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Occupant behaviour modelling in domestic buildings: the case of household electrical appliances
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(Received 30 June 2016; accepted 24 January 2017 )

This paper presents a new approach to bottom-up stochastic occupant behaviour modelling for predicting the use of house-
hold electrical appliances in domestic buildings. Three metrics relating to appliance occupant behaviours are defined: the
number of switch-on events per day, the switch-on times and the duration of each appliance usage. The metrics were cal-
culated for 1,076 appliances in 225 households from the UK Government’s Household Electricity Survey carried out in
2010–2011. The analysis shows that occupant behaviour varies substantially between households, across appliance types
and over time. The new modelling approach improves on previous approaches by using a three-step process where the
three-appliance occupant-behaviour metrics are simulated respectively using stochastic processes to capture daily variations
in appliance occupant behaviour. It uses probability and cumulative density functions based on individual households and
appliances which are shown to have advantages for modelling the variations in appliance occupant behaviours.

Keywords: appliance behaviour; occupant behaviour; household electrical appliances; stochastic modelling; data-driven
modelling; bottom-up modelling

1. Introduction
Occupant behaviour in buildings can be defined as both
the occupant presence and the occupant actions that may
influence the building environmental conditions and the
building energy consumption (Yan and Hong 2014). These
include the occupants’ operation of windows, air con-
ditioning systems and heating systems (such as window
opening, timer settings and choice of thermostat set-points)
that affect hygrothermal conditions, indoor air quality,
light, noise and temperature (Guerra Santin, Itard, and
Visscher 2009; Hoes et al. 2009; Schweiker et al. 2012). It
also includes the use of services within the building, such
as hot water, cooking and electrical appliances, which con-
sume energy and generate internal heat gains (Isaksson and
Karlsson 2006; Yamaguchi, Fujimoto, and Shimoda 2011).

Occupant behaviour is an increasingly important area in
building performance simulation and is widely recognized
as a major uncertainty factor in building performance (Yan
et al. 2015). Studies which model the occupants’ inter-
action with buildings and control systems have included
lighting controls (Reinhart et al. 2006), shading devices
(Haldi and Robinson 2010) and ventilation (Yun et al.
2008). Other studies have focused on occupancy presence,
fundamental for occupancy research as most occupant
behaviour patterns are influenced by occupancy (Roetzel
et al. 2010; D’Oca and Hong 2014; Zhao et al. 2014;
Feng et al. 2015). Characterising the stochastic nature

*Corresponding author. Email: s.yilmaz@lboro.ac.uk

of occupant behaviour has proved to be non-trivial and
previous researchers have identified several constraints
to progress including the lack of a common modelling
approach, the lack of a rigorous model validation frame-
work, the lack of experimental designs and the lack of
suitable monitoring data with which to develop models
(Yan and Hong 2014; Yan et al. 2015).

The use of electrical appliances is important for under-
standing occupant behaviour in domestic buildings (Swan
and Ugursal 2009; Grandjean, Adnot, and Binet 2012).
Household electrical appliances include all those appli-
ances typically found in homes such as ‘wet’ appliances
(washing machines, tumble dryers, dishwashers), ‘cold’
appliances (fridges, freezers), televisions, cooking appli-
ances, electric showers and many more. Using electri-
cal appliances impacts on the timing and magnitude of
a household’s overall electricity consumption and, more
importantly for building thermal simulation studies, on the
timings and magnitude of internal heat gains within the
building. The occupant behaviours of interest include: the
time of day when occupants switch on the appliances, the
frequency of appliance use, the length of time for which
the appliance is switched on, the choice of power mode or
cycle programme and the potential for interaction between
the use of difference appliance types (for example, a tumble
dryer may be switched on following the use of a wash-
ing machine). Occupant behaviour models of household

© 2017 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group
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electrical appliance use have been used in many applica-
tions, including the planning the integration of local energy
systems and emerging technologies (Yao and Steemers
2005; Widén and Karlsson 2010) and the better prediction
of time variations of power demand and peak demand to
analyse the impact of energy efficiency schemes or demand
response on the network load flows (Paatero and Lund
2006; Yamaguchi, Fujimoto, and Shimoda 2011). In addi-
tion, predicting the internal heat gains from appliances in
zero carbon buildings is becoming increasingly important
as studies have shown that they have a significant effect on
energy consumption and overheating in passive buildings
(Hoes et al. 2009).

Researchers have developed a number of stochastic
appliance use models to integrate with simulation tools
in order to include the randomness linked to the variation
in occupant behaviour between households and the vari-
ation in time of each behaviour. Typically, these models
are based on one-day diaries, from Time of Use (TOU)
surveys, reporting households’ daily activities of 5000–
10,000 households (Tanimoto, Hagishima, and Sagara
2008; Richardson et al. 2010; Widén, Molin, and Ellegård
2012; Wilké et al. 2013). There are also long-term obser-
vational studies where appliances were monitored for
extended periods using electrical power sensors (Page
2007). The studies that used TOU data obtained the switch-
on times and duration of appliance use from user diaries
which are then converted to appliance power demands with
fixed power demand profiles. The occupancy behaviour
patterns associated with different types of households and
days are analysed to develop the model. In this approach,
the switch on times cannot be identified precisely as users
write down their daily activities each 10 or 15 min-
utes. Another limitation is that one-day diary-based TOU
datasets fail to capture the difference in behaviour for an
extended period of time and difference in durations/choice
of programme between usages. Other studies analysed
measured data to obtain the switch-on times, duration and
the power demand profiles. The limitation of these long-
term studies is that, due to the high cost of monitoring, the
sample size is relatively small (2–10 homes) and thus can-
not be considered representative for a population or able
to capture behavioural diversity among different groups.
As a consequence of the challenges of modelling occu-
pant behaviour, the occupants’ use of household electrical
appliances is often modelled as fixed static schedules in
building simulation tools such as DOE-2, BLAST and
EnergyPlus (Abushakra and Claidge 2001; Hoes et al.
2009). However, such procedures can lead to overesti-
mated peak values, as defining standard behaviour for
types of households fails to consider the random variabil-
ity of the occupant behaviour (Tanimoto and Hagishima
2010).

This paper develops new insights into appliance
behaviour modelling for household electrical appliance

use. The term ‘appliance behaviour’ is defined here as
a combination of occupant behaviour and the operating
characteristics of the appliance itself. In this work, three
appliance behaviour metrics are proposed to describe the
behaviour of household electrical appliance use: (i) the
number of switch-on events that occur over a specified time
period (e.g. a day or a month); (ii) the time of day when
each switch-on event occurs; and (iii) the duration of appli-
ance use (the length of time that the appliance is switched
on for). In some cases, an appliance behaviour is directly
driven by the occupant behaviour (e.g. switching on a tele-
vision); in other cases, appliance behaviour is determined
solely by the appliance (e.g. a fridge cycling on and off
when the occupants are not at home) and in some cases,
a combination of both occupant behaviour and appliance
characteristics determines the appliance behaviour (e.g. the
duration of a washing machine cycle is determined both the
user’s choice of programme cycle and the make and model
of the machine itself). The distinction between occupant
behaviour and appliance characteristics is discussed further
in Section 3.1.

This work studies the development and application of
different modelling techniques using one of the most com-
prehensive datasets of household appliance usage recorded
to date: the UK Government’s ‘Household Electricity Sur-
vey’ (HES) (DECC 2014a). The HES took place in 2011
and, for periods of either one month or one year, recorded
the electricity consumption of 5860 household electrical
appliances in 251 homes. The HES dataset is first anal-
ysed to identify and quantify the three-appliance behaviour
metrics for 225 homes in the sample which were mon-
itored for a one-month period. The analysis focuses on
the main appliance types found in homes and studies 16
household appliance types in the 225 homes (1076 appli-
ances in total). Occupant behaviour models are developed
(based on a probability density function (pdf) approach)
and used to run stochastic simulations of the occupant
behaviour within the HES homes. Two approaches to mod-
elling the appliance behaviour metrics are tested in this
paper. Approach 1 takes a simple approach often used
in appliance behaviour modelling in literature whereas
Approach 2 takes a different approach designed to improve
the accuracy of modelling in terms of the daily num-
ber of switch-on events. Results from the simulations
are analysed and compared to evaluate the strengths and
limitations of the proposed models and provide insights
into the future development of occupant behaviour mod-
elling techniques based on monitored data. The paper
concludes with a discussion of the future research direc-
tions for appliance occupant behaviour modelling method-
ologies (including statistical analysis, probabilistic mod-
elling and validation approaches) and of the design of
future monitoring studies to fully capture household appli-
ance usage (including monitoring strategies and sample
sizes).
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2. Household electricity survey dataset
2.1. Background
In 2011, the UK Government carried out a major survey of
the use of household electrical appliances in homes. The
Household Electricity Survey 2011 (HES 2011) recorded
the electric power demand of 251 UK homes and 5860
individual electrical appliances within those homes. The
complete dataset has been made publically available by
the Department of Energy and Climate Change (the details
on accessing the publicly available dataset are provided
at the end of this paper). The dataset is one of the most
comprehensive recorded to date, and has resulted in sev-
eral reports detailing the usage of appliances in homes. All
households were owner-occupied and the survey house-
holds were selected on the basis of the life-stage of the
occupants, including single pensioners & non-pensioners,
multiple pensioner, families and multiple persons with no
children (DECC 2014a).

Table 1 gives a summary of the data that were collected
during the HES survey. The appliances were numbered,
according to their type from 1 to 250. The electrical power
of most of the individual appliances (cold, wet and small
appliances) was measured using serial wattmeters devel-
oped by Enertech which were directly plugged into the wall
sockets and the household appliance to be monitored was
connected to the trailing socket of the wattmeter. Appli-
ances such as water heating and cooking appliances were
monitored directly from the consumer unit of the house
using the Multivoies™ system which was installed inside
the consumer unit (DECC 2014a).

The resulting dataset contains the power demand of
the individual appliances recorded at a mix of 2-minute
and 10-minute resolutions. In addition, an appliance survey
recorded the age, brand and other details of the appli-
ances. Participants were also asked to keep detailed diaries
for two weeks of how they used certain appliances such
as washing machines (e.g. the wash temperature, choice
of programme, fullness of the machine) and hobs (e.g.

hob settings: low, medium, high). Further data collected
in the HES were not used in the analysis presented here.
This included attitude questionnaires, internal and exter-
nal temperature measurements and detailed information
about the house characteristics such as the dimensions and
construction materials.

2.2. Data selection, cleaning and processing
Figure 1 shows the monitoring periods of the 225 homes
selected from the HES dataset for analysis in this work.
A subset of the full dataset of 251 homes was chosen as
different measurement intervals were used in the survey (2-
minute and 10-minute intervals) and this work considers
only the 225 homes which had their appliance power mea-
surements recorded at 2-minute intervals. This shorter time
interval provides the greatest level of detail for identifying
the occupant behaviours and means the subsequent anal-
ysis and modelling methods provided in this paper were
based on the same measurement interval for all homes. In
Figure 1, the monitoring periods for the 225 homes are
shown in order of start date, with the horizontal line for
each home denoting the start and end of the monitoring
period when appliance power measurements were taken.
All monitoring took place between May 2010 and June
2011 on a rolling basis, with different homes monitored at
different time periods between these dates. This was done
so that the monitoring equipment could be re-used for dif-
ferent homes during the survey. The homes were monitored
for between 20 and 45 days, with an average monitoring
period of 27.7 days.

Figure 2 shows the frequency distribution of the 16
appliance types in the 225 homes. In total, 1076 appliances
were analysed. These 16 appliance types were chosen due
to their high ownership rates and because they have a sig-
nificant impact on buildings’ electricity demand, represent-
ing, on average, 75% of the annual electricity consumption
in a UK home (DECC 2014a, 2014b). The 16 appliance

Table 1. Summary of the variables that were monitored/collected in the Household Electricity Use Survey.

Variable Description

Power demand The electrical power demand of 5,680 appliances in 251 homes with a mix of 2- and
10-minute resolution recording interval

225 homes were monitored at 2-minute resolution for time periods of around a month
26 homes were monitored at 10-minute resolution for time periods of around a year

Appliance characteristics Brand manufacturer – model of the appliance
Year of the product bought with their energy efficient ratings

Diaries Diary data collected for households’ use of certain appliances. Most households completed
diaries for two weeks

Demographics and household
characteristics

Household types, household age, working status
UKHES code
Answers to the environmental attitude questionnaires

Temperature The internal and external temperatures of the house were monitored using thermometers
Details of house dimension and

construction
Dwelling types
Floor area and window area
Glazing typeInsulation thickness
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Journal of Building Performance Simulation 585

Figure 1. The monitored periods (start date to end date) of the 225 homes in the HES dataset studied in this work. All the homes here
have appliance power measurements recorded at 2 minute intervals.

Figure 2. Number of appliances analysed for this study monitored in the HES (2011) (TV1 is the first mainly watched television, TV2
is the second most frequently used television and TV3 is the third most frequently used television).

types also represent different modes of occupant interaction
and different modes of appliance operation, and hence
require different modelling approaches. For wet appliances,
occupants are actively involved in loading them before
switching them on but there is no interaction with the appli-
ance while the cycle is running. For cold appliances, the
user does not need to switch it on and off after the ini-
tial set up and they are in use continuously. For cooking

appliances and electric showers, the user directly chooses
the time when the appliance is switched on and the length
of time it is used for.

Figure 2 shows that the most common appliance type in
the sample was washing machines (n = 176), followed by
fridge-freezers (n = 129) and electrical cookers (n = 105)
which consist of a hob, oven and grill. The least common
appliance types were electric grills (n = 5) and electric
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hobs (n = 9). Although hobs and grills are found in the
majority in UK homes, in most cases, they are operated by
gas rather than electricity (DECC 2014a).

Data cleaning was carried out on the 2-minute appli-
ance power measurements prior to analysis. Visual inspec-
tion of time series plots was used to identify incorrect
readings. About 0.006% of the power measurements were
identified as incorrect readings and these were removed
from the dataset. Where there was a significant part of the
day missing, the whole day was deleted so as not to dis-
tort statistics based on daily usage. Where a small number
of consecutive readings (up to 4 minutes) were missing,
the missing data points were manually inserted by using
linear interpolation between the adjacent values. About
0.002% of the data were estimated in this manner. Given
that all the data cleaning modifications involved only a
very small percentage of the overall data readings col-
lected, it is expected that impact on the analysis and the
results would be minimal.

3. Appliance behaviour metrics
3.1. Choice of appliance behaviour metrics
A review of the literature identified a number of occu-
pant behaviours for household appliance usage including
switch-on times, usage durations, choice of power mode
for the appliance operation and behaviour towards stand-by
(Capasso et al. 1994; Paatero and Lund 2006; Page 2007;
Richardson et al. 2010; Widén et al. 2011; Yamaguchi,
Fujimoto, and Shimoda 2011; Wilké et al. 2013).

Table 2 summarizes the appliance behaviour metrics
chosen for this study based on the literature review and
includes the metric definitions, to which appliance type
they are applied and the influencing factors of occupant
behaviour and appliance characteristics. There are three
appliance behaviour metrics identified for this study: (1)
number of switch-on events is the count of switch-on
events that occur over a specified time period; (2) switch-
on time of day is the times when the switch-on events
occur; and (3) duration is the length of time for which
the appliance is used. Here a switch-on event is defined
as the start of the use of an appliance and is considered as a
time-dependent quantity. Duration is defined as the period
between the switch-on and either switch-off or stand-by
event. Standby use occurs when an appliance is not in use
but is still consuming power (Cogan et al. 2006). Consumer
electronic equipment such as televisions and set-top boxes
have standby mode in which the occupant can leave appli-
ances on stand-by or switch them completely off (Firth
et al. 2008). Appliance behaviour is defined at a house-
hold level (rather than an individual level), as it is only
possible from the sensor measurements to track when
appliances are switched on, not by whom, making it impos-
sible to determine an individual occupant’s activities. For
wet appliances, occupants are actively involved in loading

and starting the appliance (the switch-on times) but do not
directly choose the duration or switch-off times. Although
there is no interaction with the user while running, as
the power demand and duration of the cycle are highly
dependent on the washing temperature and the amount of
water needed, occupant behaviour is a significant factor
through the choice of the washing machine programme.
Televisions, cooking appliances and showers are actively
switched on or off by the occupants. The duration of these
appliances is directly related to the activities of the occu-
pants. Cold appliances are in use continuously and the user
has no direct interaction with the switch-on or switch-off
times; however, the duration is affected by occupant’s door
opening or storing food inside.

3.2. Identifying appliance behaviour metrics in the
monitored data

The three-appliance behaviour metrics in Section 3.1 were
inferred from the 225 HES households using the moni-
tored 2-minutely power demand measurements. Microsoft
Access 2013 and Matlab were used to identify the metrics
and analyse the data. Figure 3 illustrates the identification
method for the switch-on and switch-off times from the
power demand measurements for three appliance types: a
washing machine cycle with the high peak at the start and
an increase at the end of the cycle while spinning; a tele-
vision with constant power demand levels and the cycling
operation of a fridge freezer.

Switch-on events are identified when the power mode
of the appliance changes from either off-mode (zero power
demand) or stand-by mode (a low power demand) to on-
mode. Through testing and visual inspection, the assump-
tion was made that a switch-on event occurs when the
appliance power demand changes from 3 W or lower to
6 W or higher. The monitoring equipment records power
levels at 3 W intervals (DECC 2014a) and a reading of
less than 3 W is taken as a reasonable assumption that an
appliance is on standby mode or switched off. Switch-off
events are identified in the opposite manner, when appli-
ance power demand changes from 6 W or higher (on-mode)
to 3 W or lower (off- or standby-mode). In the case of wet
appliances, there were occasions of low power demands
occurring mid-cycle which could be incorrectly identified
as ‘switch-off events’; therefore, each use was manually
inspected to ensure the correct switch-off times. Once the
switch-on and switch-off events have been identified from
the measured data, the three-appliance behaviour metrics
are calculated for each appliance in the dataset.

4. The Household Appliance Usage Model
4.1. Overview
In this work, a stochastic model of the occupant behaviours
of household appliance use is developed. The Household
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Table 2. Appliance behaviour metrics.

Appliance
behaviour
metrica As applies to: Definition

Occupant
behaviour

influencing factors

Appliance
characteristics

influencing factors

Metric 1: Number of
switch-on events

Wet appliances, cooking
appliances, TVs,
electric showers

The number of times in
a specific time period
that the appliance is
switched on

Occupancy patterns
and occupant use of
appliances

None

Cold appliances The number of times in
a specific time period
that the compressor
switches on

The occupant setting of
the internal thermostat,
number of times the
door is opened, amount
of contents (food) in the
appliance

Appliance’s own
cooling mechanism
for temperature
control

Metric 2: Switch-on
time of day

Wet appliances, cooking
appliances, TVs,
electric showers

The time of day when the
appliance is switched
on by the user

As above None

Cold appliances The time of day when the
compressor switches on

As per ‘switch-on number’
above

As above

Metric 3: Duration Wet appliances The length of time which
the chosen appliance
cycle runs

Choice of cycle, amount
of clothes/dishes placed
in device

Impact of make/model
of appliance on
cycle duration,
cold water feed
temperature

Cooking appliances, TVs,
electric showers

The length of time until
the user switches off the
appliance.

Occupancy patterns
and occupant use of
appliances

None

Cold appliances The length of time which
the compressor runs for

As per ‘switch-on times’
above

As per ‘switch-on
times’ above
plus impact of
make/model of
appliance on
compressor cycling

aAppliance behaviour is used as a combination of occupant behaviour and appliance characteristics.

Appliance Usage Model (HAUM) is implemented as a
MATLAB script. The HAUM simulates the occupants’ use
of appliances within multiple homes over a chosen time
period. The model works as follows:

• The buildings to be modelled and the appliances
within each building are specified. For example,
Household 1 with washing machine, dishwasher,
cooker, etc., and Household 2 with washing
machine, tumble dryer, grill, etc. In this work,
225 households with 176 washing machines, 18
washing-drying machines, etc., are specified which
are identical to HES dataset as presented in Figure 1.

• A time period for the simulations is chosen. For
example, 27 days for Household 1, 28 days for
Household 2, etc.

• For each appliance, the model calculates the three-
appliance behaviour metrics as follows:
(1) The number of switch-on events that occur for

each day in the monitoring period
(2) The time of day when each of these switch-on

events occur

(3) The duration of each occurrence of an appliance
use following a switch-on event.

The HAUM uses pdfs and cumulative density functions
(cdfs) to implement a stochastic modelling process. As a
result, the model generates different final results each time
it is run and thus running the model multiple time can give
information on the distributions of each of the appliance
behaviour metrics.

4.2. Modelling the appliance behaviour metrics
Figure 4 shows a schematic of the general modelling
approach for calculating the appliance behaviour metrics
within the HAUM. Three steps are shown in the figure.
Step 1 shows a cdf which is constructed from the HES mea-
surements (based on the results of calculating Metric 1 in
Table 2) and is used to estimate the number of switch-on
events which occur in a single day. The cdf can be calcu-
lated either as a cdf for each household with a particular
appliance type (i.e. 176 cdfs representing each household
with washing machines in the HES dataset) or it can be
the cdf based on an average household (i.e. one cdf based
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588 S. Yilmaz et al.

Figure 3. Identifying the switch-on times (e.g. start of the cycle/activity), switch-off times (e.g. end of the cycle/activity) of washing
machines, televisions and fridge freezer.

on averaging 176 households with washing machines in
the HES dataset). In Figure 4, an example is given for a
cdf of number of switch-on events of a washing machine.
Step 2 shows a pdf which is constructed from the HES
measurements (Metric 2) and is used to estimate the time
of day when a switch-on event occurs. Again this can be
calculated either for an individual household or as an aver-
age for all households with a particular appliance type. In

Figure 4, an example is given for pdf of switch-on times
of washing machine. Each time step of a day is associated
with a value between 0 and 1 corresponding to the prob-
ability of switching that appliance on at that time of day.
For each time step the switch-on probability would be the
sum of measured ‘switches on’ observed divided by the
total number of days. Step 3 shows another cdf which is
constructed from the HES measurements (Metric 3) and is
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Figure 4. Schematic of modelling the appliance behaviour metrics in the HAUM model.

used to estimate the duration of an appliance use. This can
be calculated either as an average of all appliances or for
an individual appliance.

Two approaches to modelling the appliance behaviour
metrics are tested in this paper. Approach 1 takes a sim-
ple approach often used in appliance behaviour modelling
where the metrics are calculated using only Step 2 and Step

3. In Step 2, switch-on events are determined by ‘stepping
through’ the day in 2-minutely time steps. For the first time
step, a uniform random number is generated and the appli-
ance is switched on if the generated value is smaller than or
equal to the probability given by the pdf at that time step.
If a switch-on event does not occur, then the process steps
to the next 2-minute time step and the test for a switch-on
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event is repeated. If a switch-on event does occurs, then
the duration of the appliance use is calculated using Step
3. A second uniform random number is generated and is
used to calculate the duration by reading the duration in
the cdf of Step 3 which corresponds to cumulative prob-
ability given by the random number. Inverse transform
sampling is used to derive the duration of the appliance
run from the developed cdfs in Step 3. In the inverse trans-
form algorithm, uniform random deviates are sampled (i.e.
random numbers between 0 and 1) and each random num-
ber is compared against the table of cdfs in Step 3. The
first outcome for which the random deviate is smaller than
(or is equal to) the associated cumulative probability corre-
sponds to the sampled outcome. Once the appliance run has
completed, Step 2 continues at the next time step following
the end of the appliance run. Approach 2 takes a different
approach designed to improve the modelling of the number
of switch-on events (i.e. Metric 1) and uses Steps 1, 2 and
3 in its calculations. Step 1 is used to calculate the num-
ber of switch-on events which occur in each day. Inverse
transform sampling is used to derive the number of switch-
on events from the developed cdfs in Step 1. Once this is
completed, Step 2 is used to calculate the time of day when
each of the switch-on events occur; the ‘stepping through’
the pdf is run until the model gives the number of switch-
on times determined by the cdf. Step 3 is used to estimate
the durations in a similar manner to Approach 1.

5. Description of the HAUM variants used in this
work

Table 3 shows the different variations of the HAUM
which are used to generate the results in this paper.
Two approaches are used, Approach 1 (Steps 2 and 3 in

Figure 4) and Approach 2 (Steps 1, 2 and 3 in Figure 4).
For each approach, three variants are tested based on the
method of constructing the pdf for Step 2 and cdfs for
Steps 1 and 3. Model variants starting with ‘AvgHs’ use
the average household cdfs and pdfs for the calculations,
whereas ‘IndHs’ denotes the use of an individual house-
hold cdf and pdf. The individual household cdf and pdf are
assigned to the building at the start of the modelling session
and remains constant through the simulation. Model vari-
ants ending with ‘AvgApp’ use an average appliance cdf to
calculate durations and with ‘IndApp’ use individual appli-
ance cdfs. The average (Avg) indicates the pdfs and cdfs
were developed as a single pdf or cdf representing an aver-
age of all households or appliances, whereas individual
(Ind) was developed for each household/appliance, result-
ing in several pdfs and cdfs (176 washing machine duration
cdfs or 105 cooker switch-on pdfs). These model variants
were developed in order to test the effect of averaging the
data on representing the diversity in occupant behaviour.

The model is developed for 16 appliance types. One-
way ANOVA test was conducted to compare the effect of
household type, occupant number and day types on the
mean of average daily number of switch-on events, switch-
on times and duration. For several appliances, ANOVA
is not performed as it violates one of the assumptions of
ANOVA homogeneity of variances. Some of the appli-
ances have too small sample sizes. For the rest of the
appliances, the ANOVA test results show that there is
no significant effect of these characteristics on the aver-
age daily number of switch-on events. Therefore, there is
no sub-population for household types, and no occupant
number or day types are considered. Two hundred and
twenty-five households have generated exactly the same
with monitoring period in Figure 2 by applying the HAUM

Table 3. HAU model variants for two main approaches described with their methods.

Calculation method for:

Approach type Variant Metric 1: Number of switch-on events Metric 2: Switch-on time of day Metric 3: Duration

Approach 1 AvgHs_AvgApp Calculated using Step 2 Calculated using Step 3
pdf based on an average

household
cdf based on an average

appliance
AvgHs_IndApp Calculated using Step 2

pdf based on an average
household

Calculated using Step
3 cdf based on an
individual appliance

AvgHs_IndApp Calculated using Step 2 Calculated using Step 3
pdf based on an individual

household
cdf based on an average

appliance
Approach 2 AvgHs_AvgApp Calculated using Step 1 Calculated using Step 2 Calculated using Step 3

cdf based on an average
household

pdf based on an average
household

cdf based on an average
appliance

AvgHs_IndApp Calculated using Step 1 Calculated using Step 2 Calculated using Step 3
AvgHs_IndApp cdf based on an average

household
pdf based on an individual

household
cdf based on an individual

appliance
IndHs_AvgApp Calculated using Step 1 Calculated using Step 2 Calculated using Step 3
AvgHs_IndApp cdf based on an average

household
pdf based on an individual

household
cdf based on an individual

appliance
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Table 4. Statistics for average daily number of switch-on events for each appliance type as recorded in the 225 homes in the HES
dataset.

Appliances
Average daily number of switch-on events for each appliance type over the

monitoring perioda

Appliance category Appliance types n Meanb 95% C.Ic of the mean Minimum Maximum Median

Wet appliances Washing machine 176 0.78 ± 0.08 0.04 3.5 0.6
Washing-drying machine 18 1.03 ± 0.46 0.10 3.8 0.8
Tumble dryer 84 0.71 ± 0.13 0.04 3.4 0.6
Dishwasher 86 0.65 ± 0.07 0.10 3.8 0.6
All 364 0.75 ± 0.06 0.04 3.8 0.6

Cooking appliances Cooker 105 2.09 ± 0.39 0.04 9.8 1.5
Oven 44 0.98 ± 0.33 0.04 5.6 1.3
Hob 9 1.35 ± 0.44 0.50 2.5 0.3
Grill 5 0.24 ± 0.10 0.07 0.4 0.7
All 163 1.74 ± 0.30 0.04 9.8 1.1

Televisions TV1 81 2.20 ± 0.24 0.04 5.8 1.9
TV2 41 1.56 ± 0.35 0.04 5.0 1.7
TV3 20 0.94 ± 0.45 0.04 3.4 0.5
All 142 1.84 ± 0.20 0.04 5.8 1.8

Electric shower 73 1.02 ± 0.16 0.04 1.5 1.0
Cold appliances Fridge 89 22.2 ± 3.50 2.80 85.4 17.6

Fridge freezer 129 27.7 ± 3.30 2.90 125.3 24.0
Chest freezer 34 42.6 ± 9.80 5.50 109.7 36.0
Upright freezer 81 29.4 ± 3.50 4.40 95.9 25.9
All 332 28.5 ± 2.13 2.80 125.3 36.5

aAverage daily number of switch-on events is calculated as the average (mean) of the number of switch-on events for each day over the
monitoring period. For example, if an appliance is monitored for 30 days, then the average daily number of switch-on events is the mean
of 30 values, where the 30 values are the number of switch-on events that occur on each of the 30 days.
bThis ‘mean’ refers to the mean of the average daily number of switch-on events for each appliance type. For example, in the case of
washing machines this is calculated as the mean of 176 values, where each value is the average daily number of switch-on events for one
washing machine. The other statistics in this table are calculated in a similar manner.
cThis refers to the 95% confidence interval of the mean.

procedure (e.g. 176 households with washing machines for
27 days; 84 households with tumble dryer for 28 days,
etc.). Each variant is run 100 times to generate the results
in Section 6.2. The simulation results are shown by taking
the average values of 100 simulation runs. The ability of
the HAUM to recreate the patterns observed in the mon-
itored dataset is compared. Therefore, the monitored data
are not divided into training and test sets in order to prevent
the bias when comparing the approaches.

6. Results
6.1. Identifying and quantifying the appliance

behaviour metrics in the HES dataset
6.1.1. Metric 1: Number of switch-on events
For each appliance in the HES dataset, the number of
switch-on events (Metric 1) per day is calculated using
the approach given in Section 3.2. Table 4 shows the sum-
mary statistics for the results of Metric 1 for the 225 homes
in the HES dataset. For appliance categories, cold appli-
ances have the highest average daily number of switch-on
events, a mean of 28.5 switch-on times per day based on
the 332 cold appliances in the dataset. Wet appliances have
the lowest average daily number of switch-on events with

a mean of 0.75. Chest freezers are the appliance types that
have the highest average daily number of switch-on events
with a mean of 42.6 switch-on times per day based on the
34 chest freezers in the dataset. The results highlight the
variation in average daily number of switch-on events for
all appliance types. For example, the results show that one
chest freezer has an average of 109.7 switch-on events per
day throughout its monitoring period (the highest observed
in the dataset for televisions) and another had an average of
5.5 (the lowest observed). Similarly, one TV 1 has an aver-
age of 5.8 switch-on events per day throughout its moni-
toring period (the highest observed in the dataset for chest
freezers) and another had an average of 0.04 (the lowest
observed). Grills have the lowest number of daily switch-
on times, a mean of 0.24 switch-on times per day based
on the five grills in the dataset. The results show that the
larger sample size, the smaller the confidence interval is.
For example, washing machines (n = 176) has a mean of
0.78 switch-on times per day with ± 0.08 (95% confidence
interval), whereas the washing-drying machines (n = 18)
has a mean of 1.03 switch-on times per day with ± 0.46
(95% confidence interval). This indicates the impor-
tance of high sample size for estimating the switch-on
statistics.
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592 S. Yilmaz et al.

Figure 5. Cumulative distribution of duration length per usage of appliance types of the appliance category (wet appliances, cooking
appliances, televisions, electric showers and cold appliances).

The cdfs of number of switch-on events per day for the
16 appliance types are shown in Figure 5. These were used
to determine the switch-on events in Step 1 of Approach 2
(Section 4.2). The results show the variation in daily num-
ber of switch-on events observed for all appliance types in
the HES dataset with some days recording no use of appli-
ance (0 switch-on events) and other days recording many
switch-on events. For example, grills were not used at all
for 80% of the days observed (least used) whereas cold
appliances had at least one number of switch-on events
per day The cold appliances have the highest number of
switch-on events and one chest freezers had 144 switch-
events in a single day. This is caused by the constant
cycling of the chest freezers as the compressor switches
on and off throughout the day.

6.1.2. Metric 2: Switch-on times of a day
Figure 6 shows the frequency of mean hourly switch on
times varying over daily profiles for the 16 appliance types.
These profiles are calculated using the definition given at
Section 4.2 and shown in here for hourly time slots in order

to demonstrate the overall trend of the profiles. However,
for the modelling, two-minutely probabilities of switch-
on times were used. The results highlight the differences
that occur in switch-on times across appliance categories
and appliance types and show that different appliances
are used at different times of the day. Cooking appli-
ances are switched on around morning, noon and evening
times which are presumably meal times. Peak time occurs
in the evening for dishwashers after the evening meal,
whereas the peak time for washing machines is observed in
the morning. Cold appliances are switched on repeatedly
throughout the day. Televisions are switched on starting
from the early morning and peak times occur both in the
morning and in the evening.

6.1.3. Metric 3: Duration (run time of appliances)
For each appliance in the HES dataset, duration of appli-
ance use (Metric 3) per usage was calculated using the
approach given in Section 3.2. Table 5 shows the summary
statistics for Metric 3 for the 225 homes in the HES dataset.
‘Television 1’ had the longest duration per usage, a mean
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Figure 6. Average hourly number of switch-on events (y-axis) vs. time of day (x-axis) for each appliance type as recorded in the 225
homes in the HEUS dataset.

of 160.2 minutes based on the 81 ‘Television 1’ appliances
in the dataset. The next longest are ‘Television 3’ (129.8
minutes) and ‘Television 2’ (119.7). Electric showers have
the shortest duration per usage, a mean of 9.44 minutes
based on the 73 electric showers in the dataset. After TVs,
wet appliances are the appliance category with the second
highest duration of appliance use, a mean of 75.8 minutes
per usage in total based on the 364 wet appliances in the
dataset. The results show that one electric shower has an
average of 25.5 minutes of duration per usage throughout
its monitoring period (the highest observed in the dataset
for electric showers) and another had an average of 2.0 (the
lowest observed).

The cumulative distribution functions of the duration
per usage for the 16 appliance types are shown in Figure 7.
The graphs show that there is a great variation in the dura-
tion lengths of individual appliance usages in the HES

dataset. Electric showers have low duration lengths, rang-
ing between 2 and 50 minutes. One ‘Television 1’ was
switched on for 22.5 hours in a single day (the highest
observed in the dataset for televisions). The variation in
duration is high for cold appliances and the compressors
appear to be on for a long time, in one case, for over 34
hours. Durations per usage of wet appliances are less than
300 minutes with 80% of the durations less than 100 min-
utes. The duration length of washing machines varied from
10 to 244 minutes.

6.2. Simulation results
6.2.1. Comparison of the number of switch-on events
First, the results of the simulations for washing machine
appliances are presented. Simulations are run for four
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Table 5. Statistics for average duration length per usage monitoring period (minutes) and duration length per usage (minutes) for each
appliance over the monitoring period.

Appliances
Average duration length per usage for each appliance over the monitoring

period (minutes)

Category Types n Mean
95% CI of the
mean (95%) Minimum Maximum Median

Wet appliances Washing machine 176 75.7 ± 3.4 27.7 172.4 72.6
Washing-drying machine 18 86.8 ± 28.0 53.0 211.6 73.0
Tumble dryer 84 70.4 ± 12.8 21.0 165.2 65.0
Dishwasher 86 79.2 ± 13.4 28.1 136.5 80.5
All 364 75.8 ± 2.70 21.0 211.6 73.8

Cooking appliances Cooker 105 40.7 ± 8.00 6.4 128.5 34.4
Oven 44 47.0 ± 24.0 14.0 134.0 44.5
Hob 9 37.5 ± 37.1 13.5 102.2 29.1
Grill 5 11.9 ± 5.0 9.2 13.4 12.3
All 163 39.6 ± 3.97 6.4 134.0 36.0

Televisions TV1 81 160.2 ± 35.0 7.9 654.7 100.0
TV2 41 119.7 ± 23.3 4.0 444.8 82.6
TV3 21 129.8 ± 29.6 38.3 465.8 123.8
All 143 134.4 ± 18.8 4.0 654.7 98.7

Electric showers 73 9.44 ± 0.95 2.0 25.5 8.7
Cold appliances Fridge 88 36.6 ± 34.0 3.6 744.7 18.4

Fridge freezer 129 38.4 ± 38.0 8.0 473.7 23.4
Chest freezer 34 29.3 ± 28.9 5.5 206.1 14.7
Upright freezer 81 27.8 ± 26.8 8.7 171.5 22.7
All 334 36.6 ± 6.4 3.6 744.7 22.0

model variants: Approach1_AvgHs, Approach1_IndHs,
Approach2_AvgHs and Approach2_IndHs) as set out in
Section 5. Here the average appliance pdf is used to
calculate appliance durations as this section is focusing
on the Approach1/Approach2 and AvgHs/IndHs compar-
isons. Each model variant is simulated 100 times and
Figure 8 shows the distribution of the 100 simulation
results for each of the model variants. It is clear that, on
average, Approach1 underestimates the number of switch-
on events per day compared to the measured data (0.78
switch-on events per day). Approach1 predicts, on average,
0.73 switch-on events per day for an average household
pdf and 0.70 for an individual household pdf. Approach2
predicts the number of switch-on events close to the mea-
sured data result, with both the average and individual
household pdf results as 0.78. This is an important result
as Approach1 is the approach taken by many past stud-
ies and the reasons why Approach1 is under-predicting
is discussed in Section 7.2. As expected, using individ-
ual household pdfs or cdfs rather than average household
results in greater variation in the simulation runs. This
increased variation occurs because, for each of the 100 sim-
ulation runs, the same cdf is used for the AvgHs results
whereas many different possible combinations of cdfs are
used for the IndHs results.

Table 6 shows that the findings seen in Figure 8 for
washing machines are observed for all appliance types in
the dataset. In Table 7, the measured, Approach1_AvgHs,
Appraoch1_IndHs, Approach2_AvgHs and Approach2_
IndHs results are shown for the mean average daily number

of switch-on events, based on 100 simulation runs for
each appliance type. The percentage difference of the mean
value of simulation from the measured dataset is indicated
in parenthesis. As can be seen from Table 7, mean is under-
estimated by Approach 1 regardless of the HAUM variant.
However, IndHs predicted the average daily number of
switch-on events even less than AvgHs in Approach 1 (up
to − 16%) for all appliances. Approach 2 predicted the
average daily number of switch-on events correctly for all
appliances regardless of the model variant.

It is also important to test that the simulation process
predicts a reasonable variation in the switch-on events
of the appliances across households. Figure 9 shows the
distribution (boxplots) of the values of average daily num-
ber of switch-on events of washing machines resulting
from one simulation run (176 washing machines simu-
lated once) with the measured values. The HAU variants’
ability to capture the variability of the average daily num-
ber of switch-on events is tested depending on how the
switch-on pdfs are developed (AvgHs vs. IndHs). Results
show that IndHs_AvgApp is better at capturing the vari-
ation of daily average number of switch-on events as
opposed to AvgHs_AvgApp. The interquartile range (the
difference between the 25th quantile and 75th quantile)
is calculated for each HAU model variant to indicate the
variability around the median; the interquartile range is
reduced from 0.64 to 0.25 by 61% for AvgHs_AvgApp
whereas for IndHs_AvgApp it is increased from 0.64 to
0.75 by 18%. The range of mean of average daily number
of switch-on times (difference between maximum and the
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Figure 7. Cumulative distribution of duration length per usage for 16 appliance types.

minimum values) is reduced from 3.48 to 0.86 (by 75%)
and from to 3.48 to 3.42 (by 2%) for AvgHs_AvgApp and
IndHs_AvgApp, respectively.

6.2.2. Comparison of switch-on times profiles
Half hourly (30 minutes) probabilities of switching on
for the 100 simulated values of HAU model variants are
compared with measurements, for washing machines, in
Figure 9. All model variants of the two main approaches
of the HAU model do comparatively well in predicting
the half hourly probability switch-on times over the day.
However, as Approach 1 predicts a lower mean of the
number of switch-on events (Table 7), there is a gap
between the lines even though the shape of the daily pro-
file (the time of the peak values, etc.) is predicted well
(Figure 10).

6.2.3. Comparison of duration distributions
The results of the simulations for mean value of the aver-
age duration length per usage for each appliance type

Figure 8. Boxplots of the mean of average daily number
of switch-on events of washing machines resulting from 100
simulation runs. Approach 1 uses a single-day pdf (Step 2)
and Approach 2 uses a cfd (Step 1) to estimate the number of
switch-on events per day. AvgHS is an ‘average household’ and
IndHs is an ‘individual household’.

are presented in Table 7. Simulations were run for four
model variants: Approach1_AvgHs, Approach1_IndHs,
Approach2_AvgHs and Approach2_IndHs (as defined in
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Table 6. Statistics of the average daily number of switch-on events for 16 appliances of averaged from 100 simulation runs of Approach
1 and Approach 2 with model variants AvgHs_AvgApp and IndHs_AvgApp and measured value.

Mean of average daily number of switch-on events for each appliance type

Approach 1 Approach 2

Appliance category Appliance types n Measured AvgHs IndHs AvgHs IndHs

Wet appliances Washing machine 176 0.78 0.73 ( − 6%) 0.70 ( − 11%) 0.78 (0%) 0.78 (0%)
Washing-drying machine 18 1.03 0.96 ( − 8%) 0.89 ( − 15%) 1.03 (0%) 1.03 (0%)
Tumble dryer 84 0.71 0.67 ( − 5%) 0.64 ( − 9%) 0.71 (0%) 0.71 (0%)
Dishwasher 86 0.65 0.62 ( − 5%) 0.59 ( − 9%) 0.65 (0%) 0.65 (0%)
All 364 0.75 0.71 ( − 5%) 0.68 ( − 10%) 0.75 (0%) 0.75 (0%)

Cooking appliances Cooker 105 2.09 2.03 ( − 5%) 1.83 ( − 9%) 2.09 (0%) 2.09 (0%)
Oven 44 0.98 0.95 ( − 5%) 0.87 ( − 9%) 0.98 (0%) 0.98 (0%)
Hob 9 1.35 1.28 ( − 5%) 1.26 ( − 7%) 1.35 (0%) 1.35 (0%)
Grill 5 0.24 0.24 ( − 4%) 0.23 ( − 1%) 0.24 (0%) 0.24 (0%)
All 163 1.74 1.65 ( − 5%) 1.62 ( − 8%) 1.74 (0%) 1.74 (0%)

Televisions TV1 81 2.20 2.07 ( − 6%) 1.99 ( − 9%) 2.20 (0%) 2.20 (0%)
TV2 41 1.56 1.34 ( − 14%) 1.23 ( − 21%) 1.56 (0%) 1.56 (0%)
TV3 21 0.94 0.87 ( − 7%) 0.81 ( − 14%) 0.94 (0%) 0.94 (0%)
All 143 1.84 1.64 ( − 11%) 1.51 ( − 18%) 1.84 (0%) 1.84 (0%)

Electric shower 73 1.02 1.00 ( − 2%) 0.95 ( − 7%) 1.02 (0%) 1.02 (0%)
Cold appliances Fridge 88 22.2 19.02 ( − 4%) 17.74 ( − 20%) 22.2 (0%) 22.2 (0%)

Fridge freezer 129 27.7 23.30 ( − 16%) 21.81 ( − 21%) 27.7 (0%) 27.7 (0%)
Chest freezer 34 42.6 36.11 ( − 15%) 33.01 ( − 23%) 42.6 (0%) 42.6 (0%)
Upright freezer 81 29.4 25.18 ( − 14%) 23.02 ( − 22%) 29.4 (0%) 29.4 (0%)
All 334 28.5 24.23 ( − 15%) 22.23 ( − 22%) 28.5 (0%) 28.5 (0%)

Table 7. Comparison of the mean of the duration length (minutes) of appliance usage for 16 appliances of the 100 simulations of model
variants AvgHs_AvgApp and IndHs_AvgApp.

Mean of average duration length per usage for each appliance type

Approach 1 Approach 2

Appliance category Appliance types n Measured AvgApp IndApp AvgApp IndApp

Wet appliances Washing machine 176 75.7 76.7 (1%) 76.4 (0%) 75.6 (0%) 75.73 (0%)
Washing-drying machine 18 86.8 86.9 (0%) 85.5 ( − 1%) 86.7 (0%) 86.83 (0%)
Tumble dryer 84 70.4 71.8 (2%) 70.2 (0%) 70.3 (0%) 70.2 (0%)
Dishwasher 86 79.2 81.1 (2%) 81.0 (2%) 79.1 (0%) 79.23 (0%)
All 364 75.8 77.3 (0%) 75.3 (0%) 75.8 (0%) 75.8 (0%)

Cooking appliances Cooker 105 40.7 39.5 ( − 3%) 40.3 (1%) 40.68 (0%) 40.59 (0%)
Oven 44 47.0 46.1 (2%) 46.5 (0%) 46.9 (0%) 46.81 (0%)
Hob 9 37.5 36.8 ( − 2%) 37.4 (0%) 37.5 (0%) 37.39 (0%)
Grill 5 11.9 11.6 (0%) 12.0 (1%) 11.9 (0%) 11.79 (0%)
All 163 39.6 39.2 ( − 1%) 39.3 (0%) 39.6 (0%) 39.3 (0%)

Televisions TV1 81 160.2 161.9 (1%) 161.3 (1%) 160.3 (0%) 160.18 (0%)
TV2 41 119.7 120.1 (0%) 120.0 (0%) 119.8 (0%) 119.68 (0%)
TV3 21 129.8 130.8 (1%) 129.2 (0%) 129.9 (0%) 129.78 (0%)
All 143 134.4 134.6 (1%) 134.4 (0%) 134.4 (0%) 134.5 (0%)

Electric shower 73 9.4 9.4 (0%) 9.4 (0%) 9.3 ( − 1%) 9.4 (0%)
Cold appliances Fridge 88 36.6 36.6 (0%) 36.6 (0%) 36.6 (0%) 36.6 (0%)

Fridge freezer 129 38.4 38.7 (0%) 38.4 (0%) 38.7 (0%) 38.4 (0%)
Chest freezer 34 29.3 29.7 (0%) 29.3 (0%) 29.7 (0%) 29.3 (0%)
Upright freezer 81 27.8 27.7 (0%) 27.8 (0%) 27.7 (0%) 27.8 (0%)
All 334 36.6 36.8 (0%) 36.5 (0%) 36.6 (0%) 36.6 (0%)

Section 5). Each model variant is simulated 100 times.
As expected, since both approaches use the same method
(using step 3) to predict the duration for each usage, there
was not a difference in the values of average duration
length per usage for each appliance over the monitoring

period between Approach 1 and Approach 2 regardless of
the model variant. Both modelling approaches predicted
the average duration length per usage correctly.

It is also important to test that the simulation pro-
cess predicts a reasonable variation in the duration length

D
ow

nl
oa

de
d 

by
 [

L
ou

gh
bo

ro
ug

h 
U

ni
ve

rs
ity

] 
at

 0
4:

24
 0

6 
N

ov
em

be
r 

20
17

 



Journal of Building Performance Simulation 597

Figure 9. Boxplots of the average daily number of switch-on
events of washing machines resulting from one simulation com-
pared with the measured average daily number of switch-on
events (176 washing machines).

per usage of the appliances across households. Figure 11
shows the distribution (boxplots) of the values of dura-
tion length for each usage of washing machines resulting
from one simulation run (176 washing machines simu-
lated once) of AvgHs_AvgApp and AvgHs_IndApp of
Approach 2 with the measured values. Results show that
AvgHs_IndApp is better at capturing the variation of
daily average number of switch-on events as opposed to
AvgHs_AvgApp. The interquartile range (the difference
between the 25th quantile and 75th quantile) is calculated
for each HAU model variant to indicate the variabil-
ity around the median; the interquartile range is reduced
from 30.8 to 9.6 by 69% for AvgHs_AvgApp whereas
for AvgHs_IndApp it is increased from 30.8 to 35.7 by
16%. The range of mean of average daily number of
switch-on times (difference between maximum and the
minimum value) is reduced from 144.7 to 42.1 (by 75%)
and from to 144.7 to 139.2 (by 4%) for AvgHs_AvgApp
and AvgHs_IndApp, respectively.

Figure 11. Boxplots of the average duration length per usage of
washing machines resulting from one simulation compared with
the measured average duration length (176 washing machines).

7. Discussion
7.1. Occupant behaviour monitoring and data

collection methodologies
This study has contributed to an improved understanding
of how to model the occupant behaviour of household
appliance use in UK homes. The results obtained are how-
ever limited by the relatively short monitoring period and
small sample size. For instance, the homes were monitored
for between 20 and 45 days, with an average monitor-
ing period of 27.7 days, after which the equipment was
moved to another household. This was done to minimize
the monitoring equipment costs of the survey. As a result,
different households with different appliances were moni-
tored in different seasons throughout the monitoring period.
This makes it difficult to discern if the variations in the
appliance occupant behaviour is due to household charac-
teristics, seasonal changes or other factors. As smart and
connected homes make monitoring easier and less costly,
future surveys could have greater sample sizes and monitor
homes in parallel, and for longer time periods. Such longi-
tudinal studies will allow the complex interaction of factors

Figure 10. Comparison of the half-hourly (30 minutes) probability of switching on of measured and 100 simulated households of
washing machines.
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which lead to different behaviours in different household
types at different times of year to be better understood.

Attempts were made to differentiate the occupant
behaviours based on the number of people living in the
home and the household type (i.e. family vs. single person,
working household vs. pensioner), controlling for other
characteristics. However, the HES dataset proved to be too
small to perform meaningful statistical comparisons in this
case. Splitting the sample into subgroups may also degrade
the model’s predictive performance due to data scarcity.
To give examples of the small subgroups: there were only
five grills observed in the dataset, only five households
with four occupants and only three households with five
occupants. A much larger future study would be benefi-
cial to improve the representativeness of the survey and to
validate the findings of the existing study.

Furthermore, the HES study recorded the power
demands of the appliances rather than the actions of indi-
vidual occupants, and it was necessary to infer the occupant
behaviour from these measurements. Occupant behaviour
had to be defined at the household level rather than at
the individual level as it was only possible to track when
appliances are switched on, not by whom. Appliance usage
patterns by an individual may be inter-correlated and it is
not clear from the current analysis if it is possible to gener-
alize this to other appliance correlations as it is not known
the order of appliance use by an individual occupant.

7.2. Appliance behaviour modelling and simulation
methodologies

Occupant behaviour modelling of household appliance use
is still a relatively new field of research and there is more
work needed to improve our knowledge of the suitability of
the numerous modelling approaches currently available. A
strength of this study, as opposed to previous studies which
have relied on diary-based ‘time of use’ datasets, is the use
of monitored electrical power demands of individual appli-
ances to develop the high-resolution stochastic model. The
strength of the HAUM is that it considers multiple stochas-
tic factors within the households: appliance switch-on time
probabilities and usage durations developed for individual
homes. For example, only inter-household variation (vari-
ation among different household groups) could be consid-
ered for past models that have been developed using TOU
datasets based on one-day diaries (Tanimoto, Hagishima,
and Sagara 2008; Richardson et al. 2010; Widén, Molin,
and Ellegård 2012; Wilké et al. 2013).

These models averaged the one-day profiles for dif-
ferent sub-population to integrate the variation among
households. The results of this paper show that averaging
profiles (AvgHs. and AvgApp.) for a population under-
estimates the variation. This was shown in the box plots
in Figures 9 and 11 that averaging the data (AvgHs and
AvgApp) similar to Wilké et al. (2013) and Richardson
et al. (2010) underestimates the diversity. As a result, the

corresponding uncertainty of building performance simula-
tion predictions may be greatly underestimated. This limits
one of the major benefits of stochastic occupant behaviour
modelling. Moreover, not addressed in this paper, but
worthy of future research, occupant behaviour diversity
may be advantageous with regards to instantaneous elec-
tricity demand since certain systems must be sized to
meet the maximum expected simultaneous load or may
underestimate the problem of grid instability (Baetens et al.
2010).

The switch-on times of appliances are predicted based
on relative time-of-day use potential. This study found that
the method which predicted the time when a switch-on
event occurs using pdfs (Approach 1 and Approach 2) gave
good results in the case of switch-on times over one day, in
agreement with studies in literature which performed sim-
ilar validation (Page 2007; Wilké et al. 2013). The HAUM
has proven itself capable of simulating the switch-on times
over a day. However, the Approach 1 method of assign-
ing switch-on times based on switch-on pdfs and followed
by assigning durations from cdfs is problematic because
the average daily number of switch on times is under-
predicted (Table 7). This result may arise because of the
process of stepping through the time steps in time order
and effectively jumping over a number of time steps when
a switch-on event occurs and a duration is assigned, reduc-
ing the number of times that the pdf is used to test for a
switch-on event. This effect is more pronounced in model
variant IndHs as the probabilities are more ‘peaky’ and
occur at similar times of the day (due to habits of the
households), causing the reduction at the mean values up to
12% (Table 7). However, Approach 2 appears to solve this
problem and predicts similar numbers of switch-on event
compared to the measured data. The simulation results
shown in Table 7 and Figures 9 and 11 support the argu-
ment that models developed on individual home profiles
(IndHs and IndApp) capture the variation (both switch-
on probabilities and appliance usage duration) much better
than averaged profiles (AvgHs and AvgInd) regardless of
whether Approach 1 or Approach 2 is used. This is partly
explained by the fact that when a single ‘average’ cdf
is created from the dataset, durations are selected mostly
around the median thereby hindering the variation in dura-
tions for individual usages; whereas for AvgHs_IndApp,
the per-appliance cdfs are more diverse resulting in a wider
range of values.

For cold appliances, off-sequence durations (when the
compressor is not on) have not been discussed in this
study. Although Approach 2 predicts the number of times
when the compressor switches on, it has no constraint
for the off-durations; therefore, the sequences might be
quite uneven. A future approach might be to determine an
on-sequence profile from cdfs of on-durations and, once
the on-sequence ends, the duration of the off-sequence
could be deduced from an equivalent off-sequence duration
profile.
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8. Conclusions
This paper introduces a high-resolution stochastic HAUM
based on electrical power demand measurements gathered
from 225 homes in the UK as part of the UK Govern-
ment’s HES. Sixteen appliance types were selected from
the dataset for analysis and modelling. The appliances
were modelled by defining probabilities for the number of
switch-on events, the switch-on time and the duration of
appliance usage.

The conclusions arising from this study are:

-The HES dataset shows that there is a significant varia-
tion between households in the number of appliance
switch-on events (Table 4). For example, cold appli-
ances are switch-on between an average of 2.8 times
per day in one household and an average of 125.3
times in another household.

-There is also significant variation in number of switch-
on events across days (Figure 5). Daily appliance use
ranges from zero between 8 times per day for electric
showers and one between 150 times per day for cold
appliances.

-There is a further variation in the switch-on times of
appliances across different days and households for
all 16 appliance types (Figure 6). Cooking appliances
are switched on around morning, noon and evening
times (presumably meal times). Peak time occurs
in the evening for dishwashers after the evening
meal, whereas the peak time for washing machines
is observed in the morning. Cold appliances are
switched on repeatedly throughout the day.

-The length of time that appliances are used is also highly
variable (Table 5) and average household appliance
durations vary significantly. For example, in the case
of electric showers duration lengths vary from an
average of 2 minutes for one household to an aver-
age of 25.5 minutes for another household. Individual
appliance use durations also vary (Figure 7). For
electric showers, the duration ranges from 2 minutes
up to 50 minutes. This is the effect of the occu-
pants’ preference for using the appliances for different
durations and of those appliances, such as wet appli-
ances, which have different durations due to choice of
programmes.

-The modelling approach (Approach 2) that first assigns
the daily number of switch-on events, and then deter-
mines the time of the switch-on events by ‘stepping
through’ the pdf and durations from cdfs, predicts the
average daily number of switch-on events well (less
than 0.1% difference) (Table 6). Approach 1 (simi-
lar to previous studies) does not first assign the daily
number of events and simply determines the number
of switch-on events and switch-on times by ‘stepping
through’ the pdf and durations from cdfs. Approach 1

was shown to significantly underestimate the average
daily number of switch-on events.

-The model variants that use individual household switch-
on pdfs and individual appliance duration cdfs simu-
lated variation in average daily number of switch-on
times and durations better than those model variants
developed based on averaged households and aver-
aged appliances (Figures 9 and 11).

Modelling the use of appliances is a challenging task,
given the diversity of appliances available and the variabil-
ity in occupant behaviour from one household to another
household. Averaging the data for developing the metrics
is shown to suppress the diversity of the predicted occupant
behaviour within the individual households. This limitation
is often ignored by modellers that use TOU surveys, based
on diaries recorded in a single day, to develop their mod-
els. However, the results here show that variation within
the individual households is an important factor and the
choice of modelling approach can play a significant role in
predicting the occupant behaviour of appliance usage. In
future work, the current study will be extended to include
a comparison of electricity demand profiles of households
to investigate the effect of demand side management on the
overall household electricity profiles.
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