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ABSTRACT 1 
Current approaches to estimate the probability of a traffic collision occurring in real-time 2 

primarily depend on comparing the traffic conditions just prior to collisions with the traffic conditions 3 
during normal operations. Most studies acquire pre-collision traffic conditions by matching the 4 
collision time in the national crash database with the time in the aggregated traffic database. Since the 5 
reported collision time sometimes differs from the actual time, the matching method may result in 6 
traffic conditions not representative of pre-collision traffic dynamics. This may subsequently lead to 7 
an incorrect calibration of the model used to predict the probability of a collision. In this study, this is 8 
overcome through the use of highly disaggregated vehicle-based traffic data (i.e. vehicle trajectories) 9 
from a traffic micro-simulation (i.e. VISSIM) and the corresponding traffic conflicts (i.e. dangerous 10 
concurrences between vehicles) data generated by the Surrogate Safety Assessment Model (SSAM). 11 
In particular, the idea is to use traffic conflicts as surrogate measures of traffic safety, and data on 12 
traffic collisions are therefore not needed. Two classifiers are then employed to examine the proposed 13 
idea: (i) Support Vector Machines (SVMs) – a sophisticated classifier and (ii) k-Nearest Neighbors 14 
(kNN) – a relatively simple classifier. Substantial efforts are devoted to making the traffic simulation 15 
as representative to real-world as possible by employing data from a motorway section in England. 16 
Four temporally aggregated traffic datasets (i.e. 30-second, 1-minute, 3-minute and 5-minute) are 17 
examined. The main results demonstrate the viability of using traffic micro-simulation along with the 18 
SSAM for real-time conflicts prediction and the superiority of 3-minute temporal aggregation in the 19 
classification results. Attention should be however given to the calibration and validation of the 20 
simulation software so as to acquire more realistic traffic data resulting in more effective conflicts 21 
prediction.  22 
 23 
Keywords: Traffic safety, Traffic conflicts, Traffic micro-simulation, Support Vector Machines 24 
(SVMs), k-Nearest Neighbours (k-NN).    25 
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INTRODUCTION 1 
Over the past decades, the estimation of unsafe traffic conditions in real-time has been studied 2 

by many researchers working in the area of Intelligent Transport Systems (ITS). This is because 3 
predicting hazardous traffic conditions is an integral part of proactive highway safety management 4 
that has the potential to reduce road traffic fatalities and injuries. In particular,  predicting where and 5 
when a traffic collision is likely to occur in real-time and preventing the collision by adjusting the 6 
traffic dynamics through a range of traffic management interventions (e.g. variable message signs) are 7 
beneficial to highway safety. Previous research on this topic has established an underpinning theory 8 
suggesting that there exists a relationship between specific traffic dynamics (e.g. interactions between 9 
speed, flow, congestion) and spatio-temporal collision risk (1).  Based on this principle, a dominating 10 
approach for detecting unsafe traffic conditions is the comparison of traffic situations just prior to 11 
traffic collision occurrences on a segment with the traffic conditions at normal situations on the same 12 
segment. Specifically, in the current era where various advanced driver assistance systems (2) and 13 
autonomous vehicles (3) are massively developed, it becomes essential to effectively identify these 14 
traffic fluctuations in real-time and enhance collision-free decision making of such technologies. 15 
 Perhaps the most important factor in the development of real-time collision-prone traffic 16 
conditions models is the temporal aggregation of traffic data and the selection of important variables 17 
which would lead to the correct distinction between collision-prone and normal traffic conditions. 18 
Temporal aggregation of traffic data is available at pre-defined time intervals (e.g. 30-second or 1-19 
minute, 5-minute and 15-minute). Highly disaggregated traffic data (e.g. 30-second or 1-minute of 20 
temporal aggregation) may not be suitable for implementing a timely intervention by the relevant 21 
authorities to intervene and prevent both the collision and the collision-related congestion. In the 22 
majority of recent studies (4–6),  traffic conditions at 5-10 minutes before the collision have been 23 
found to be the most suitable time period to identify such events in a timely manner and initiate an 24 
intervention by the responsible traffic agencies. Highly disaggregated traffic data may not be available 25 
in many countries. Furthermore, even if highly disaggregated traffic data are available, an error exists 26 
between the reported collision time and the actual time of a collision. This is because the reported 27 
time and location largely depend on the subjective volition of the police officers attending the site of 28 
the collision (7). As a result, inaccurately reported collision time leads to misrepresentative pre-29 
collision traffic dynamics resulting in an inaccurate calibration of the collision prediction models.  30 

Traffic micro-simulation can be utilised as a powerful tool to overcome the inherent 31 
difficulties with the recorded collision time and temporal data aggregation issues. Recent research on 32 
traffic micro-simulation and road safety (e.g. (8, 9)) showed that it is now possible to estimate 33 
surrogate measures of safety performance based on dangerous vehicle interactions.  If these risky 34 
vehicle interactions are filtered with established risk indicating thresholds, they are termed as “traffic 35 
conflicts”. According to the definition by Amundsen and Hyden (10) traffic conflicts occur when  two 36 
or more road vehicles are in such a collision course that a high probability of a collision exists if their 37 
motion remains uninterrupted.  38 

 Using traffic conflicts can, therefore, address the issues related to traffic collisions as 39 
discussed above.  Furthermore, studying conflicts can enhance the understanding of how road users 40 
fail to drive safely and cause collisions (8). Approaches that use traffic conflicts are also criticised in 41 
the literature because the correlation between traffic conflicts and traffic collisions on a segment may 42 
be low (9). It is however admitted that the mechanism that triggers collisions and conflicts is 43 
analogous (8, 9).  44 

 Additionally, because of the technological advances in the area of automated driving, the 45 
concept of real-time collision prediction should not necessarily relate to a timely intervention from 46 
traffic authorities but rather should concentrate on improving the speed of the prediction as well as 47 
their implementation at the vehicle-level. Therefore, the exploitation of highly disaggregated traffic 48 
data should be taken into account. In that direction machine learning and data mining approaches can 49 
prove advantageous over traditional (e.g. logistic regression (11)) or sophisticated techniques (e.g. 50 
Neural Networks(12)) for real-time collision prediction. Since collisions and conflicts are more rare 51 
events than normal traffic conditions, attention should also be given to the handling of imbalanced 52 
data (13) (e.g. data used for the classification where one class has significantly more instances than 53 
the other). 54 
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The combination of traffic micro-simulation and machine learning classifiers to detect 1 
conflict-prone traffic conditions on motorways from highly disaggregated data form the motivation 2 
for the current paper. This study explores the application of the commonly employed Support Vector 3 
Machines (SVM) and k-Nearest Neighbours (kNN), which is a simple but an effective non-parametric 4 
classifier, for the classification of simulated traffic data with regards to traffic conflicts. The traffic 5 
data used in this study come from the PTV VISSIM micro-simulation software (14) and consist of 6 
speed, flow and acceleration data aggregated at different temporal units (e.g. 30-second, 1-minute , 3-7 
minute and 5-minute time intervals) to compare the effectiveness of the temporal aggregation on the 8 
classification results. The conflict data are acquired through the Surrogate Safety Assessment Model 9 
(SSAM) (15), a software which uses the trajectories of the vehicles from the traffic micro-simulation 10 
and outputs traffic conflicts. A matched-case control data structure is used, in which traffic conditions 11 
before each conflict are matched with normal traffic conditions coming from three other simulation 12 
runs. The number of additional runs was chosen in order to cope with the imbalance between conflict 13 
and safe conditions which can prove essential for classification purposes (13). 14 

The rest of the paper is organised as follows: firstly, the existing literature and its main 15 
findings are synthesised. An analytic description of the kNN and SVM classification algorithms is 16 
described next. This is followed by a presentation of the data used in the analysis along with the pre-17 
processing methodology and the results of the classification algorithms. Finally, the last section 18 
summarises the main conclusions of the study and offers some recommendations for future research. 19 

 20 
LITERATURE REVIEW 21 

The purpose of this review was to synthesize existing studies on traffic conflicts-based safety 22 
assessment by comparing and contrasting their findings and identify whether there is any important or 23 
interesting knowledge gap. Focus was also given on the methods employed in real-time collision 24 
prediction algorithms so as to select the appropriate methods for predicting conflict-prone traffic 25 
conditions.  26 

 27 
Safety assessment using simulated conflicts 28 

The use of traffic conflicts in road safety assessment using traffic micro-simulation has gained 29 
popularity within the ITS research community over the recent years. For example, Minderhoud and 30 
Bovy (16) suggested that traffic micro-simulation can overcome the need to collect collision data and 31 
provide alternatives to the safety evaluation of ITS technologies. 32 

In a traffic micro-simulation tool, simulating traffic collisions may not be possible because all 33 
micro-simulation software is programmed according to the car-following models such that vehicles 34 
cannot collide. However, Huguenin et al. (17) indicated the fact that vehicles can come very close to 35 
each other and the information on vehicles’ exact positions, speeds, headings and accelerations can 36 
provide a relevant safety index for vehicle interactions.   37 

In order to identify metrics which can help in identifying conflicts in a traffic micro-38 
simulation environment, Gettman et al. (18) suggested to use a range of variables as a traffic conflict 39 
indicator. These include Time-to-Collision (TTC), Post-Encroachment-Time (PET), the maximum 40 
speed of the vehicles, the deceleration rate and the speed differential between the vehicles.  Their 41 
work led to a profusion of studies investigating the safety of vehicles in traffic micro-simulation 42 
models. Likewise, El-Basyouny and Sayed (8) indicated that traffic conflicts can also be employed as 43 
an applicable predictor for traffic collisions instead of typical measures such as exposure because they 44 
are based on vehicle interactions. This is further justified by Archer (19) who stated that the traffic 45 
conflict technique based on the results from micro-simulation could have a practical impact and 46 
provide an insight on the identification of safety problems in real-world traffic environments. A 47 
detailed overview of approaches concerning safety-related traffic simulation is given by Young et al. 48 
(20).  In their review, it was revealed that there exists a correlation between the number of simulated 49 
conflicts with the number of expected real-world collisions. On the other hand, it is observed that this 50 
correlation is used for before-and-after analyses of intersection or motorway sections in order to 51 
identify which interventions can improve safety at these specific sites.  52 

For instance,  a recent study from Shahdah et al. (9) used VISSIM with SSAM to develop a 53 
statistical relationship between conflicts and collisions for signalised intersections. Traffic conflicts 54 
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were estimated by using two thresholds for TTC (i.e. 1.5 and 0.5 seconds). Their results concluded 1 
that conflict-based surrogate safety measures can be used to identify the number of collisions at a 2 
particular site as well as for a before-and-after safety evaluation of crash modification factors. Essa 3 
and Sayed (21) however emphasised that the link between conflicts and collisions depends heavily on 4 
the calibration of the simulation model. In the same principle, Fan et al. (22), who investigated the 5 
safety of motorway merging areas, suggested that SSAM should be used with caution because of the 6 
purely stochastic nature of real-world collisions. 7 

 8 
Machines Learning Classifiers 9 

In order to reliably identify conflict-prone traffic conditions, potential classifiers need to be 10 
fast, accurate and suitable for real-time applications. Classifiers used to detect real-time traffic 11 
collisions can also be applied for this purpose. Most popular approaches in real-time collision 12 
detection include logistic regression (e.g. 4, 30) and Neural Networks  (e.g. 31, 32). However, logistic 13 
regression models rely on distribution asumptions for the collision frequency and the corresponding 14 
collision precursors and Neural Networks heavily incorporate the black-box effect and present over-15 
fitting problems (27). Bayesian Networks (4) and Genetic Programming (28) approaches to real-time 16 
collision prediction deal with the aforementioned problems but face difficulties with regards to their 17 
transferability and practical implementation.    18 

As a result, alternative methods should be sought to overcome the existing methodological 19 
drawbacks. According to Dreisetl and Ohno-Machado (29) SVMs are flexible and have less over-20 
fitting problems while kNN provides a case-based explanation on classification results, address the 21 
black-box problem and are easily transferrable because they do not require prior knowledge of any 22 
datasets. The recent work on SVMs proves that they are an efficient classifier as well as a successful 23 
predictor when applied to traffic collisions prediction. Hence, it is a potential candidate for detecting 24 
conflict-prone conditions effectively. Moreover, the simplicity of kNN and its real-time applicability 25 
as suggested by studies on real-time traffic prediction provides an alternative algorithm that can be 26 
used for classifying traffic conditions.  27 

SVM models have been applied to real-time collision and traffic flow predictions. For 28 
instance, Li et al. (30) compared the findings from the SVMs with the findings of the popular negative 29 
binomial models in predicting motorway collisions. Their results showed that SVM models have a 30 
better goodness-of-fit in comparison with negative binomial models. Their findings were in line  with 31 
the study of Yu & Abdel-Aty (27) who compared the results from the SVM and Bayesian logistic 32 
regression models for evaluating real-time collision risk demonstrating the better goodness-of-fit of 33 
the SVM models. The prediction of side-swipe accidents using SVMs was evaluated in Qu et al. (31) 34 
by comparing SVMs with Multilayer Perceptron Neural Networks. Both techniques showed similar 35 
accuracy but SVMs led to better collision identification at higher false alarm rates. More recently, 36 
Dong et al. (32) demonstrated the capability of SVMs to assess spatial proximity effects for regional 37 
collision prediction. 38 

On the other hand, kNN has recently been applied in the area of short-term traffic prediction 39 
due to the fact that it is one of the simplest data mining algorithms. Zhang et al. [34] made a first 40 
attempt to use kNN for traffic flow prediction using occupancy rate, vehicle speed and weather data. 41 
They compared the results from kNN with the results of backpropagation Neural Networks and 42 
showed than kNN classification was more accurate and transferable. Furthermore, Xiaoyu et al.(33) 43 
argued that although kNN has a relatively slow computing speed it is suitable for real-time 44 
applications. Lastly, in comparison with SVM, kNN have better transferability as suggested by Zhang 45 
et al (34).  46 

Another issue that needs further investigation by the application of classification algorithms is 47 
the temporal aggregation of traffic data. Previous work on segment-based collision prediction 48 
indicated that 5-10-minute aggregated traffic data (e.g. (5)) offer an ideal balance between capturing 49 
the microscopic traffic fluctuations and enabling sufficient time to traffic authorities for introducing 50 
interventions. Such temporal aggregation may not be optimal for the case of (semi)autonomous 51 
vehicles which need a reliable prediction of unsafe traffic conditions as fast as possible. Therefore, 52 
different temporal aggregation intervals (i.e. 30-second, 1-minute, 3-minute and 5-minute) will be 53 
tested in order to identify the aggregation offering the best results in real-time conflict-prone traffic 54 
conditions estimation.  55 
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In summary, it can be concluded that data from a traffic micro-simulation tool (e.g. VISSIM) 1 
and relevant traffic conflicts from the SSAM have the potential to improve real-time highway safety 2 
assessment.  Although vehicles in micro-simulation do not collide, they have abundant interactions 3 
with each other and their motions are realistic because of the built-in car-following models. 4 
Consequently, if proper attention to the correct calibration of the micro-simulation model is given, 5 
traffic conditions before a traffic conflict can be used as a surrogate measurement to identify traffic 6 
collisions. However, existing studies utilising VISSIM/SSAM concentrate on the investigation of the 7 
correlation between traffic collisions and traffic conflicts so as to evaluate the impact of interventions 8 
through the use of traffic conflicts. In this paper, simulated traffic conditions and the corresponding 9 
conflicts data are utilised to estimate conflict-prone traffic conditions in real-time by the use of 10 
machine learning classifiers (i.e. SVMs and kNN).  11 

 12 
SUPPORT VECTOR MACHINES AND K-NEAREST NEIGHBOURS 13 
 14 

The objective of this study is to identify conflict-prone traffic conditions from highly 15 
disaggregated data by using the SVM and kNN classifiers. It should be noted that this study is 16 
concerned with the binary classification problem of distinguishing between “safe” and “conflict-17 
prone” traffic conditions, although in the real-world a road segment may have varying degrees of 18 
safety. 19 

SVMs belong to the larger group of supervised learning algorithms and kernel methods. In 20 
supervised learning, there exists a set of example input vectors {xn}n=1N  along with corresponding 21 
targets {tn}n=1N , the latter of which corresponds to class labels. In this study, the two classes are 22 
defined as ‘dangerous’ when t=1 and ‘safe’ when t=0. The purpose of learning is to acquire a model 23 
of how the targets rely on the inputs and use this model to classify or predict accurately future and 24 
previously unseen values of x.  25 

An SVM classifier is based on the following functional form:   26 
𝑦𝑦 = 𝑓𝑓(𝑥𝑥;𝑤𝑤) = ∑ 𝑤𝑤𝑖𝑖𝐾𝐾(𝑥𝑥, 𝑥𝑥𝑖𝑖) +𝑤𝑤0𝑁𝑁

𝑖𝑖=1 = 𝑤𝑤𝑇𝑇𝜑𝜑(𝑥𝑥)            (1) 27 
In equation (1),  𝐾𝐾(x, xi) is a kernel function, which defines a basis function for each data 28 

point in the training dataset, wi are the weights (or adjustable parameters) for each point, and w0 is 29 
the constant parameter. The output of the function is a sum of M basis functions 𝜑𝜑(x) =30 
[𝜑𝜑1(x),𝜑𝜑2(x), … ,𝜑𝜑𝑀𝑀(x)]) which is linearly weighted by the parameters w. 31 

SVM, through its target function, tries to find a separating hyper-plane to minimize the error 32 
of misclassification while at the same time maximize the distance between the two classes (27).  The 33 
produced model is sparse and relies only on the kernel functions associated with the training data 34 
points which lie either on the margin or on the wrong side. These data points are referred to as 35 
“Support Vectors” (SVs). 36 

kNN is a non-parametric learning algorithm which is simple but effective in many cases (35). 37 
For a data record t to be classified its k nearest neighbours are retrieved and this forms a 38 
neighbourhood of t. During training, each t is assigned to a class if the majority of the k neighbours of 39 
t belong to this particular class. However, an appropriate value for k is needed to apply a kNN 40 
approach and the success of classification is very much dependent on this value (36). 41 
 42 
DATA DESCRIPTION AND PROCESSING 43 

 44 
This study aims to examine the effectiveness of SVM and kNN classifiers in identifying 45 

conflict-prone traffic conditions using data from a traffic micro-simulation (i.e. VISSIM) and the 46 
SSAM. As discussed in the literature review section, the fundamental issue relating to this approach is 47 
the building and calibrating of a traffic micro-simulation model using real-world traffic data. For this 48 
purpose, link-level disaggregated traffic data from loop detectors and GPS-based probe vehicles were 49 
obtained from the UK Highways England Journey Time Database (JTDB). Link-level data correspond 50 
to every day of the years 2012 and 2013 and include average travel speed, volume and average 51 
journey time at 15-minute intervals. It should be noted here that 15-minute traffic data correspond to 52 
link-based average speed, volume and journey time of all vehicles between two junctions.  53 
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A 4.52-km section of motorway M62 between junctions 25 and 26 in England was selected as 1 
the study area. In order to build a robust micro-simulation model, the JTDB data were split into four 2 
scenarios for each year: 3 

• Morning peak hours (06:00 – 09:30) = 14 “15-minute” intervals 4 
• Morning off-peak hours (09:30-13:00) = 14 “15-minute” intervals 5 
• Afternoon off-peak  hours (13:00-15:45) = 11 “15-minute” intervals 6 
• Afternoon peak hours (15:45-19:15)= 14 “15-minute” intervals 7 

For each of these scenarios the 15-minute traffic volumes and the cumulative speed 8 
distribution of the roadway segment were extracted and employed as input to VISSIM. Furthermore, 9 
the vehicle composition for 2012 and 2013 was also obtained from the UK Department of Transport 10 
(37) and was used to build a micro-simulation model. The road segment was manually coded in 11 
VISSIM using a background image from OpenStreetMap (38). It was decided to allocate data 12 
collection detectors every 300m in order to acquire detailed traffic data. The spacing of the detectors 13 
was inspired by previous studies on real-time collision prediction on motorways (e.g. (4, 27))  14 

In order for the micro-simulation to be initiated, the car-following model needs to be defined 15 
in VISSIM. According to the software manual (14), the Wiedemann 99 model was selected because it 16 
applies to motorway scenarios. The Wiedemann model is characterised mainly by three parameters in 17 
VISSIM; the standstill distance, the headway time and the following variation (14). The standstill 18 
distance describes the average standstill distance between two vehicles. The headway time is the time 19 
gap (in seconds) which a driver wants to maintain at a certain speed. On the other hand, the following 20 
variation defines the desired safety distance a driver allows before moving closer to a car in front. 21 

In order to validate the simulation results the travel time and the GEH-statistic (39), which 22 
correlates the observed traffic volumes with the simulated volumes, was used as shown below: 23 

 𝐺𝐺𝐺𝐺𝐺𝐺 =  �
(𝑉𝑉𝑠𝑠𝑠𝑠𝑠𝑠−𝑉𝑉𝑜𝑜𝑜𝑜𝑜𝑜)2
𝑉𝑉𝑠𝑠𝑠𝑠𝑠𝑠−𝑉𝑉𝑜𝑜𝑜𝑜𝑜𝑜

2

        (2) 24 

where 𝑉𝑉𝑠𝑠𝑠𝑠𝑠𝑠 is the simulated traffic volume and 𝑉𝑉𝑜𝑜𝑜𝑜𝑜𝑜 is the observed traffic volume. 25 
After a number of trial simulations (~1000 for every scenario) the best GEH values came by 26 

using the following parameters for the Wiedemann 99 car following model: 27 
• Standstill distance: 1.5 m 28 
• Headway time: 0.9 sec 29 
• Following variation: 4 m 30 

For the simulation to efficiently resemble real-world traffic it is essential that the GEH 31 
statistic takes a value below five for 85% of the simulated intervals (39). In the simulations that were 32 
undertaken, the GEH values for the majority of the time intervals were found to be less than five. 33 
However, there were 3 out 14 time intervals from the scenarios of the morning peak hours of the year 34 
2012 where GEH values were found to be between 5 and 10. According to (40) these values indicate 35 
either a calibration problem or a data problem. Because of the large number of simulations undertaken 36 
it is assumed that the bad GEH values relate to the bad quality of the available data (i.e. 15-minutes 37 
aggregated road-level traffic data). Therefore it was decided to keep the simulation results for the 38 
corresponding morning peak time scenario of the year 2012.  39 

After calibrating the simulations for every scenario by year, three additional simulations with 40 
different random seeds were run and validated with the GEH values resulting in a total of four 41 
different simulation results for each of the scenarios. The number of additional runs was chosen in 42 
order to cope with the imbalance between conflict and safe conditions which can prove essential for 43 
classification purposes (13). The four different simulations are used for the matched-case control 44 
structure, where the first simulation is used to acquire the traffic conflicts and the other three are used 45 
to resemble the normal traffic conditions.  46 

For the extraction of traffic conflicts, the vehicle trajectory files exported from VISSIM were 47 
inserted to the SSAM. Conflicts were detected if the TTC value between two vehicles was below 1.5 48 
seconds and the PET value was below 4 seconds which are the default values used in SSAM (15). In 49 
the last step of the data processing, a MATLAB (41) code was developed in order to match the 50 
conflicts (exported from the SSAM) with the traffic conditions (acquired from VISSIM).  The 51 
estimated conflicts were filtered again in order to obtain conflicts with TTC below 1.3 seconds and 52 
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PET below 1 second in order to identify conflicts which are difficult to avoid. That is because TTC 1 
below 1.3 seconds is lower than the average human reaction time (42) and PET values close to zero 2 
show imminent collisions (15).   3 

 4 
For every conflict, the nearest upstream detector on the road segment was identified by 5 

comparing the time of the conflict with the time the vehicles passed from every detector. This specific 6 
detector was marked as “conflict detector”. Traffic data were extracted for every conflict detector, the 7 
corresponding upstream and downstream detectors on the same lane and the detector in the adjacent 8 
lane for every time interval. The traffic measurements for these detectors were marked as “conflicts” 9 
because they represent the traffic conditions near the time when the conflict occurred. For each of the 10 
detectors and for every time interval the average number of vehicles, the average vehicle speed and 11 
the average vehicle acceleration were extracted. The traffic data exported from VISSIM were then 12 
aggregated in 30-second, 1-minute, 3-minute and 5-minute intervals prior to the conflict occurrence.   13 

As mentioned before, three additional simulation runs were performed in order to acquire 14 
conflict-free traffic conditions for the detectors. Traffic conditions collected at the same conflict 15 
detectors in the three additional simulation runs were marked as “safe”, after checking that no 16 
conflicts happened on the same detectors during these additional runs. A total of 3,513 traffic conflicts 17 
and the corresponding conflict-prone traffic conditions were gathered for further analysis.  Figure 1 18 
illustrates the procedure which was followed to prepare the data for the classification. 19 

  20 
Figure 1: Flow chart of the procedure followed to perform the classification 21 

 22 
In order to validate the classification results, a ten-fold cross-validation procedure was used 23 

(43). The original sample was randomly divided into ten equal sub-samples and of those ten sub-24 
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samples, one sub-sample is chosen as the validation dataset for testing the classification accuracy and 1 
the rest of the sub-samples were used as the training data.  2 

RESULTS AND DISCUSSION 3 

Classification methods of SVM and kNN have been applied to a unified dataset containing all 4 
the cases (“conflicts” and “safe”) as discussed above.  5 

  SVMs depend on the kernel functions to perform the classification. The most popular 6 
kernels used in the SVM classification are the linear, polynomial and Gaussian or radial basis function 7 
(RBF). In this study, the Gaussian kernel has been used because existing research suggests that it 8 
provides more accurate results (27). The Gaussian kernel is calculated through the equation: 9 

 K�xi, xj� = exp �−γ�xi − xj�
2�        (2) 10 

where γ determines the width of the basis function. The coefficient γ was set to 0.5 because 11 
the targets of the classification lie in the interval {0,1}. 12 

The kNN classifier, on the other hand, requires tuning the important parameter - the number 13 
of nearest neighbours (k). A usual approach is to perform tests with different k values starting from 1 14 
and ending at the square root of the number of observations (44). In this paper after trying different k 15 
values, the best results came from using k=40 and k=119 (which is the square root of the sample size). 16 
The results for those two kNN runs are therefore presented and compared with the SVM 17 
classification. 18 

Both SVM and kNN were developed using the Statistics and Machine Learning Toolbox of 19 
MATLAB. In order to test the performance of the three different algorithms (i.e. SVM, 40-NN and 20 
119-NN) the classification accuracy was initially tested for each of the temporal aggregation intervals. 21 
To further investigate the performance of the classifiers for real-time conflict-prone traffic conditions 22 
identification as well as to cope with the imbalance of the dataset (because conflict to safe conditions 23 
ratio is 1:3) a number of metrics were employed to evaluate the performance of the classifiers. These 24 
metrics are sensitivity, specificity, precision, recall, G-means and F-measure and are defined in 25 
equations (3) - (8) according to (6):  26 

 Sensitivity = 
𝑇𝑇𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

𝑇𝑇𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐+𝐹𝐹𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
      (3) 27 

 Specificity = 
𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠+𝐹𝐹𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
      (4) 28 

 Precision = 
𝑇𝑇𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

𝑇𝑇𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐+𝐹𝐹𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
      (5) 29 

 Recall = 
𝑇𝑇𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

𝑇𝑇𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐+𝐹𝐹𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
      (6) 30 

 G-means= �𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 ∗ 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆      (7) 31 
 F-measure= 2∗𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝∗𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟

𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝+𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟
       (8) 32 

where 𝑇𝑇𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 represents a correct detection of conflict-prone traffic conditions identified as 33 
conflict-prone , 𝐹𝐹𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐  represents an incorrect detection of conflict-prone traffic conditions 34 
identified as safe, 𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 is a safe traffic condition  instance correctly identified as safe and 𝐹𝐹𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 is a 35 
safe traffic condition instance falsely identified as conflict-prone. 36 

The sensitivity statistic shows the correct classification accuracy with respect to conflict-37 
prone traffic conditions, while the specificity statistic shows the classification accuracy in terms of 38 
safe conditions. Precision and recall are used for identifying the classification accuracy among each 39 
class. G-means is used to check whether the use of an imbalance dataset (1:3; conflicts vs safe) has 40 
any negative impact on the balanced qualification accuracy. Lastly, the F-measure is a metric which 41 
resembles the conflict-prone classification ability of the classifier models. 42 

Results for all the above mentioned performance metrics for the classifiers are summarised in 43 
Table 1.  44 
  45 
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Table 1: Classification performance metrics for the temporal aggregation intervals 1 
(Sample size 14,052 cases with 10-fold cross validation) 2 

Classifier 
Accuracy 

30-second 1-minute 3-minute 5-minute 
SVM 76.4% 76.7% 78.1% 76.3% 

40-NN 75.1% 75.4% 77.4% 75.9% 
119-NN 75.0% 75.2% 77.0% 75.7% 

 
Sensitivity Specificity Precision Recall 

30-second 
SVM 0.893 0.761 0.062 0.893 

40-NN 0.542 0.752 0.015 0.542 
119-NN 0.600 0.750 0.003 0.600 

 1-minute 
SVM 0.875 0.765 0.080 0.875 

40-NN 0.672 0.755 0.033 0.672 
119-NN 0.692 0.752 0.015 0.692 

 3-minute 
SVM 0.827 0.779 0.157 0.827 

40-NN 0.758 0.775 0.140 0.758 
119-NN 0.713 0.773 0.133 0.713 

 5-minute 
SVM 0.835 0.762 0.067 0.835 

40-NN 0.696 0.760 0.061 0.696 
119-NN 0.807 0.756 0.037 0.807 

 
G-Means F-Measure 

30-secons 
SVM 0.825 0.116 

40-NN 0.638 0.029 
119-NN 0.671 0.005 

 1-minute 
SVM 0.818 0.146 

40-NN 0.713 0.063 
119-NN 0.722 0.030 

 3-minute 
SVM 0.803 0.264 

40-NN 0.766 0.236 
119-NN 0.742 0.224 

 5-minute 
SVM 0.797 0.125 

40-NN 0.727 0.113 
119-NN 0.782 0.071 

 3 
As can be seen from Table 1, SVM outperforms the three kNN classifiers with respect to the 4 

accuracy statistics regardless of the temporal aggregation of traffic data. This is an expected outcome 5 
because the SVM classification is a more sophisticated and powerful technique than the simplistic 6 
kNN. Surprisingly, the difference in the classification accuracy is relatively small (~1.0 - 1.5%) for 7 
the same temporal aggregation.  Forty neighbours are the optimal number of neighbours which can be 8 
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used to classify an instance of traffic conditions as conflict-prone or safe. On the contrary, the 119-1 
NN classifier falls short in classifying conflict-prone conditions at a level of 0.2% - 0.4% compared to 2 
the 40-NN classifier.  3 

Unlike existing studies on estimating collision-prone traffic conditions where 5-10-minute 4 
aggregated traffic data provided the best performance (e.g. (6)), traffic data aggregated in 3-minute 5 
time interval have proved to be a better conflict precursor than any other temporal aggregation used in 6 
this study. This is probably related to the noise inherent to 30-second and 1-minute aggregated data 7 
and lack of 5-minute data to capture accurately the traffic dynamics leading to a conflict.  8 

It can be observed that SVM demonstrates a higher sensitivity and specificity compared to 9 
kNN. This implies smaller Type I and Type II errors because both conflict-prone and safe conditions 10 
have a better chance of being correctly classified, especially when using 30-second traffic data. The 11 
performance of kNN classification regarding sensitivity and specificity improves with higher temporal 12 
aggregation reaching its best value when 5-minute traffic data are classified using the 119-NN 13 
classifier.  14 

As far as precision and recall are concerned, it can be seen that the classifiers demonstrate 15 
high recall but low precision. Hence, the classifiers perform well in classifying traffic conditions, but 16 
most of the correct classifications correspond to safe traffic conditions (which form the majority of the 17 
sample) rather than conflict-prone conditions. The best precision (i.e. the best identification of 18 
conflict-prone conditions)was found for the case of  3-minute aggregated data  19 

According to the results presented in Table 1, the G-means metric shows that the balanced 20 
classification ability of the SVM classifier is higher in smaller temporal aggregation intervals but 21 
drops when 3-minute and 5-minute aggregation are utilised. On the other hand,  the G-means metric 22 
improves with higher temporal aggregation in the case of 119-NN, while the 40-NN algorithm 23 
performs well when 3-minute temporal aggregation is used. 24 

Finally, the F-measure results of the classifiers in Table 1 show that conflicts are difficult to 25 
be detected by all three algorithms. This is probably due to the class imbalance problem, as well as the 26 
noise included in lower temporal aggregation intervals. The 3-minute temporal aggregation interval 27 
again shows better results than the other two intervals. 28 

The classification accuracy for both classifiers agree with the results in the literature (e.g. (6, 29 
27, 46)) which used actual collision data and more precise traffic data.  The results of the classifiers 30 
regarding accuracy, G-Means and F-measure are comparable to the findings by Sun and Sun (6) who 31 
employed a Dynamic Bayesian Network (DBN) classifier. Their DBN classifier achieved an overall 32 
accuracy of 76.6% which is similar to the accuracy of most of the conflict-based classifiers in this 33 
paper. It should also be observed that using 3-minute traffic data with SVMs, the accuracy 34 
performance increases to 78.1%. Furthermore, it is shown that even though the two kNN classifiers 35 
are considered to be a simple algorithm their performance is similar when using 3-minute traffic data 36 
and is low only by approximately 1% for other temporally aggregated traffic data examined in this 37 
study. Regarding G-means the DBN classifier in (6)  has a value of  0.76 which is similar to the  kNN 38 
classifiers in the current study but lower when compared to SVM. This shows the supremacy of 39 
SVMs for balanced classifying for the case of temporally aggregated data. On the contrary, DBNs are 40 
better in detecting collision-prone conditions than SVMs and kNN with an F-Measure value of 0.512. 41 
This shows that further research is needed to overcome the data imbalance for better detection of 42 
conflict-safe traffic conditions. 43 

In summary, it can be concluded that that traffic data aggregated in a 3-minute interval have 44 
proved to be the best temporal aggregation in classifying conflict-prone traffic conditions. However, 45 
improvements regarding the data imbalance problem need to be made to improve the F-measure 46 
metric for the classifiers. 47 

 48 
CONCLUSIONS 49 
 50 

 This paper developed a simulation approach to detect traffic conflict-prone traffic conditions 51 
in real-time. This approach overcame two issues associated with the classification of collision-prone 52 
traffic conditions: (i) the temporal traffic data aggregation problem and (ii) the issues surrounding the 53 
incorrect reporting of collision time and the corresponding misrepresentative pre-collision traffic 54 
conditions. Since real-world data on traffic conflicts were not available, a simulation method 55 



Katrakazas C., Quddus M., Chen W.H.   12 
 

consisting of two widely used simulation tools - VISSIM for traffic information and SSAM for traffic 1 
conflicts - was adopted. VISSIM provided aggregated traffic data and information on individual 2 
vehicles’ trajectories that were fed to SSAM which was capable of converting microscopic traffic 3 
information into meaningful safety-related information such as traffic conflicts. Significant efforts 4 
were devoted to calibrating the traffic simulation model in VISSIM. The performance of the 5 
algorithms was evaluated using their overall accuracy and the metrics of sensitivity, specificity, 6 
precision, recall, G-means and F-measure. 7 

The classification results showed that traffic micro-simulation along with safety thresholds to 8 
detect conflicts from the SSAM model could be used in real-time safety assessment. The accuracy of 9 
both the SVM and kNN classifiers was found to be in-line with recent studies on real-time collision 10 
prediction which used actual collision data along with the corresponding traffic data. Thus, having 11 
overcome the misreported collision time simulation-based data can better represent traffic conditions 12 
before the occurrence of a dangerous vehicle encounter. Since the mechanism leading to a conflict 13 
and the mechanism leading to collision present similarities, the correct real-time identification of 14 
conflict-prone conditions would lead to safer real-time traffic because collisions are a fraction of the 15 
observed conflicts. Moreover, the superiority of 3-minute temporal aggregation in the classification 16 
results indicates that safety experts should utilise 3-minute aggregated data to understand the traffic 17 
fluctuations and the occurrence of traffic collisions. Researchers should be cautious if highly 18 
disaggregated traffic data (i.e. 30-second) are utilised in estimating real-time conflicts for the risk 19 
assessment of advanced driver-assistance systems (ADAS) and autonomous vehicles (AVs) which 20 
need to colect and process data as fast as possible from their on-board sensors.  21 

It should, however, be noted that if simulated data are used, special attention shall be given in 22 
the validation using real-world data (e.g. video surveillance data or radar-based data). Further research 23 
shall be devoted to solving the issue with the data imbalance as identified in this study by the low F-24 
measure metric.   25 
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