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model (CCAPM) and show that the liquidity-adjusted CCAPM is a generalized model of
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1. Introduction

Recent studies in asset pricing suggest that liquidity plays an important role in investors’ con-

sumption and investment decisions.1 Following these leads, we extend the traditional CCAPM

(Rubinstein (1976), Lucas (1978), and Breeden (1979)) by incorporating the liquidity effect, in the

spirit of Acharya and Pedersen (2005). We show that expected stock return is determined by both

consumption risk and liquidity risk with the latter being defined as the covariance between transac-

tion costs and consumption growth. The liquidity-adjusted CCAPM, contingent on the transaction

costs proxies and test portfolios, adds up to 79% additional explanatory power to the cross-sectional

variation of expected returns.

Specifically, using different proxies for transaction costs such as the effective trading costs of

Hasbrouck (2009) and the high-low-price-based bid-ask spread estimates of Corwin and Schultz

(2012), we show that our liquidity-adjusted CCAPM provides a better fit for the cross-sectional

expected returns across various liquidity-based portfolios, while the traditional CCAPM fails to

capture the liquidity effect.2 Our model also accounts for a larger fraction of the variations in

expected returns across size and book-to-market portfolios than the CCAPM. Lewellen et al. (2010)

demonstrate that it is necessary for asset pricing tests to include other sets of portfolios (e.g.,

1For instance, Parker and Julliard (2005) suggest that concerns of liquidity are perhaps imperative components neglected
by consumption risk alone. Liu (2010) argues that liquidity risk originates from consumption and solvency constraints with
latter being also demonstrated by Chien and Lustig (2010) and Pastor and Stambaugh (2003). Næs et al. (2011) find that
stock market liquidity can predict consumption growth. Lynch and Tan (2011) show that transaction costs can generate a
first-order effect when they add return predictability, wealth shocks, and state-dependent costs to the traditional consuming
and investing problems. Further, Lagos (2010) develops a model with search frictions and shows the importance of the liquidity
premium in explaining the equity premium puzzle.

2Acharya and Pedersen (2005) show that the CAPM (Sharpe (1964) and Lintner (1965)) fails to capture liquidity costs
and liquidity risks. Liu (2006) and Liu (2010) find that both the CAPM and the Fama-French (1993) three-factor model have
difficulty in capturing the liquidity effect. A few recent studies examine the explanatory power of the traditional CCAPM to
the variation of expected return across portfolios sorted by different liquidity proxies. For instance, Kang and Li (2011) use
the long-run consumption risk framework of Hansen et al. (2008) to explain liquidity premium.
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industry portfolios) to break down the strong factor structure of size and book-to-market portfolios.

We show that the liquidity-adjusted CCAPM is robust to the inclusion of industry portfolios.

Recent studies also highlight the importance of the ultimate or long-run consumption risk

(Parker and Julliard (2005)), durable consumption (Yogo (2006)), and the fourth-quarter consump-

tion (Jagannathan and Wang (2007)) in explaining the variations of expected returns. We show

that applying the long-run, total (durable and nondurable), and fourth-to-fourth quarter consump-

tion growth measures to our liquidity-adjusted model explains a larger fraction of the variation in

cross-sectional expected returns than the CCAPM.

Lettau and Ludvigson (2001) and Petkova and Zhang (2005) show that value stocks have higher

risk exposure than growth stocks in bad times. We find that the patterns of estimated liquidity betas

conditional on the economic states provide a liquidity-risk based explanation for the countercyclical

value premium. Specifically, we show that value stocks have higher liquidity risk in bad times than

in good times, while growth stocks have lower liquidity risk in good times than in bad times.

Overall, our results suggest that investors do care about the sensitivity of transaction costs to the

aggregate consumption growth, and hence demand high return for securities with high exposure to

liquidity risk. By tying transaction costs with consumption growth, we provide new evidence to the

recent literature that highlights the importance of liquidity risk in asset pricing (e.g., Chordia et al.

(2000), Pastor and Stambaugh (2003), Acharya and Pedersen (2005), Liu (2006), Sadka (2006),

and Bekaert et al. (2007)). While these studies appear to make liquidity adjustment to the CAPM

or the Fama-French three-factor model and show that models with this adjustment improve the

models’ fit, the focus of our paper is on the liquidity adjustment to the consumption-based pricing

models, an area that has attracted little attention in the literature.
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While transaction costs are not taken into account by the traditional CCAPM, they are the

subject currently generating much research interests. Amihud and Mendelson (1986) introduce

liquidity costs into the present value of stocks and show that liquidity costs are positively related to

expected returns. Jacoby et al. (2000) develop a static liquidity-adjusted CAPM using net returns

(i.e., returns after bid-ask spread adjustment) and show that market risk and liquidity are related.

Lo et al. (2004), using an equilibrium model with heterogeneous agents, show that transaction costs

can significantly affect asset prices. Acharya and Pedersen (2005) study how investors maximize

expected utility with time-varying liquidity costs and show the evidence that liquidity risk affects

stock returns. Recently, studies show that transaction costs can generate liquidity premium that is

in the same order as the costs with time-varying investment opportunity sets (Jang et al. (2007))

and with predictable returns, wealth shocks, and state-dependent transaction costs (Lynch and Tan

(2011)).3 Buss and Dumas (2013) highlight that transaction costs are as important as cash flows.

Gârleanu and Pedersen (2013) show the impact of transaction costs on investors’ optimal dynamic

portfolio policies.

Our model is a generalized version of Acharya and Pedersen (2005) and suggests a novel source

of liquidity risk which is the covariance between transaction costs and consumption growth. We

show that the three channels of liquidity risk of Acharya and Pedersen (2005) can be captured by

the covariance between transaction costs and consumption growth. We extend the literature that

highlights the pricing of various systematic risks associated with consumption (e.g., Lettau and

Ludvigson (2001), Bansal and Yaron (2004), Parker and Julliard (2005), Yogo (2006), Jagannathan

and Wang (2007), Savov (2011), and Boguth and Kuehn (2013)) by showing the positive relation

between stock returns and the sensitivity of transaction costs to consumption growth.

3Early studies such as Constantinides (1986) and Vayanos (1998) show that transaction costs only have a second-order
effect in the model with the constant transaction costs.
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One study relates to ours is Márquez et al. (2014) where the authors build a liquidity-adjusted

stochastic discount factor. The differences between their model and ours are, however, that they

assume a market illiquidity shock to consumption while we focus on transaction costs following

Acharya and Pedersen (2005). Further, they measure liquidity risk as the covariance between

returns and liquidity factor, while we measure liquidity risk as the covariance between transaction

costs and aggregate consumption growth.

The economic meaning on incorporating the sensitivity of transaction costs to consumption

growth to the CCAPM is straight-forward. When the economy is haunted by uncertainties, im-

pacting consumption and squeezing liquidity, individual investors may unwillingly switch from their

securities to cash to smooth out consumption; institutional investors may reluctantly exchange their

holdings for cash to fulfill their obligations. Under these circumstances, securities whose transaction

costs are less sensitive to consumption fluctuations comfort investors from states of low consumption.

On the contrary, securities whose transaction costs are highly sensitive to consumption fluctuations

impair investors’ abilities to cushion the deterioration in consumption. As a result, investors would

be more reluctant to hold high liquidity-risk (the sensitivity of transaction costs to consumption

growth) securities unless they offer high expected returns.

The remainder of the paper proceeds as follows. Section 2 derives the liquidity-adjusted CCAPM.

Section 3 describes the data. Section 4 presents the cross-sectional regression results. Section 5

carries out the robustness tests. Section 6 concludes the paper.

2. The model

In this section, we begin our setting up based on a representative consumer’s multiperiod con-

sumption and investment decision model of Samuelson (1969) and Merton (1969). We incorporate
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transaction costs, the key ingredient of this article, into the traditional CCAPM to develop our

liquidity-adjusted CCAPM.

2.1. Transaction costs and budget constraints

The representative consumer maximizes a serial of expected utility functions with respect to

consumption and a terminal bequest function, and chooses to invest in n risky assets and a risk-free

asset. The decision interval is a discrete time period and each period is of unit length. In our study,

we follow Acharya and Pedersen (2005) by assuming a time-vary transaction cost, which implies

that the representative consumer faces uncertainty with the future costs of trading. We later show

that shocks of transaction costs are countercyclical, consistent with Acharya and Pedersen (2005)

and Lynch and Tan (2011). Specifically, the return of risky asset i after netting out transaction

costs is,

Rn
i,t+1 =

Di,t+1 + Pi,t+1 − TCi,t+1

Pi,t

= Ri,t+1 − tci,t+1,

(1)

where Pi,t+1 is the ex-dividend stock i’s price, Di,t+1 is the dividend, TCi,t+1 is the per-share cost of

selling stock i,4 Ri,t+1 is the return before transactions costs, Rn
i,t+1 is the net return, and tci,t+1 is

the relative time-varying transaction costs. In the spirit of Acharya and Pedersen (2005), investors

can buy stock i at Pi,t+1 but have to sell it at Pi,t+1 − TCi,t+1. This assumption allows us to study

the effect of liquidity risk.

Given the above assumption, we incorporate the effect of transaction costs to the budget con-

straints. Let the representative consumer’s time t portfolio weight of the risky asset i be ωi,t

(i = 1, 2, ..., n), the weight of the risk-free asset is then 1 −
∑n

i=1 ωi,t. Since the representative

4Following Acharya and Pedersen (2005), Di,t+1 and TCi,t+1 are first-order autoregressive processes.
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consumer is exposed to the market where she gains the net returns, her wealth at t+ 1 is (assuming

trading on the liquid risk-free asset incurs no transaction costs)

Wt+1 = (Wt − Ct)
[
Rf, t+1 +

n∑
i=1

ωi,t(Ri, t+1 − tci, t+1 −Rf, t+1)
]
, (2)

where Ct is consumption at t, Wt is wealth at t, and Rf, t+1 is the return of the risk-free asset for

the period from t to t+ 1.

To illustrate the intuition, let us consider a simple one-period wealth dynamic. Denote W0 and

C0 the representative consumer’s wealth and consumption at time 0 (the beginning of the period).

She is also assumed to consume all of her wealth C1 at time 1 (the end of the period). Then the

one-period dynamic wealth has the form:

C1 = (W0 − C0)
[
Rf, 1 +

n∑
i=1

ωi(Ri, 1 − tci, 1 −Rf, 1)
]
. (3)

According to Eq. (3), the consumption at time 1 is more negatively affected when the transaction

costs (tci, 1) are higher, consistent with Márquez et al. (2014). That is, the stock payoff at time 1

will have a higher value today in terms of the consumption at time 1 when the liquidity is lower.

2.2. Liquidity-adjusted CCAPM

We assume that the representative consumer has a time-additive, monotonically increasing, and

strictly concave von Neumann-Morgenstern utility function for lifetime consumption, which is time

separable, i.e., utility at time t depends merely on the consuming quantity at t rather than the

consuming quantity before or after t. We define I(Wt) as the life-time utility function on wealth,

which satisfies the following equation:

I(Wt) = max
Cs, ωi,s, ∀s,i

Et

[
T−1∑
s=t

δsU(Cs) + δTB(WT )

]
, (4)
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where δ is the subjective time discount factor, U(Cs) is the utility from consumption at time s, Cs,

B(WT ) is the ending bequest function that is monotonically increasing and strictly concave, and

Et[·] is the expectation conditional on information at time t.

Eq. (4) indicates that the representative consumer makes decisions with variables Cs and ωi,s (i =

1, 2, ..., n) so as to maximize the expected lifetime utility. Using stochastic dynamic programming,

we can write the first-order conditions (FOC) of the optimal choice problem as (see Appendix A

for details):

Et

[
δ
UC(C∗t+1)

UC(C∗t )
Rf, t+1

]
= 1 (5)

and

Et

[
δ
UC(C∗t+1)

UC(C∗t )
(Ri, t+1 − tci, t+1)

]
= 1, (6)

where UC(C∗t ) is the partial derivative with respect to the representative consumer’s optimal con-

sumption. From Eq. (5) and Eq. (6), we have,

Et

[
δ
UC(C∗t+1)

UC(C∗t )
(Ri, t+1 − tci, t+1 −Rf, t+1)

]
= 0. (7)

Suppose that the representative consumer’s consumption utility is a constant relative risk aver-

sion (CRRA) function, i.e., U(C) = C1−γ

1−γ , where γ is the coefficient of constant relative risk aver-

sion. Breeden and Litzenberger (1978) show that each individual’s consumption at a given date

is an increasing function of aggregate consumption in a capital market where an unconstrained

Pareto-optimal allocation of consumption is permitted. Suppose that all individuals have the same

subjective time discount factor. Each individual’s optimal marginal utility of consumption at a

given date t is then equal to a scalar, a, times a monotonically decreasing function of aggregate
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consumption, f(C). Further, Breeden et al. (1989) show that in a Pareto-efficient capital market,

the growth rate in the marginal utility of consumption would be identical for all individuals and

equal to the growth rate in the “aggregate marginal utility” of consumption in equilibrium, which

can be written as

UC(C∗t+1)

UC(C∗t )
=
f(Ct+1)

f(Ct)
, (8)

Take a Taylor series expansion of Eq. (8) at Ct, we can rewrite Eq. (8) as

UC(C∗t+1)

UC(C∗t )
=
f(Ct+1)

f(Ct)

≈ f(Ct) + f ′(Ct)(Ct+1 − Ct)

f(Ct)

= 1 − [1 − Ctf
′(Ct)/f(Ct)]∆Ct+1

= 1 − γ∆Ct+1,

(9)

where ∆Ct+1 is the aggregate consumption growth from t to t+ 1.

According to Eqs. (7) and (9), the first-order condition yields the following equation:

Et [(1 − γ∆Ct+1)(Ri, t+1 − tci, t+1 −Rf, t+1)] = 0. (10)

According to Cochrane (2005) (see chapter 1 of Cochrane, 2005), the beta representation of Eq.

(10) has the form:

E (Ri,t+1 −Rf, t+1) = E (tci, t+1) +
γ

1 − γE(∆Ct+1)

[
Cov(Ri, t+1,∆Ct+1) − Cov(tci, t+1,∆Ct+1)

]

= E (tci, t+1) +
γV ar(∆Ct+1)

1 − γE(∆Ct+1)
(βRi,c + βTCi,c),

(11)

where βRi,c =
Cov(Ri, t+1,∆Ct+1)

V ar(∆Ct+1)
and βTCi,c =

−Cov(tci, t+1,∆Ct+1)

V ar(∆Ct+1)
.
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Eq. (11) above is our liquidity-adjusted CCAPM. It shows that expected excess return of an

asset/portfolio is related to its expected transaction costs (E(tci, t+1)), consumption risk (βRi,c), and

liquidity risk (βTCi,c). We elaborate the model below:

(i) Our model (11) shows that the expected return of a stock is positively related to its expected

transaction costs, E(tci, t+1), which is consistent with prior evidence that transaction costs

predict stock returns.

(ii) The sensitivity of stock returns to consumption growth is captured by βRi,c. It indicates that

stocks with higher exposure to consumption risk command higher risk premium.

(iii) The negative covariance between a stock’s transaction costs and consumption growth is rep-

resented by βTCi,c, which we define as the liquidity risk in this paper. Namely, if transaction

costs increase when consumption growth decreases, the asset is then said to be exposed to

high liquidity risk (i.e., large βTCi,c).

Our liquidity-adjusted model shows that high liquidity risk is compensated by high expected

return. The basic mechanism is fairly intuitive. During economic contractions, investors may

have to give up some of their stocks in exchange of cash either to finance consumption or to

honor obligations. Hence, they are more likely to be content with low expected returns on stocks

whose transaction costs are impervious to plummeting consumption; while they would require high

expected returns on stocks whose transaction costs are highly sensitive to plummeting consumption.

Our model is related to but distinguishable from Acharya and Pedersen’s (2005) model. Breeden

(1979) shows that the CAPM, as a special case, can be derived from the consumption CAPM.

Analogously, we derive the liquidity-adjusted CAPM of Acharya and Pedersen (2005) as a special

case of our liquidity-adjusted CCAPM (Appendix B). The liquidity-adjusted CAPM suggests three
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forms of liquidity risk: commonality in liquidity, stock return sensitivity to market liquidity, and

stock liquidity sensitivity to market returns. We show that the three channels of liquidity risk can

be captured by the covariance between transaction costs and consumption growth, which is new to

the literature. Acharya and Pedersen’s finding that liquidity risk, measured by the stock liquidity

sensitivity to market portfolio returns, has the largest effect on stock returns among all three forms

of liquidity risk is consistent with our model’s prediction. Moreover, Acharya and Pedersen (2005)

use the price impact measure of Amihud (2002) as a proxy for transaction costs, whereas we employ

directly the two transaction costs measures recently developed by Hasbrouck (2009) and Corwin

and Schultz (2012).

3. Data

To empirically test our model, we use two alternative proxies to measure transaction costs.

The first is the effective trading costs (cGibbs) of Hasbrouck (2009) and the second is the bid-

ask spread estimates (CSspread) of Corwin and Schultz (2012).5 Hasbrouck (2009) develops the

effective trading costs measure based on Roll’s (1984) model. Roll’s measure (
√

−Cov(∆pt,∆pt+1),

where p denotes the log trade price) involves the calculation of the negative serial correlation in

returns. The measure requires that Cov(∆pt,∆pt+1) is negative. However, Roll finds positive

autocovariances in roughly half of the cases. One simple solution is to assign an a priori value of

zero. The cGibbs estimate, used in this paper, is based on the Bayesian approach of Hasbrouck

5We also follow Acharya and Pedersen (2005) to use the adjusted Amihud (2002) measure as a proxy for trans-
action costs in our robustness tests. We obtain the effective trading costs data from Joel Hasbrouck’s website:
http://people.stern.nyu.edu/jhasbrou/Research/GibbsCurrent/gibbsCurrentIndex.html. We thank Shane Corwin for sharing
with us his high-low-price-based spread estimates.
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(2004), which minimizes this problem. Corwin and Schultz (2012) estimate the bid-ask spread in a

month with the following equation:

CSspread =
2(eα − 1)

1 + eα
, (12)

where α =
√
2β−
√
β

3−2
√
2

−
√

γ

3−2
√
2
, β = E

[∑1
j=0 ln(

H0
t+j

L0
t+j

)
]
, γ =

[
ln(

H0
t.t+1

L0
t.t+1

)
]2

, and H0
t (L0

t ) is the

observed high (low) stock price on day t. The construction of cGibbs uses daily closing prices and

it relies on daily high and low prices for CSspread. Intuitively, large cGibbs (CSspread) means

large negative return serial correlation (high-low price volatility), but it seems unclear that high

cGibbs (CSspread) is directly related to a fall in return and vice versa. For the cGibbs measure,

for example, both large price increase and decrease can result in large serial correlation. Therefore,

endogeneity may not be a serious issue in using returns together with the two costs measures in our

tests.

We test our model based on portfolios classified by firm characteristics (e.g., market capitaliza-

tion, book-to-market ratio, and liquidity) and industries. Liu (2006) highlights four dimensions of

liquidity: trading costs, trading quantity, the impact of trading on price, and trading speed. Thus,

apart from the two transaction costs measures of cGibbs and CSspread, we also use the following

liquidity proxies with each capturing a different dimension:

(i) The negative dollar volume measure of Brennan et al. (1998), DV , defined as the negative

daily dollar volume averaged over the prior 12 months. To be consistent with other four

illiquidity proxies, we use negative dollar volume so that large DV indicates high illiquidity.

(ii) The price impact measure of Amihud (2002), RV , defined as the daily absolute-return-to-

dollar-volume ratio averaged over the prior 12 months.
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(iii) The trading discontinuity measure of Liu (2006), LM , defined as the standardized turnover-

adjusted number of zero daily trading volumes over the prior 12 months. The LM proxy

measures the probability of no trading. Large LM (i.e., high infrequent trading) indicates

slow trading speed (or low liquidity).6

Our sample covers 50-year period from 1950 to 2009, which includes both NYSE and AMEX

ordinary common stocks.7 Consistent with Brennan et al. (1998), Pastor and Stambaugh (2003),

and Acharya and Pedersen (2005), we exclude NASDAQ stocks since its trading volume data only

become available from 1983 and are inflated compared with NYSE/AMEX stocks. We collect

market capitalization (MV ) and monthly stock returns from CRSP. Following Davis, Fama, and

French (2000), we calculate the book equity using data from COMPUSTAT. We use the one-month

treasury bill rate as the risk-free rate.

Panel A of Table 1 provides descriptive statistics for the main variables. The five illiquidity

measures, DV , RV , LM , cGibbs, and CSspread are negatively correlated with MV and positively

correlated with book-to-market (B/M). It suggests that small stocks and distress stocks tend to

be less liquid: having a large price impact, being less frequently traded, incurring high transaction

costs, and having low trading quantities. As expected, the correlations among the five illiquidity

proxies are positive ranging from 0.188 to 0.967. It is not surprising to observe the high correlation

of 0.967 between RV and DV since the former is the absolute return deflated by the latter. Because

both cGibbs and CSspread measure transaction costs, they are highly correlated at 0.705.

6Similar to Amihud (2002), the calculation of RV requires that there are at least 80% non-missing daily trading volumes
available in the prior 12 months. In addition, the calculation of RV excludes zero trading volumes over the prior 12 months.
Constructions of DV and LM require no missing daily trading volumes in the prior 12 months. Also, DV , RV , and LM are
related to trading quantity, the impact of trading on price, and trading speed.

7COMPUSTAT data become available since 1950. We identify ordinary common stocks as those with CRSP share codes
10 and 11.

12



We measure the aggregate consumption growth as the percentage change from preceding period

(one quarter) of per capita real (chain-weighted) personal consumption expenditures on nondurable

goods and services from the National Income and Product Accounts (NIPA Table 7.1). We use the

“end of period” timing convention to match the aggregate consumption growth to stock returns and

transaction costs. Since consumption data are quarterly, we first compound monthly returns and

transaction costs to quarterly values and then employ price deflator series from NIPA to convert

quarterly returns and transaction costs to real terms. We also use alternative measures for aggregate

consumption growth such as the long-run consumption growth as in Parker and Julliard (2005),8 the

total consumption growth of Yogo (2006), and the fourth-to-fourth quarter (Q4-Q4) consumption

growth of Jagannathan and Wang (2007) to test the robustness of our results.

Our liquidity-adjusted model shows that the expected return of a stock is determined by both

consumption risk and liquidity risk. We use the following two regressions to estimate the consump-

tion beta and liquidity beta:

Ri,t −Rf,t = αi,c + βRi,c∆Ct + εi,t, (13)

−ui,t = αi,tc + βTCi,c∆Ct + εi,t, (14)

where Ri, t − Rf, t is the return per quarter of stock i in excess of the risk-free rate, ∆C is the

consumption growth of nondurable goods and services, and ui,t is the residual of the following

regression:

tci,t = αi,0 + αi,1tci,t−1 + ui,t, (15)

where tci,t is the transaction costs of asset i in quarter t. Using innovation in transaction costs,

ui,t, is due to the persistence of liquidity, e.g., Pastor and Stambaugh (2003). We also estimate

8The consumption growth over a horizon of S quarters is calculated as ∆CSt =
Ct+S

Ct−1
− 1.
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liquidity betas directly using transaction costs: −tci,t = αi,tc+βTCi,c∆Ct+εi,t, and find qualitatively

similar results (untabulated). In addition, using the innovations of both transaction costs and

consumption growth to estimate consumption and liquidity betas, we again find similar empirical

evidence corroborating the liquidity-adjusted model in our tests.

Panel B of Table 1 reports the descriptive statistics for various consumption growth measures and

the estimated consumption beta and liquidity beta. The average quarterly growth in nondurable

goods and services is 0.511% in real term, which is consistent with Yogo (2006) that reports a

growth rate of 0.513% per quarter over the sample period 1951-2001. On average, the consumption

beta is 3.908,9 and the liquidity beta is 0.107 with cGibbs proxying for transaction costs and 0.396

with the costs measure of CSspread. The positive liquidity beta and consumption growth indicate

positive liquidity risk premium.

In order to provide a visual impression of the time-series property of transaction costs, Figure

1 plots the aggregate innovations of transaction costs. The innovation in market liquidity (um,t) is

the residual of the following regression:

tcm,t = α0 + α1tcm,t−1 + um,t, (16)

where tcm,t denotes the average of the transaction costs over the sample stocks in quarter t. Figure 1

shows that the aggregate shocks of transaction costs are higher in recessions than in other periods,10

consistent with Acharya and Pedersen (2005) and Lynch and Tan (2011). We also plot the liquidity

innovations for size-based subsamples. The small-size subsample contains the 1/20 smallest MV

stocks and the large-size subsample contains the 1/20 largest MV stocks. In line with the intuition,

Figure 1 shows that small stocks experience higher transaction costs shocks during economic crises

than large stocks.

9This result is similar to Yogo (2006) that reports the consumption betas ranging from 1.196 to 6.512 with the 25 Fama-
French (1993) value-weighted portfolios as test assets.

10Recession periods are identified based on the NBER data: http://www.nber.org/cycles.html
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4. Regression results

4.1. Cross-sectional R-squares

We perform our tests on 20 equally-weighted portfolios sorted by MV , B/M , and each of the

five liquidity measures. Using NYSE breakpoints, we form portfolios at the end of each (calen-

dar) quarter and hold them for one quarter except the MV portfolios. Fama and French (2008)

distinguish microcap stocks in asset pricing tests. Following Fama and French, stocks below the

20th of NYSE market value percentile are defined as microcap stocks. In addition, we also use the

4× 5 MV&B/M -sorted portfolios formed by independent double sort (4 MV portfolios by 5 B/M

portfolios). We conduct comparative tests between our model and the CCAPM using the following

cross-section regressions:

Rp, t −Rf, t = γ0 + γ1βRp,c + εp,t, (17)

Rp, t −Rf, t = γ0 + γ1tcp, t + γ2βRp,c + γ3βTCp,c + εp,t, (18)

where Rp, t − Rf, t is the quarter t return of portfolio p in excess of the risk-free rate, βRp,c is the

consumption beta, tcp, t is the transaction costs of portfolio p, and βTCp,c is the liquidity beta.

Consumption beta is estimated through a time-series regression of excess return on consumption

growth as in Eq. (13). Liquidity beta is estimated through a time-series regression of the liquidity

innovation on consumption growth as in Eq. (14). We estimate the consumption beta and liquidity

beta over the full sample period, e.g., Lettau and Ludvigson (2001) and Acharya and Pedersen

(2005), unless noted otherwise. Kandel and Stambaugh (1995) show that the sample cross-sectional

R-square has the following form:

R2 = 1 − ε̄′wWε̄w
ε̄′0Wε̄0

, (19)
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where ε̄0 is the deviations of mean sample returns from their cross-sectional average, ε̄′wWε̄w is the

aggregate pricing-error measure, and W is the N×N symmetric positive-definite weighting matrix.

However, the adjusted R-square may be better for our study as the number of explanatory variables

differ between the CCAPM and the liquidity-adjusted model. Thus, we rely on the adjusted R-

square in our tests.11

Figure 2 plots the adjusted R-squares for the CCAPM and our model.12 It shows that, across the

board, the fraction of cross-sectional return variations explained by the liquidity-adjusted model is

larger than that explained by the CCAPM. For instance, for the 20 B/M -sorted portfolios, 87.79%

(with cGibbs) and 86.46% (with CSspread) average return variations are explained by our model,

while 28.19% (with cGibbs) and 30.09% (with CSspread) are explained by the CCAPM.13

4.2. Fitted versus realized returns

Figure 3 plots the realized average excess returns and the fitted excess returns. The realized

average returns are the time-series average returns in excess of the risk-free rate. The fitted excess

expected returns for the CCAPM are calculated as the fitted value from Eq. (17). The fitted excess

expected returns for our liquidity-adjusted model are calculated as the fitted value from Eq. (18).

The points in Figure 3 represent the 20 MV -sorted, B/M -sorted, MV&B/M -sorted, DV -sorted,

RV -sorted, LM -sorted, cGibbs-sorted, and CSspread-sorted portfolios, respectively. The vertical

distance of these points to the 45 degree line represents the pricing errors. Figure 3 shows that,

11Results are similar if using the sample cross-sectional R-square of Kandel and Stambaugh (1995).
12We also separately examine the impact of transaction costs and liquidity betas on the improvement of the goodness-of-

fit. Specifically, we estimate the adjusted R-square of our model by excluding transaction costs or liquidity betas from the
model. We find that the improvement in the model’s fit, relating to transaction costs and liquidity betas, varies between test
portfolios and transaction costs measures. For example, liquidity betas contribute more to the fit than transaction costs for the
4× 5 MV&B/M test portfolios under the CSspread measure (the CCAPM with liquidity betas has the adjusted R-square of
50.26%, while the R-square with transaction costs is 27.51%), while transaction costs contribute more to the fit than liquidity
betas for the 20 MV test portfolios under the cGibbs measure (the CCAPM with transaction costs has the adjusted R-square
of 68.32%, while the R-square with liquidity betas is 48.48%).

13When using cGibbs (CSspread) as the costs measure, stocks are required to have the cGibbs (CSspread) data available
in order to construct the testing portfolios, which leads to slightly different R-squares of the CCAPM.
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overall, the pricing errors associated with the liquidity-adjusted model are smaller than those associ-

ated with the CCAPM. For each set of test portfolios, Figure 3 shows that the CCAPM mispricing

is especially more manifest for the smallest and biggest size portfolios, the highest and lowest

book-to-market ratios portfolios, and the most illiquidity and liquidity portfolios. By contrast, the

liquidity-adjusted model shortens the vertical distance for above portfolios. To provide numerical

descriptions in addition to Figure 3, we also measure the magnitudes of mean squared pricing errors

for each set of the test portfolios for the CCAPM and the liquidity-adjusted model, and results are

shown in Figure A.1. We find that the liquidity-adjusted model exhibits smaller pricing errors than

the traditional CCAPM. For example, the mean squared pricing errors of the MV -sorted portfolios

are 0.109% using the cGibbs measure and 0.114% using the CSspread measure for the CCAMP,

while they are 0.044% under the cGibbs measure and 0.061% under the CSspread measure for

the liquidity-adjusted model. That is, the CCAPM pricing errors tend to be larger than the ones

associated with our liquidity-adjusted model, especially for the polar portfolios.

We also use the quoted bid-ask spread (BA) of Amihud and Mendelson (1986), the dollar volume

measure (DV ) of Brennan et al. (1998), the price impact measure (RV ) of Amihud (2002), and the

trading discontinuity measure (LM) of Liu (2006) as alternative measures for testing the R-squares

and mean squared pricing errors. Because these alternatives do not measure transaction costs

directly, we adjust these proxies in our tests following Acharya and Pedersen’s (2005) adjustment to

RV . Overall, we find that the results based on these alternative measures are consistent with those

using the cGibbs and CSspread measures. In the robustness check section, we report the results

based on the adjusted Amihud (2002) measure to proxy for transaction costs.
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4.3. Consumption beta and liquidity beta

Central to our model is the component of liquidity risk in addition to consumption risk. Thus,

we estimate the liquidity beta together with the consumption beta, using cGibbs and CSspread

as transaction costs measures, for the 20 MV -sorted, B/M -sorted, MV&B/M -sorted, DV -sorted,

RV -sorted, LM -sorted, cGibbs-sorted, and CSspread-sorted portfolios, respectively. We report the

results in Table 2.

We find that consumption betas are related to firm size, where small (large) stocks have high

(low) consumption betas. However, consumption betas for the 20 B/M portfolios exhibit a counter

intuitive pattern, where low (high) B/M stocks have high (low) consumption betas. Similarly, we

also observe that the consumption beta for the lowest LM portfolio is larger than the highest LM

portfolio. These paradoxical patterns of consumption betas across B/M -sorted and LM -sorted

portfolios suggest that the CCAPM has difficulties in explaining the value and liquidity premiums.

In contrast, the liquidity beta exhibits a consistent tendency: high-B/M and high-LM stocks appear

to have large and significant liquidity betas, whereas low-B/M and low-LM stocks tend to have

small and insignificant liquidity betas.14

4.4. Liquidity risk and expected returns

In this sub-section we examine whether stocks with high liquidity betas are related to high

expected returns, as indicated by our liquidity-adjusted CCAPM. To test this, we run the following

cross-section regression:

Rp, t −Rf, t = γ0 + γ1tc
?
p,t + γ2βRp,c + γ3βTCp,c + εp,t, (20)

14The effect of illiquidity is, however, non-linear. For example, Table 2 shows that the smallest MV and the largest
B/M portfolios have higher liquidity betas, while the loadings are flat across the middle. In unreported results, we find that
the patterns of liquidity betas are related to the patterns of transaction costs, which show the small variations across these
portfolios.
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where Rp, t − Rf, t is the quarterly return of portfolio p in excess of the risk-free rate, tc?p,t is the

transaction costs of portfolio p orthogonalized to liquidity beta (i.e., tc?p,t is the residual from re-

gressing transaction costs against liquidity betas), βRp,c is the consumption beta, and βTCp,c is the

liquidity beta. Acharya and Pedersen (2005) argue that liquidity level can be correlated with liq-

uidity risk. Thus, the orthogonalization of transaction costs to liquidity beta is to mitigate the

potential multicollinearity issue.15 Table 3 shows that the coefficients for the liquidity beta are

significantly positive after controlling for transaction costs for all the test portfolios, except for the

CSspread-sorted portfolios; while none of the coefficients for the consumption beta are positively

significant, which is consistent with early studies that the CCAPM does a poor job in explaining

cross-sectional stock returns. In addition, transaction costs appear to be insignificantly related to

returns, consistent with Liu (2010) that transaction costs lack significant power to predict returns

beyond liquidity risk.

As an alternative, we also run the following cross-section regression:

Rp, t −Rf, t = γ0 + γ1βRp,c + γ2βTCp,c + εp,t, (21)

where the notations are the same as the ones in Eq. (20). We find consistent results (untabulated)

that the coefficients of the liquidity beta are significantly positive, indicating that high liquidity risk

generally commands high expected returns, but consumption beta again shows no or even negative

return predictability.

15We find that the spearman rank correlation between transaction costs and liquidity betas is 0.263 and 0.358 using the
effective trading costs estimate (cGibbs) of Hasbrouck (2009) and the bid-ask spread estimate (CSspread) of Corwin and
Schultz (2012).
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4.5. Time-varying risk and risk premium

Watanabe and Watanabe (2008) and Akbas et al. (2010) highlight the importance of time-

varying liquidity risk in asset pricing. Lettau and Ludvigson (2001) and Akbas et al. (2010) argue

that the returns of value and growth stocks are related to time-varying risks. Following these

studies, we examine the time-varying liquidity betas for value and growth stocks in this sub-section.

Figure 4 plots the average rolling liquidity betas for growth and value stocks in bad and good

states. The rolling liquidity betas for each stock are estimated from the 10-year rolling regressions

based on Eq. (14). The plotted rolling liquidity betas are the cross-sectional time-series averages

for the lowest (growth) and highest (value) B/M portfolios. We use NBER recession periods to

identify bad states and other periods as good states. Figure 4 shows that liquidity betas of value

stocks are higher than growth stocks, especially in bad times. The low liquidity betas of growth

stocks suggest that investors price growth stocks relatively high in economic downturns, in line with

the notation of flight to liquidity.

However, this may vary among value stocks. Consider two types of value firms: troubled firms

with high B/M ratio who are especially bad during bad times; boring firms with few growth

opportunities. Boring stocks are not necessarily costly to trade, even comparing to growth stocks.

To test this, we use the payout ratio (PR) to sort value stocks into troubled and boring ones. Payout

ratio is measured as the total distributions including dividends paid to preferred stocks, common

stocks, and share repurchases divided by the operating income before depreciation. Specifically,

value stocks with a high PR ratio (top 1/3) are identified as boring firms, which are firms that,

despite of having low growth opportunities, generate a stable income and maintain a high payout.

Value stocks with a low PR ratio (bottom 1/3) are classified as troubled firms.

20



We find that troubled firms have significantly higher liquidity betas than boring firms. For

example, using the effective trading costs estimate (cGibbs) of Hasbrouck (2009), the liquidity

beta difference between troubled and boring value firms is 0.089 (t=9.57), implying that troubled

firms are exposed to higher liquidity risk than boring ones. We also find that troubled firms have

significantly higher liquidity betas than growth firms. Comparing liquidity betas between boring

firms and growth firms, we find somewhat mixed evidence. Boring firms have higher liquidity betas

than growth firms under the cGibbs measure but lower liquidity betas under the CSspread measure.

Overall, trading costs of value stocks are, in general, more sensitive to consumption variations than

growth stocks, but the higher liquidity risk exposure is mainly applied to the troubled value stocks,

and boring value stocks are not necessarily riskier. Troubled firms also earn higher returns than

boring firms, though the difference is statistically insignificant.

In Figure 5, we plot the rolling estimates of liquidity betas over time for the lowest and the

highest B/M portfolios. The time-varying feature of liquidity risk is apparent. Value stocks, for

example, exhibit high exposure to liquidity risk following the 1973 oil crisis, the 1990 Gulf war, and

the 2007 financial crisis. We also study the paths of time-varying risk premium, following Ferson

and Harvey (1991, 1999), Lewellen and Nagel (2006), and Gagliardini et al. (2012). Specifically, we

estimate the risk premium based on the following two equations:

Ri, t −Rf, t = γ0 + γ1, tβRi,c,t + εi,t, (22)

Ri, t −Rf, t = γ0 + γ1, tβTCi,c,t + εi,t, (23)

where Ri, t − Rf, t is the return of portfolio i in excess of the risk-free rate, βRi,c,t is the rolling

consumption beta, and βTCi,c,t is the rolling liquidity beta. We estimate the rolling consumption

beta and liquidity beta for each stock using prior 10-year observations.
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Figure 6 shows that the consumption risk premium is small (average 0.07% per quarter) and does

not vary much over time, indicating that the traditional CCAPM has limited power in describing

the time variation in expected stock returns. In contrast, the liquidity risk premium exhibits

a countercyclical pattern, i.e., high in economic recessions, which is consistent with the path of

time-varying equity premium documented by Kandel and Stambaugh (1990) and Harvey (1989).

Overall, empirical results in this section support our model that sensitivity of transaction costs to

consumption fluctuations commands a significant premium, and the liquidity adjustment improves

the power of the CCAPM to explain cross-section stock returns.

5. Robustness tests

In this section we test the robustness of our results by examining the R-squares of cross-sectional

regressions relying on the industry-extended test portfolios together with different ways of measuring

consumption growth.

First, Lewellen et al. (2010) argue that the tight factor structure of size and book-to-market

portfolios tends to be less powerful in rejecting misspecified asset pricing models and results in high

R-squares in cross-sectional tests. They advocate that asset pricing tests should incorporate other

set of portfolios to disintegrate the structure of size and book-to-market portfolios. Following their

study, we expand each set of the 20 test portfolios examined earlier with 10 industry portfolios and

report the results in Panel A of Table 4. It shows that a greater proportion of cross-sectional varia-

tion in expected returns can be explained by the liquidity-adjusted CCAPM than the CCAPM. For

example, for the set of the 20 MV -sorted portfolios plus the 10 industry portfolios, the liquidity-

adjusted model explains 55.69% (with cGibbs) and 61.73% (with CSspread) cross-sectional return
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variations, while the CCAPM explains 30.19% (with cGibbs) and 25.89% (with CSspread) varia-

tions.16

Second, Parker and Julliard (2005) measure the systematic risk as the sensitivity of returns to

future and contemporaneous consumption. Following Parker and Julliard, we measure consumption

risk by using the consumption growth of nondurable goods over 11 quarters (S = 11) to test the

CCAPM and the liquidity-adjusted model. Table 4 Panel B shows that the liquidity-adjusted

model does a better job than the CCAPM in explaining the cross-sectional return variations. For

instance, for the 20 B/M -sorted portfolios the CCAPM explains 46.88% (with cGibbs) and 54.43%

(with CSspread) cross-sectional return variations, whereas the liquidity-adjusted model explains

larger proportions of the return variations (71.89% with cGibbs and 66.49% with CSspread).

Third, Yogo (2006) highlights the role of durable consumption in explaining the cross-sectional

and time-varying expected returns. Following his method, we substitute the total consumption

growth (durable and nondurable) for the consumption growth of nondurable goods and services

(similarly, Parker and Julliard (2005) also apply this alternative). Table 4, Panel C reports the

results and shows that the liquidity-adjusted model performs better than the CCAPM. Take the

20 RV -sorted portfolios for example, with cGibbs as the transaction costs measure, the liquidity-

adjusted model adds 15% additional explanatory power to the return variations, compared to the

CCAPM.

Fourth, Jagannathan and Wang (2007) show that the fourth-to-fourth quarter consumption

growth has high explanatory power to cross-sectional return variations, since investors are more

16A number of studies such as Lettau and Ludvigson (2001), Parker and Julliard (2005), Jagannathan and Wang (2007),
Acharya and Pedersen (2005), and Sadka (2006) compare R-squares without testing the significance of their differences. Kan,
Robotti, and Shanken (2013) argue that it is important to test whether the seemingly better performance of one model over
another is statistically significant. Their tests are, however, based on nested or non-nested factor models, while our model
makes a transaction costs adjustment to the CCAPM and does not have an aggregate liquidity risk factor. Hence, consumption
betas and liquidity betas in our study are estimated based on the same factor, i.e., consumption growth. As a result, the
difference test of R-squares proposed in Kan, Robotti, and Shanken (2013) is not directly applicable to our study.
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prone to reappraise consumption and investment decisions during the fourth quarter. Following

Breeden et al. (1989) and Jagannathan and Wang (2007), we construct a mimicking fourth-to-fourth

quarter consumption growth factor using the maximum-correlation portfolio (MCP) approach. We

run regression of the demeaned fourth-to-fourth quarter consumption growth on annual excess

returns of the 2 × 3 equally-weighted MV&B/M -sorted portfolios to obtain the MCP weights.17

We then replace the consumption growth of nondurable goods and services with the MCP. Results

in Table 4, Panel D show that the liquidity-adjusted model explains a larger fraction of return

variations than the CCAPM. For instance, for the 20 MV -sorted portfolios, the explanatory power

increases to 86.24% (with cGibbs) and 90.17% (with CSspread) for the liquidity-adjusted model,

while they are 68.29% (with cGibbs) and 66.38% (with CSspread) for the CCAPM.

Fifth, similar to Acharya and Pedersen (2005), we calculate the net beta (the sum of consumption

and liquidity betas) and then regress returns on the net beta. We further cap the transaction costs

(cGibbs and CSspread) at a maximum value of 30% to ensure that our results are not driven by the

extreme observations of transaction costs. Table 4, Panels E and F show that the liquidity-adjusted

model generally exhibits better fits than the CCAPM.

Finally, following Acharya and Pedersen (2005) we adjust the price impact measure (RV ) of

Amihud (2002) based on the following equation:

cRVi,t = min(0.25 + 0.30RVi,tPt−1, 30.00), (24)

where Pt−1 denotes the ratio of the market cap of the market portfolio at the end of month t − 1

to the market cap of the market portfolio at the end of January 1950. We use the adjusted RV ,

cRV , to proxy for transaction costs. The last two columns of Table 4 report the results of various

17Returns of the 2 × 3 equally-weighted MV&B/M -sorted portfolios are from Kenneth French’s website:
http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/.
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robustness tests using the cRV measure and provide further evidence corroborating the liquidity-

adjusted model, which has higher R2’s than the CCAPM except for two of the 24 cases considered.18

6. Conclusion

Motivated by recent studies showing the importance of liquidity in asset pricing, we propose a

liquidity adjustment to the consumption-based capital asset pricing model (CCAPM). In addition

to the traditional CCAPM risk (i.e., the covariance between asset return and consumption growth),

the liquidity-adjusted model suggests that expected return is also associated with transaction costs

and liquidity risk (the covariance between transaction costs and consumption growth). This is

because high sensitivity of transaction costs to fluctuations in consumption implies the difficulty to

convert investment into cash for consumption or honoring obligations. Investors, therefore, demand

high expected return to compensate for high liquidity risk. Our model suggests that neglecting

transaction costs and liquidity risk would lead to inaccurate estimate of expected return.

Empirically, we find that the average stock is positively exposed to liquidity risk, and the sen-

sitivity of trading costs to consumption variations is significantly related to returns. The evidence

indicates that the traditional CCAPM underestimates risk and expected return on average. This

also potentially explains why the performance of the CCAPM is empirically poor. In fact, we

find consistent results with previous studies that consumption risk shows limited power to describe

cross-sectional returns. Supportively, we show that the liquidity-adjusted CCAPM explains a larger

fraction of the cross-sectional return variations. Our study extends the existing theoretical and em-

pirical support of liquidity in asset pricing.

18Since cRV is capped at 30% according to Eq. (24), the results of the cRV measure in Panels E and F are identical.
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Gârleanu, N., Pedersen, L. H., 2013. Dynamic trading with predictable returns and transaction
costs. Journal of Finance 68, 2309–2340.

Hansen, L. P., Heaton, J. C., Li, N., 2008. Consumption strikes back? Measuring long-run risk.
Journal of Political Economy 116, 260–302.

Harvey, C. R., 1989. Time-varying conditional covariances in tests of asset pricing models. Journal
of Financial Economics 24, 289–317.

Hasbrouck, J., 2004. Liquidity in the futures pits: Inferring market dynamics from incomplete data.
Journal of Financial and Quantitative Analysis 39, 305–326.

Hasbrouck, J., 2009. Trading costs and returns for U.S. equities: Estimating effective costs from
daily data. Journal of Finance 64, 1445–1477.

Jacoby, G., Fowler, D. J., Gottesman, A. A., 2000. The capital asset pricing model and the liquidity
effect: A theoretical approach. Journal of Financial Markets 3, 69–81.

Jagannathan, R., Wang, Y., 2007. Lazy investors, discretionary consumption, and the cross-section
of stock returns. Journal of Finance 62, 1623–1661.

27



Jang, B. G., Koo, H. K., Liu, H., Loewenstein, M., 2007. Liquidity premia and transaction costs.
Journal of Finance 62, 2329–2366.

Kan, R., Robotti, C., Shanken, J., 2013. Pricing model performance and the two-pass cross-sectional
regression methodology. Journal of Finance 68, 2617–2649.

Kandel, S., Stambaugh, R. F., 1990. Expectations and volatility of consumption and asset returns.
Review of Financial Studies 3, 207–232.

Kandel, S., Stambaugh, R. F., 1995. Portfolio inefficiency and the cross-section of expected returns.
Journal of Finance 50, 157–184.

Kang, W., Li, N., 2011. Liquidity premium and consumption. Working Paper.

Lagos, R., 2010. Asset prices and liquidity in an exchange economy. Journal of Monetary Economics
57, 913–930.

Lettau, M., Ludvigson, S., 2001. Resurrecting the (C)CAPM: A cross-sectional test when risk
premia are time-varying. Journal of Political Economy 109, 1238–1287.

Lewellen, J., Nagel, S., 2006. The conditional CAPM does not explain asset-pricing anomalies.
Journal of Financial Economics 82, 289–314.

Lewellen, J., Nagel, S., Shanken, J., 2010. A skeptical appraisal of asset pricing tests. Journal of
Financial Economics 96, 175–194.

Lintner, J., 1965. Security prices, risk, and maximal gains from diversification. Journal of Finance
20, 587–615.

Liu, W., 2006. A liquidity-augmented capital asset pricing model. Journal of Financial Economics
82, 631–671.

Liu, W., 2010. Liquidity risk and asset pricing: Evidence from daily data, 1926–2009. Working
Paper, University of Nottingham.

Lo, A. W., Mamaysky, H., Wang, J., 2004. Asset prices and trading volume under fixed transactions
costs. Journal of Political Economy 112, 1054–1090.

Lucas, Robert E., J., 1978. Asset prices in an exchange economy. Econometrica 46, 1429–1445.

Lynch, A. W., Tan, S., 2011. Explaining the magnitude of liquidity premia: The roles of return
predictability, wealth shocks, and state-dependent transaction costs. Journal of Finance 66, 1329–
1368.

Márquez, E., Nieto, B., Rubio, G., 2014. Stock returns with consumption and illiquidity risks.
International Review of Economics and Finance 29, 57–74.

Merton, R. C., 1969. Lifetime portfolio selection under uncertainty: The continuous-time case. The
Review of Economics and Statistics 51, 247–257.

28



Næs, R., Skjeltorp, J. A., Ødegaard, B. A., 2011. Stock market liquidity and the business cycle.
Journal of Finance 66, 139–176.

Parker, J. A., Julliard, C., 2005. Consumption risk and the cross section of expected returns. Journal
of Political Economy 113, 185–222.

Pastor, L., Stambaugh, R. F., 2003. Liquidity risk and expected stock returns. Journal of Political
Economy 111, 642–685.

Petkova, R., Zhang, L., 2005. Is value riskier than growth? Journal of Financial Economics 78,
187–202.

Roll, R., 1984. A simple implicit measure of the effective bid-ask spread in an efficient market.
Journal of Finance 39, 1127–1139.

Rubinstein, M., 1976. The valuation of uncertain income streams and the pricing of options. Bell
Journal of Economics and Management Science 7, 407–425.

Sadka, R., 2006. Momentum and post-earnings-announcement drift anomalies: The role of liquidity
risk. Journal of Financial Economics 80, 309–349.

Samuelson, P. A., 1969. Lifetime portfolio selection by dynamic stochastic programming. Review of
Economics and Statistics 51, 239–246.

Savov, A., 2011. Asset pricing with garbage. Journal of Finance 66, 177–201.

Sharpe, W. F., 1964. Capital asset prices: A theory of market equilibrium under conditions of risk.
Journal of Finance 19, 425–442.

Vayanos, D., 1998. Transaction costs and asset prices: a dynamic equilibrium model. Review of
Financial Studies 11, 1–58.

Watanabe, A., Watanabe, M., 2008. Time-varying liquidity risk and the cross section of stock
returns. Review of Financial Studies 21, 2449–2486.

Yogo, M., 2006. A consumption-based explanation of expected stock returns. Journal of Finance
61, 539–580.

29



Table 1

Descriptive statistics

Panel A: market variables

MV($m) B/M DV($000) RV(106) LM cGibbs(%) CSspread(%)

Descriptive statistics

Mean 1636.576 1.066 −7389.917 4.770 10.352 0.782 1.300

SD 9540.065 5.273 45820.669 34.176 26.028 0.999 2.291

Spearman rank correlation

B/M −0.359 1

DV −0.899 0.343 1

RV −0.940 0.317 0.967 1

LM −0.506 0.205 0.735 0.655 1

cGibbs −0.680 0.207 0.611 0.691 0.252 1

CSspread −0.627 0.244 0.529 0.605 0.188 0.705 1

Panel B: consumption growth, consumption beta, and liquidity beta

∆C(%) ∆CS(%) ∆CT (%) ∆CQ4(%) βR,c βcGibbsTC,c βCSspreadTC,c

Descriptive statistics

Mean 0.511 4.138 0.545 2.065 3.908 0.107 0.396

SD 0.498 3.255 0.860 1.417 23.589 0.674 2.721

Panel A of this table reports descriptive statistics and correlations for the following variables:

MV ($m): market capitalization measured in millions of dollars;

B/M : book-to-market ratio;

DV ($000): negative average daily dollar volume over the prior 12 months, where daily dollar volume is the number of shares
traded on a day times the closing price on that day;

RV (106): daily ratio of the absolute return on a day to the dollar volume on that day averaged over the prior 12 months;

LM : standardized turnover-adjusted number of zero daily trading volumes over the prior 12 months;

cGibbs(%): Hasbrouck’s (2009) effective transaction costs measure, which is estimated using daily closing prices in the prior
12 months (at least 60 reported trading prices);

CSspread(%): the bid-ask spread estimates using daily high and low prices by Corwin and Schultz (2012).

The B/M -related results are determined based on positive B/M stocks. The calculations of DV and LM require no missing
daily trading volumes in the prior 12 months. The calculation of RV requires that there are at least 80% non-missing daily
trading volumes available in the prior 12 months. Note that the calculation of RV excludes zero trading volumes over the
prior 12 months. At the end of each month from January 1950 to December 2009, cross-sectional averages for each variable
are calculated over NYSE/AMEX stocks. The reported mean and standard deviation are based on these time-series cross-
sectional averages. Likewise, at the end of each month from January 1950 to December 2009, the cross-sectional Spearman
rank correlations are computed, and the time-series average of those correlations are reported. Panel B reports the various
consumption growth measures in percentage form and the estimated individual consumption beta and liquidity beta. The

symbol ∆C stands for the consumption growth of nondurable goods and services, ∆CS for the consumption growth of

nondurable goods over 11 quarters (S = 11), ∆CT for the total consumption growth, and ∆CQ4, the fourth-to-fourth quarter
(Q4-Q4) consumption growth based on nondurable goods and services. We use two linear functions of the nondurable goods
and services consumption growth to estimate the consumption beta and liquidity beta:

Ri,t −Rf,t = αi,c + βRi,c∆Ct + εi,t,

−ui,t = αi,tc + βTCi,c∆Ct + εi,t,

where Ri, t − Rf, t is the return in quarter t of stock i in excess of the risk-free rate, ∆C is the consumption growth of
nondurable goods and services, and ui,t is the residual of the following regression:

tci,t = αi,0 + αi,1tci,t−1 + ui,t,

where tc is either cGibbs or CSspread.
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Table 2

The consumption beta and liquidity beta

Panel A: cGibbs as a measure of transaction costs

MV -sorted portfolios

MV1 MV2 MV3 MV4 MV5 MV6 MV7 MV8 MV9 MV10

MV11 MV12 MV13 MV14 MV15 MV16 MV17 MV18 MV19 MV20

βRp,c 4.740 4.795 4.217 4.393 3.941 3.341 4.189 3.451 3.500 2.818

(1.72) (2.35) (2.14) (2.46) (2.22) (2.01) (2.64) (2.21) (2.29) (1.91)

3.065 3.212 2.418 2.525 2.830 2.816 2.613 2.571 2.260 2.781

(2.17) (2.39) (1.83) (2.04) (2.29) (2.30) (2.25) (2.31) (2.20) (2.78)

βTCp,c 0.473 0.321 0.227 0.221 0.130 0.086 0.080 0.057 0.037 0.050

(3.04) (2.98) (2.41) (2.56) (1.62) (1.16) (1.17) (0.87) (0.58) (0.82)

0.020 0.051 0.030 0.049 0.041 0.051 0.061 0.054 0.060 0.067

(0.32) (0.84) (0.48) (0.82) (0.68) (0.85) (1.01) (0.89) (0.99) (1.11)

B/M -sorted portfolios

B/M1 B/M2 B/M3 B/M4 B/M5 B/M6 B/M7 B/M8 B/M9 B/M10

B/M11 B/M12 B/M13 B/M14 B/M15 B/M16 B/M17 B/M18 B/M19 B/M20

βRp,c 4.272 3.356 3.620 3.606 3.416 3.458 3.670 3.090 3.082 2.731

(2.81) (2.41) (2.66) (2.66) (2.60) (2.62) (2.77) (2.44) (2.36) (2.05)

2.793 3.077 3.589 2.919 2.310 2.998 3.093 2.553 2.859 3.690

(2.13) (2.30) (2.74) (2.16) (1.64) (2.09) (2.02) (1.53) (1.54) (1.51)

βTCp,c 0.087 0.100 0.044 -0.009 0.003 0.032 0.023 0.009 0.012 0.053

(1.23) (1.46) (0.69) (-0.13) (0.04) (0.47) (0.33) (0.13) (0.16) (0.76)

0.008 0.032 0.010 0.050 0.099 0.084 0.151 0.136 0.190 0.289

(0.12) (0.45) (0.14) (0.71) (1.43) (1.08) (2.01) (1.69) (2.22) (2.65)

4× 5 MV&B/M portfolios

S1B1 S1B2 S1B3 S1B4 S1B5 S2B1 S2B2 S2B3 S2B4 S2B5

S3B1 S3B2 S3B3 S3B4 S3B5 S4B1 S4B2 S4B3 S4B4 S4B5

βRp,c 5.371 4.394 3.547 3.968 3.455 3.310 3.692 3.127 2.386 2.503

(2.82) (2.73) (2.24) (2.51) (1.72) (2.14) (2.64) (2.35) (1.77) (1.43)

3.076 2.503 2.410 2.234 3.152 2.781 2.606 1.898 1.936 2.986

(2.26) (2.08) (1.98) (1.86) (2.14) (2.43) (2.46) (1.79) (1.78) (2.28)

βTCp,c 0.147 0.139 0.156 0.161 0.219 0.057 0.064 0.056 0.052 0.078

(1.61) (1.73) (2.03) (2.11) (2.62) (0.92) (1.02) (0.90) (0.84) (1.25)

0.064 0.050 0.066 0.055 0.097 0.064 0.061 0.064 0.078 0.097

(1.06) (0.81) (1.08) (0.89) (1.58) (1.06) (1.01) (1.07) (1.30) (1.59)

DV -sorted portfolios

DV1 DV2 DV3 DV4 DV5 DV6 DV7 DV8 DV9 DV10

DV11 DV12 DV13 DV14 DV15 DV16 DV17 DV18 DV19 DV20

βRp,c 4.095 3.098 2.755 2.642 2.612 2.490 3.007 2.601 2.744 2.727

(3.40) (2.53) (2.31) (2.05) (2.03) (1.88) (2.27) (1.89) (2.00) (2.02)

2.783 2.593 2.999 2.358 2.772 3.324 3.298 3.623 3.767 4.201

(1.96) (1.80) (2.05) (1.52) (1.90) (2.07) (2.12) (2.24) (2.34) (2.35)

βTCp,c 0.075 0.077 0.065 0.068 0.061 0.065 0.040 0.038 0.034 0.058

(1.22) (1.26) (1.07) (1.11) (1.00) (1.09) (0.66) (0.61) (0.55) (0.93)

0.039 0.042 0.043 0.053 0.053 0.096 0.055 0.119 0.120 0.279

(0.63) (0.67) (0.68) (0.83) (0.79) (1.43) (0.80) (1.71) (1.67) (3.08)

[Cont.]
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Table 2

Continued

RV -sorted portfolios

RV1 RV2 RV3 RV4 RV5 RV6 RV7 RV8 RV9 RV10

RV11 RV12 RV13 RV14 RV15 RV16 RV17 RV18 RV19 RV20

βRp,c 3.247 2.864 2.432 3.038 2.610 2.339 2.988 2.496 2.205 2.909

(3.11) (2.65) (2.13) (2.63) (2.10) (1.87) (2.33) (1.93) (1.65) (2.19)

2.676 3.086 2.730 3.226 3.151 3.336 2.559 2.898 3.656 4.398

(1.94) (2.14) (1.92) (2.23) (2.11) (2.15) (1.61) (1.73) (2.20) (2.20)

βTCp,c 0.073 0.062 0.078 0.050 0.067 0.066 0.042 0.058 0.047 0.042

(1.20) (1.02) (1.29) (0.83) (1.09) (1.10) (0.70) (0.94) (0.77) (0.70)

0.056 0.053 0.051 0.064 0.076 0.091 0.118 0.104 0.172 0.317

(0.92) (0.89) (0.81) (1.03) (1.21) (1.44) (1.83) (1.52) (2.55) (3.31)

LM -sorted portfolios

LM1 LM2 LM3 LM4 LM5 LM6 LM7 LM8 LM9 LM10

LM11 LM12 LM13 LM14 LM15 LM16 LM17 LM18 LM19 LM20

βRp,c 4.244 3.992 4.037 3.222 3.291 3.186 2.505 2.569 2.311 2.515

(2.18) (2.20) (2.41) (1.97) (2.13) (2.18) (1.80) (1.96) (1.85) (2.09)

2.311 2.207 3.077 2.362 2.676 3.047 3.759 3.098 3.812 3.999

(1.91) (1.80) (2.42) (1.83) (2.04) (2.16) (2.56) (2.01) (2.39) (2.61)

βTCp,c 0.060 0.006 0.004 -0.002 -0.005 0.053 0.034 0.015 0.060 0.046

(0.95) (0.09) (0.06) (-0.02) (-0.09) (0.81) (0.50) (0.23) (0.93) (0.69)

0.008 0.059 0.091 0.090 0.014 0.049 0.082 0.114 0.132 0.244

(0.12) (0.85) (1.33) (1.25) (0.19) (0.65) (1.09) (1.55) (1.70) (3.09)

cGibbs-sorted portfolios

cGibbs1 cGibbs2 cGibbs3 cGibbs4 cGibbs5 cGibbs6 cGibbs7 cGibbs8 cGibbs9 cGibbs10

cGibbs11 cGibbs12 cGibbs13 cGibbs14 cGibbs15 cGibbs16 cGibbs17 cGibbs18 cGibbs19 cGibbs20

βRp,c 2.626 2.983 2.890 2.796 2.597 2.993 2.873 2.943 2.938 2.782

(2.68) (2.71) (2.59) (2.37) (2.15) (2.37) (2.27) (2.32) (2.24) (2.08)

2.694 2.881 3.100 3.427 2.544 2.811 3.207 3.394 3.762 4.534

(2.03) (2.14) (2.23) (2.45) (1.81) (1.89) (2.05) (2.06) (2.08) (1.91)

βTCp,c 0.051 0.057 0.057 0.060 0.061 0.058 0.059 0.065 0.061 0.061

(0.83) (0.93) (0.94) (0.98) (1.00) (0.96) (0.96) (1.05) (0.99) (0.99)

0.070 0.063 0.069 0.075 0.082 0.092 0.116 0.155 0.237 0.401

(1.15) (1.03) (1.13) (1.22) (1.32) (1.47) (1.80) (2.29) (3.18) (3.38)

CSspread-sorted portfolios

CSspread1 CSspread2 CSspread3 CSspread4 CSspread5 CSspread6 CSspread7 CSspread8 CSspread9 CSspread10

CSspread11 CSspread12 CSspread13 CSspread14 CSspread15 CSspread16 CSspread17 CSspread18 CSspread19 CSspread20

βRp,c 2.533 2.144 2.254 2.482 2.772 3.086 2.772 3.496 3.267 3.302

(2.45) (1.94) (2.00) (2.21) (2.38) (2.60) (2.26) (2.75) (2.52) (2.44)

3.211 3.698 3.940 3.830 3.683 3.930 4.018 3.919 3.628 5.482

(2.30) (2.53) (2.52) (2.37) (2.16) (2.20) (2.08) (1.95) (1.47) (1.92)

βTCp,c 0.071 0.059 0.045 0.043 0.055 0.027 0.049 0.048 0.051 0.054

(1.18) (0.97) (0.73) (0.72) (0.91) (0.44) (0.80) (0.78) (0.82) (0.87)

0.042 0.050 0.075 0.079 0.105 0.165 0.246 0.292 0.304 0.500

(0.67) (0.76) (1.12) (1.17) (1.43) (2.17) (2.98) (3.10) (2.67) (2.74)

[Cont.]
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Table 2

Continued

Panel B: CSspread as a measure of transaction costs

MV -sorted portfolios

MV1 MV2 MV3 MV4 MV5 MV6 MV7 MV8 MV9 MV10

MV11 MV12 MV13 MV14 MV15 MV16 MV17 MV18 MV19 MV20

βRp,c 4.575 4.889 4.152 4.370 3.986 3.385 4.211 3.484 3.471 2.845

(1.66) (2.41) (2.10) (2.44) (2.25) (2.03) (2.64) (2.22) (2.26) (1.93)

3.073 3.244 2.491 2.471 2.768 2.814 2.626 2.598 2.250 2.786

(2.18) (2.39) (1.88) (1.98) (2.23) (2.30) (2.26) (2.33) (2.19) (2.79)

βTCp,c 1.488 0.700 0.505 0.531 0.368 0.233 0.297 0.283 0.206 0.220

(2.54) (2.85) (2.89) (3.32) (2.72) (2.01) (2.90) (2.99) (2.35) (2.46)

0.197 0.177 0.152 0.178 0.142 0.165 0.161 0.140 0.122 0.126

(2.35) (2.23) (1.76) (2.28) (1.76) (2.10) (2.04) (1.73) (1.55) (1.59)

B/M -sorted portfolios

B/M1 B/M2 B/M3 B/M4 B/M5 B/M6 B/M7 B/M8 B/M9 B/M10

B/M11 B/M12 B/M13 B/M14 B/M15 B/M16 B/M17 B/M18 B/M19 B/M20

βRp,c 4.276 3.397 3.659 3.609 3.448 3.431 3.698 3.060 3.075 2.744

(2.79) (2.43) (2.68) (2.65) (2.62) (2.60) (2.78) (2.41) (2.36) (2.06)

2.795 3.079 3.597 2.957 2.334 3.018 3.094 2.571 2.958 3.478

(2.13) (2.29) (2.74) (2.18) (1.66) (2.10) (2.02) (1.54) (1.59) (1.41)

βTCp,c 0.283 0.322 0.186 0.143 0.159 0.254 0.303 0.199 0.191 0.315

(2.52) (3.19) (2.01) (1.46) (1.40) (2.61) (2.81) (2.02) (1.86) (2.89)

0.222 0.219 0.342 0.352 0.338 0.347 0.462 0.449 0.643 0.847

(2.20) (1.85) (3.13) (3.04) (3.03) (2.53) (3.32) (2.66) (3.22) (3.11)

4× 5 MV&B/M portfolios

S1B1 S1B2 S1B3 S1B4 S1B5 S2B1 S2B2 S2B3 S2B4 S2B5

S3B1 S3B2 S3B3 S3B4 S3B5 S4B1 S4B2 S4B3 S4B4 S4B5

βRp,c 5.317 4.314 3.556 3.998 3.433 3.342 3.750 3.134 2.410 2.511

(2.78) (2.68) (2.25) (2.53) (1.70) (2.15) (2.68) (2.35) (1.79) (1.43)

3.079 2.513 2.392 2.237 3.154 2.790 2.604 1.907 1.934 2.992

(2.25) (2.09) (1.96) (1.87) (2.14) (2.43) (2.45) (1.80) (1.78) (2.29)

βTCp,c 0.555 0.406 0.361 0.512 0.676 0.220 0.240 0.220 0.241 0.317

(3.24) (2.56) (2.46) (3.64) (3.50) (2.49) (2.88) (2.79) (2.90) (3.19)

0.157 0.157 0.161 0.154 0.295 0.118 0.136 0.129 0.179 0.231

(1.97) (2.01) (2.02) (1.88) (3.24) (1.52) (1.71) (1.58) (2.27) (2.58)

DV -sorted portfolios

DV1 DV2 DV3 DV4 DV5 DV6 DV7 DV8 DV9 DV10

DV11 DV12 DV13 DV14 DV15 DV16 DV17 DV18 DV19 DV20

βRp,c 4.093 3.102 2.762 2.647 2.618 2.500 2.996 2.588 2.738 2.727

(3.39) (2.53) (2.32) (2.05) (2.03) (1.89) (2.26) (1.88) (1.99) (2.01)

2.775 2.580 3.002 2.353 2.773 3.284 3.311 3.624 3.731 4.176

(1.95) (1.79) (2.05) (1.52) (1.90) (2.03) (2.12) (2.24) (2.31) (2.35)

βTCp,c 0.146 0.155 0.137 0.181 0.150 0.188 0.155 0.159 0.136 0.223

(1.74) (1.80) (1.61) (2.25) (1.84) (2.34) (1.91) (1.90) (1.62) (2.65)

0.222 0.270 0.248 0.225 0.313 0.385 0.355 0.400 0.434 0.828

(2.45) (3.11) (2.69) (2.51) (3.28) (3.80) (3.39) (3.51) (3.45) (3.37)

[Cont.]
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Table 2

Continued

RV -sorted portfolios

RV1 RV2 RV3 RV4 RV5 RV6 RV7 RV8 RV9 RV10

RV11 RV12 RV13 RV14 RV15 RV16 RV17 RV18 RV19 RV20

βRp,c 3.248 2.865 2.446 3.036 2.616 2.332 2.995 2.489 2.204 2.885

(3.11) (2.64) (2.14) (2.62) (2.11) (1.87) (2.33) (1.92) (1.65) (2.17)

2.670 3.089 2.729 3.237 3.149 3.340 2.555 2.891 3.611 4.362

(1.93) (2.14) (1.91) (2.23) (2.11) (2.15) (1.60) (1.73) (2.17) (2.19)

βTCp,c 0.098 0.129 0.148 0.131 0.156 0.178 0.149 0.171 0.168 0.182

(1.14) (1.61) (1.86) (1.59) (1.89) (2.22) (1.88) (2.09) (2.15) (2.29)

0.227 0.219 0.265 0.272 0.314 0.279 0.360 0.346 0.476 1.034

(2.54) (2.61) (3.10) (3.09) (3.40) (3.07) (3.66) (3.20) (3.84) (3.65)

LM -sorted portfolios

LM1 LM2 LM3 LM4 LM5 LM6 LM7 LM8 LM9 LM10

LM11 LM12 LM13 LM14 LM15 LM16 LM17 LM18 LM19 LM20

βRp,c 4.169 4.002 4.036 3.231 3.260 3.175 2.506 2.553 2.313 2.507

(2.12) (2.19) (2.41) (1.97) (2.11) (2.17) (1.80) (1.95) (1.85) (2.08)

2.321 2.210 3.066 2.370 2.682 3.063 3.764 3.141 3.796 3.961

(1.91) (1.80) (2.41) (1.84) (2.05) (2.17) (2.57) (2.04) (2.38) (2.59)

βTCp,c 0.221 0.260 0.224 0.222 0.187 0.170 0.221 0.180 0.243 0.227

(2.01) (2.41) (2.05) (2.31) (1.98) (1.60) (2.24) (1.97) (2.56) (2.39)

0.136 0.262 0.228 0.247 0.118 0.299 0.321 0.448 0.353 0.720

(1.35) (2.62) (2.30) (2.38) (1.12) (2.50) (2.71) (3.60) (2.35) (3.19)

cGibbs-sorted portfolios

cGibbs1 cGibbs2 cGibbs3 cGibbs4 cGibbs5 cGibbs6 cGibbs7 cGibbs8 cGibbs9 cGibbs10

cGibbs11 cGibbs12 cGibbs13 cGibbs14 cGibbs15 cGibbs16 cGibbs17 cGibbs18 cGibbs19 cGibbs20

βRp,c 2.619 2.987 2.902 2.803 2.576 2.989 2.889 2.950 2.924 2.790

(2.66) (2.71) (2.59) (2.38) (2.13) (2.36) (2.28) (2.32) (2.23) (2.08)

2.702 2.875 3.100 3.421 2.535 2.812 3.209 3.379 3.703 4.547

(2.03) (2.13) (2.23) (2.45) (1.80) (1.89) (2.05) (2.05) (2.04) (1.90)

βTCp,c 0.114 0.142 0.143 0.173 0.141 0.166 0.169 0.212 0.234 0.207

(1.53) (1.83) (1.80) (2.08) (1.83) (1.92) (1.98) (2.53) (2.79) (2.44)

0.230 0.236 0.233 0.262 0.315 0.276 0.339 0.438 0.636 1.194

(2.69) (2.80) (2.58) (2.91) (3.53) (3.00) (3.52) (4.17) (4.69) (3.77)

CSspread-sorted portfolios

CSspread1 CSspread2 CSspread3 CSspread4 CSspread5 CSspread6 CSspread7 CSspread8 CSspread9 CSspread10

CSspread11 CSspread12 CSspread13 CSspread14 CSspread15 CSspread16 CSspread17 CSspread18 CSspread19 CSspread20

βRp,c 2.550 2.115 2.332 2.444 2.802 3.045 2.801 3.495 3.309 3.259

(2.45) (1.90) (2.06) (2.16) (2.40) (2.55) (2.26) (2.73) (2.54) (2.41)

3.192 3.788 3.960 3.833 3.765 3.913 4.018 3.934 3.600 5.219

(2.28) (2.59) (2.52) (2.36) (2.21) (2.19) (2.08) (1.96) (1.46) (1.82)

βTCp,c 0.082 0.118 0.118 0.148 0.160 0.145 0.174 0.188 0.187 0.201

(1.30) (1.68) (1.57) (1.96) (2.13) (1.86) (2.19) (2.30) (2.31) (2.43)

0.232 0.236 0.313 0.303 0.344 0.368 0.569 0.708 0.851 1.606

(2.76) (2.60) (3.47) (3.32) (3.37) (3.04) (4.02) (3.72) (3.33) (2.51)

This table reports the consumption beta and liquidity beta estimates. Consumption beta is estimated through a time-series
regression of returns in excess of the risk-free rate on consumption growth for each portfolio. Liquidity beta is estimated
through a time-series regression of liquidity innovations on consumption growth for each portfolio. Test assets are: the 20
MV -sorted portfolios, 20 B/M -sorted portfolios, 4 × 5 MV&B/M -sorted portfolios, 20 DV -sorted portfolios, 20 RV -sorted
portfolios, 20 LM -sorted portfolios, 20 cGibbs-sorted portfolios, and 20 CSspread-sorted portfolios. The symbol MV 1 (B/M1,
DV 1, RV 1, LM1, cGibbs1, and CSspread1) denotes the smallest (lowest) MV (B/M , DV , RV , LM , cGibbs, and CSspread)
vigintiles portfolio and MV 20 (B/M20, DV 20, RV 20, LM20, cGibbs20, and CSspread20) denotes the biggest (highest) MV
(B/M , DV , RV , LM , cGibbs, and CSspread) portfolio. For the 4 × 5 MV&B/M -sorted portfolios, the digit after S denotes
the size quintile (1 representing the smallest and 4 the largest), and the digit after B denotes the book-to-market quartile (1
representing the lowest and 5 the highest). Transaction costs are proxied by the effective costs estimates (cGibbs) of Hasbrouck
(2009) in Panel A and the bid-ask spread estimate (CSspread) of Corwin and Schultz (2012) in Panel B.
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Table 3

Regressions on the transaction costs, consumption beta, and liquidity beta

Panel A: cGibbs as a measure of transaction costs

20 MV -sorted portfolios γ̂1 = 0.546 (2.15) γ̂2 = −0.030% (−0.17), γ̂3 = 3.837% (1.72)

20 BM -sorted portfolios γ̂1 = 0.244 (0.86) γ̂2 = −0.529% (−2.99), γ̂3 = 5.221% (2.07)

4 × 5 MV&B/M -sorted portfolios γ̂1 = 0.116 (0.43) γ̂2 = −0.383% (−2.37), γ̂3 = 8.763% (2.09)

20 DV -sorted portfolios γ̂1 = 0.587 (1.90) γ̂2 = −0.234% (−2.12), γ̂3 = 6.746% (3.18)

20 RV -sorted portfolios γ̂1 = 0.695 (1.93) γ̂2 = −0.193% (−2.01), γ̂3 = 5.405% (2.12)

20 LM -sorted portfolios γ̂1 = 0.400 (1.55) γ̂2 = −0.437% (−2.90), γ̂3 = 6.089% (3.81)

20 cGibbs-sorted portfolios γ̂1 = 0.181 (0.79) γ̂2 = −0.159% (−1.03), γ̂3 = 4.992% (2.11)

20 CSspread-sorted portfolios γ̂1 = −0.110 (−0.50) γ̂2 = 0.121% (0.69), γ̂3 = 0.085% (0.04)

Panel B: CSspread as a measure of transaction costs

20 MV -sorted portfolios γ̂1 = 0.054 (0.33) γ̂2 = −0.022% (−0.12), γ̂3 = 1.787% (2.49)

20 BM -sorted portfolios γ̂1 = −0.038 (−0.23) γ̂2 = −0.512% (−1.99), γ̂3 = 2.706% (2.30)

4 × 5 MV&B/M -sorted portfolios γ̂1 = −0.306 (−1.24) γ̂2 = −0.373% (−1.88), γ̂3 = 2.969% (2.09)

20 DV -sorted portfolios γ̂1 = −0.002 (−0.01) γ̂2 = −0.356% (−2.42), γ̂3 = 3.077% (2.84)

20 RV -sorted portfolios γ̂1 = −0.519 (−2.18) γ̂2 = −0.201% (−1.87), γ̂3 = 2.016% (2.30)

20 LM -sorted portfolios γ̂1 = 0.053 (0.34) γ̂2 = −0.283% (−1.73), γ̂3 = 2.771% (3.85)

20 cGibbs-sorted portfolios γ̂1 = −0.039 (−0.22) γ̂2 = −0.172% (−1.20), γ̂3 = 1.851% (2.16)

20 CSspread-sorted portfolios γ̂1 = −0.036 (−0.21) γ̂2 = 0.193% (1.27), γ̂3 = 0.018% (0.02)

This table reports the coefficients from regressing the portfolio returns on the transaction costs, consumption beta,
and liquidity beta. Test portfolios are the 20 MV -sorted, 20 B/M -sorted, 4×5 MV&B/M -sorted, 20 DV -sorted, 20
RV -sorted, 20 LM -sorted, 20 cGibbs-sorted, and 20 CSspread-sorted portfolios, respectively. We run the following
Fama–MacBeth (1973) cross-sectional regression:

Rp, t −Rf, t = γ0 + γ1tc
?
p,t + γ2βRp,c + γ3βTCp,c + εp,t,

where Rp, t − Rf, t is the quarterly return of portfolio p in excess of the risk-free rate, tc?p,t is the transaction costs
of portfolio p orthogonalized to liquidity beta (i.e., tc?p,t is the residual from regressing transaction costs against
liquidity betas), βRp,c is the consumption beta, and βTCp,c is the liquidity beta. Transaction costs are proxied by
the effective costs estimates (cGibbs) of Hasbrouck (2009) in Panel A and the bid-ask spread estimate (CSspread)
of Corwin and Schultz (2012) in Panel B. Numbers in parentheses are t statistics.
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Table 4

Robustness tests on adjusted R2

cGibbs as a measure of transaction costs CSspread as a measure of transaction costs cRV as a measure of transaction costs

Traditional Liquidity-adjusted Traditional Liquidity-adjusted Traditional Liquidity-adjusted

CCAPM CCAPM CCAPM CCAPM CCAPM CCAPM

Panel A: Plus 10 industry portfolios

20 MV -sorted portfolios R2 = 30.19% R2 = 55.69% R2 = 25.89% R2 = 61.73% R2 = 25.02% R2 = 43.64%

20 B/M -sorted portfolios R2 =−3.57% R2 = 54.54% R2 =−3.55% R2 = 51.35% R2 =−3.57% R2 = 16.39%

4 × 5 MV&B/M portfolios R2 =−0.25% R2 = 31.75% R2 =−0.45% R2 = 10.89% R2 = 0.58% R2 = 5.98%

20 DV -sorted portfolios R2 = 13.05% R2 = 58.75% R2 = 12.06% R2 = 47.35% R2 = 13.18% R2 = 31.88%

20 RV -sorted portfolios R2 = 21.72% R2 = 52.76% R2 = 20.09% R2 = 44.19% R2 = 22.11% R2 = 35.66%

20 LM -sorted portfolios R2 = 0.14% R2 = 40.92% R2 = 0.53% R2 = 22.27% R2 = 1.13% R2 = 18.87%

20 cGibbs-sorted portfolios R2 = 35.00% R2 = 77.38% R2 = 33.78% R2 = 66.33% R2 = 32.48% R2 = 50.59%

20 CSspread-sorted portfolios R2 = 32.28% R2 = 40.14% R2 = 31.15% R2 = 38.43% R2 = 33.74% R2 = 36.32%

Panel B: Long-run consumption growth

20 MV -sorted portfolios R2 = 31.91% R2 = 85.67% R2 = 26.60% R2 = 72.26% R2 = 35.20% R2 = 90.31%

20 B/M -sorted portfolios R2 = 46.88% R2 = 71.89% R2 = 54.43% R2 = 66.49% R2 = 55.58% R2 = 75.93%

4 × 5 MV&B/M portfolios R2 = 16.95% R2 = 12.13% R2 = 17.98% R2 = 12.83% R2 = 17.85% R2 = 27.00%

20 DV -sorted portfolios R2 = 33.90% R2 = 76.08% R2 = 33.83% R2 = 70.36% R2 = 35.19% R2 = 53.26%

20 RV -sorted portfolios R2 = 31.28% R2 = 76.98% R2 = 32.29% R2 = 79.32% R2 = 33.73% R2 = 40.01%

20 LM -sorted portfolios R2 = 5.92% R2 = 41.00% R2 = 7.36% R2 = 37.30% R2 = 7.92% R2 = 53.67%

20 cGibbs-sorted portfolios R2 = 33.85% R2 = 91.08% R2 = 33.72% R2 = 92.40% R2 = 34.87% R2 = 94.43%

20 CSspread-sorted portfolios R2 = 37.77% R2 = 41.72% R2 = 44.92% R2 = 40.16% R2 = 53.10% R2 = 58.30%

[Cont.]
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Table 4

Continued

cGibbs as a measure of transaction costs CSspread as a measure of transaction costs cRV as a measure of transaction costs

Traditional Liquidity-adjusted Traditional Liquidity-adjusted Traditional Liquidity-adjusted

CCAPM CCAPM CCAPM CCAPM CCAPM CCAPM

Panel C: Total consumption growth

20 MV -sorted portfolios R2 = 62.91% R2 = 86.15% R2 = 60.79% R2 = 71.50% R2 = 64.85% R2 = 88.20%

20 B/M -sorted portfolios R2 = 53.47% R2 = 61.40% R2 = 60.24% R2 = 63.72% R2 = 62.04% R2 = 74.02%

4 × 5 MV&B/M portfolios R2 = 15.52% R2 = 47.32% R2 = 16.34% R2 = 51.28% R2 = 17.94% R2 = 17.23%

20 DV -sorted portfolios R2 = 40.26% R2 = 78.44% R2 = 42.16% R2 = 62.73% R2 = 44.29% R2 = 55.03%

20 RV -sorted portfolios R2 = 56.62% R2 = 71.25% R2 = 58.91% R2 = 69.82% R2 = 60.02% R2 = 56.48%

20 LM -sorted portfolios R2 = −4.07% R2 = 50.07% R2 = −3.05% R2 = 39.03% R2 =−2.55% R2 = 55.73%

20 cGibbs-sorted portfolios R2 = 76.96% R2 = 88.45% R2 = 78.61% R2 = 88.15% R2 = 77.56% R2 = 92.95%

20 CSspread-sorted portfolios R2 = 36.75% R2 = 38.00% R2 = 40.55% R2 = 49.45% R2 = 56.50% R2 = 54.16%

Panel D: Q4-Q4 consumption growth

20 MV -sorted portfolios R2 = 68.29% R2 = 86.24% R2 = 66.38% R2 = 90.17% R2 = 72.54% R2 = 92.40%

20 B/M -sorted portfolios R2 = 77.31% R2 = 82.20% R2 = 81.95% R2 = 84.85% R2 = 82.40% R2 = 86.87%

4 × 5 MV&B/M portfolios R2 = 57.77% R2 = 62.74% R2 = 59.59% R2 = 62.20% R2 = 59.09% R2 = 60.28%

20 DV -sorted portfolios R2 = 78.58% R2 = 78.93% R2 = 78.76% R2 = 81.14% R2 = 79.65% R2 = 80.08%

20 RV -sorted portfolios R2 = 73.73% R2 = 83.24% R2 = 75.69% R2 = 76.84% R2 = 77.00% R2 = 79.37%

20 LM -sorted portfolios R2 =−5.54% R2 = 36.53% R2 =−5.51% R2 = 19.87% R2 =−5.55% R2 = 43.38%

20 cGibbs-sorted portfolios R2 = 85.80% R2 = 88.59% R2 = 87.48% R2 = 90.81% R2 = 87.30% R2 = 91.60%

20 CSspread-sorted portfolios R2 = 25.99% R2 = 45.22% R2 = 28.04% R2 = 50.22% R2 = 43.85% R2 = 49.57%

[Cont.]
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Table 4

Continued

cGibbs as a measure of transaction costs CSspread as a measure of transaction costs cRV as a measure of transaction costs

Traditional Liquidity-adjusted Traditional Liquidity-adjusted Traditional Liquidity-adjusted

CCAPM CCAPM CCAPM CCAPM CCAPM CCAPM

Panel E: Net betas

20 MV -sorted portfolios R2 = 40.60% R2 = 67.57% R2 = 34.66% R2 = 72.61% R2 = 35.13% R2 = 58.33%

20 B/M -sorted portfolios R2 = 28.19% R2 = 88.23% R2 = 30.09% R2 = 82.33% R2 = 28.64% R2 = 91.04%

4 × 5 MV&B/M portfolios R2 =−5.53% R2 = 2.81% R2 =−5.47% R2 = 7.13% R2 =−5.24% R2 = 20.82%

20 DV -sorted portfolios R2 = 1.98% R2 = 81.11% R2 = 1.76% R2 = 63.27% R2 = 2.90% R2 = 54.68%

20 RV -sorted portfolios R2 = 15.34% R2 = 67.29% R2 = 16.77% R2 = 51.36% R2 = 18.27% R2 = 41.91%

20 LM -sorted portfolios R2 =−3.81% R2 = 58.07% R2 =−4.55% R2 = 37.73% R2 =−4.83% R2 = 52.12%

20 cGibbs-sorted portfolios R2 = 66.08% R2 = 87.96% R2 = 67.57% R2 = 86.69% R2 = 65.11% R2 = 90.49%

20 CSspread-sorted portfolios R2 = 36.43% R2 = 31.44% R2 = 36.08% R2 = 35.22% R2 = 40.26% R2 = 52.38%

Panel F: Net betas and capped transaction costs

20 MV -sorted portfolios R2 = 40.60% R2 = 68.64% R2 = 34.66% R2 = 67.22% R2 = 35.13% R2 = 58.33%

20 B/M -sorted portfolios R2 = 28.19% R2 = 88.27% R2 = 30.09% R2 = 84.04% R2 = 28.64% R2 = 91.04%

4 × 5 MV&B/M portfolios R2 = −5.53% R2 = 21.94% R2 = −5.47% R2 = 23.61% R2 =−5.24% R2 = 20.82%

20 DV -sorted portfolios R2 = 1.98% R2 = 80.13% R2 = 1.76% R2 = 67.72% R2 = 2.90% R2 = 54.68%

20 RV -sorted portfolios R2 = 15.34% R2 = 67.66% R2 = 16.77% R2 = 55.42% R2 = 18.27% R2 = 41.91%

20 LM -sorted portfolios R2 = −3.81% R2 = 58.30% R2 = −4.55% R2 = 40.70% R2 =−4.83% R2 = 52.12%

20 cGibbs-sorted portfolios R2 = 66.08% R2 = 88.12% R2 = 67.57% R2 = 89.23% R2 = 65.11% R2 = 90.49%

20 CSspread-sorted portfolios R2 = 36.43% R2 = 31.34% R2 = 36.08% R2 = 33.66% R2 = 40.26% R2 = 52.38%

This table reports the adjusted R-squares obtained from several robustness tests. We use three transaction costs measures: the first is the effective trading costs
measure (cGibbs) of Hasbrouck (2009), the second is the bid-ask spread estimate (CSspread) of Corwin and Schultz (2012), and the third is the adjusted price
impact measure (cRV ) in the spirit of Acharya and Pedersen (2005). Test assets are the 20 MV -sorted, 20 B/M -sorted, 4 × 5 MV&B/M -sorted, 20 DV -sorted,
20 RV -sorted, 20 LM -sorted, 20 cGibbs-sorted, and 20 CSspread-sorted portfolios, respectively, except Panel A, where we extend each set of the 20 test assets
with 10 industry portfolios. The classification of the 10 industries is based on Fama and French (1997). In Panels B, C and D, we take into account the long
run consumption growth (Parker and Julliard (2005)), the total consumption growth (Yogo (2006)) and the fourth quarter consumption growth (Jagannathan and
Wang (2007)), respectively. Specifically, in Panel B, we measure consumption risk using the 11-quarter consumption growth of nondurable goods and services.
In Panel C, we use the total consumption growth. Following Breeden et al. (1989) and Jagannathan and Wang (2007), in Panel D, we construct a mimicking
consumption growth factor using the maximum-correlation portfolio (MCP) approach. We run regression of the demeaned fourth-to-fourth quarter consumption
growth on annual excess returns of the 2 × 3 equally-weighted MV&B/M -sorted portfolios to obtain the MCP weights. We then replace the consumption growth
of nondurable goods and services with the MCP estimate. Similar to Acharya and Pedersen (2005), we, in Panel E, calculate the net beta (the combined effect of
consumption and liquidity risk) and then regress returns on the net beta. In Panel F, we further cap the transaction costs at a maximum value of 30% in addition
to using the net beta.
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Full sample

Small stocks

Large stocks

Panel A: cGibbs as a measure of transaction costs

Full sample

Small stocks

Large stocks

Panel B: CSspread as a measure of transaction costs

Fig. 1. This figure plots the standardized liquidity innovations. The shaded regions are recession periods defined by the
National Bureau of Economic Research (NBER). The innovation in market liquidity (um,t) is the residual of the following
regression:

tcm,t = α0 + α1tcm,t−1 + um,t,
where tcm,t denotes the average of the transaction costs measures over the sample stocks in quarter t. The time series
of liquidity innovation are scaled to have zero mean and unit standard deviation. We also plot the standardized liquidity
innovations for subsamples classified by market values. Small stocks are those in the smallest of the 20 MV -sorted portfolios.
Big stocks are those in the biggest of the 20 MV -sorted portfolios. Transaction costs are proxied by the effective trading costs
estimate (cGibbs) of Hasbrouck (2009) in Panel A and the bid-ask spread estimate (CSspread) of Corwin and Schultz (2012)
in Panel B.
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Panel A: cGibbs as a measure of transaction costs

Panel B: CSspread as a measure of transaction costs

Fig. 2. This figure plots the adjusted R-squares for the traditional CCAPM and the liquidity-adjusted model. Test
assets are the 20 MV -sorted, 20 B/M -sorted, 4× 5 MV&B/M -sorted, 20 DV -sorted, 20 RV -sorted, 20 LM -sorted,
20 cGibbs-sorted, and 20 CSspread-sorted portfolios, respectively. Transaction costs are proxied by the effective
trading costs estimate (cGibbs) of Hasbrouck (2009) in Panel A and the bid-ask spread estimate (CSspread) of
Corwin and Schultz (2012) in Panel B.
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Panel A: cGibbs as a measure of transaction costs

The traditional CCAPM
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The liquidity-adjusted CCAPM
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Panel B: CSspread as a measure of transaction costs

The traditional CCAPM
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The liquidity-adjusted CCAPM

Fig. 3. This figure plots the fitted returns versus realized returns. The horizonal axis shows the realized average excess return and the vertical axis shows
the model fitted excess return. Test assets from left to right are the 20 MV -sorted, 20 B/M -sorted, 4×5 MV&B/M -sorted, 20 DV -sorted, 20 RV -sorted,
20 LM -sorted, 20 cGibbs-sorted, and 20 CSspread-sorted portfolios, respectively. The realized average returns are the time-series average returns in
excess of the risk-free rate. The fitted excess expected returns for the CCAPM are calculated as the fitted value from Rp, t−Rf, t = γ0+γ1βRp,c+εp,t. The
fitted excess expected returns for the liquidity-adjusted CCAPM are calculated as the fitted value from Rp, t−Rf, t = γ0+γ1tci, t+γ2βRp,c+γ3βTCp,c+εp,t.
Transaction costs are proxied by the effective trading costs (cGibbs) of Hasbrouck (2009) in Panel A and by the bid-ask spread estimate (CSspread)
of Corwin and Schultz (2012) in Panel B.
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Panel A: cGibbs as a measure of transaction costs

Panel B: CSspread as a measure of transaction costs

Fig. 4. This figure plots the average rolling liquidity betas for growth and value stocks in bad and good states.
The rolling liquidity betas for each stock are estimated from the 10-year rolling regressions based on Eqs. (14) and
(15). The estimated liquidity betas are then allocated into the 20 B/M portfolios. The plotted rolling liquidity
betas are the cross-sectional time-series averages for the lowest and highest B/M portfolios. We use NBER recession
periods to identify bad states and other periods as good states. Transaction costs are proxied by the effective trading
costs estimate (cGibbs) of Hasbrouck (2009) in Panel A and the bid-ask spread estimate (CSspread) of Corwin and
Schultz (2012) in Panel B.
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Growth stocks

Value stocks

Panel A: cGibbs as a measure of transaction costs

Growth stocks

Value stocks

Panel B: CSspread as a measure of transaction costs

Fig. 5. This figure plots the average rolling liquidity betas for growth and value stocks. The shaded regions are
recession periods defined by the National Bureau of Economic Research (NBER). The rolling liquidity betas for each
stock are estimated from the 10-year rolling regressions based on Eqs. (14) and (15). The estimated liquidity betas
are then allocated into the 20 B/M portfolios. The plotted rolling liquidity betas are the cross-sectional time-series
averages for the lowest and highest B/M portfolios. Transaction costs are are proxied by the effective trading costs
estimate (cGibbs) of Hasbrouck (2009) in Panel A and the bid-ask spread estimate (CSspread) of Corwin and Schultz
(2012) in Panel B.
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Consumption risk premium

Liquidity risk premium

Panel A: cGibbs as a measure of transaction costs

Consumption risk premium

Liquidity risk premium

Panel B: CSspread as a measure of transaction costs

Fig. 6. This figure plots the risk premium. The shaded regions are recession periods defined by the National Bureau
of Economic Research (NBER). The risk premium is estimated according to the following two equations:

Ri, t −Rf, t = γ0 + γ1, tβRi,c,t + εi,t,

Ri, t −Rf, t = γ0 + γ1, tβTCi,c,t + εi,t,

where Ri, t − Rf, t is the return of portfolio i in excess of the risk-free rate, βRi,c,t is the rolling consumption beta,
and βTCi,c,t is the rolling liquidity beta. We estimate the rolling consumption beta and liquidity beta for each stock
using prior 10-year observations. Transaction costs are proxied by the effective costs estimate (cGibbs) of Hasbrouck
(2009) in Panel A and the bid-ask spread estimate (CSspread) of Corwin and Schultz (2012) in Panel B.
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APPENDIX A

In this appendix, we derive the first-order conditions of Eq. (4) using stochastic dynamic

programming. Specifically, we solve Eq. (4) backwards and explore the last two-period function

first. The last two-period function of Eq. (4) is:

I(WT−1) = max
CT−1,ωi,T−1

ET−1
[
δT−1U(CT−1) + δTB(WT )

]
= max

CT−1,ωi,T−1

δT−1U(CT−1) + ET−1
[
δTB(WT )

]
,

(A-1)

where WT = (WT−1 − CT−1)[Rf,T +
∑n

i=1 ωi,T (Ri,T − tci,T −Rf,T )].

Differentiating Eq. (A-1) with respect to CT−1 and ωi,T , we can obtain the following two first-

order conditions:

UC(CT−1) = ET−1

[
δBW (WT )

[
Rf, T +

n∑
i=1

ωi,T (Ri, T − tci, T −Rf, T )
]]

(A-2)

and

ET−1 [BW (WT )(Ri, T − tci, T −Rf, T )] = 0, (A-3)

where UC and BW are partial differentiations with respect to consumption and wealth, respectively.

Using the results of Eq. (A-3), we can rewritten Eq. (A-2) as:

UC(CT−1) = Rf, TET−1 [δBW (WT )] . (A-4)

Substituting the first-order conditions of Eqs. (A-2) and (A-3) into Eq. (A-1) and differentiating

it with respect to WT−1, we have
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IW = δT−1UC
∂C∗T−1
∂WT−1

+ ET−1

[
δTBWT

(
∂WT

∂WT−1
+

n∑
i=1

∂WT

∂ω∗i, T−1

∂ω∗i, T−1
∂WT−1

+
∂WT

∂C∗T−1

∂C∗T−1
∂WT−1

)

]

= δT−1UC
∂C∗T−1
∂WT−1

+ ET−1

[
δTBWT

{ n∑
i=1

(Ri, T − tci, T −Rf, T )(WT−1 − CT−1)
∂ω∗i, T−1
∂WT−1

+
[
Rf, T +

n∑
i=1

ωi,T (Ri, T − tci, T −Rf, T )
]
(1 −

∂C∗T−1
∂WT−1

)

}]
,

(A-5)

where C∗T−1 and ω∗i, T−1 are the representative consumer’s optimal decisions of consumption and

investment, respectively.

Using Eqs. (A-2), (A-3), and (A-4), we can simplify Eq. (A-5) as:

IW (WT−1) = δT−1UC(C∗T−1). (A-6)

Eq. (A-6) indicates that when the representative consumer optimizes her consumption and invest-

ment decisions, the marginal utility of wealth is equal to the marginal utility of current consumption.

Following the principle of optimality (Bellman (1957)), we can write the optimal decisions of

time T − 2 as:

I(WT−2) = max
CT−2, ωi, T−2

{
δT−2U(CT−2) + ET−2

[
max

CT−1, ωi, T−1

ET−1[δ
T−1U(CT−1) + δTB(WT )]

]}

= max
CT−2, ωi, T−2

δT−2U(CT−2) + ET−2 [I(WT−1)] .

(A-7)
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Note that Eq. (A-7) is similar to Eq. (A-1). Thus, by differentiating Eq. (A-7), we can have

the following first-order conditions:

IW (WT−2) = δT−2UC(C∗T−2) (A-8)

and

Rf, T−1ET−2 [IW (WT−1)] = ET−2 [(Ri, T−1 − tci, T−1)IW (WT−1)] . (A-9)

If we apply the principle of optimality to other time periods, for any t = 0, 1, ..., T − 1, we can

generalize the representative consumer’s optimal objective function as:

I(Wt) = max
Ct, ωi, t

U(Ct) + Et [δI(Wt+1)] (A-10)

Similarly, the first-order conditions are

IW (Wt) = δtUC(C∗t ) (A-11)

and

Rf, t+1Et [IW (Wt+1)] = Et [(Ri, t+1 − tci, t+1)IW (Wt+1)] . (A-12)

Substituting IW (Wt+1) = δt+1UC(C∗t+1) into Eq. (A-12) and using Eq. (A-11), we have

Et

[
δ
UC(C∗t+1)

UC(C∗t )
Rf, t+1

]
= 1 (A-13)

and

Et

[
δ
UC(C∗t+1)

UC(C∗t )
(Ri, t+1 − tci, t+1)

]
= 1. (A-14)
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APPENDIX B

In this appendix, we derive the model of Acharya and Pedersen (2005) based on the liquidity-

adjusted model (11). Following Breeden (1979) and Cochrane (2005), we assume that the return

of a market portfolio after netting out aggregate transaction costs is perfectly negatively correlated

with the marginal utility of time t + 1 consumption, i.e., Rm, t+1 − tcm, t+1 = − 1
κ
UC(C∗t+1). Rm, t+1

is the returns of market portfolio, tcm, t+1 is the aggregate transaction costs, C∗t+1 is the optimal

consumption, and κ > 0. Hence, we can have

Cov[UC(C∗t+1), Rm, t+1 − tcm, t+1] = −κV ar(Rm, t+1 − tcm, t+1) (B-1)

and

Cov[UC(C∗t+1), Ri, t+1 − tci, t+1] = −κCov(Rm, t+1 − tcm, t+1, Ri, t+1 − tci, t+1). (B-2)

We can rewrite Eq. (7) as:

E [Ri,t+1 − tci, t+1 −Rf, t+1] =
Cov[UC(C∗t+1), Ri, t+1 − tci, t+1]

E[UC(C∗t+1]
. (B-3)

Replacing Ri,t+1 − tci, t+1 with Rm, t+1 − tcm, t+1 in Eq. (B-3) and using Eq. (B-1), we have

E [Rm,t+1 − tcm, t+1 −Rf, t+1] = −κV ar(Rm, t+1 − tcm, t+1)

E[UC(C∗t+1)]
. (B-4)

Using Eqs. (B-2), (B-3), and (B-4), we have

E [Rm,t+1 − tcm, t+1 −Rf, t+1]

E [Ri,t+1 − tci, t+1 −Rf, t+1]
=

κV ar(Rm, t+1 − tcm, t+1)

κCov(Rm, t+1 − tcm, t+1, Ri, t+1 − tci, t+1)
. (B-5)

The beta representation of Eq. (B-5) has the form:
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E [Ri, t+1 −Rf, t+1] = E [tci, t+1] + E [Rm,t+1 − tcm, t+1 −Rf, t+1] (βi, 1 + βi, 2 + βi, 3 + βi, 4), (B-6)

where βi, 1 = Cov(Ri, t+1, Rm, t+1)/V ar(Rm, t+1 − tcm, t+1), βi, 2 = Cov(tci, t+1, tcm, t+1)/V ar(Rm, t+1 − tcm, t+1),

βi, 3 = Cov(−Ri, t+1, tcm, t+1)/V ar(Rm, t+1 − tcm, t+1), and βi, 4 = Cov(−tci, t+1, tcm, t+1)/V ar(Rm, t+1 − tcm, t+1).

Eq. (B-6) is the liquidity-adjusted CAPM in Acharya and Pedersen (2005).
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Panel A: cGibbs as a measure of transaction costs

Panel B: CSspread as a measure of transaction costs

Fig. A.1. This figure plots the magnitudes of mean squared pricing errors for each set of the test portfolios for
the traditional CCAPM and the liquidity-adjusted model. Test portfolios are the 20 MV -sorted, 20 B/M -sorted,
4 × 5 MV&B/M -sorted, 20 DV -sorted, 20 RV -sorted, 20 LM -sorted, 20 cGibbs-sorted, and 20 CSspread-sorted
portfolios, respectively. Transaction costs are proxied by the effective costs estimate (cGibbs) of Hasbrouck (2009)
in Panel A and the bid-ask spread estimate (CSspread) of Corwin and Schultz (2012) in Panel B.
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