄pos, x̄g,pos) = min
x̄pos

(
max
∀i,j∈M

(W t
ijA

′

ij)

)
(11)

where M = {1, · · · , n+m} is a set of all nodes in the network (i.e. m UAVs and n
ground nodes). This performance metric is a worst connection within the MST as
shown in fig. 6, and UAV is trying to improve that connection. This index performs
exceptionally in case of numerous disconnected group of ground nodes.
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Figure 6: Cost function with the WCC explained on a simple example.

Modified global message connectivity (mGMC) The aforementioned WCC and
GMC focus on improving one worst connection and overall communication per-
formance respectively. If a need arises to improve both overall and node to node
communication quality, neither of the metric is suitable. To this end, the mGMC
metric is proposed as a compromise between the GMC and the WCC. For the
mGMC performance index, constant β is defined as the number of weak con-
nections in the initial MST to be improved. The constant can be obtained by
considering user defined minimum communication probability Pd of the network.

Firstly, desired probability needs to be converted into weight as:

W d = − ln(Pd) (12)

then W t
ij for all i, j ∈ M is compared against W d to find connections weaker than

the desired probability in the following manner:

W tc
ij =

{
1, if W t

ijA
′

ij > W d

0, otherwise
(13)

where W tc ∈ R(n+m)×(n+m). Lastly, constant β is calculated as:

β =

n+m∑
i=1

n+m∑
j=1

W tc
ij (14)

β is then used to compute the mGMC performance index, starting with rearranging
the connectivity matrix into a vector:

W ts = vec(W tA
′
) (15)

where W ts ∈ R(n+m)2×1. This vector is sorted in a descending order and stored
as W ts. The mGMC cost can then be found as:

min
x̄pos

JmGMC(x̄pos, x̄g,pos) = min
x̄pos

β∑
k=1

W ts
k (16)

The mGMC focuses neither on all connection within group nor the worst connec-
tions, but rather on improving number of connection decided by user requirements.
Figure. 7 shows the computation using the mGMC metric on a simple example.
For this case, as β is 4 (considering bi-directional links) and W d = 1, the total
mGMC metric cost is equal to (3.0 + 1.4)× 2 = 8.8.
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Figure 7: Cost function with the mGMC explained on a simple example.

4 Relay UAV Optimal Positioning and Trajectory Planning

Distinguishing and investigating the advantages of each performance metrics in-
troduced from the previous Section can be performed easily on a static scenario as
removing time dependence reduces the number of variables affecting the perform-
ance of each metric. Thus, static scenarios are considered as well. As the nature of
the dynamic and static scenarios is different (i.e. the one requires trajectory plan-
ning with consideration of UAV dynamics while the other is simple positioning),
each algorithm follows a different procedure to find an optimal solution.

4.1 Relay UAV Optimal Positioning

Firstly, in order to generate relay UAV optimal position for static scenarios us-
ing aforementioned performance metrics, the particle swarm optimisation (PSO)
algorithm [17] is utilised. The PSO was used due to its ability to solve complex,
non-smooth and non-convex problems. The PSO algorithm start by randomly
spreading particles over the problem space and evaluating their cost function. The
consecutive positions is found by computing velocity vector in each dimension of
the problem as:

vi,d = r1ωvi−1,d + εr2 (Xib,i−1,d −Xc,i−1,d) + εr3 (Xgb,i−1,d −Xc,i−1,d) (17)

where d denotes a problem space dimension, i represents the iteration step, ω rep-
resents the inertia of the particle, and ε is a correction factor. Xib, Xgb and Xc
represent the best position of a given particle, the global best position (consider-
ing all particles) and the current position of the particle, respectively. vi,d is the
particle velocity, and r1, r2, r3 are random numbers from zero to one. The calcu-
lation finish once convergence criterion (e.g. the maximum number of iterations)
is satisfied.

4.2 UAV Trajectory Planning

In this section, trajectory planning for the fixed-wing communication relay UAV is
discussed. The UAV trajectory planning problem in an urban environment presents
several challenges. First of all, the fixed-wing type UAV (Fig. 8) considered in this
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paper is underactuated where the number of available control inputs is smaller
than the number of controlled outputs. Besides, its control input (e.g. turning
rates or speed command) is constrained and there is a nonholonomic (differential)
state-vector constraint. These make it difficult for the fixed UAV to follow given
arbitrary trajectories in 3-D space precisely. Moreover, due to the presence of
buildings, the communication quality between nodes can change rapidly. For the
implementation, the planning algorithm should be run in real time. Nonlinear
model predictive control (NMPC)-based online trajectory planner has all of these
features. UAV dynamic constraints can be added as optimisation constraints to
be considered in the NMPC problem formulation. The algorithm can tackle rapid
change of the communication quality. As the NMPC framework considers the
future path of ground vehicles, the trajectory can also prevent the LOS obstruction
from occurring in advance.

Figure 8: Example UAV with marked reference frame, speed, yaw rate and heading

4.2.1 UAV Kinematic Model

This work utilises a simple two-dimensional UAV kinematic model [18] by assuming
the UAV speed is constant. This simplification was made to: i) reduce optimisation
time and ii) save the energy used by the UAV during its flight, where the UAV
model is given as: 

ẋ
ẏ

ψ̇
ω̇

 = f(x, uω) =


v cosψ
v sinψ
ω

− 1
τω
ω + 1

τω
uω

 (18)

where x =
(
x y ψ ω

)T
are the inertial position, heading, speed and yaw rate of

the UAV, respectively. τω is time constant accounting for actuator response delay,
which can be determined experimentally for given UAV model. uω is a command
input in form of turning rate. In this work, the command is constrained by:

|uω| ≤ ωmax (19)
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|uω,k − uω,k−1| = 0.1 (20)

where k is a current time step. The first constraint limits the maximum heading
rate of the vehicle. The second constraint limits the rate at which heading changes
and allows for discretisation of the controller. Both constraints are the result of
dynamic limits of a fixed-wing UAV. The UAV model from Eq. (18) is discretised
using Euler integration as:

xk+1 = fd(xω,k, uk) = xk + Tsf(xk, uωk) (21)

where xk =
(
xk yk ψk ωk

)T
and Ts is a sampling time.

4.2.2 Tracking Filter with Ground Vehicle and Sensor Models

For the UAV to predict future states of ground vehicles (position, velocity and
acceleration) which is required for NMPC-based trajectory planning, the Kalman
filter (KF) is used. Generally, for a discrete KF, two steps are required using vehicle
and sensor models: i) prediction step where vehicle states and error covariance are
extrapolated and ii) update step where a correction is made.

The ground vehicle model is based on the work from [19] where a discrete state

of the ground vehicle xgk =
(
xgk ẋ

g
k ẍ

g
k y

g
k ẏ

g
k ÿ

g
k

)T
can be found using:

xgk+1 = Fkx
g
k + ηk (22)

where ηk is a process noise which represents the acceleration characteristics of the
target, and Fk is a state transition matrix. The details of this model can be found
in [19].

Provided that the ground vehicles are using GPS, their GPS positions are used
as measurements for the UAV (via communication) for the position estimation as:

zk = Hkx
g
k + vk (23)

where the measurement matrix is:

Hk =

[
1 0 0 0 0 0
0 0 0 1 0 0

]
(24)

The measurement noise is vk ∼ N(0, Rk) and the covariance matrix is given as:

Rk =

[
σ2
x 0
0 σ2

y

]
(25)

where σx and σy are the standard deviations of positions of x and y, respectively.

4.2.3 Introduction to NMPC-Based Trajectory Planning

NMPC based trajectory planning algorithm is used to determine path for the UAV.
To compute path NMPC combines finite time horizon with a non-linear model of
the controlled system. Time horizon determines how far prediction of vehicle be-
haviour is made into the future. In order to account for behaviour throughout the
prediction and not only at the beginning and end of prediction, the prediction
time is discretised into N horizon step, each of them of pre-specified length. At
each horizon step change of control input to UAV is possible. Best possible com-
bination of control inputs is then determined by optimisation procedure. At the
end of optimisation, only control input from first horizon step is provided to actual
controller, and procedure repeats for next time step.
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4.2.4 Performance Index

In a dynamic scenario, using performance metrics from Section 3.1.3 on its own
is not sufficient as they do not account for dynamic properties of UAVs. Thus,
the NMPC framework is combined with the aforementioned performance metric
to create a trajectory plan for the UAV in the from of control input sequence
U i =

(
uiω,0, u

i
ω,1, . . . , u

i
ω,N−1

)
where i is i-th UAV and N is a horizon step. To

find this control sequence, a new performance index is defined in Eq. (26) and
minimised using a genetic algorithm (GA):

Jd = Φ(x̄N , x̄
g
N ) +

N−1∑
k=0

L(x̄k, x̄
g
k, u

i
ω,k) (26)

s.t.

xik+1 = fd(xik, u
i
ω,k) (27)

ωmin ≤ uiω,k ≤ ωmax (28)

|uiω,k − uiω,k−1| = ∆uω (29)

where:

Φ(x̄N , x̄
g
N ) = pcJz(x̄

pos
N , x̄g,posN ) (30)

L(x̄N , x̄
g
N , u

i
ω,k) =

1

2

[
qcJmGMC(x̄posk , x̄g,posk ) + rv

(
uiω,k
ωmax

)]2

(31)

where JmGMC represents the mGMC performance index and x̄posk and x̄g,posk are x
and y position of UAVs and ground vehicles, respectively, from state vectors xk =(
x y ψ ω

)T
and xvk =

(
xvk ẋ

v
k ẍ

v
k x

v
k ẏ

v
k ÿ

v
k

)T
. pc, qc and rω are constant weighting

factors. It is worth noting that as the process is repeated at every sampling time,
only first control input from uω,k is implemented to control corresponding UAV.

Due to the large computation time to obtain desired commands, a decentralised
approach is used in this work. The decentralised approach implies that each UAV
needs to determine the MST independently and calculate its optimal control based
on future predictions of other UAVs and ground vehicles, meaning that commu-
nication between UAVs is required within one sampling time. The sampling time
can be adjusted to match the capability of communication equipment on-board
UAVs. If all UAVs have the same positional information about each other, then
each MST would be the same. However, it is possible that due to disruption and
delays, each UAV would have different MSTs. One possible way of mitigating the
issue is for UAVs to share their MST, and choose one with the lowest cost. The de-
centralised approach is also more robust since if one UAV fails, others can continue
a communication relay mission.
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4.2.5 Discrete Genetic Algorithm

Finding the optimal control sequence U i is a non-convex optimisation problem with
many constraints. Additionally, the need for fast computation further restricts the
choice of optimisation algorithms. Heuristic algorithms like genetic algorithm (GA)
or simulated annealing might show a promise in fulfilling desired requirements. In
particular, a genetic algorithm has been shown to efficiently plan a path for a
UAV target tracking problem in [20] with discrete control; thus this work utilises
a similar GA algorithm, version of which is more broadly described in [21]. At the
initialisation stage of GA, a first generation is created. It is a very important part
of every GA as it largely determines the quality of problem space exploration and
thus the quality of an available solution. Each chromosome consists of potential
control sequence U ip and can be denoted as:

U ip,j =
(
uiω,0 u

i
ω,1 . . . u

i
ω,N−1

)
∀j ∈ 1, 2...,M (32)

subject to

uiω,k+1 = uiω,k + a∆uω (33)

where M is a population size, N is a horizon step number and a is chosen randomly
from the set {−1, 0, 1}. Initial member of chromosome group g0 is based on the
control command executed in the previous step. Each subsequent command in a
given sequence is determined by Eq. (33).

Each chromosome needs to be evaluated to determine its quality. The solution
fitness f of each chromosome is based on the value of Jd defined in Eq. (26). A
solution fitness can be found as:

f =
1

(Jd + Je)b
(34)

where b is a factor determined experimentally to prevent one solution from over-
whelming the optimisation process too early, and Je is an additional cost which
can be defined as:

Je =

{
A, if Eq. (28) or (29) is not satisfied.
0, otherwise

(35)

where A > 0 is a penalty value due to constraint break.

At the reproduction stage, a new population is created while taking into ac-
count for the fitness evaluation. The process has three steps: selection, crossover
and mutation.

Selection In selection, a set of breeding population is chosen from the already
existing population. Selection is based on a widely used roulette wheel method.
Let us define a set of chromosomes as:

C = {U ip,1, U ip,2, ..., U ip,M} (36)

and a set of fitness function corresponding to each chromosome as:

F = {f1, f2, ..., fM} (37)
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The sum of a fitness functions is then calculated as:

Fs =
M∑
i=1

fi (38)

Also, a cumulative fitness function as a percentage of a total cost function is defined
as:

Fc = {fc1, fc2, · · · , fcM} (39)

where

fcj =

j∑
i=1

fi
Fs
× 100; ∀j ∈ {1, 2, · · · ,M} (40)

Then uniformly distributed random number µ ∼ U{0, 100} is generated and com-
pared against cumulative fitness function. Last parent for who cumulative percent-
age fitness is smaller than the random number is used in a breeding population.
This can be formally expressed as:

Gmk = arg min
Ui

p,j∈C
(fcj − µ ≥ 0); ∀k ∈ {1, 2, · · · ,M} (41)

where Gm is a chromosome from a breeding population. The process continu-
ous until there are M parents in a breeding population. Such a selection leaves
the majority of the breeding population as good parents while allowing for space
exploration by keeping a few bad ones.

Crossover Crossover is used to combine two parents chromosomes together
which follows the procedure outlined below.

1. Two parents chromosomes Gmx and Gmy are randomly selected from a bread-
ing population.

2. Crossover point gc is randomly selected within two parents strings where c ∈
{1, 2, · · · , N − 1} and crossover point is between c and c+ 1

3. Parts from parent from start to crossover point and from crossover to to the
end of other parent are added added.

Mutation To help with problem space exploration, mutation is used as a final
step of reproduction. Mutation is calculated separately for each member of each
chromosome. As this is very short optimisation and problem space needs to be
explored quickly, for the majority of optimisation, mutation is set as a chance of
50% i.e. each member of each chromosome has a 50% chance of mutation. For the
final few iterations, mutation is set for a significantly lower 17% chance to allow
for convergence. If a given member mutates, then its new value can be denoted as
follows:

uiω,k = uiω,k−1 + a∆uω (42)

where k is a mutating chromosome index and a is a number randomly selected from
set {−1, 0, 1}; although this might lead to a situation where constraints Eqs. (28)
and (29) are violated, such solutions are quickly removed due to a high cost cor-
related with constrain violation.

Lastly, a convergence criterion for the GA algorithm is the number of accept-
able generations Ng.
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5 Numerical Simulations

Static scenarios are first considered to perform initial comparison of three commu-
nication performance metrics: the global message connectivity (GMC), the worst
case connectivity (WCC) and the modified global message connectivity (mGMC).
After validating basic properties, dynamic scenarios are then considered to invest-
igate the effect of moving ground vehicles on the proposed mGMC performance.
Simulation parameters for communication equipment are based on a low-cost and
low-power commercial off-the-shelf Ubiquity Pico station M2, as shown in Table 1.

Table 1: Radio communication parameter

Parameter Value Unit

Transmission power (Pi) 0.01 W
Noise power (σ2) 1 × 10−9 W
Max communication range 300 m
Attenuation factor (α) 3 n/a
Antenna gain C for UGV and UAV 1 n/a

5.1 Static Scenarios

5.1.1 Sample Scenario

To establish the basic behaviour of communication performance metrics, a sample
scenario with two relay UAVs, 12 ground nodes and 30 buildings is discussed.
Figure 9 shows the result of using different communication performance metrics
in the optimisation process. For JmGMC cost computation, W d = 20 is used as a
desired communication requirement, resulting in the number of weak connections
β = 6 in the for the static scenario unless otherwise stated.

Firstly, Fig. 9(a) presents MST between ground nodes (shown as red lines)
without relay UAVs. Numerous connections are weak due to: i) buildings obstruct-
ing line-of-sight (LOS) and ii) relatively large distances between nodes. The weak-
est connection within the MST is between nodes 11 and 12 (shown as green line)
with the weighted edge cost of JWCC = 39.01. The sum of all connection (termed
as the global cost, hereafter) in the MST for this sample scenario is JGMC = 281.4,
and the sum of β worst connections is JmGMC = 167.2. Utilising the GMC as the
performance metric in the optimisation process is shown in Fig. 9(b). As expected,
using this metric reduces the global cost significantly to JGMC = 154.12. How-
ever, the connection between nodes 6 and 12 becomes very weak (W t

612 = 20.13)
since the weak connection is not particularly considered; the purpose of the GMC
metric is to improve all connection overall. Figure. 9(c) shows the result of us-
ing WCC as the performance metric in optimisation. This metric improves the
value of worst connection to 16.3 between nodes 6 and 12. However, the global
cost JGMC = 186.04 is the worst amongst three metrics. This comes from the
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(a) MST without UAVs (b) Using the GMC with two UAVs

(c) Using the WCC with two UAVs (d) Using the mGMC with two UAVs

Figure 9: Optimal deployment results for relay UAVs using different communica-
tion performance metrics.

nature of this metric which focuses on improving the weakest connection only
while ignoring the global communication quality (i.e. all other connections).

Lastly, Fig. 9(d) shows the result of the proposed metric, mGMC. The result-
ing global cost for this metric is JGMC = 163.1 which is in the middle between
the GMC and the WCC at 154.12 and 186.04, respectively. Besides, the worst
connection cost JWCC = 16.3 is the same as using WCC as a metric. For the sum
of three bi-directional worst connections (i.e. β = 6), this metric provides the best
result (JmGMC = 82.4) among three metrics. As the worst connection value is
below 20, using the proposed mGMC metric satisfies the desired communication
requirement, while providing the reasonable global communication performance as
well.

5.1.2 Monte Carlo Simulations

Monte Carlo simulations are used to confirm the aforementioned trends observed
in the sample scenario. Figure 10 shows the results averaged over 30 independent
Monte Carlo simulation runs. The global cost (JGMC) change with the increasing
number of UAVs is shown in Fig. 10(a) using three different performance metrics.
It is worthwhile noting that in this simulation, Wd is adjusted so that β = 6 at
all times. As expected, the GMC metric (shown as a blue solid line) produces
the best result, however the result from the mGMC is not much worse, which is
particularly the case for the small number of UAVs. With the small number of
UAVs, there are a large number of bad connections and thus improving them led
to a significant improvement on the global cost using either of the GMC or the
mGMC. Similar trend is shown in the WCC, however, the metric gets worse much
faster than the mGMC.
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Figure. 10(b) with the WCC cost shows the reversed situation as in Fig. 10(a).
This means that using WCC as the performance index provides the best result in
terms of improving the worst connection, while the result from the GMC metric is
the worst. Comparing three three metrics with the sum of β=6 worst connection
cost (JmGMC) as shown in Fig. 10(c), it can be seen that the mGMC metric case
shows the best performance. It can also be seen that adding more UAVs gets less
improvements. This is because as UAVs are added into the scenario, the number
of bad connections is reduced until there are only good ones to improve.

(a) JGMC cost (b) JWCC cost

(c) JmGMC cost

Figure 10: Monte Carlo simulation results using three different communication
performance metrics with different number of UAVs.

5.2 Dynamic Scenarios

Having shown comparison of the proposed mGMC metric with other metrics on
static scenarios, investigation of this metric on dynamic scenarios is performed. It
is worthwhile noting that due to movement of ground vehicles and corresponding
communication quality change, β also changes; thus, it is calculated at each simu-
lation step to take into account all connections above W d. The dynamic scenario
with three UAVs, 12 ground nodes and 30 buildings uses the same communication
parameters from Table 1, and other simulation parameters are shown in Table 2.
In this section, the effect of following changes are mainly considered: i) change of
horizon length in the NMPC problem formulation, ii) different movement pattern
including random, loitering and the proposed method, iii) the number of UAV
used, and iv) kinematic constraints of the UAV including the speed and turning
rate.
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Table 2: Mobile simulation parameter

Parameter Value Unit

Actuator delay (τω) 1/3 s
UAV speed (v) 20 m/s
Heading rate constraint (ωmin, ωmax) (−0.2, 0.2) rad/s
Receding horizon step (N) 5 N/A
Maximum heading rate change (∆Uω) 0.1 rad/s
Weighting factors (pc, qc, rω) (1000, pc/N, 1) N/A
Population size (M) 15 N/A
Acceptable number of generations (Ng) 15 N/A

Firstly, Fig. 12 shows that the horizon length has a critical impact on the
performance when using the mGMC. If the horizon length is too small, UAVs will
not see any possible trajectory which can improve the mGMC cost as the mGMC
is only focused on a few worst connection, which might not be in that UAVs range.
This situation is illustrated in Fig. 11. On the other hand, if the horizon is too long,
ground vehicles’ plan needs to be known well in advance and UAVs may overlook
imminent weak connections for the sake of improving connections far away. To
trade off between those two problems, the horizon length needs to be carefully
determined. There might be two ways to change the horizon length: i) increasing
the horizon steps with a fixed time interval or ii) increasing time interval between
horizon steps with a fixed number of horizon steps. First method would result in
significantly increased computational efforts but an accurate solution while the
second does not increase computational efforts, but it reduces the accuracy of a
solution. Since the computational speed is one of the requirements for the proposed
algorithm as stated in the introduction, the second method is employed in this
work. Table 3 shows the different time intervals between horizon steps with five
horizon steps (which results in different total horizon length from 5 to 25) used in
the numerical simulation shown in Fig. 12. It can be seen that there is a significant
performance improvement up to the horizon length of 15 and smaller improvement
between 15 and 20. After the horizon length of 20, the performance of the mGMC
cost starts to decrease (so value increases) again and can be associated to UAVs
trying to improve connections too far in the future.Thus, the best horizon length
for the mGMC in this size of scenario is 20 and this horizon length will be used
in other simulations hereafter.

Table 3: Different time intervals between horizon steps

Total horizon length [sec] time interval between horizon steps [sec]

5 (0.5, 0.5, 1, 1, 2)
10 (0.5, 0.5, 2, 3, 3)
15 (0.5, 2.5, 3, 4, 5)
20 (0.5, 4.5, 5, 5)
25 (0.5, 4.5, 6, 6, 8)
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Figure 11: Illustration of a problem of too short horizon length where the
UAV cannot see a move which would reduce the mGMC cost.

Figure 12: Averaged sum of β connections over ten scenarios.

Figure 13 shows comparison between random movement, loitering (circling)
around a starting point and using the proposed GA optimisation. At the begin-
ning, all three methods show similar performance and the loiter shows even better
performance during around 30 and 40 seconds of simulation. This might be because
fixed-wing UAVs cannot change its heading or position instantaneously towards
the optimal heading/position due to their dynamic constraints. However, the pro-
posed method outperforms the other two for most of the time as it optimised its
movement considering the movement of all ground nodes and the corresponding
mGMC cost.

The effect of changing the number of UAVs is shown in Fig. 14. As expected,
the more UAVs are used, the better the sum of β connections is obtained. Note that
the difference between two and three UAVs is not that significant. This implies that
there is a saturation point where adding more UAVs does not result in a significant
increase of communication performance. As more UAVs are added, there are fewer
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Figure 13: Comparison of NMPC-based trajectory plan-
ner using the genetic algorithm implementation with ran-
dom motion and loitering.

Figure 14: Effect of changing number of UAVs on the
performance of the mGMC metric.

Figure 15: Effect of changing heading rate on the perform-
ance of the mGMC.

Figure 16: Effect of changing speed on the performance
of the mGMC.
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Figure 17: Comparison of performance (JmGMC cost) between cases with and
without UAVs.

weak connections to improve than if a small number of UAVs is present (e.g. it
is possible a single connection is improved by two UAVs in a chain rather than a
single UAV).

Different heading rates and speeds are used to determine how UAV dynamics
affects the communication performance. Figures 15 and 16 show that higher turn-
ing rates and slower speeds results in better communication performance in terms
of lowering the communication cost. In these conditions, UAVs can make tighter
turns, thus they can better react to the local changes of ground node positions
and corresponding communication structure (i.e. MST).

To illustrate a significant reduction of the number of weak connections using
the proposed algorithm, the mGMC cost and the number of the weak connection
(communication quality above W d) of a sample scenario with and without using
UAVs is shown in Fig.17. In this scenario, UAVs cause a significant reduction
of number of weak connections where the average number of weak connections
with UAVs is about 1.6, while without the UAV is 4.4, proving the benefit of the
proposed approach.

Currently, control commands need to be sent to UAVs every half a second,
so each NMPC iteration needs to be finished within that time. It is also worth
noting that algorithm can be run in a decentralized manner (i.e. each UAV per-
forms its own NMPC computation based on the prediction on what the rest of the
group will do). Thus, computation time per UAV is representative of how fast the
group can finish one iteration. Table 3 shows the computation cost of one itera-
tion, implemented in Matlab, using the same scenario described before with and
without buildings in the environment. This implies the significant impact of LOS
obstruction detection on the computation time. Figure 11 represents the compu-
tation time with respect to the number of ground vehicle. Possible approaches to
address the issue on the computation time include: i) implement the algorithm in
C/C++. Using a lower level language will reduce computation time significantly;
ii) commands can be sent less often to the UAV. This will increase the allowed
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time for each iteration to finish at the expense of communication performance of
the algorithm; and iii) the number of iterations or population size of the genetic
algorithm can be reduced to achieve significant reduction of the computation time.
However, this is likely to reduce the quality of solution.

Table 4: Mean and standard deviation for a runtime per iteration averaged over
ten sample scenarios

Computation time Without buildings With buildings

Mean time ± Std (sec) 0.29 ±0.0088 8.9±0.55

Figure 18: Computation time for a single UAV and 30 buildings with respect to
the number of ground vehicles.

6 Conclusions and Future Work

This paper has presented a trajectory planning algorithm for fixed-wing commu-
nication relay UAVs to enhance communication quality of the ground mobile net-
work in an urban environment. To plan the optimal trajectory, discretised NMPC
trajectory planning was proposed using a genetic algorithm-based optimisation
method. The planner was paired with the mGMC communication performance
metric targeted to improve only the necessary weak connections in the network.
How different horizon length, the number of the UAV used, and kinematic con-
straints of the UAV such as the heading rate and the speed can affect the com-
munication performance was shown and discussed along with benefits of using
the proposed algorithm over a scenario without UAVs was shown and discussed.
Future work will include more accurate and realistic communication model and
decision making regarding the necessary number of the UAVs in the mission.
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