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Abstract:-In modern manufacturing contexts, process monitoring is an important tool aimed at ensuring 

quality standard fulfilment whilst maximising throughput. In this work, a monitoring system comprised of an 

infrared (IR) camera was employed for tool state identification and surface roughness assessment with the 

objective of reducing environmental impacts of a milling process. Two data processing techniques, based on 

statistical parameters and polynomial fitting, were applied to the temperature signal acquired from the IR 

camera during milling operations in order to extract significant features. These features were inputted to two 

different neural network based procedures: pattern recognition and fitting, for decision making support on tool 

condition and surface roughness evaluation respectively. These capabilities are discussed in terms of reducing 

waste products and energy consumption whilst further improvingproductivity. 
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I. INTRODUCTION 

Recent decades have seen a growing understanding of the environmental impacts associated with 

global manufacturing activities, resulting in a developing field of research which seeks to reduce these impacts. 

Such research has, for example, targeted improvements in manufacturing energy efficiency [1]–[3] since this 

industry has been identified as a significant contributor to atmospheric greenhouse gases and their associated 

ramifications on global climate. Equivalent research on material efficiency, water consumption, and the 

generation of solid, liquid and other airborne waste streams, amongst others, have also become prevalent.The 

current body of research into reducing environmental impacts typically seeks to fully understand the various 

factors before developing a strategy to reduce them via either: i) physical changes to products or processes to 

improve efficiency or reduce waste; or ii) through operational or control improvements that seek to use the 

existing infrastructure more effectively. Clearly the first of these two options typically requires longer term 

investment, changes of equipment or process and is therefore more costly, whilst the second is easier, but may 

be more challenging when attempting to achieve more than incremental improvements. 

This research is concerned with the second of these two approaches, which can be easily implemented 

and yield early results, whilst physical changes can be implemented over longer time periods. However, any 

reduction in environmental impact must also preserve and enhance speed, quality or practicability of 

manufacturing products. In this context, there is the opportunity to extract information from data acquired from 

a diverse range of manufacturing processes, and use this to actively control operational parameters to improve 

the environmental performances of these processes.In this work infrared monitoring is used to investigate an 

aluminium milling process with the objective of reducing the amount of material and energy required for 

processing through the following improvements: prevention of rejects from defects (particularly for high value 

manufacturing); ensuring quality to prevent re-work; avoidance of excessive tool wear; fulfilment of surface 

integrity requirements; prediction and prevention of catastrophic failures; and reduction in processing time.All 

of these improvements not only reduce the environmental impact of the processes, but also are in line with the 

current manufacturing objectives of increasing speed, quality, reliability and cost effectiveness. 

In this paper a literature review is reported covering sustainable machining, sensor monitoring of 

machining processes, tool wear assessment and surface roughness modelling. The experimental work and the 

equipment utilised are described. Data processing procedures are illustrated, consisting of feature extraction and 

the development of a decision making support system. The results are reported and discussed from two 

perspectives: the tool state identification and surface roughness assessment.An important objective for 

sustainable machining is improving efficiency in resource utilisation and raw materials extraction. It is 

necessary to improve the proportion between incoming raw materials and outgoing products during the 

production phase which implies reducing waste and eliminating mechanical and chemical degradation of 

machined surface [1]. 
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At present, the environmental factors associated with manufacturing processes have become an 

emerging problem for manufacturers due to stricter regulations on wastes, effluents, emissions, health and 

workers’ safety [4]. Therefore, in parallel with manufacturing process optimisation, efforts must be made to 

reduce the impact of industrial activity on environment and health [5].Tool Condition Monitoring (TCM) is an 

essential part of automating modern machining processes to ensure efficiency and minimise waste [6]. The work 

of Teti et al. [7] gives a comprehensive overview of this area. The approaches to TCM are categorised as either 

“direct” or “indirect”; for direct monitoring the tool wear is measured optically or physically, whereas for 

indirect monitoring another, more accessible quantity is measured, then used to deduce the tool wear [8]. 

Common indirect measurement quantities include: cutting forces, power, temperature rise, work piece surface 

finish, vibration, and chatter [8]. Whilst direct methods often show the best accuracy, their use is typically 

restricted to the laboratory, due to practical access and illumination problems in industrial environments [7]. An 

example of such an approach is that of Kerr et al. [9], who used digital image processing techniques on a close-

up video image of a tool to monitor “on-line” tool wear (whilst the machine is running). It is vital for practical 

use in industry that any TCM system must be on-line, to prevent wasted manufacturing time [6]. For indirect 

measurements, this is made easier by the fact that the measurand can be selected such that it is not obscured by 

the work piece, chips, or cutting fluid. Often several quantities are measured simultaneously, such as in the work 

by Segreto et al. [10], who correlated measurements of force, vibration and Acoustic Emission (AE) to the wear 

level in a turning operation, or [11] who used pressure, force, vibration and AE to assess the tool condition in 

broaching operations. 

One key area of research in indirect TCM relates to the measurement of temperature. As first 

recognised by Taylor in 1907 [12], [13] this is a particularly important “tool wear indicator” [6], as heat build-

up is both a symptom and a contributing factor to tool wear [12], [13]. High temperatures in machining can 

cause problems in the work piece as well, including poor dimensional accuracy and surface finish, and residual 

stresses [12]. A thorough overview of the monitoring of temperature in material removal processes can be found 

in the work of Davies et al. [12]. Common approaches to the measurement of temperature for TCM include the 

use of resistance methods, thermocouples (such as that by Kitagawa et al. [14] and thermo-physical processes; 

however, the approach that currently has the best spatial and temporal resolution is the use of “Spectral 

Radiation Thermometry” (infrared monitoring) [12], [15]. This method, exploiting the correlation between the 

temperature of an object and the wavelength of the electromagnetic radiation energy that it emits, has a number 

of other significant advantages for the monitoring of machining processes.Chief amongst these is the remote 

nature of the measurement method, meaning that no holes or sensors need to be incorporated into the cutting 

tool, which might affect the accuracy of reading [12], [13]. This technique also looks at the local surface 

temperatures on the faces and edges of the cutting tool, which are more important than the average temperatures 

in the tool when considering tool wear [15]. 

Surface properties strongly influence the performance of a finished part. They have an enormous 

impact on features such as dimensional accuracy, friction coefficient and wear, thermal and electric resistance, 

fatigue limit, corrosion, post-processing requirements, appearance and cost [16]. The measurement of the 

surface roughness is commonly carried out off-line when the part is already machined [16] and it is often used 

as an acceptability criterion for mechanical products [17]. A review of literature highlights a wide research 

focused on surface generation to understand the process and provide the necessary knowledge to guarantee 

surface quality before the start of the metal removal operation.In terms of intelligent decision making support 

systems, neural network approach is surely one of the most reported methodologies. In particular, for surface 

roughness assessment applications, Anuj Kumar [18] describes a model for surface roughness prediction for 

turning of rolled aluminium. The model is tested by using the Analysis of variance (ANOVA) and an Artificial 

Neural Network analysis is adopted with the experimental values as input-output pairs. Otkem et al. [19] 

presents an approach for determination of the best cutting parameters leading to minimum surface roughness in 

end milling mould surfaces by coupling a genetic algorithm with neural network. Two techniques, namely 

factorial design and neural network were used in the work of Esme et al [20] for modelling and predicting the 

surface roughness of AISI 4340 steel. 

Literature also details a range of research comprising the use of neural networks applied on sensor data 

aimed at surface roughness assessment. Benardos and Vosniakos[17] propose a neural network modelling 

approach for SRP in face milling. The factors considered in the experiment were the depth of cut, the feed rate 

per tooth, the cutting speed, the engagement and wear of the cutting tool, the use of cutting fluid and the three 

components of the cutting force.An on-line surface recognition system was developed by Lee and Chen [21] 

based on artificial neural networks using a sensing technique to monitor the effect of vibration produced by the 

motions of the cutting tool and workpiece during turning processes. Tsai et al. [22] developed an in-process 

based surface recognition system. An accelerometer and a proximity sensor were employed during cutting to 

collect the vibration and rotation data, respectively. An artificial neural networks model was developed to 

predict the roughness values. Risbood et al. [23] using neural networks, predicted surface roughness within a 
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reasonable degree of accuracy by taking the acceleration of radial vibration of tool holder as a feedback.An 

intelligent sensor fusion technique to estimate on-line surface roughness during steel turning was proposed by 

Azouzi and Guillot[24] who utilised a dynamometer, an accelerometer, an acoustic emission transducer and two 

capacitance sensors to build a neural network based decision making support system. 

Another technique of surface roughness prediction has been developed by Aguiar et al. [25] using 

multi-sensor method with an AE sensor and power meter for grinding process. Acoustic emission and cutting 

power signals are shown to be very good input parameters to the neural network for surface roughness 

prediction of ground parts.Neural networks have the capability to analyse a number of measurements from a 

machining operation to provide data regarding a seemingly unrelated parameter. This removes the need for 

direct measurements and opens up opportunities for low cost, remote sensing technologies to provide critical 

data about machining condition and performance. To meet the need of manufacturers to reduce their 

environmental impacts, from the excessive use of energy and time, and to reduce the occurrence of sub-standard 

parts production, the current research is concerned with the use of remote sensing to determine tool bit and work 

piece condition, to better manage these impacts in real time. 

 

II. MATERIALS AND EXPERIMENTAL PROCEDURES 
Among several CNC industrial machining processes, milling is a fundamental machining operation. 

End milling is the most common metal removal operation encountered and is widely used in a variety of 

manufacturing industries including the aerospace and automotive sectors, where quality is an important factor in 

the production of slots, pockets, precision moulds and dies [26]. Hence in this research, an end milling process 

was selected to be monitored by use of an infrared camera for detection of tool wear state and surface finish. 

The cutting experiments were carried out on a XYZ SMX2000 CNC three-axis vertical milling 

machine, with a 2.25 kW drive motor, and a maximum spindle speed of 4200 RPM. This allowed for accurate 

control of the machining feed rate and spindle speed, whilst maintaining simplicity and ease of access for the 

infrared camera. Two Sherwood four-toothed, 12mm diameter end mills were used, made of M2 High Speed 

Steel (HSS). One of these was in a “worn” state, having been used for standard machining processes on both 

steel and aluminium; the other was unused. The work piece material was square stock, 6068 Aluminium, 

measuring 51 x 51 x 610 mm. All the machining operations were done under “dry” cutting conditions. This 

condition was chosen to ensure clean and clear results, as the addition of coolant or lubricant was found to 

interfere with the thermographic image, and dramatically reduce the temperature in the relatively low-

temperature machining of aluminium. This “dry” condition is common to many similar investigations, such as 

Lauro et al. [27], Kodácsy&Molnár[28] and Kitagawa et al. [14]. The tool was, however, allowed to cool to 

room temperature between tests to ensure a constant starting temperature. 

 

Table 1. Cutting conditions for milling tests 
Cutting conditions 

Work piece Material 6068 Aluminium 

Cutting Tool  End mill 

  Material: HSS M2 

Tool Geometry Diameter: 12 mm  

  30° Helix, 4 flutes 

Conditions Dry. Tool allowed to cool to room temperature between each test 

Wear criterion VB> 0.3 mm 

Depth of cut 0.5 mm 
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A range of feed rate and spindle speed process parameters were investigated during the experimental 

procedure, in order to evaluate their effect on the ability of the system to identify wear. The cut depth was fixed 

at 0.5 mm. The chosen experimental parameters are summarised in Table 2. These were chosen based upon the 

recommended speeds and feeds for the tool and work piece materials, adjusted due to the dry conditions. One of 

the most critical causes of tool wear in the dry machining of aluminium is the build-up of material on the tool, 

caused by excessive temperatures [6]. The lower feed rates, cut depth and spindle speeds were therefore chosen 

to avoid this situation, which would otherwise skew the results. The feed rates adopted were respectively 254, 

508 and 762 mm/min while the cutting speeds selected were 900 1200 and 1500 rpm. Fig. 1 shows the 

experimental setup used. The data acquisition was done using a Cedip Infrared Systems Silver 450M InSb type 

infrared camera, with a frame rate of 383 per second, and a calibration range of 5 to 300 C̊. 

Before commencing the experimental procedure, it was important to confirm quantitatively that the 

fresh and worn tools were in the expected state prior to machining, and that the wear on the fresh tool remained 

negligible throughout. The criteria used for determining the point at which a tool became worn was the same as 

that used by Azmi[29], who defined an end mill cutting tool as worn when it exhibited any of the following: 

“reach maximum uniform flank wear, VBmax of 0.3 mm on any cutting flute, or reach an average flank wear, 

VB of 0.3 mm on all four cutting flutes, or excessive edge, nose deformation/rounding or chipping on more than 

2 cutting flutes.” This is confirmed by Kalpakjian and Schmid[8], who define the average allowable wear land 

(VB) for end milling to be 0.3 mm. For these tests, this was measured using a SmartScope Flash 200 automatic 

measurement system, accurate to approximately 2 μm. It is to be noted that this criteria does not take into 

account catastrophic wear, but accounts for common wear in normal usage.The recorded values for the wear of 

the worn tool also represent a minimum value for the wear as the original point that they would have been 

measured relative to was chipped, or worn away. They are, however, sufficient to show the worn tool to have 

surpassed the wear criteria (0.3 mm), and that the wear on the fresh tool remained well below 0.1 mm 

throughout. 

 

Table 2. Design of the experiments 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 3. IR Thermography Input Conditions 

 

 

 

 

 

 

IR thermography input conditions 

Tool emissivity 0.393 

Distance to tool  0.91 m 

Atmospheric temperature 22 ̊ C  

Reflected temperature 22 ̊ C 
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In order to take practical, but accurate measurements of the temperature of an object using infrared 

monitoring its emissivity must be known. This is a complicated parameter, depending on a range of factors, 

including the temperature, material and surface finish of the measured object [15]; this, in itself is a 

simplification (the “grey body” assumption [12]), as the emissivity can also vary with both wavelength and 

direction [15]. However, a practical value for emissivity was derived by synchronous measurement of the 

temperature of the cutting tool using both the infrared camera and a K-type thermocouple over a range of 

temperatures, as delivered using a hot air gun.This is similar to the approaches used by a number of other 

authors [7], [14]–[16]. A similar, although more thorough approach to emissivity calibration was taken by 

Valiorgue et al. [15], who integrated the emissivity curve with the IR radiation measurements over a full range 

of temperatures in order to account for the dependence of emissivity on temperature. 

In this work, once these values were acquired, the optimisation function in Microsoft Excel was used to 

select a value for emissivity that most closely matched the IR camera readings to those recorded using the 

thermocouple; the emissivity coefficient and the other influencing factors on the IR camera temperature reading 

are summarised in Table 3. 

 

III. DATA PROCESSING AND FEATURES EXTRACTION 

3.1Data Pre-Processing 
The temperature signals used for analysis were extracted from the recorded IR film using FLIR’s 

“ResearchIR” software. Within the infrared video acquired during the cutting tests, Regions of Interest (ROIs) 

are defined in order to retrieve signals related to the zones of interest.Three different rectangular ROIs were 

chosen to investigate the tool-chip interface area: 11 x 4 pixels, 11 x 22 pixels and 11 x 36 pixels respectively as 

shown in Figure 2 [30]. A number of advantages are gained by this approach: firstly, by averaging over an area, 

the temperature spike effect of flying chips intersecting with the field of measurement [6] is reduced; secondly, 

by looking at an area slightly removed from the tool-work piece interface, any “dazzle” from the high infrared 

radiation output at the interface is minimised, which might otherwise skew the results [15], [27]. However, the 

positioning was chosen to still be sufficiently close to the interface that the response time to changing 

temperatures would be kept low. 

 

 
 

This positioning also meant that the temperature drop was not excessively low, which was important to 

maintain a high “Noise Equivalent Temperature Ratio” – the “noise” in this case being the heating and cooling 

cycle due to the intermittent nature of milling cutting [14].For each ROI, a signal segmentation procedure was 

implemented on the raw infrared signals, by trimming the signal, to include only the segment where the tool is 

in contact with the workpiece, as shown in Figure 3. This operation was performed on each milling test signal. 
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3.2Dataset Preparation 

A data set is a matrix whose rows are represented by a certain number of samplings with the columns 

corresponding to the 36 milling tests. Four different data sets were prepared, consisting of 1000, 2000, 4000 and 

7500 rows (samplings) respectively. In Table 5 an example of 7500-samplings dataset is reported. 

 

3.3Features Extraction 
The extraction of signal characteristic features from sensing systems is of primary importance in many 

information processing fields such as pattern recognition, predictive modelling, industrial process fault 

diagnosis and control, etc. [7], [31]. 

The statistical features are used for the proven effectiveness [32] and for the computational ease, since 

they do not require strong computational efforts and are suitable for real time monitoring. The polynomial 

features are used as an alternative to the statistical features in order to compare them and evaluate the results. 

 

Table 4.7500 Samplings dataset 
Samplings T_1_Fresh_1 T_1_Fresh_2 … T_9_Worn_1 T_9_Worn_2 

1 29.5097 30.0168 … 31.6677 32.8816 

2 29.8423 30.0033 … 31.3615 33.5475 

… … … …   

7500 36.5076 34.4815 … 50.1302 52.1439 

In this paper two methodologies were adopted to extract features: 

 

3.1.1Statistical Features 
Four statistical features were extracted from the segmented signal of each test: 

 Mean value 

 Variance 

 Skewness 

 Kurtosis 

The four statistical features mentioned above were grouped into feature vectors to be used as input to a 

neural network based decision making system [32]. 

 

3.1.2Polynomial Features 
An alternative approach to the statistical features extraction is proposed in this paper. For each milling 

test, the coefficients of the polynomial p(x) of degree 4 that fits the IR temperature signal in a least squares 

sense, have been calculated. An example of 4th degree polynomial fitting is reported in Fig. 4 for Test 

T_1_Fresh_1. 
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The result is 5 elements feature vector containing the polynomial coefficients in descending powers: 

 
 

Therefore a set of 5 features, the polynomial coefficients, was extracted from the segmented signal of each 

milling test: [α β γ δ ε]. 

 

The infrared data processing and features extraction procedure can be summarised in Table 5. 

 

Table 5 Summary Of Signal Processing And Features Extraction Procedure 

Pre 

Processing 

1. ROIs definition 

11 x 4 px 11 x 22 px 11 x 36 px 

2. Segmentation 

3. Dataset construction 

1000 

samplings 

2000 

samplings 

4000 

samplings 

7500 

samplings 

Signal Processing 

4. Features Extraction 

StatisticalFeatures 
4

th
 degreePolynomial 

Coefficients 

Mean Variance Skewness Kurtosis      
 

3.1Neural Network based decision making support system 
The features vectors obtained with the two methodologies were used to construct feature vectors to 

input to a neural network (NN) based pattern recognition procedure [7], [33] for decision making on tool wear 

state identification as well as to a neural network based fitting procedure for surface roughness assessment. 

 

3.2Neural Network Pattern Recognition for Tool State Identification 
The feed-forward (FF) back-propagation (BP) NN is the most commonly used family of NN for pattern 

classification purposes [34]. Its structure is made of three layers (input, hidden and output layer respectively) as 

shown in Fig 5. 

In this application the following NN architecture configurations were adopted: 

 The number of input nodes was equal to the number of input features vector elements: 

o 4 nodes for statistical features as the feature vector is made of 4 elements: Mean, Variance, Skewness and 

Kurtosis. 

o 5 nodes for polynomial features as the features vector elements are the polynomial coefficients α, β, γ, δ and 

ε 

 The number of hidden layer nodes is equal to the number of input layer nodes. 

 The output layer had only 1 node, yielding a binary value associated with the tool wear state: 0 = fresh tool; 

1 = worn tool. 
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3.3Training, validation and testing 

The FF BP NN learning algorithm adopted in this work was the Levenberg-Marquardt algorithm [35], 

[36] which is considered one of the fastest methods for learning moderate-sized FF BP NN [34].The algorithm’s 

principal mode of action is to find the minimum of a multiple variable function, which is expressed in the form 

of the sum of squares of nonlinear real-valued functions making it an iterative procedure and it is mostly used 

for nonlinear optimisation tasks [34], [35]. Data division for Levenberg-Marquardt training algorithm was 

carried out randomly with the following percentages: 70% of test cases were used for training; 15% for 

validation; 15% for testing. 

The input matrix is composed of a number of rows equal to the number of test cases i.e. 36, and a 

number of columns equal to the number of elements of the input feature vectors (4 for statistical features and 5 

for polynomial features).During testing, the NN output is correct if the error E = (Oa - Od), where Oa is equal to 

the actual output and Od is equal to the desired output, is -0.5 ≤ E ≤ +0.5; otherwise, a misclassification case 

occurs. The ratio of correct classifications over total training cases yields the NN success rate (SR). 

 

3.4Neural network fitting for surface roughness assessment  
Roughness Measurements were carried out using a Taylor Hobson roughness device at the end of each 

milling test on the workpiece surface.The roughness parameter considered in this work was the average 

roughness (Ra) reported for each test in Table 6. Ra is the arithmetic mean of the absolute departures of the 

roughness profile from the mean line. It is universally recognised and is the most often used international 

parameter of roughness [37], it is defined by the formula below: 

 
 

Table 6. Surface roughness measurements 
ID Test Ra (µm)  ID Test Ra (µm) 

T_1_Fresh_1 4.03  T_1_Worn_1 0.48 

T_2_Fresh_1 2.01  T_2_Worn_1 0.71 

T_3_Fresh_1 3.86  T_3_Worn_1 0.53 

T_4_Fresh_1 8.20  T_4_Worn_1 1.10 

T_5_Fresh_1 4.75  T_5_Worn_1 1.48 

T_6_Fresh_1 4.09  T_6_Worn_1 0.59 

T_7_Fresh_1 9.93  T_7_Worn_1 2.89 

T_8_Fresh_1 7.99  T_8_Worn_1 1.09 

T_9_Fresh_1 5.03  T_9_Worn_1 1.22 

The input matrices used for tool state identification were used also for surface roughness 

assessment.Two configuration of hidden layer nodes number were utilised for each set of input layer nodes, 

respectively: 

 8 and 16 hidden layer nodes for the 4 statistical input features 

 6 and 18 hidden layer nodes for the 5 polynomial features 

 The output layer had only one node containing the Ra value (in μm). 

 

 

For the evaluation of the generalisation ability of the trained neural network a linear fit between the 

output of the model and the experimental data for all the measured values presented in Table 6 was performed. 

The fitness indicator is hence the regression coefficient R-value. 
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IV. RESULTS AND DISCUSSION 
4.1Tool state identification 

The success rate was calculated for both the features extraction methodologies and for the three ROIs 

applied to the four datasets and illustrated in Figure 6.Results show that SR range from 85.01% to 98.61%, the 

average success rate of all the NN configurations is 93.73%, demonstrating the capability of both features 

extraction methodologies in generating valuable features for tool condition monitoring.The results reported in 

Figure 6 show that statistical features always yield a higher success rate compared to the polynomial features. 

The best success rates were obtained using the 11x36 px ROI, with an average SR equal to 94.30%. 

Using 11x4 px ROI, the average SR slightly decreases to 93.72% while SR=90.17% is obtained using 11x22 px 

ROI.The success rate increases as the number of processed samplings increases. However, by considering 1000 

samplings (2.6 seconds milling time) the tool state identification is performed with a very high success rate 

(85.01% – 91.65%), showing a quick response of infrared temperature signals for identifying the tool wear state. 

 

 
 
 

 

 
 

The ability to be able to detect reliably when a tool bit has reached a the state of wear, where by the 

likelihood of predicting substandard work, expenditures of excess machine energy or the potential of 

catastrophic failure could thus lead itself to the production of a number of undesirable consequences. 

Environmental impacts that may be prevented by using this monitoring approach include parts rejection (waste), 

excess cutting friction (energy consumption, CO2 production, machine wear) and unplanned maintenance (loss 

of production time / output) 

 

4.2Surface Roughness Assessment 
In Tables 9 to 9, the R-values obtained from all the neural network configurations are reported. Each 

table reports results for one ROI. The best linear fitting in terms of R-value is reported in bold for each dataset, 

for the three ROIs respectively.The surface roughness assessment was carried out with R-values ranging from a 

minimum of 0.6367 to a maximum of 0.981. The average fitting R-value is 0.8793. This confirms that the 

features extracted with both methodologies are suitable for surface roughness assessment.Generally the 

statistical features lead to a better fitting, in fact the results show an average R-value equal to 0.9085 for 

statistical features against 0.8500 obtained using polynomial features. 

 

The number of hidden layer nodes does not have a great impact on the results.The “low number” 

configurations (4-8 and 5-6) in fact, give better results than the “high number” configurations (4-16 and 5-18) 

with only a very small difference in R-value equal to 0.01.Best results are obtained extracting signals and 

features from the smallest ROI (11 x 4) showing an average fitting equal to 0.90.The fitting increases as the 

number of processed samplings increases. However, considering the 1000 samplings datasets, the surface 

roughness assessment can be carried out with R-values ranging from 0.6367 to 0.9448 (with an average R-value 

equal to 0.83). These results confirm the capability of the temperature to be a suitable quick indicator of the 

surface roughness. In Figures 7-9 the best fitting is reported for each ROI. 
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Table 7. 11x4 pixels ROI table of results 

11x4 px 

1000 samplings 

Statistical Features Polynomial Features 

Configuration R Configuration R 

4_8 0.9227 5_6 0.7214 

4_16 0.9092 5_18 0.7413 

2000 samplings 

Statistical Features Polynomial Features 

Configuration R Configuration R 

4_8 0.9272 5_6 0.8864 

4_16 0.9716 5_18 0.8488 

4000 samplings 

Statistical Features Polynomial Features 

Configuration R Configuration R 

4_8 0.8921 5_6 0.9583 

4_16 0.9355 5_18 0.8502 

7500 samplings 

Statistical Features Polynomial Features 

Configuration R Configuration R 

4_8 0.9811 5_6 0.9445 

4_16 0.9675 5_18 0.9803 

 

 

 
 

 

 
 

Table 8. 11x22 pixels ROI table of results 
11x22 px 

1000 samplings 

Statistical Features Polynomial Features 

Configuration R Configuration R 

4_8 0.8652 5_6 0.7847 

4_16 0.8259 5_18 0.6367 

2000 samplings 

Statistical Features Polynomial Features 

Configuration R Configuration R 

4_8 0.8684 5_6 0.811 

4_16 0.8164 5_18 0.8666 

4000 samplings 

Statistical Features Polynomial Features 

Configuration R Configuration R 

4_8 0.9363 5_6 0.8275 

4_16 0.9252 5_18 0.8289 

7500 samplings 

Statistical Features Polynomial Features 

Configuration R Configuration R 

4_8 0.9097 5_6 0.8647 

4_16 0.9064 5_18 0.8463 
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Figure 8.Best Fitting for 11x22 pixels ROI 

 

Table 9. 11x36 pixels ROI table of results 
11x36 px 

1000 samplings 

Statistical Features Polynomial Features 

Configuration R Configuration R 

4_8 0.9448 5_6 0.8589 

4_16 0.8808 5_18 0.8246 

2000 samplings 

Statistical Features Polynomial Features 

Configuration R Configuration R 

4_8 0.9678 5_6 0.9443 

4_16 0.9134 5_18 0.9362 

4000 samplings 

Statistical Features Polynomial Features 

Configuration R Configuration R 

4_8 0.8458 5_6 0.8293 

4_16 0.8431 5_18 0.8903 

7500 samplings 

Statistical Features Polynomial Features 

Configuration R Configuration R 

4_8 0.9128 5_6 0.8236 

4_16 0.9356 5_18 0.8962 

 

 
Figure 9.Best Fitting for 11x36 pixels ROI 
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 The closeness of the relationship between temperature profile and the surface properties of the 

workpiece regardless of tool state provides potential opportunity to adjust the cutting parameters of the milling 

process in real time to maximise the rate of production (minimising energy) whilst ensuring desired surface 

finish is obtained (minimise reject and rework). 

 

V. CONCLUSIONS 
Infrared monitoring of an aluminium milling process was performed to identify the tool wear state and 

to model the surface roughness. An experimental campaign of milling tests was carried out on an 

aluminiumworkpiece using a diverse range of cutting parameters. During machining, infrared temperature 

signals were acquired by using an infrared camera and surface roughness measurements were carried out after 

every cutting test on the milled surface.Signal processing procedures were implemented on infrared signals and 

two methodologies of signal features extraction were adopted, obtaining statistical features and polynomial 

coefficients features. An intelligent decision making support system was built for tool state identification 

through the implementation of Neural Networks Pattern Recognition. The results showed that both feature 

typologies are suitable for tool state identification with very high NN performance for decision making on 

cutting tool conditions during aluminium milling, but revealing a more reliable analysis from statistical features. 

Moreover the Neural Network paradigm was applied to the signal features in order to assess the surface 

roughness and results showed that surface roughness assessment can be successfully carried out by monitoring 

temperature during milling.An efficient and effective monitoring system aimed at tool state identification and 

surface integrity requirements can improve environmental performances of machining operations by minimising 

the risk of dangerous faults which may damage the product. Also, avoiding additional operations due to non-

acceptable tool conditions and surface finishing requirements helps in energy, time and resource saving.It is 

important to underline that prediction of tool wear and surface roughness plays a fundamental role in 

maintaining quality standards in machining processes while contributing to the reduction of environmental 

impact by optimising the utilisation of energy and resources.Future experimental research activities will 

involve similar methodology applied on different materials and machining processes to evaluate the 

applicability of the described technology and signal processing techniques for evaluating tool bit 

condition and production parameters in a range of manufacturing applications. Importantly, low cost 

IR sensors are required for sensing in the presence of cutting fluid in order to present an industry-

ready monitoring technology. 
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