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Abstract 

The outdoor performance of photovoltaic modules is influenced by spectrum. Even if the irradiance 

level and the operating temperature is the same, performance difference of photovoltaic modules 

between the seasons can be increase up to 15% depending on the photovoltaic module type. In this 

paper, seasonal spectral irradiance effects on the outdoor photovoltaic module performance and 

previous studies has been summarised thoroughly. The spectrum indicators which are used for 

spectra characteristics, Useful Fraction and Average Photon Energy are described in detail. This study 

also indicates spectrum effects on PV performance and outlines the present studies investigating this 

effect. 
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Nomenclature 

      Spectral irradiance     Series resistance     

      
Flux density per unit 
wavelength 

     Shunt resistance     

      Incident photon flux    Modified ideality factor 

       Spectral response     Number of series-connected cell/module 

    Energy of a photon (J)     Diode ideality factor 

    Band gap (eV)     Boltzmann constant (J/K) 

      Spectral photon flux density     Electronic charge (C) 

    
Lower absorption wavelength 
limit 

     Power of incident light (W) 

    
Higher absorption wavelength 
limit 

PV Photovoltaic 

h Planck constant (Js) STC Standard Test Conditions 

c 
Velocity of light in the vacuum 
(m/s) 

G Total (broadband) irradiance (W/m
2
) 

SR Spectral Response ASTM American Society for Testing and Materials  

I Current (A) IEC International Electrotechnical Commission 

V Voltage (V) AoI Angle of Incidence 

KT Clearness index (daily) AM Air mass 

kT Clearness index (hourly)  Solar altitude angle (°) 

H 
Measured daily Total Solar 
Radiation  

   Solar azimuthal angle (°) 

H0 
Extra-terrestrial daily Total 
Solar Radiation 

          Spectral irradiance distribution of the AM1.5 

I 
Measured hourly Total Solar 
Radiation 

         SR of the device under test 

I0 
Extra-terrestrial hourly Total 
Solar Radiation 

         SR of the reference cell 

     Photocurrent (A) AM0 
Air Mass zero, Spectral representation outside 
the atmosphere 

    Light-generated current (A) AM1.5 Air Mass at solar zenith angle 48.2° 

        Short circuit current (A) UF Useful Fraction 

       Open circuit voltage (V) APE Average Photon Energy (eV) 

        Power at mpp  (Wp) a-Si Amorphous Silicon 

          Current at mpp (A) CIS Copper Indium (di)Selenide 

         Voltage at mpp (V)  CdTe Cadmium Telluride 

A    Module area (m
2
) SPCTRL2 Spectral model developed by NREL 

   Operating cell temperature (K) FF Fill Factor 
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1 Introduction 

PV modules are rated by their power output under standard test conditions (STC) which are a set of 

reference PV device measurement conditions consisting of irradiance of 1000 W/m
2
, AM1.5G 

spectrum, and a module temperature of 25⁰C. However, STC are not representatives of actual outdoor 

conditions in most regions of the world. Therefore, it is suspected that the score of a PV module by 

power rating method under STC is different from the actual performance in outdoor conditions [1-5]. 

The performance of photovoltaic (PV) modules installed outdoor is greatly influenced by various 

ambient environmental factors such as incident irradiance, the module temperature and the spectral 

irradiance distribution.  

 

In this study, solar spectrum, the spectral effects on PV performance is discussed. There are a lot 

papers presented in different organizations outlines the effect on the installed PV systems. More than 

200 studies are reviewed and some of them are published in journals or conference proceedings, the 

rest are unpublished or contains only local data.  

 

1.1 Solar Spectrum and Additional Spectral Irradiance Descriptors 

Emission of radiation from the sun contributes to the solar spectrum as observed from Earth. Just 

above the Earth’s atmosphere, the radiation intensity, or Solar Constant, is about 1.353 kW/m
2
 [6,7] 

and the spectral distribution is referred to as an air mass zero (AM0) radiation spectrum. The Air Mass 

is a measure of how absorption in the atmosphere affects the spectral content and intensity of the 

solar radiation reaching the Earth’s surface. The Air Mass number is given by 

 

            
 

    
             (1) 

 

where   is the angle of incidence (    when the sun is directly overhead). Moreover, the outdoor 

solar spectrum distribution changes during a day because of the aerosol and water vapour. Hence, it 

is rare to fit the standard solar spectrum (Fig.1) AM1.5G defined in ASTM GE173-03 and standard IEC 

60904-3 [8,9]. Measured spectral irradiance data does not lend itself well to use in simple analysis or 

modelling approaches as it consists of an ensemble of measurements. Ideally, a spectral distribution 

would be summarised as a single parameter, which could then be used in much the same way as 

broadband irradiance and device temperature to isolate and quantify the different environmental 

effects acting on the PV device. The colour temperature associated with a blackbody radiator is an 

option that can reasonably represent the solar spectrum outside the Earth’s atmosphere, but is 

unsuitable for terrestrial application because the various gas absorption bands and wavelength 

dependent scattering prove too distorting [10]. A few terrestrial spectral descriptors can be found in the 

existing literature, although not as many as might appear since often the same measure is used under 

different names by various groups [10].  
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The sun’s location in the sky relative to a location on the surface of the earth can be specified by two 

angles. They are: (1) the solar altitude angle     and the solar azimuthal angle    . The angle   is the 

angle between the sun’s position and the horizontal plane of the earth’s surface, while the angle   

specifies the angle between a vertical plane containing the solar disk and a line running due north [11]. 

Therefore, a new parameter, angle of incidence       is defined to explain the position of solar rays on 

the plane [10].     is a measure of deviation of something from "straight on”. A surface directly facing 

the sun has an     of zero, and a surface parallel to the sun (such as a sunrise striking a horizontal 

plane) has an     of 90°. Sunlight with an incident angle of 90° tends to be absorbed, while lower 

angles tend to be reflected.  

 

Another important parameter effecting the solar radiation on a plane is the clearness index     , which 

is defined as the value of a particular day’s radiation to the extra-terrestrial radiation for that day, or an 

hourly clearness index      can be defined in equation forms: 

  

   
 

  
                   

 

  
                         (2) 

 

Where   and   are measured values of total solar radiation and    and    are the extra-terrestrial 

values which can be calculated using several methods [6,11].  This value depends on atmospheric 

conditions; usually the value lies between zero and unity. Under clear weather conditions clearness 

index is high and if the atmosphere is turbid or cloudy it is generally low (e.g.        heavily 

overcast) 

 

The outdoor performance and the energy yield of PV modules depend on a large number of factors. 

The most important factor is the amount of irradiation that arrives on the plane of the PV modules, 

which in turn depends on the local environmental conditions such as rain, ambient temperature, and 

wind. To enable more wide spread deployment of PV modules, it is important to analyse the influences 

of environmental factors on outdoor performance of PV modules [12-21].  

 

Decreases refer absorption by chemical elements in the atmosphere. The intensity of light in the 

frequency of incident photons is absorbed. There are some computational models developed by 

several laboratories which compute clear sky spectral direct beam, hemispherical diffuse, and 

hemispherical total irradiances on a plane (tilted or horizontal) at a defined location in time [22-24]. 

 

1.1.1 Spectral Mismatch Factor (MMF) 

One of the discrepancies between indoor and outdoor measurements is Spectral Mismatch errors. 

Spectral mismatch errors may influence the estimation of the short-circuit current and arise when 

using a reference cell with a spectral response (SR) different from that of the device under test. The 

amount of the spectral mismatch depends strongly on the difference of the spectral irradiance 

distribution of the solar simulator with respect to the reference spectrum AM 1.5G. The procedure for 
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correcting the error introduced in the testing of a PV device, caused by the mismatch between the test 

spectrum and the reference spectrum and by the mismatch between the SRs of the reference cell and 

of the device under test. According to IEC 60904-7 [25], the mismatch MMF is defined as: 

    
                                      

                                    
          (3) 

where           is the spectral irradiance distribution of the AM1.5 spectrum according to IEC 60904-3 

,      is the spectral irradiance distribution of the incoming light at the time of measurement,          

is the SR of the reference cell, and          is the SR of the device under test [4]. 

 

1.1.2 Useful Fraction (UF) 

To illustrate the effect of the solar spectral variations, it is useful to define a parameter that can 

represent a spectral shift towards higher energies (which will result in a larger proportion of blue or 

ultraviolet light) than a spectral shift towards lower energies. Different authors use different indices to 

evaluate this behaviour [10,26]. The most used parameters are the Useful Fraction (UF) that is 

dependent from the PV technology under investigation and the Average Photon Energy (APE) [27-31].  

If the spectral irradiance encountered by a given device/cell (electrically series or parallel connected 

cells form PV modules) is     ; the total irradiance,  ; is defined as [28], 

 

        
 

 
          

 

 
   (4) 

 

where      is the flux density (number per unit area and unit time) per unit wavelength of photons of 

energy    and wavelength  . UF is the ratio of the solar irradiance within the usable wavelength range 

of a PV device to the total solar irradiance and defined as 

 

    
 

 
     

     

 
   (5) 

 

Here,    is the band-gap of the solar device/cell which equates to a long wavelength cut-off of 

wavelength λ. For example, for amorphous silicon cells the cut-off wavelength is         and for the 

standard AM1.5 spectrum,         . A value of UF>0.604 therefore indicates a spectral shift 

towards the blue, relative to this standard. This will tend to occur when the incident light is mainly 

diffuse (and thus has a low total irradiance G) or when the light is incident with a very low air mass 

(and thus has a high total irradiance G). Conversely, a value of UF<0.604 indicates a spectral shift 

towards the red [28]. 
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1.1.3 Average Photon Energy (APE) 

The other unique value to characterize the spectrum shape is APE. The APE is an instantaneous 

value defined as the ratio of the total irradiance of the spectrum over the photon flux density. 

Consequently, the definition of APE is usually referred to as a finite integration interval APE, 

expressed in the unit of electronvolt (eV),  

     
       
  
  

       
  
  

  
 (6) 

 

where    is the electron charge,      is the spectral photon flux density ,   and    are the lower and 

the higher absorption wavelength limits of the device. It should be noted that the calculated APE value 

depends on the integration limits in Eq.(6). This wavelength interval effect is shown in Table 1 for the 

AM1.5G standard spectrum.  

 

The spectral photon flux density at a specific value of wavelength λ can be determined by dividing the 

spectral irradiance evaluated at λ between the energy of a photon      with that wavelength (in joules): 

 

      
    

  
 

    
  

 

 (7) 

 

where   is the Planck constant                       and   is the velocity of light in the vacuum 

                      . With the use of these values, the final result of APE will be expressed in 

J, but it is usually expressed in                  taking into account that                  

        . APE value can be expressed in eV as usual. 

 

There are several studies reporting the performance of widely used different PV materials (crystalline 

silicon technologies, amorphous silicon, Cupper Indium (di) selenide CIS, Cadmium Telluride CdTe, 

third generation PV and other thin film technologies) in real installations at different locations with 

thermal and spectral effects [1,2,4,5,10-16,18-21,24,26-60]. 

1.2 Natural solar spectral variation 

When solar radiation enters the Earth’s atmosphere, not only the irradiance but also the spectral 

content is affected. The standard solar spectrum used for testing PV devices is given in Fig.1 but in 

general, the shape of spectrum is variable during a day. Increasing air mass displaces the solar 

spectrum towards the red [60].  The solar radiation that fills the sky can be direct, diffuse and reflected 

irradiance. Total or global solar radiation measured on a surface is the sum of beam and diffuse 

radiations. Beam or direct radiation is the solar radiation received from the sun without having been 
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scattered by the atmosphere. Therefore, the solar radiation received from the sun after its direction 

has been changed by scattering in the atmosphere is defined as the diffuse component of the total 

solar radiation. The effect in the spectral distribution is shown in Fig.2.  The global solar irradiance is 

composed of the direct irradiance and diffused irradiance and the solar spectral irradiance distribution 

has the significant influence on the output of a PV device. When the sky is clear and the sun is very 

high in the sky, direct radiation is around 85% of the total insolation striking the ground and diffuse 

radiation is about 15%. As the sun goes lower in the sky, the percent of diffuse radiation keeps going 

up until it reaches 40% when the sun is 10° above the horizon. Atmospheric conditions like clouds and 

pollution also increase the percentage of diffuse radiation. On an extremely overcast day, pretty much 

100% of the solar radiation is diffuse radiation. This means the larger the percentage of diffuse 

radiation, the less the total incident solar radiation. So overall spectrum depends on ratio of 

beam/diffuse [10].  

 

However, since diffuse radiation is generally pretty equally distributed throughout the sky, the most 

diffuse radiation is gathered when PV modules are lying down horizontally. PV modules are generally 

settled with tilted angles to maximise the total irradiance and this also increases the amount of direct 

irradiance that reaches on the array plane. The steeper PV modules are tilted, the less of the sky they 

are facing and the more of the sky's diffuse radiation they miss out on. Reflected radiation describes 

sunlight that has been reflected off of non-atmospheric things such as the ground. Asphalt reflects 

about 4% of the light that strikes it and a lawn about 25%. However, PV modules tend to be tilted away 

from where the reflected light is going and reflected radiation rarely accounts for a significant part of 

the sunlight striking their surface. Besides this, both crystalline silicon and thin film based PV modules 

need glass and commercial glass has a solar transmission of 83.7%, i.e 16.3% of the sun’s energy do 

not even get to the PV material. And reflection off PV front glass affects spectrum incident on active 

layers. 

 

To show the seasonal variation of UF and APE values during a day, first, two representative days in 

July and January are selected for a 37⁰N latitude location. Then UF and APE values from sunrise to 

sunset are calculated with the help of SPCTRAL2 [18]. 15⁰ and 35⁰ seasonal tilt is accepted for 

summer and winter, respectively. Both UF and APE values are almost constant during the day time 

except in the early and late hours of the day. In summer both UF and APE values are increases in 

these hours because of the rising diffuse component of the global irradiation when the sun is behind 

the array plane. But in winter the values are decreases in these time intervals. 

 

2 PV performance and effect of spectrum 

 

The electrical power available from a PV device/cell can be modelled with the well-known equivalent 

circuit which includes a series resistance and a diode in parallel with a shunt resistance [41]. This 

circuit can be used either for an individual cell, for a module consisting of several cells, or for an array 

http://www.ftexploring.com/solar-energy/clouds-and-pollution.htm
http://www.ftexploring.com/solar-energy/clouds-and-pollution.htm
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consisting of several modules. The current–voltage relationship is expressed in Eq. (6) at a fixed 

cell/module temperature and solar radiation. Five parameters must be known in order to determine the 

current and voltage, and thus the power delivered to the load. These are: the photocurrent     (also 

known as    light generated current),    the diode reverse saturation current,    the series resistance, 

    the shunt resistance, and               the modified ideality factor defined in Eq. (8). 

           
     

     
     

   
 (8) 

 

Where,    is the series connected cell/module,    is the diode ideality factor of a cell, 

                                                     and    is the electronic charge     

                    . The power produced by the PV device/cell or module is the product of the 

current and voltage. At small applied voltages, the diode current is negligible and the current is just the 

short circuit current,    , which is so close to     as can be seen when V is set to zero in Eq. (8). At 

open circuit    , all the photocurrent,        , is flowing through diode, for ideal case           

            the open-circuit voltage can be written as 

     
    

  
   

      

  
  (9) 

 

The rectangle-defined     and     provides a convenient means for characterizing the maximum power 

point [45]. The fill factor, FF, is a measure of the squareness of the I –V characteristic and is always 

less than one. It is the ratio of the areas of the two rectangles and defined as 

 

    
    

      
 

        

      
 (10) 

 

Where     is the power of the device/cell or module at the maximum power point,      and      are 

the current and the voltage values at this point, respectively. And the most important figure of merit for 

a PV device/cell or module is its power conversion efficiency,  , which is defined as 

 

   
    

   
 

          

   
 (11) 

 

where,    , is the power of the light determined by the properties of the light spectrum incident upon 

the device/cell or module. And, can be defined as in Eq. (12) spectrum dependent with the help of Eq. 

(4), where A is the surface area. 

                 
 

 
   (12) 
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2.1 Spectral response 

There are large differences in the sensitivity of different PV materials to spectral variation. This is 

determined in the first instance by the band gap of the material, which sets the upper wavelength limit 

of the spectral response. 

The sensitivity of different PV device/module electrical parameters to the various environmental 

influences of these conditions depends on the technology (device material and structure) and the 

performance is directly proportional to spectral response where spectral response is the ratio of the 

current generated by the PV device to the solar power incident on its surface. Spectral response of a 

PV device is given by the probability that the absorbed photon will yield a carrier to the 

   photogenerated current of the cell and the spectral response is determined by the band gap, cell 

thickness and transport in the material. The spectral response is defined as the short-circuit current, 

        resulting from a single wavelength of light normalized by the maximum possible current [20-23, 

41-44] 

       
      

      
 (13) 

 

Where, q is the electronic charge          C, A is the surface area of the PV device and      is the 

incident photon flux (number of photons incident per unit area per second per wavelength).The degree 

to which the spectral response and the incident irradiance spectrum coincide varies as the spectrum 

changes and gives rise to a spectral effect on the device current and efficiency. Spectral responses of 

some module types and AM1.5G spectrum (up to 1300nm) is shown in Fig.2 to show the response 

differences of different technologies [42].  

To quantify matters, some effective measure of spectral distribution is required, one that encapsulates 

the idea that a spectral shift towards higher energies will result in a larger proportion of blue or 

ultraviolet light than a spectral shift towards lower energies. Since a-Si devices absorb more strongly 

in the blue than in the red, and not at all in the infra-red, such shifts will inevitably have an impact on 

the device parameters, even if all other factors (e.g. total irradiance, incident angle, temperature) 

remain constant [23,40]. 

PV device operating temperature may affect the photocurrent in two ways: Through a change in 

absorption efficiency represented by an instantaneous temperature coefficient, or via material changes 

caused by annealing recovery of light-induced degradation. Temperature coefficients of 

                are generally given in manufacturer data sheets, measured under STC irradiance and 

spectrum. Hence, the operating temperature results variation in     at the same irradiation levels with 

an enhancement of up to 2% and a winter reduction up to 1% [20, 43, 44].  This effect is severe for 

thin film devices, yet the parametric sensitivity of these devices to variations in the incident spectrum is 

still not fully understood but several studies were evaluated to define the main reason of variation for 

different materials, especially for a-Si based solar cells [8, 20, 23, 35, 42-45, 60]. 
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    is spectrum dependent as given in Eq. (11) so the other PV device performance parameters 

namely              are also affected by the spectrum variations [44,62]. Numerous performance 

analysis studies have been carried out to assess the magnitudes of these effects on different 

technology based PV devices [65-78]. Hence, for a 1000W/m
2
 irradiation level, the operating 

temperature of the PV devices is transposed to the value at STC which process is known as 

temperature correction. There are several analytical and numerical translation methods of the 

measured values to desired conditions in the literature [79-83]. Temperature corrected short circuit 

current over irradiation         variation of the cell/module with respect to the irradiation will give 

knowledge about the spectral dependence eliminated from the thermal effects. 

 

3 Conclusions 

 

The influence of spectrum on the performance of PV modules is summarised in this paper. 

Performance variation is strongly dependent to module type. Based on this, the ratio of available to 

global solar radiation had a seasonal variation of 5%. For clear sky days, spectrum has little influence 

for low band gap material based PV modules (efficiency varies only 4% or 5% between seasons for 

e.g. crystalline  silicon solar cells), but for large band gap materials like a-Si this effect is severe 

(efficiency varies -10% to +15% between seasons). Temperature corrected         variation with 

respect to the irradiation will give knowledge about the spectral dependence of the PV device/cell or 

module eliminated from the thermal effects. Numerous performance analysis studies investigating the 

spectrum effects on different technology based PV devices are addressed.  
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Table 1: APE of the standard spectrum evaluated from different spectral integration limits [19]. 

Wavelength range (nm) APE, Average Photon Energy 
(eV) 

300-4000 1.43 

300-2500 1.48 

300-1700 1.62 

300-1100 1.86 
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Figure and Table Captions 

 

Figure 1: Standard reference solar spectra. 

Figure 2: Solar spectral distribution with its components. 

Figure 3: Calculated APE and UF values for clear sky days for a location of 37⁰N latitude (15⁰ and 35⁰ 

seasonal tilt is taken for summer and winter, respectively) 

Figure 4: Spectral responses of some module types and the AM1.5G spectrum (up to 1300 nm) [39]. 
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