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Abstract 

This thesis is concerned with (a) the development of full-field, multi-axis and phase contrast 

wavelength scanning interferometer, using an electronically tuned CW Ti:Sa laser for the study 

of depth resolved measurements in composite materials such as GFRPs and (b) the 

development of temporal phase unwrapping algorithms for depth re-solved measurements. 

Item (a) was part of the ultimate goal of successfully extracting the 3-D, depth-resolved, 

constituent parameters (Young’s modulus E, Poisson’s ratio v etc.) that define the mechanical 

behaviour of composite materials like GFRPs. Considering the success of OCT  as an imaging 

modality, a wavelength scanning interferometer (WSI) capable of imaging the intensity AND 

the phase of the interference signal was proposed as the preferred technique to provide the 

volumetric displacement/strain fields (Note that displacement/strain fields are analogous to 

phase fields and thus a phase-contrast interferometer is of particular interest in this case). These 

would then be passed to the VFM and yield the sought parameters provided the loading scheme 

is known. As a result, a number of key opto-mechanical hardware was developed. First, a 

multiple channel (x6) tomographic interferometer realised in a Mach-Zehnder arrangement was 

built. Each of the three channels would provide the necessary information to extract the three 

orthogonal displacement/strain components while the other three are complementary and were 

included in the design in order to maximize the penetration depth (sample illuminated from 

both sides). Second, a miniature uniaxial (tensile and/or compression) loading machine was 

designed and built for the introduction of controlled and low magnitude displacements. Last, a 

rotation stage for the experimental determination of the sensitivity vectors and the re-

registration of the volumetric data from the six channels was also designed and built. 

Unfortunately, due to the critical failure of the Ti:Sa laser data collection using the last two 

items was not possible. However, preliminary results at a single wavelength suggested that the 

above items work as expected. Item (b) involved the development of an optical sensor for the 

dynamic monitoring of wavenumber changes during a full 100 nm scan. The sensor is 

comprised of a set of four wedges in a Fizeau interferometer setup that became part of the 

multi-axis interferometer (7
th

 channel). Its development became relevant due to the large 

amount of mode-hops present during a full scan of the Ti:Sa source. These are associated to the 

physics of the laser and have the undesirable effect of randomising the signal and thus 

preventing successful depth reconstructions. The multi-wedge sensor was designed so that it 

provides simultaneously high wavenumber change resolution and immunity to the large 

wavenumber jumps from the Ti:Sa. The analysis algorithms for the extraction of the sought 
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wavenumber changes were based on 2-D Fourier transform method followed by temporal 

phase unwrapping. At first, the performance of the sensor was tested against that of a high-end 

commercial wavemeter for a limited scan of 1nm. A root mean square (rms) difference in 

measured wavenumber shift between the two of ∼4 m
-1

 has been achieved, equivalent to an 

rms wavelength shift error of ∼0.4 pm. Second, by resampling the interference signal and the 

wavenumber-change axis onto a uniformly sampled k-space, depth resolutions that are close to 

the theoretical limits were achieved for scans of up to 37 nm. Access of the full 100 nm range 

that is characterised by wavelength steps down to picometers level was achieved by 

introducing a number of improvements to the original temporal phase unwrapping algorithm 

reported in ref [1] tailored to depth resolved measurements. These involved the estimation and 

suppression of intensity background artefacts, improvements on the 2-D Fourier transform 

phase detection based on a previously developed algorithm in ref [2] and finally the 

introduction of two modifications to the original TPU. Both approaches are adaptive and 

involve signal re-referencing at regular intervals throughout the scan. Their purpose is to 

compensate for systematic and non-systematic errors owing to a small error in the value of R (a 

scaling factor applied to the lower sensitivity wedge phase-change signal used to unwrap the 

higher sensitivity one), or small changes in R with wavelength due to the possibility of a 

mismatch in the refractive dispersion curves of the wedges and/or a mismatch in the wedge 

angles. A hybrid approach combining both methods was proposed and used to analyse the data 

from each of the four wedges. It was found to give the most robust results of all the techniques 

considered, with a clear Fourier peak at the expected frequency, with significantly reduced 

spectral artefacts and identical depth resolutions for all four wedges of 2.2 μm measured at 

FWHM. The ability of the phase unwrapping strategy in resolving the aforementioned issues 

was demonstrated by successfully measuring the absolute thickness of four fused silica glasses 

using real experimental data. The results were compared with independent micrometer 

measurements and showed excellent agreement. Finally, due to the lack of additional 

experimental data and in an attempt to justify the validity of the proposed temporal phase 

unwrapping strategy termed as the ‘hybrid’ approach, a set of simulations that closely matched 

the parameters characterising the real experimental data set analysed were produced and were 

subsequently analysed. The results of this final test justify that the various fixes included in the 

‘hybrid’ approach have not evolved to solve the problems of a particular data set but are rather 

of general nature thereby, highlighting its importance for PC-WSI applications concerning the 

processing and analysis of large scans. 
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Nomenclature 

Abbreviations 

ADC Analog-to-digital converter 

ADI Absolute distance interferometry 

ADM Absolute distance metrology, measurements 

AS Aperture stop 

ASE Amplified spontaneous emission 

BBS Broadband source 

BRF Birefringent filter 

BS Beam splitter 

CCD Charged coupled device 

CFRP Carbon fibre reinforced polymer 

CIO Centre of Investigations in Optics – a laboratory 

based in Mexico equivalent to the National Physical 

Laboratory (NPL) in the UK.   

CL Collimating lens 

CMOS Complementary metal-oxide semiconductor 

CMM Coordinate measurement machine 

CW Continuous wavelength 

DIC Digital image correlation (2-D) 

DOT Diffuse optical tomography 

DSA Digital signal amplifier 

DSP Digital signal processor 

DSPI Digital speckle pattern interferometry 

DVC Digital volume correlation (3-D version of DIC) 

ESPI Electronic speckle pattern interferometry 

FFT Fast Fourier transform 

FD-LCI Fourier domain low coherence interferometry 

FD-OCT Fourier domain optical coherence tomography 

FL Focusing lens 

FOV Field of view 

FP Fabry-Perot 
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fps Frames per second 

FSI Frequency scanning interferometry 

FSR Free spectral range 

FWHM Full width half maximum 

GFRP Glass fibre reinforced polymer 

GPU Graphics processing unit 

HDD Hard dick drive 

HI Holographic interferometry 

IOP Institute of physics 

IR Infrared 

LASCA Laser speckle contrast analysis 

LB Laser beam 

LED Light emitting diode 

LSF Least-squares fit 

MFD Micro-fluidic device 

MI Moiré interferometry 

MM Magneto motive 

MNP Magnetic nanoparticle  

MO Microscope objective 

MRI Magnetic resonance imaging 

MRE Magnetic resonance elastography 

MWI Multiple wavelength interferometry 

NA Numerical aperture 

ND Neutron diffraction 

NDT Non-destructive testing 

NINT Non-integer value 

NIR Near infrared region 

NPL National Physical Laboratory 

OCE Optical coherence elastography 

OCT Optical coherence tomography 

ODT Optical diffraction tomography 

OPD Optical path difference 

OPL Optical path length 

PBS Pelical beam splitter 
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PC-OCT Phase-contrast optical coherence tomography 

PM Parabolic mirror 

PMC Polymer matrix composite 

ppm Parts per million 

PSI Phase shifting interferometry 

PSF Point spread function 

PS-OCT Polarization sensitive optical coherence tomography. 

PZT Acronym for Lead Zirconate Titanate that is an 

intermetallic inorganic compound whose chemical 

formula is: Pb [ZrxTi1-x] O3 and where: 0 ≤ x ≤ 1. It 

is a ceramic perovskite that shows a marked 

piezoelectric effect. In other words, it has the ability 

to change its shape when an electric field is applied 

to it. Its practical applications include ultrasonic 

transducers and piezoelectric resonators. 

QE Quantization error 

RA Research associate: Dr A. A. Davila  

RAM Random access memory 

RM Reference mirror 

RMSE Root mean square error 

ROI Region of interest 

SAW Surface acoustic wave 

SLD Super-luminescent laser diode 

SLM Spatial light modulator 

SOCT Spectral optical coherence tomography 

SS Swept source 

SSI Supersonic shear imaging 

SS-OCT Swept source optical coherence tomography 

STFT Short-time Fourier transform 

SWI Scanning white light interferometer 

TD-LCI Time domain low coherence interferometry 

TD-OCT Time-domain optical coherence tomography 

TFA Time-frequency analysis 

TPU Temporal phase unwrapping 
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Ti:Sa Titanium Sapphire laser 

TS Test sample 

TTL Transistor-transistor logic 

UV Ultraviolet 

VFM Virtual fields method 

WG Wedge 

WP Work package 

WS Wavelength/wavenumber sensor 

WS7 High Finesse model Ångstrom of the commercial 

high-end wavelength meter used to test the 

performance of the custom made, low cost 

wavelength sensor (WS) under development in this 

work. 

WSI Wavelength scanning interferometry 

X-Ray μ-CT X-ray micro-computed tomography 

List of symbols 

Latin characters 

Ao Amplitude of object wave 

Ar Amplitude of reference wave 

cumsum MATLAB function used to calculate the cumulative 

sum of a series of phase change values 

c Speed of light in vacuum 

C Compliance of test rig. 

c Threshold value used to indicate the point at which a 

re-referencing event takes place in units of pixels. 

D Optical path difference 

dj Wedge central thickness, where j indicates the 

wedge number. 

E Young’s modulus 

E1,E2 Phase unwrapping errors 

f Frequency in Hz 

𝑓 Frequency proportional to the OPD (D) expressed in 

cycles per scan duration 
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fD Frequency proportional to the OPD (D) expressed in 

cycles per frame 

fk Spatial frequency along the k-axis 

fft MATLAB function used to perform the Fast Fourier 

transform  

fftshift MATLAB function used to perform the swapping of 

the four image quadrants 

I(t) Intensity of interference signal 

I(k) Intensity distribution of a single camera pixel along 

the wavenumber (k) axis 

𝐼 ̅ Mean (averaged) intensity. 

Io Background intensity 

Ib Estimated free-of-background intensity signal 

I1 Fringe modulation intensity 

IM Modulation intensity 

𝐼(𝑓) Fourier transform of the intensity I(t) 

𝐼∗ Wavelet transform 

|𝐼| Normalised intensity spectrum. 

|𝐼|
2
 Intensity power spectrum 

interp1 MATLAB function used to perform the linear 

interpolation of the intensity values onto a 

uniformly-spaced k-vector 

J Sorting vector used for the sorting of intensity data 

in ascending order. 

k Wavenumber (2𝜋 𝜆⁄ ) 

�̌� Continuous version of the discrete variable k 

ki,kf Initial and final wavenumber  

kr Scalar indicating the magnitude of 2-D Fourier peak 

radial position.  

kx,ky Spatial coordinates in the Fourier-domain that 

indicate the location of the 2-D Fourier peak along 

the x and y directions that also correspond to the 

number of fringes along the x and y image 
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coordinates. 

L Distance to be measured 

lc Coherence length of laser source. 

m,n Spatial indices indicating the number of pixels on 

CCD sensor (row, column 

n Refractive index of propagation medium 

�̅� Nominal value of glass wedge refractive index. 

�̃�𝑖,𝑗 Estimated change in the refractive index of synthetic 

wedges where (i, j) = (1, 2), (2, 3), (3, 4), (1, 5) 

during a wavelength scan. 

�̃�𝑖(𝑡, 0) Estimated change in the refractive index of glass 

wedge (i = 1, 2, 3, 4) during a wavelength scan. 

Nf Number of fringes 

Nw Length of data included in the window function 

when performing the STFT. 

Np Number of data points after zero-padding. 

Nx, Ny Number of pixels along the x and y axis of the CCD 

respectively 

Ns Number of unwrapping steps. 

NaN MATLAB entry indicating the presence of 

unwrapping error in the phase-change data sequence.  

k Number of sample independent slices in a depth 

resolved scan  

±P +ve and -ve Fourier transform orders that are 

symmetrical to each other with respect to the d.c. 

R Wedge thickness ratio. 

r Number of resonances 

round MATLAB function used for the rounding operator 

NINT 

S(Rm) Cost function used for the optimization of wedge 

thickness ratio Rm where m indicates the unwrapping 

step. 

SiO2 Fused silica 

Si-OH Silanol group 
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sign(v) Sign of frequency sweep (+1 for increasing and -1 

for decreasing frequency) 

spectrogram MATLAB function used to perform the short-time 

Fourier-transform analysis. 

t Non-dimensional time index 

𝑡′ Non-dimensional time index corresponding to the 

camera frame number. 

𝒰 Unwrapping operator. 

v Poisson ratio 

VCH Velocity of cross-head in miniature tensile machine. 

𝒲 Wrapping operator. 

W Window function 

Wn Window number in STFT. 

�̃� Fourier transform of the window function 

x,y Spatial coordinates of the scattering point measured 

in a plane perpendicular to the viewing direction (z) 

 

Greek characters 

 Angle along the wedge direction. 

 Constant associated with the shape of the window 

function W. 

 Dirac delta function 

z Depth resolution 

 Wavelength step between two successive frames. 

k Inter-frame change in wavenumber, wavenumber 

step 

n Assumed deviation from the nominal value �̅�. 

 Optical path difference resolution 

 Change in phase y between two adjacent 

wavelengths during a scan. 

z Maximum optical path difference between the i
th

 

slice within the object and the reference surface 

(Depth range). 
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n Refractive index homogeneity 

k Total change in wavenumber over a full scan 

kr Total change in the 2-D Fourier peak radial position 

between the first and last frame recorded during a 

wavelength scan. 

 Wavelength bandwidth/range 

v Frequency range or sweep range 


i,j Difference in phase between a pair of wedges i, j 

over two successive frames 𝑡′ − 1 and 𝑡′that lies in 

the -2 to +2 range. 

ΔΦ𝑢
𝑖,𝑗

 Unwrapped phase change 
i,j

. 

ΔΦ𝑤
𝑖,𝑗

 Wrapped phase change 
i, j 

onto the principle - to 

 range. 

 Total change in phase  over a full wavelength scan. 

ε Camera exposure time. 

휀𝜙 Error (rms) in phase. 

휀𝑅 Error in true wedge-thickness ratio R. 

휀𝑟𝑚𝑠 Root mean square error 

θ Angle of refraction with respect to the normal of the 

front surface of the wedge sensor. 

 Number of re-referencing events. 

 Wavelength 

c Centre wavelength of a broadband source 

s Synthetic wavelength 

 Optical path difference between the interfering 

beams. 

 Maximum unambiguous depth range/optical path 

difference. 

𝜎𝜙 Standard deviation of phase noise. 

υ Fringe contrast 

u Unwrapped phase 

w Wrapped phase 



xiii 

 

 Phase due to the interference between the front and 

back surface of the glass wedge.  

ω Non-dimensional frequency representing the rate of 

change in phase as a function of time. 

∗ Operator used to denote convolution 

 

 

 

 

 

 

 

 

IMPORTANT NOTES:  

Nomenclature: Due to the length of the document and the large number of parameters the 

reader is advised to consult the individual chapters for definitions of symbols that may appear 

as duplicates. 

Figures: In this work a large number of figures have been included for the purpose of 

illustration and to aid understanding. The term “reproduced”, when used, refers to figures that 

have been produced by the author from scratch. For the case of diagrams and or schematics, 

this means that they have been re-drawn, while for the case of plots and graphs this means that 

the figures have been produced by re-running the appropriate software. In any case, the source 

is always provided. In places where a reference has not been provided or the term ‘reproduced’ 

is not used, means that there have been a significant number of changes introduced to the 

software required to produce the plots and or graphs. This is particularly true for chapter-5. 

When a figure has been published elsewhere (journal and or conference paper or other source) 

this is always referenced. In the aforementioned case the author has checked with the publisher 

that there are no issues concerning the inclusion of such figures in a PhD thesis. 
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Chapter-1: Introduction and research overview 

1.1 Introduction 

The use of composite materials spans across a large and diverse field of applications. 

Their performance often becomes a critical factor for the integrity of the structure of 

which they are part of. Unfortunately, their superior properties are accompanied by 

complex behaviour. As a result, their functional behaviour is difficult and in some 

cases impossible to understand and predict. As a result, a number of techniques to 

assess their mechanical behaviour have been developed. These include destructive 

and non-destructive approaches. The latter are of particular interest for the obvious 

reason that they do not involve the destruction of the object under consideration.  

Interferometry is one of the aforementioned techniques which provide dense and 

quick data in a non-destructive manner. Digital speckle pattern interferometry (DSPI) 

and its predecessor electronic speckle pattern interferometry (ESPI) have become 

established in the field of displacement measurements of objects with rough surfaces. 

The reason for their success emanates from the fact that both DSPI and ESPI are full-

field techniques and consequently provide dense data coverage over a complete two 

dimensional surface, as opposed to the limited point wise data offered by strain 

gauge sensors. The main disadvantage, however, is that their application is limited to 

surface measurements. As mentioned earlier, composite materials possess an 

inherently complex structure and are, therefore, characterised as inhomogeneous 

materials. Moreover, their behaviour is often non-linear. Consequently, surface 

measurements on such materials can prove insufficient to characterise their 

behaviour, as they risk missing important sub-surface localised phenomena 

associated with defects or damage that occurs during the manufacturing process 

and/or service.  

Considering the success of speckle pattern interferometric techniques on surface 

measurements, in the past decade or so, researchers worldwide have concentrated 

their efforts in order to extend the application from surface to volumetric 

measurements. As a result, a wide family of interferometric techniques under the 

generic name of optical coherence tomography (OCT) have emerged. OCT is a new 

and exciting imaging modality that was initially developed for applications in 
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biomedicine. To date, it is still predominantly used in this field as a means of 

imaging the internal structure of bio-materials such as living tissue and the human 

cornea. However, advancement in laser technology as well as the continuous 

development of the technique that have revealed new functionalities has allowed its 

application to non-biomedical materials. OCT is applicable to weakly scattering 

materials. In the context of optical measurements, the term weakly scattering refers 

to materials for which single scatterers are much stronger than their double/multiple 

counterparts making the assumption of neglecting multiple scattering valid. From the 

above, it becomes clear that the application of the technique to carbon fibre 

reinforced polymers (CFRP’s) would not be possible due to the high absorption 

coefficient carbon possesses as an element. This, however, is not the case for glass 

fibre reinforced polymers (GFRP’s). Consequently, since the behaviour of fibrous 

composites is somewhat similar and is predominantly dependent on geometrical 

factors, the application of OCT could lead to useful results that characterise fibrous 

composite structures. An example of the imaging capability of the technique on 

GFRP composites is shown in figure-1.1 and figure-1.2. The specimens were 

courtesy of CYTEC Engineered Materials Ltd, UK while the OCT system used was a 

swept source (SS) system from Thorlabs, with a central wavelength c = 1.3 m, 

located in the Wolfson School. 
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1.2 Motivation and relationship to past work 

Researchers of the optical engineering group at the Wolfson School of Mechanical 

and Manufacturing Engineering at Loughborough University have over the past three 

decades, pioneered the techniques of DSPI and its predecessor ESPI with specific 

applications to measurements of surface displacement fields. Such information is, 

however, in general, insufficient to determine uniquely the deformation and stress 

state within the sample. Moreover, such information is insufficient to characterise 

composite materials due to their inherent inhomogeneous structure and non-linear 

behaviour. 

More recently, the group, and in particular Dr P. D. Ruiz and Prof J. M. Huntley 

carried out proof-of-principle experiments that indicate that the techniques can be 

extended to three dimensions and can, therefore, be used so as to allow the 

measurement of displacement and strain fields within the volume of scattering 

materials. [3-8]. Depth resolution is amongst the key parameters that determine the 

performance of depth-resolved measurements, and can be controlled by varying the 

k-vector of the wave illuminating the object in two ways: 

a. either through changing its direction (a technique so-called tilt scanning 

interferometry (TSI) [6]), 

b. or through scanning its magnitude. 

The later method (b) resulted in a pair of techniques called wavelength scanning 

interferometry, WSI, where the wavelength of a broadband source is tuned 

sequentially [3, 4] and phase-contrast spectral-domain optical coherence 

tomography, PC-SOCT where a broadband source is also used but differs from WSI 

in that all wavelengths are available simultaneously [5, 7]. 

The aforementioned techniques are now achieving international recognition: for 

example reference [8] won the prize for best oral paper out of 63 presentations at 

the Speckle ’06 International Conference, Nimes, France, in September 2006; and 

reference [6] attracted comments from the Proc. Roy. Soc. reviewers such as “The 

submission is very interesting and of far-reaching significance. It can certainly be 

considered as one of the major contributions to the advance of speckle interferometry 

… over the last three-four years.” 
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1.3 Research goal 

The long term goal of this research is to calculate the spatial distribution of the 

constitutive parameters (Young’s Modulus, E, Poisson’s ratio, , etc.) in semi-

transparent scattering materials like GFRPs. Measuring the displacement fields 

within the structure that describe the state of deformation that the material under test 

has undergone is one of the key issues of this research project. To achieve this, 

means of introducing the appropriate amount of deformation within the sample need 

to be developed. Moreover, a system that combines the imaging capabilities of OCT 

systems with the displacement sensitivity of traditional interferometric techniques 

also needs developing. Thus, the objectives of this research can be broken down to 

the following six working packages: 

a. Measure all three displacement components. 

b. Measure from both sides of the sample. 

c. Design and manufacture suitable hardware. 

d. Get spatially resolved strain information. 

e. Accurately characterise the frequency of the light which provides a ruler and 

a measure of the system ability to resolve depth information. 

f. Hence apply a technique such as the virtual fields method (VFM) to extract 

spatially resolved modulus distributions [9]. 

Following the achievements reported in references [3-8], Dr A. A. Davila, joined the 

group during a sabbatical leave from the Centro de Investigaciones en Optica, Loma 

del bosque 115, Leon Gto 37150 Mexico (2008-2011) as a research associate and 

assisted in the development of the tomographic interferometer. C.Pallikarakis 

(author of this thesis) joined the group as a PhD student in December 2010 and 

worked closely with A. Davila on several aspects related to the development of the 

multi-axis tomographic system including its assembly, during the one-year period of 

overlap – figure illustrates the general layout of the multi-axis tomographic 

interferometer under development, alongside with some of its key hardware 

components. 
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1.4 Research methodology 

As mentioned earlier, at the time the author joined the Optical engineering research 

group at Loughborough University as a PhD student, the development of the multi-

axis phase-contrast tomographic interferometer had already been started with Dr. A. 

Davila (RA) and professor J M Huntley being the leading investigators. In this 

section details of how the work evolved are given. At first the original plan is 

discussed. Second, details on the key parameters that caused the refocusing of the 

work are given. Finally, the modified objectives of the work are presented alongside 

with their link to the original objectives. 

1.4.1 Original methodology 

The technique that would ultimately be used to measure the sought volumetric 

displacement/strain fields that are necessary to determine the spatial distribution of 

the elastic constants in composite materials such as GFRPs had already been chosen 

to be wavelength scanning interferometry (WSI) – the latter being equivalent to the 

term swept-source optical coherence tomography (SS-OCT) in the field of 

tomography. It is important to note that OCT is not the only technique capable of 

providing volumetric data/imaging. X-Ray μ-CT is one attractive alternative solution 

to OCT; however, it was still at its infancy at the time that this work started and was 

therefore not chosen. Phase-contrast versions of x-ray μ-CT are now slowly starting 

to emerge (see for example ref [10]), justifying the importance of phase as a 

measurand – it can be transformed to almost any parameter of interest i.e. 

displacement, strain, temperature, pressure etc. 

As an alternative to the imaging of phase, image correlation techniques have been 

under development for two decades or so (almost in parallel to DSPI and its 

predecessor ESPI) in which the movement of a pattern (speckle pattern or another 

random pattern that is printed by the user onto the sample of interest) is tracked 

spatially and leads to the estimation of strain, temperature changes etc. The generic 

term for the 2-D version of the technique is digital image correlation (DIC) [11] 

while its extension to 3-D is often called digital volume correlation (DVC) [12]. 

DVC and its predecessor DIC can be combined with imaging techniques like x-ray 

μ-CT or OCT to provide the sought depth-resolved displacement fields. 
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X-ray μ-CT combined with DVC [13-15] has comparable spatial resolution to that of 

PC-OCT. This is not the case, however, when OCT is combined with DVC with the 

spatial resolution being less than that of PC-OCT. This is because the size of the sub-

volume used for performing the correlation between the deformed and undeformed 

states is the main parameter that controls the spatial resolution of the system e.g. a 

sub-volume of 15⨯15⨯15 voxels will practically degrade the spatial resolution by a 

factor of ⨯15. For the above reasons, the method used to extract the depth-resolved 

information in this work was decided to be PC-OCT or PC-WSI (the two terms are 

used interchangeably).  

Figure-1.4 provides examples of some of the techniques mentioned earlier and their 

corresponding dimensionality, thereby highlighting the importance of extending 

computations in 3-D in order to gain improved: 

a. Understanding of the physical processes 

b. Numerical stability in solving ‘inverse problems’. 

The above justifies the need for the development of the multi-channel instrument 

under development in this work (recall figure-1.3) in which a total of six channels are 

featured – three of which correspond to the three orthogonal displacement 

components and the other three being complementary to the first set. 

Recalling that the ultimate goal of this research is to estimate the 3-D depth-resolved 

elastic parameters of composite materials such as GFRPs which would in turn allow 

the study of the effect of defects on their mechanical properties and would thus lead 

to the development of improved numerical models for stress and strain predictions, a 

system that is capable of imaging BOTH the intensity and the phase is required – the 

imaging of the intensity will provide the ability to look within the sample while the 

imaging of the phase will provide the necessary deformation information between 

two states (undeformed and deformed state). As the displacement sensitivity (λ/2) in 

optical techniques such as WSI is controlled by how short the wavelengths of the 

light spectrum used are, the laser source chosen was a continuous-wavelength (CW), 

electronically-tuned Titanium-Sapphire from M-Squared (SolsTiS 300-SRX) that 

was originally developed for spectroscopic applications. Short wavelengths, 

however, come at the expense of reduced penetration depths [16]. By illuminating 

the sample from both sides, this limitation can be supressed and is the reason as to 
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why a total of six channels were chosen during the design process as opposed to 

three. With these in mind, work on the development of the tomographic sensor began 

in 2008. 

Figure-1.5 is essentially a block diagram of the work-break-down structure showing 

the individual work packages (WP) necessary to achieve the long term goal at the 

time the author joined the group. The fundamental requirement for any WSI 

application is that the wavenumber k of the light source can be linearly tuned as a 

function of time. For this reason, an embedded DSP and a WSD were introduced to 

the purchased Ti:Sa laser by the manufacturer, after request (WP-1). Work packages 

one to five in figure-1.5 (WP-1 to WP-5 and WP-8 to WP-9) had been initiated by 

the appointed RA but were continued during the overlap period and beyond (see 

following sections of this chapter for more details on the actual reasons). The 

remaining two work packages (WP-6 and WP-7) involving the development of 

appropriate hardware for the re-registration of the data volumes coming from the six 

independent interferometers and the introduction of controlled displacements to the 

GFRP sample were thought to be the main remaining issues at the start of the project. 

It is for this reason that a significant amount of effort was put towards the 

development of appropriate hardware during the first two years of this project. A 

brief description of these is documented in chapter-3. Unfortunately, these were 

ultimately not used for the reasons listed in the following section (section-1.4.2) but 

have been included in this document for completeness. 

1.4.2 Unanticipated factors  

Unfortunately, due to a number of unforeseen factors, the initial methodology 

outlined in the previous section (see section-1.4.1 and in particular figure-1.5) had to 

be changed. As a result, the project was focussed away from the initial experimental 

oriented plan to a numerical and analytical one, based on preliminary experimental 

data that were captured prior to critical hardware failure. The main reasons that 

ultimately led to the refocusing of the project are as follows: 

a. Highly non-linear laser behaviour that was impossible to foresee at the time 

(caused long delays that affected the entire plan of work) 

b. Critical failure of the electronically tuned CW Ti:Sa laser (affected work 

packages: WP-1,WP-4 in figure-1.5) 
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c. Critical issues with the software prepared by the RA (affected work packages: 

WP-8 and WP-9 in figure-1.5) 

As it is evident from figure-1.5, the laser source used in this thesis sits at the core of 

its novelty and the functionality of the multi-axis tomographic system under 

development. At the time of purchase (2008) it was the only one of its kind able to 

produce electronically tuned scans in excess of 100 nm in steps of 1 pm – with the 

scan range, Δλ, and the wavelength step, δλ, being the two governing parameters 

which control the depth resolution δz and the depth range, ΛM, of any tomographic 

system respectively. Further justification of this can be found in the short history of 

lasers review in reference [17] and in particular section 25: The solid state laser 

revolution and section 26: State of the art lasers in 2010. 

Before proceeding with the details of the laser failure and the associated difficulties 

with its behaviour, it is worth noting that the particular source used in this work was 

practically a prototype and the second product the company had commercially 

produced at the time. Over the last five years the design of the cavity and the 

wavelength selection mechanism have undergone several improvements 

(approximately a fifteen version gap between the purchased source and the most up 

to date one currently in production by M-Squared) leading to a prestigious IOP 

innovation award in 2015. 

Apart from the sensitivity of the laser to misalignment (see chapter-4 for more 

details) one of the many issues encountered right from the beginning was that it was 

prone to loss in temporal coherence. In simple words, this meant that the recorded 

images would become completely blurred thereby causing the complete loss of 

information. After consulting with the company, this was attributed to the 

synchronisation issues between the BRF (coarse tuning) and the etalon movement 

(fine tuning stage) during the wavelength selection process. To overcome this issue, 

the external reference cavity (a component responsible for stabilising the selected 

wavelength) was removed while a new set of etalons with a much finer FSR replaced 

the old pair. To perform these changes, the equipment had to be shipped back to the 

manufacturer and remained there for the duration of approximately eight months 

starting from December 2010. The latter constitutes part of the reasons for the 

limited number of experimental data sets captured and analysed in this work. 
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Following the repairing of the laser and the suppression of the temporal coherence 

loss issue after the replacement of the etalons, three preliminary data sets were 

captured. The first was a short scan of 400 frames equivalent to approximately 1 nm 

with the CCD frame grabber synchronised with the laser at ~ 4.5 fps (Hz), the second 

and third scans were both ~ 100 nm scans at ~ 5.4 Hz and ~ 6.3 Hz respectively. The 

actual reasoning behind the choice of such slow scans will become clearer in section-

1.4.3 and later in chapter-5.  

At a later stage (summer 2013), the PZT responsible for the fine movement of the 

two etalons failed permanently (more details on how the author reached to that 

conclusion are given in section-4.4.2). A service engineer from M-Squared was 

called to inspect the laser (the company refused to allow access to the laser cavity 

due to trade secret policy) and confirmed the issue. As mentioned earlier, by the time 

the PZT failure occurred, the design of the product had progressed significantly that 

it was deemed impossible to repair the current model. Consequently, the group came 

to an agreement with M-Squared which would ultimately involve the complete 

replacement of the equipment at a reduced cost of ₤10,000 instead of the actual cost 

of ₤30,000. However, due to the high level of customization required (see next 

section and also chapter-4 later on) and the accompanying time restrictions, it was 

decided not to pursue this option for this current project. 

1.4.3 Modified methodology 

In the view of the eventualities reported in the previous section, the group (the 

author, the RA and professor J M Huntley) agreed to adjust the objectives of the 

work and rely to the processing of the limited experimental data prior to the failure of 

the laser source. This subsection gives details of the basis on which the modified plan 

was drawn and sets the foundations onto which the novelty of this work lies. 

In WSI and SS-OCT the depth encoding frequency shifts separate the signal from 

within the different slices of the sample under inspection thereby allowing the 

imaging of its internal structure – this is what is often termed as imaging of the 

interference signal in the context of depth-resolved measurements. Phase-contrast 

versions of WSI and SS-OCT take this principle a step further by calculating the 

displacement-encoding phase maps. The principle onto which the process relies is 

rather simple and can be summarised in the following three steps: 
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a. Tune the wavenumber at a constant rate 

b. Record the intensity distribution of the interference signal 

c. Calculate the Fourier transform of the intensity distribution and extract the 

phase. 

It follows that, if the wavenumber tuning curve is not linear or approximately linear 

with respect to time, the recovered signal becomes randomized, to an extent 

analogous to the non-linearity in the wavenumber k, thereby preventing the 

successful depth-reconstruction of both the intensity and the phase. In order to ensure 

this, the laser source was customised by the manufacturer as follows: 

a. Wavelength-sensitive diode (WSD) incorporated in both coarse and fine 

tuning feedback loop 

b. Etalon scans produce nominally-constant user-defined jump in wavenumber 

between frames, with TTL pulse to trigger camera 

c. Automatic exposure compensation for the laser power-wavelength variations 

d. Embedded DSP code modified to automate coarse and fine tuning 

The long tuning range offered by the Ti:Sa laser alongside with the aforementioned 

adjustments should in theory produce depth resolutions of the order of 2.66 μm. 

However, preliminary results (see chapter-4) demonstrated that the effective depth-

resolution is in fact degraded by a factor of approximately ⨯750. The poor 

performance was attributed to: 

a. Residual etalon mode hops 

b. Non-linear behaviour between mode-hops 

While the first (a) can potentially be resolved by improving the laser cavity design 

and the wavelength selection mechanism [18] (significant improvements on these 

have already been introduced to the most up to date versions of the laser by M-

Squared), the second (b) is an intrinsic characteristic to the laser physics. Therefore, 

in order to overcome this issue, the need of accurate and rapid monitoring of the 

dynamic changes in wavenumber during a WSI scan becomes apparent. 

After realising the importance of accurate wavenumber monitoring for WSI 

applications with solid-state sources like the Ti:Sa laser source, the objectives of the 

work where adjusted to developing a system capable of providing: 
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a.  Rapid and accurate Δk monitoring 

b.  Easy incorporation to the multi-axis WSI system under development 

Note that (a) is practically the same as (e) in section-1.3. The block diagram in 

figure-1.6 illustrates the individual work packages required for the development of 

the optical sensor for the dynamic wavenumber monitoring and provides the reader 

with an overview of the contents of this research. 

At a first glance the changes between the original and modified methodologies 

illustrated in figure-1.5 and figure-1.6 respectively may appear significant. However, 

realising that both the original and the modified methodologies largely rely on phase 

measurements, the similarity between the two is revealed – both the depth-resolved 

displacement maps and the rapid and accurate monitoring of Δk require fast, accurate 

and precise phase measurements. Moreover, as it is evident from the comparison 

between figure-1.5 and figure-1.6, a number of the initial work packages and in 

particular WP-5, WP-8 and WP-9 have been directly translated to the modified plan, 

thereby providing the reader with evidence that the general principle of the main 

interferometer works. 

Conceptually, the principle onto which the instantaneous wavenumber detection was 

based, was originally reported in ref [19] where a set of simulated fringe patterns 

with varying fringe densities were analysed using the temporal phase unwrapping 

algorithm reported in ref [1]. The algorithm was originally developed for shape 

measurements using the principle of triangulation between a spatial light modulator 

(SLM) and the camera, and was ultimately employed for large scale, surface 

metrology applications through the Loughborough University spinoff company 

Phasevision Ltd. 

In practice, the development of the wavelength sensor started prior to the author 

joining the group and before the permanent failure of the laser source, justifying the 

difficulty in establishing a single strategy. More specifically, the setup for the 

wavelength sensor, that formulated the seventh channel of the multi-axis instrument, 

was put together by the RA with a few modifications introduced to it by the author 

during the one year overlap (see chapter-5 for more details). 
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As mentioned earlier, during this one year of overlap three data sets were captured. 

The first was a short scan of 1 nm and involved only the seventh channel of the 

interferometer (wavelength sensor). The second and third ones were both 100 nm 

scans but involved two channels of the multi-axis interferometer instead. The first 

channel involved the intensity distributions from the wedge sensor while the second 

the intensity distribution from one of the six channels of the main interferometer, 

corresponding to: 

a. A micro-fluidic device (MFD) for testing the imaging capabilities of the 

integrated system and the analysis algorithms used in this work within 

scattering materials 

b.  A stepped, sand-blasted aluminium plate to test the performance of the 

system and the analysis algorithms when dealing with speckle patterns. 

Table-1.1 below provides details on the three data sets captured alongside with some 

information regarding the key equipment comprising the integrated system. Although 

these are discussed in the main chapters to follow, they are presented here for the 

purpose of clarifying the methodology adopted and the novelty of the work. As it is 

evident from table-1.1, the data acquisition speed for all three data sets is orders of 

magnitude lower to the scanning speed achievable by the laser source manufacturer. 

There are several reasons as to why it was decided so. These are: 

a. The upper limit on the acquisition speed is not determined by the scanning 

speed but rather by the number of frames the CCD is capable of capturing per 

second. Thus, in this case this is 30 Hz. 

b. After several trials, it was found that the faster the laser scan speed is the 

larger the gaps in the wavelength sequence were. This can be readily verified 

by comparing the size of data set-1 (WS) and data set-2 (WS) in table-1.1 and 

is linked to the physics of the laser. 

c.  In order to compare the performance of WS a commercial high-end 

wavelength meter (WS7) was connected to a low-end laptop whose display 

was recorded by one of the CCDs. As the monitor refreshing rate was fairly 

low the scan speed was reduced to avoid blurring of the screen and thus 

compromising the quality of the independent test. 
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Table-1.1: Details of the three data sets captured. Green shaded area: Experimental 

data processed. Blue shaded area: Pending data for processing.  

 Data set-1 Data set-2 Data set-3 

Laser source 
Electronically tuned (750-850 nm) CW Ti:Sa pumped by 5W Verdi 532 nm. 

Ti:Sa max power output of 460 mW at 800 nm and scanning speeds in the order 

of MHz  

Scan range Δλ  ~1 nm (750-751 nm) ~100 nm (750-850 nm) ~100 nm (750-850 nm) 

Wavelength 

step δλ 
2 pm 4 pm 2 pm 

Acquisition 

speed 
4.5 Hz 5.4 Hz 6.3 Hz 

No of channels 

used 
1 out of the 7 available 2 out of the 7 available 2 out of the 7 available 

Data size 

WS WS7 display WS MFD WS Step plate 

500 Mb 62 Mb 50 Gb 47 Gb 11 Gb 9 Gb 

CCD specs 
Prosilica GC1380H model with the Sony ICX285 EXview sensor for increased 

response in the near infra-red (NIR) and 12 bit resolution with speeds of up to 

30 frames per second at full resolution (1360 × 1024 pixels) 

PC specs 
First generation i7 quad-core processor, 6GB memory (RAM), an AMD Radeon 

6900 HD graphics processing unit (GPU) and a total of seven hard disc drives 

(HDD) of 1TB capacity each to store the large data sets 

Application  

 

To test the performance 

of the 4-wedge 

wavelength sensor (WS) 

vs a high-end commercial 

wavelength meter (WS7) 

for a short scan range. 

 

To test the performance 

of the WS for the full 

scan range with slightly 

higher acquisition 

speeds and wavelength 

step as well as to test 

the imaging capabilities 

of the system in the 

wavelength range of 

750-850 nm. 

Micrometer 

measurements of the 

central wedge 

thicknesses were used 

for verification 

 

 

To test the performance 

of the WS for the full 

scan range with slightly 

higher acquisition 

speeds but the same  

wavelength step as for 

the short scan as well as 

to test the performance 

of the system when 

dealing with speckle 

patterns in the 

wavelength range of 

750-850 nm 

 

During year one of the work data set-1 was processed using a piece of software 

written in the MATLAB programming language, which was prepared primarily by 

the RA. The author of this work was also involved in its development while at the 

same time receiving the necessary training before the RA’s departure (end of 

contract). The joint work (RA and author) resulted in the following publication 

during the first few months of the research project: 
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A. Davila, J. M. Huntley, C. Pallikarakis, P. D. Ruiz, and J. M. Coupland, 

"Simultaneous wavenumber measurement and coherence detection using temporal 

phase unwrapping," Appl. Opt. 51, 558-567 (2012), 

where, the author’s contribution started from the experimental determination of the 

true wedge thickness ratio (see section 3.D in ref [20] and the corresponding section-

5.5.1 in this document) 

At a later stage of the second year, the wedge data (WS) of data set-2 was processed 

with the implementation of some modifications to the original software by the 

author. These involved: 

a. Data structure alignment issues associated with the conversion of the images 

from .seq format to a MATLAB readable format. This was partially resolved 

by the RA but was fully automated by the author to account for the different 

parameters that accompany the three data sets.  

b. The overcoming of memory issues with original code that initially prevented 

accessing of the data sequence – see destination vector approach in chapter 

chapter-6. 

c. The sorting of the intensity values recorded by the CCD using the extracted 

unwrapped phase values from the fringe analysis using the conventional 2-D 

FFT transform – this approach was also implemented in the first publication 

[20] but had minor effects due to the limited number of frames processed 

(400 frames) and the relatively slow scanning speed.  

d. The resampling of both the intensity and the wavenumber change axis Δk 

onto a regularly spaced vector. 

e. The periodic updating of the frequency at which the phase is evaluated in the 

Fourier domain – This was suggested as a method to account for the phase 

shifts owing to the gradual movement of the Fourier peak of interest after 

several wavelength increments for the case of longer scan ranges in [20]. 

Following the implementation of the above, the processing of the wedge data of data 

set-2 commenced and resulted in the second publication during year two of the 

research: 
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A. Davila, J. M. Huntley, C. Pallikarakis, P. D. Ruiz, and J. M. Coupland, 

"Wavelength scanning interferometry using a Ti:Sapphire laser with wide tuning 

range," Optics and Lasers in Engineering 50, 1089-1096 (2012). 

IMPORTANT NOTE: All the data processing and figures enclosed in the above 

publication were performed solely by the author – The RA had already left at the 

time. 

Although the aforementioned changes to the original software overcame the memory 

issues encountered previously, the successful data analysis was restricted to 37 nm 

[21] beyond which severe signal degradation occurs. In the view of this limitation 

and in an attempt to gain unambiguous access to the full 100 nm scan, the strategy 

summarised in the work packages WP'-5-WP'-8 of figure-1.6 was employed. This 

involved the improvement of existing temporal phase unwrapping algorithms with 

particular attention to the establishment of links between phase unwrapping errors 

and physical phenomena related to depth-resolved measurements as well as the 

estimation and partial suppression of systematic and non-systematic errors associated 

with WSI and the particular laser source. 

The development of such algorithms, described in chapters: 5 to 8 of this work 

resulted in the accessing of the entire scan range and justifies the title: " Development 

of temporal phase unwrapping algorithms for depth-resolved measurements using an 

electronically tuned Ti:Sa laser " of this research. The practical implementation of 

the modified strategy resulted in: 

a. The complete re-writing of software, in the MATLAB programming 

language, for the processing of the data sequences of ~ 4,000 lines. Note that 

the term data processing here refers to work packages WP'-3 and WP'-4 in 

figure-1.6. 

b. The complete re-writing of software using MATLAB for the data analysis 

and the subsequent figures of ~ 4,000 lines. Note that the term data analysis 

refers to the implementation of the improved temporal phase unwrapping 

algorithm (WP'-5 and WP'-8). 

The validation of the approach presented was achieved by calculating the thickness 

of ALL four wedges comprising the optical sensor used to provide the sought 
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wavenumber change axis using at first the proposed algorithm and comparing the 

results with independent micrometer measurements and the measurements claimed 

by the wedge manufacturer (CIO Mexico, see appendix-A4). Note that the 

wavelength meter used for validating the short scan results for the wavelength sensor 

in [20] was on short loan (2 weeks) from the National Physical Laboratory (NPL), 

Hampton Road, Teddington, Middlesex, TW11 0LW and was not available at the 

time the aforementioned improvements were achieved. It was, therefore not used. 

1.5 Thesis organisation 

This short section gives a brief explanation of the contents of the individual chapters 

featured in this document while at the same time provides the reader with a useful 

navigation tool (active hyperlinks). 

Chapter-1: Introductory chapter that provides an overview of the six year research 

enclosed in this thesis. As mentioned already, this research was mainly 

event driven. The chapter gives details of how the work progressed, the 

critical events that affected the course of this research and the individuals 

involved in it starting from the conception of the idea up until its 

completion. Finally, the areas of overlap with previous work are 

highlighted and the novel aspects for which the author is solely 

responsible are clarified. 

Chapter-2: This is the main literature review chapter in which the critical parameters 

that determine the performance of the majority of systems within the 

OCT community are highlighted and discussed. Brief explanations on the 

working principles of the different types of OCT in the academic 

community alongside with a detailed description of the mathematical 

formulae relevant to the technique ultimately used in this work (WSI) are 

also provided. Finally, a thorough review of the different light sources 

used in the academic community is provided. This highlights the 

importance as well as the novelty associated with the use of the Ti:Sa 

source. It should be noted that shorter and separate literature reviews that 

are targeted to each of the individual chapters (chapters: 3 to 8 ) 
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contained in this document are included in their introductory and/or in 

some cases the corresponding discussion sections. 

Chapter-3: In this chapter a brief summary on the development of the 

electromechanical hardware associated with the original methodology are 

provided. As mentioned earlier, these were ultimately not used due to the 

permanent failure of the laser and the critical issues with the software 

when dealing with the full length of the scan range offered by the Ti:Sa 

laser source. However, preliminary experiments at a single wavelength 

suggest that these work as expected.  

Chapter-4: This is the chapter where details of the integrated multi-axis tomographic 

interferometer under development are given including the optical design 

of the 6-channel interferometer, the working principle of the Ti:Sa laser 

source, its customisation and the software used for controlling and 

synchronising the multiple CCDs with the laser are provided. Finally, the 

performance of the laser using the data available by the WSD and some 

preliminary results on the imaging capabilities of the system on glass 

samples is discussed. The later provide the necessary justification for the 

development of the four wedge sensor (7
th

 channel of the system) that 

follows in the next chapter. 

Chapter-5: The fifth chapter is a description of the optical design and the principle 

idea of the analysis algorithms for the four-wedge optical sensor used to 

characterise frequency of the light coming from the Ti:Sa laser source 

and which ultimately provides a ruler and a measure of the system ability 

to resolve depth information. Its performance is assessed using the high-

end WS7 wavemeter provided by NPL for a short scan (see data set-1 in 

table-1.1). The chapter is essentially based on the first publication (see 

ref [20]). However, all the figures featured in this chapter forward (unless 

otherwise stated) were produced with the most up to date software. The 

results are identical to those reported in [20]. This justifies the validity of 

the proof of principle short scan experiment. More importantly, however, 

it demonstrates how challenging it is to extend the access from 1 nm to 

the full 100 nm for this particular source, thereby justifying the work 



37 

 

presented in chapters 6, 7 and 8 later. From a contributions point of view, 

the material presented from section-5.5 onwards (for that chapter) was 

the result of joint work between the author and the RA. 

Chapter-6: In this chapter the first attempt to extending the access to the full 100 nm 

scan range is described. Although based on the second publication (see 

ref [21] ) where a similar approach was described, the useful scan range 

was extended from the 37 nm limit previously reported to the full 100 nm 

one, owing to the estimation and suppression of intensity background 

artefacts and the implementation of the 2-D non-integer phase extraction 

algorithm. In order to validate the achievement, the central thickness of 

ALL four wedges was compared with independent micrometer readings 

and the dimensions claimed by the manufacturer with good agreement. 

However, the main spectral lobes used for estimating the wedge 

thicknesses showed that the signal suffers from the presence of side lobe 

structure as the 1-D spectral analysis of the intensity distribution moves 

away from the higher sensitivity wedge based on which the Δk-axis is 

calculated.  

Chapter-7: In the view of the achievements reported in the previous chapter, in this 

chapter, an investigation of the systematic and non-systematic errors 

present in WSI for wide tuning ranges is conducted. These include laser 

beam induced errors, the presence of angles other than those along the 

wedge direction, the possibility of the four wedges having different 

dispersion characteristics and the effect of sample of thickness to name a 

few (see WP'-6 in figure-1.6). Additionally, links of the aforementioned 

error sources to phase unwrapping errors (the parameter detectable by the 

analysis presented) is also attempted. Moreover, a visual tool based on 

TFA is described for the assessment of the 1-D spectral quality. 

Chapter-8: In this penultimate chapter, and in order to reduce the artefacts that were 

present in the Fourier reconstruction of the depth profile of the four 

wedges, two modifications to the basic unwrapping algorithm used 

earlier are introduced. Both approaches are adaptive and involve signal 

re-referencing at regular intervals throughout the scan. The first is 
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designed to compensate for the gradual change in spatial frequency of the 

fringes that arises from the changing wavelength, and requires continual 

updating of the spatial frequency components at which the phase is 

evaluated. The second is designed to compensate for the gap that starts to 

open up between the scaled low-sensitivity phase signal and the high 

sensitivity phase signal. A hybrid approach combining both methods was 

found to be the most robust of all the techniques considered, with a clear 

Fourier peak at the expected frequency and without any spectral artefacts. 

Chapter-9: In this final chapter of the work and in the lack of additional 

experimental two sets of simulated data that closely match the 

characteristics of the real experimental data analysed earlier are produced 

and are subsequently analysed .The advantage in doing so lies in that, 

simulations provide a convenient platform where the performance of the 

proposed TPU strategy can be assessed in the absence of the inevitable 

noise and other non-linearities associated with the real experimental data. 

The results of this final test justify that the various fixes included in the 

‘hybrid’ approach have not evolved to solve the problems of a particular 

data set but are rather of general nature thereby, highlighting its 

importance for PC-WSI applications concerning the processing and 

analysis of large scans. 
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1.6 Research novelty 

The development of the multi-axis tomographic interferometer described in this 

thesis contains a number of novel aspects, starting from the optical design of the 

interferometer and stretching all the way to the acquisition and processing of the 

data. However, as it is often the case with state-of-the-art technology and equipment, 

this is the result of collaborative work. In this last section of the introductory chapter 

the overall novelty of the work enclosed is highlighted and is briefly discussed. 

Moreover, the original contributions of the author are highlighted and distinguished 

from the work done prior to his arrival, thereby justifying the novelty associated to 

the development of the analysis algorithms enclosed in this document. 

1.6.1 The laser source 

As already mentioned earlier in this chapter, the non-linear behaviour of the laser 

source followed by its permanent failure meant that a significant number of the novel 

aspects concerning the multi-axis interferometer could not be verified. These include 

the two mechanical rigs that are briefly described in chapter-3. The first was 

designed to provide the necessary data sets for estimating the depth-resolved 

displacement fields in GFRP samples which in turn, would provide the necessary 

information for the estimation of the 3-D depth-resolved elastic parameters. The 

second was designed to aid the re-registration of the data volumes from the six 

channels. 

As it will become apparent in the literature review chapter (Chapter-2) and later on in 

chapters 6 to 8, the use of continuous wavelength solid-state lasers and in particular 

the electronically tuned CW Ti:Sa laser source used in this work has been limited 

with the majority of research groups using its pulsed counterpart (see for example 

references [22-25] that are particularly targeted to NDT of polymer matrix 

composites). The only report available in the literature in which a CW Ti:Sa laser 

was used using WSI, can be found in ref [26] where the full 100 nm range was 

exploited albeit with much larger wavelength steps. The latter is directly linked to the 

depth-range of the system – the smaller the wavelength-step the larger the depth-

range. Moreover, the scanning speed reported in [26] was 250 Hz with a total data 

size of 128 Mb corresponding to 1024 images/frames collected in 9.5 s.  
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As the laser source used here is capable of producing scans of 100 nm with 

wavelength steps down to the pico-meters level, it constitutes one of the novel 

aspects reported in this work related to the laser. This can be easily verified by 

comparing the data size of table-1.1 Moreover, the relatively high output power 

available (~460 mW) and the wavelength spectrum within which the Ti:Sa laser 

operates allows the use of CCDs that are currently less expensive than those sensitive 

in the deep IR region of the light spectrum (see for example reference [27]), thereby 

allowing the construction of the multi-channel OCT system. 

1.6.2 The wavelength sensor 

The necessity for the development of the wavelength sensor emerged due to the 

highly non-linear behaviour of the laser source. Commercial wavelength meters are 

widely available in the market offering unparalleled accuracy and precision in 

wavelength measurements. However, apart from their relatively high cost and the 

fact that their acquisition rate is limited to a few hundreds of Hz, the principles of 

their operation and thus the way their accuracy and precision is achieved is not well 

documented. As far as the literature is concerned, wavelength detection methods 

have been available for some time. Simple Fizeau interferometers utilising a single 

wedge [28, 29] and with a set of wedges [30] have been reported in the literature, 

whilst an alternative method based on a polarization-sensitive interferometer 

combined with a homodyne detection system was described in [31]. 

In brief, the operating principle of the wavelength sensor relies on the use of four 

wedges with variable sensitivities in Δk. The analysis algorithm starts with the 

processing of the fringe patterns from the lower sensitivity synthetic wedge and 

gradually moves to the higher sensitivity one in a three-step process by making use 

of the temporal phase unwrapping algorithm previously reported in [1]. The latter, 

although similar to the original strategy in [1], it differs in that the phase signals 

analysed and used to obtain the final high-sensitivity phase-change signal are scaled 

by a factor Rm (where m = 1,2,3 corresponding to the unwrapping step) that is linked 

to the ratio of the central thickness between two successive pairs of synthetic 

wedges. The concept of synthetic wedges emerged from the limitations and/or 

difficulties associated to the manufacturing precision of wedges with central 

thicknesses of 200 μm, 600 μm and 1.6 μm.  
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In contrast to existing wavelength meters, the proposed one allows the instantaneous 

detection of incoherent images owing to the mechanical movement of the BRF and 

the subsequent loss of coherence, thereby making it particularly useful for WSI 

applications. In addition to the above, the fact that a phase change value is obtained 

from just one frame means it can be applied to arbitrarily high scan rates, given a 

camera with sufficiently high framing rate. 

1.6.3 The data processing 

Although, ultimately, the main interferometer (six-channels) was not used for the 

reasons previously reported, emphasis to transferring the majority of the novel 

aspects concerning the data acquisition, processing and analysis to the 7
th

 channel 

containing the wavelength sensor has been given (recall figure-1.5 and figure-1.6). In 

order to verify the validity of the analysis algorithms developed in this work and in 

the lack of any other experimental data, the intensity distributions (fringe patterns) 

from the wavelength sensor where used instead. In other words, by recalling that 

phase or in this case phase-change signals can be transformed to practically any 

parameter of interest, it follows that there is a strong analogy between the process of 

characterising the frequency of the light source or indeed the accurate extraction of 

depth-resolved displacement fields. To further clarify this, one only needs to consider 

that apart from allowing the processing of phase-change and phase signals of wedges 

with central thicknesses in the micrometer level, the synthetic wedge principle is in 

effect a practical realisation of phase-change signal multiplexing that allows the 

characterisation of the instantaneous frequency shifts induced by the laser source. In 

a similar manner, controlled displacements that follow an exponential sequence 

could potentially lead to the estimation of depth-resolved displacement fields that are 

currently limited by the sensitivity of interferometric techniques and phase 

unwrapping errors. 

Joint Work 

The performance of the wavelength sensor (WS) was initially tested for a short 1 nm 

scan and a wavelength step of 2 pm corresponding to 400 frames, versus a 

commercially available high-end wavelength meter (High Finesse WS7 Angstrom). 

A root mean square (rms) difference in measured wavenumber shift between the two 

of ∼4 m
−1

 was achieved, equivalent to an rms wavelength shift error of ∼0.4 pm. 
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Strictly speaking, the wedge design was the result of work carried by the RA and the 

supervisor (professor J M Huntley) and had already been started prior to the author 

joining the group. However, due to the difficulties encountered with the laser source 

and the associated delays (8-month period at first and then permanent failure), the 

experimental validation (see section-5.5.1 or section-3.D in [20] ) did not start until 

the author joined the group. The aforementioned, constitutes the main reason for the 

inclusion of the author to the first joint publication (see ref [20]). 

At a later stage and in an initial attempt to demonstrate the ability of the wavelength 

sensor to characterise the frequency shifts induced by the laser source as well as to 

demonstrate the improvement in the depth-resolution of the system and its link to the 

presence of missing gaps in the signal, a number of additional data processing steps, 

namely the resampling of the intensity distribution onto a regularly spaced Δk-axis 

(joint work between the RA and the author) and the demonstration of the effect of 

signal gaps on the depth resolution of the system (author). These, resulted in the 

second publication (see reference [21]) where the effective scan range was extended 

to 37 nm with a the depth resolution close to the theoretical limit. It should be noted 

that the software used to perform the data analysis was based on that prepared by the 

RA prior to his leave but with several changes to remove bugs that were not easy to 

identify for the short, 1nm scan. 

Original contributions 

Although a significant improvement, the fact that only 37 nm out of the total 100 nm 

available could be used before a curious side lobe structure started to contaminate the 

main Fourier peak, posed a serious concern with regards to the validity of the 

proposed method. Moreover, the data presented in [21] refer to the thickest wedge 

(higher sensitivity in Δk) based on which the wavenumber-change axis was 

calculated. Recalling that the sensor was designed and incorporated to the multi-axis 

interferometer in order to provide a ‘ruler’ onto which the intensity distributions 

from the six channels (different OPDs to that of the WS interferometer) would 

ultimately get re-registered, it is possible that errors that are ‘coupled’ to the 

calculated Δk-axis will emerge. From a different perspective and although in the text 

it is suggested the full 100 nm range of the Ti:Sa laser was used, the spectral peak 

presented in fig-6(b) of reference [26] suggests that only the 55.2 nm (512 frames) of 
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the total 100 nm (1024 frames) were in fact used. Recent studies [32, 33] have shown 

that improvement in the axial resolution of OCT systems is still an active field of 

research. More recently, attempts to overcome the detuning of the laser as well as the 

fact that accessing the full bandwidth of the laser source is not always as 

straightforward, an iterative re-weighted l2 least squares solution to OCT image 

reconstruction that allows for contiguous spectral sampling over a small bandwidth 

was proposed (see reference [34]). 

The above, constitute the reasons as to why for the remaining of this work (Chapter-6 

onwards), all efforts were shifted towards accessing the full scan range offered by the 

Ti:Sa laser. The proposed approach relies on an in-depth investigation of the link 

between phase unwrapping errors and systematic and non-systematic errors owing to 

laser behaviour, material and geometrically induced factors during wide tuning WSI 

scans. The success of the method was the result of several modifications to the initial 

analysis algorithm described in chapter-5 and ref [20] and can be summarized in the 

following few steps: 

a. 2-D implementation of the 1-D non-integer Fourier peak detection algorithm 

originally reported in ref [2] (see chapter-6), 

b. Phase estimation using the 2-D non-integer Fourier peak detection algorithm 

(see chapter-6), 

c. Estimation and suppression of intensity background artefacts (see chapter-6), 

d. Correction factor to account for the presence of angles along directions other 

than the wedge-direction (see chapter-7), 

e. Instantaneous Fourier peak position extraction using a piecewise LSF method 

and thee estimation of refractive index dispersion trends, in the absence of 

other errors, for the four wedges (see chapter-7), 

f. Use of a TFA tool based on the STFT for the visual inspection of the signal 

spectral quality,  

g. Adaptive Fourier-peak updating method (see chapter-8), 

h. Periodical phase updating method (see chapter-8) 

i. Hybrid implementation of (e) and (f) (see chapter-8). 

The implementation of items (a), (b) and (c) into the software used for the analysis of 

the experimental data set, led to the full accessing of the entire scan range. To date 
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and to the best of the author’s knowledge, this is the first time this has been achieved 

for the particular laser source and for wavelength steps of 2 pm, corresponding to a 

sequence of ~50,000 frames in place of the 1024 frames previously reported in [26] 

of which only half was presented. To ensure that the improvement was generic 

enough and that this was not the result of the inevitable correlation of the 

wavenumber change axis to the intensity distributions of the thickest wedge used to 

extract the Δk-axis, a 1-D spectral analysis at the central pixel of each of the four 

wedges was performed – a process termed as the ‘decoupling’ of the intensity data 

for the extracted Δk-axis. Comparison of the extracted central wedge thickness to 

independent micrometer measurements and the manufacturer data (CIO), suggested 

that the method works well. However, as the ‘decoupling’ process progressed, a 

curious structure appearing on either side of the main spectral lobe started to emerge. 

Although this was significantly reduced after the implementation of (a), (b) and (c) 

confirming the initial concerns with regards to the validity of the sensor to provide 

the necessary ‘ruler’ for the main six-channel interferometer where the path lengths 

between reference and the object beams are significantly different.  

Considering that the ‘ruler’ (Δk-axis) is constructed from the four-wedge sensor 

phase measurements, it becomes clear that the governing error source is the presence 

of phase unwrapping errors. Despite the fact that the aforementioned mentioned 

improvements suppressed a significant number of those (see chapter-6 and in 

particular figure-6.9), it is clear that the extracted high sensitivity phase-change 

signal still suffers from residual phase unwrapping errors. For this reason a 

comprehensive error analysis (systematic and non-systematic error sources) is 

conducted in chapter-7, whereby the identified error sources and their link to phase 

unwrapping errors are investigated (items (d), (e) and (f) above).  

With these in mind, a coordinated and targeted approach to modifying the 

unwrapping strategy described in chapter-5 so that it accounts for the various 

systematic and non-systematic errors is provided in the final chapter. By recognising 

that each wedge constitutes a separate measurement/coordinate system and that each 

of the four synthetic wedges used in this work are in practice the result of 

superposition of a pair of wedges at each time, it follows that in the event of a 

mismatch in geometrical, material and/or in the illumination conditions (recall 

chapter-7) between the pair of wedges, would violate the assumption of a linear 
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filtering system [35-37] and would thus lead to significant errors in the unwrapped 

signal. 

To avoid violating the above fundamental assumption, a twofold adaptive approach 

was introduced to the original phase unwrapping algorithm. The first involved the 

synchronous updating of the location at which the phase is extracted (see item (g)) 

while the second involved the periodical updating of the phase-change signal (see 

item (h)). By combining the two methods (see item (i)) depth resolutions of ~ 2.2 μm 

(FWHM) for all four wedges were achieved. The obtained central wedge thicknesses 

for all four wedges are in good agreement as compared with those performed with 

the micrometer and well within the manufacturing tolerances claimed by the 

manufacturer – with the exception of one micrometer measurement. Furthermore, the 

use of the hybrid approach, a combination of several modifications to the initial 

method described in chapter-5, resulted to an excellent SNR compared to that 

corresponding to the method used prior to its implementation, thereby justifying the 

novelty of the work enclosed in this document. 
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1.7 Figures 

 

Figure-1.1: Image showing the cross section (line-scan) of 0.5 mm thick GFRP 

sample using a commercially available SS-OCT system from Thorlabs with a central 

wavelength  = 1.3 m. The sample was courtesy of CYTEC Engineered Materials 

Ltd, UK. 

 

Figure-1.2: Image showing the cross section (line-scan) of 0.5 mm thick damaged 

GFRP sample using a commercially available SS-OCT system from Thorlabs with a 

central wavelength c = 1.3 m. The sample was courtesy of CYTEC Engineered 

Materials Ltd, UK. 

0.5 mm 

0.5 mm 
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Figure-1.3: Basic layout of the multi-axis tomographic interferometer showing some 

of the key components and the principle on which the instrument was gradually 

developed. More information is given in subsequent chapters. 

 

Figure-1.4: Block diagram showing the measurement dimensionality (increasing 

from left to right) and the related techniques available for practical implementation. 

HI: Holographic interferometry, MI: Moiré Interferometry, DIC: Digital Image 

Correlation, PC-OCT: Phase-contrast optical coherence tomography, PC-MRI: 

Phase-contrast magnetic resonance imaging, DVC: Digital volume correlation. 
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Figure-1.5: Block diagram showing the original work plan drawn and the necessary work packages (WP) for the development of the multi-axis tomographic interferometer using WSI, in order to achieve the long term 

goal of extracting the 3-D depth-resolved mechanical properties (Youngs modulus E, poisson ratio v etc) of GFRPs. 
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Figure-1.6: Block diagram showing the individual work packages of the modified methodology following the highly non-linear behaviour of the CW and electronically tuned solid-state laser source used in this thesis. 
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Chapter-2: Literature review 

2.1 Composites overview 

Composite materials possess superior properties over traditional engineering 

materials. As a result their application has been predominantly, though not 

exclusively, in the aerospace and automotive industries. Their superior performance, 

however, comes at the expense of complex behaviour owing to their complex 

structure. The understanding of their behaviour is therefore of great importance in 

order to continue their development and exploit their full potential. There has been a 

long history of research in the field of composites and the study of their mechanical 

and functional behaviour. A number of analytical methods have been developed over 

the years, with the generic approach aiming at predicting the properties of a single 

lamina from the properties of its constituent materials (micromechanics), followed by 

reconstruction of the properties of the full laminate (combination of lamina in 

various sequences) via classical laminate theory (macro mechanics) [38, 39]. A 

review of the early attempts in micromechanics is provided by [40], while a more 

recent covering of both micromechanical and macro-mechanical aspects is given by 

[41]. The latter concludes that the micromechanics of composites is a field that is not 

yet closed but not as active as in the 1960s.  

An even more challenging task is that of predicting and understanding the damage 

mechanisms of composites. Damage in composites originates from their 

manufacturing process and/or during in-service operation. Manufacturing processes 

are responsible for the introduction of defects such as voids, resin rich areas and 

inclusions. An excellent review on the significance of damage and defects and their 

detection in composites is provided by [42]. It has been shown that damaged zones 

containing forms of micro - damage relate to fracture on a macroscopic scale [43]. 

The zone accompanies the crack propagation and depends on the load history. In a 

more recent work the importance of such zones was demonstrated in cracking under 

a variable (fatigue) loading regime [44, 45]. The methods used to date to model the 

damage have been by and large phenomenological [46, 47]. 

It is clear that the inherent complexity of composite structures cannot be modelled 

without the use of simplifying assumptions. Use of the latter, however, causes 
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significant deviations in predicted response from real data and leads to 

phenomenological or semi-empirical approaches. From the experimental point of 

view, a technique with the ability to provide volumetric data on the distribution of 

the constitutive parameters (E,  … other elastic constants) of composite structures 

with sufficient sensitivity and spatial resolution to eliminate the need for simplistic 

assumptions could prove a powerful tool in the study of damage of composites. 

2.2 Interferometric techniques 

Phase difference calculations between the scattered waves from a specimen in both 

an un-deformed and a deformed state allows one to measure displacement fields 

across the full specimen surface with excellent accuracy (typically sub-m). The 

component of displacement that is measured is determined by the geometry of the 

illumination and observation directions. In interferometry, wrapped phase maps (i.e., 

maps with phase values lying in the range – to +) are often obtained from the 

fringe patterns using a technique known as phase shifting or phase stepping. The 

process is often referred to as fringe analysis in the literature and relies on good 

fringe visibility or indeed good fringe contrast [48]. Fringe contrast is defined as: 

 𝜐 =
𝐼𝑚𝑎𝑥−𝐼𝑚𝑖𝑛

𝐼𝑚𝑎𝑥+𝐼𝑚𝑖𝑛
  ,  2.1 

where the intensities 𝐼𝑚𝑎𝑥 and 𝐼𝑚𝑖𝑛 are defined by 

 𝐼𝑚𝑎𝑥 = 𝐼𝑜 + 𝐼𝑀 + 2√𝐼𝑜𝐼𝑀  ,  2.2 

 𝐼𝑚𝑖𝑛 = 𝐼𝑜 + 𝐼𝑀 − 2√𝐼𝑜𝐼𝑀  ,  2.3 

and where 𝐼𝑜  and 𝐼𝑀  are respectively the constant (‘d.c.’) intensity and fringe 

modulation intensity. This leads to the expression 

 𝜐 =
2√𝐼𝑜𝐼𝑀

𝐼𝑜+𝐼𝑀
  , 𝜐 ∈ [0,1]  .  2.4 

In traditional electronic speckle pattern interferometry (ESPI), fringes are obtained 

by correlating two speckle patterns by either subtraction or addition [49]. The 

subtraction process is often preferred as it reduces optical noise and leads to speckled 

fringes with high contrast. However, due to the high sensitivity of the process to 



52 

 

environmental instabilities and the possibility to miss fast dynamic events, addition 

fringes may be used in order to extract the sought phase maps [50] as they eliminate 

the aforementioned issues. The main drawback of the latter is that fringes are of low 

contrast resulting in a reduction in signal to noise ratio. 

A different approach is reported in [51] which is based on early observations 

described in [52]. In this work, the fringe pattern is obtained by multiplying instead 

of adding or subtracting the two speckle patterns. The fringe patterns observed are of 

low contrast due to the inherently noisy multiplication fringes (any noise content in 

the speckle patterns is now multiplied). To overcome this issue, a digital filter 

specific to the application was developed. An in-plane ESPI setup was used which 

showed that enhancement of multiplication fringes does not require rectification as in 

the case of subtraction fringes. The main disadvantage highlighted in the paper was 

that the method does not work if only one single frame is recorded. 

2.3 Phase shifting interferometry 

All phase-contrast optical techniques rely upon the evaluation of the phase of a fringe 

pattern (smooth wave-fronts) or speckled pattern, commonly known as 

interferograms, followed by the subsequent transformation of the latter to the 

parameter of interest [53, 54]. There are four main steps involved in the analysis of 

interferograms after the digitization of the intensity distribution as shown in the 

schematic diagram of figure-2.1. The first step involves the extraction of the phase 

(w) by measuring the intensity as known shifts are introduced between the two 

interfering waves. In the next step, the phase-change (w) relative to some reference 

interferogram is calculated. In the case where the true phase-change value is slightly 

greater than π, the calculated value will appear to be 2π lower. This is an example of 

one of the main difficulties in extracting the phase, i.e. the so-called phase ambiguity 

problem [55]. Phase ambiguity refers to the fact that the phase can only be 

determined modulo 2π, i.e. the absolute fringe order is unknown. Resolution of this 

problem, i.e. determining the correct distribution of integer multiples of 2 to be 

added to the phase-change values in order to remove the 2π discontinuities, has 

formed the basis of a research field called phase unwrapping in the literature. Finally, 

in the last step the unwrapped phase map (u) is converted to the quantity of 
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interest. If the sought parameter is a displacement field (u) or the extraction of the 

wavenumber axis (k) of a tuneable laser source as in our case, a simple scaling 

factor is required [54]. 

2.4 Optical coherence tomography (OCT) 

Since the early 1980’s, three basic techniques for optical tomography have been 

adopted: a) optical diffraction tomography (ODT), b) diffuse optical tomography 

(DOT) and c) optical coherence tomography (OCT). Advances in OCT technology 

have made it possible to apply the technique to a wide variety of fields ranging from 

bio-medicine to materials research. An extensive list of OCT applications in bio-

medicine is reported in [56-62] which includes tissue engineering, developmental 

biology, anterior eye imaging and retinal OCT to mention just a few. The extension 

of OCT to applications other than bio-medicine is fairly new and includes studies of 

polymer matrix composites (PMC’s) [63, 64] and in situ testing of wires for breaks 

[65]. Its high depth and transverse resolutions, the fact that the former is decoupled 

from the latter, and its high probing depth, are amongst the advantages offered by 

OCT. Finally, the option of developing various function-dependent image-contrast 

methods place OCT among the most attractive methods for material studies [66]. 

The principle, on which OCT operates in order to produce cross sectional images, 

relies on the synthesis (B-Scans) of point depth scans (A-Scans). The terminology 

here is adopted from the more familiar technique of ultrasonic imaging. At first, OCT 

techniques were based on Time-Domain Low Coherence Interferometry (TD-LCI) 

and later included the implementation of Fourier-Domain Low Coherence 

Interferometry (FD-LCI). More recently parallel schemes have been introduced to 

the technique which eliminates the need for lateral scanning. In parallel schemes 

CCD and CMOS cameras are used as photo detectors. Advances in light sources 

operating in the Near Infrared Region (NIR) have made possible imaging of media 

that are strongly scattering in the visible wavelength range [66]. 

The fundamental difference of OCT techniques when compared with X-Ray 

Computed Tomography is that OCT techniques work on back-scattered light and 

therefore the Fourier slice theorem is not applicable. OCT operates on the ODT 
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principle, i.e. the assumption of singly-scattered photons, in contrast to DOT in 

which diffusely propagating photons are used [67]. 

2.4.1 Wavelength scanning interferometry (WSI) 

Wavelength Scanning Interferometry (WSI), as well as wavelength sweeping, 

frequency sweeping or scanning and wavelength shifting which are all equivalent 

terms that are used interchangeably in the literature, dates back to the early 1980’s 

and was proposed for Absolute Distance Measurements (ADM) by Bien F et al [68]. 

In their work they proposed a method for ADM by changing the wavelength of the 

source as opposed to the conventional method of phase measurement used to date. 

The principle of the technique relies upon the fact that in order to determine the 

optical path difference (OPD) between object and reference waves, the fringe order, 

the excess fraction and the wavelength are needed. By utilizing a tuneable source the 

excess fraction between two wavelengths λ1 and λ2 was adjusted, while the need to 

determine the OPD within the synthetic wavelength 12/ǀ1-2ǀ was achieved by 

using a closed-loop frequency locking technique within the shot noise limit of the 

detector. ADM refers to the use of interferometric techniques for determining the 

absolute position of an object without the necessity of measuring the continuous 

displacements as in the case of conventional interferometry [69]. However, it was not 

until nearly a decade after the concept was proposed by Bien F et al that it was 

practically realized. 

ADM is mainly implemented in two schemes namely multiple wavelength 

interferometry (MWI) and frequency sweeping interferometry (FSI). Both schemes 

make use of a synthetic wavelength which is much longer than the optical carrier 

wavelength. The synthetic wavelength increases with decreasing wavelength 

difference in MWI or sweep range in FSI. The resolution of the final measurement 

depends on phase measurements on the synthetic wavelength [70]. 

A typical FSI system is comprised of a Michelson type interferometer that measures 

the OPD and a sub-system normally based on a Fabry-Perot (FP) interferometer used 

to measure the frequency sweep range. The synthetic wavelength (Λ) is given by: 

 𝛬 =
𝜆1𝜆2

|𝜆1−𝜆2|
  ,  2.5 

for MWI and is inversely proportional to the frequency sweep Δν, 
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 𝛬 =
𝑐

𝛥𝜈
  ,  2.6 

for FSI, where c is the speed of light. The sweep range is obtained by multiplying the 

free spectral range (FSR) of the FP interferometer by the number of resonances 

minus one (r): 

 𝛥𝜈 = 𝑟 ⋅ 𝐹𝑆𝑅  .  2.7 

From equations (2.6) and (2.7) it follows that: 

 𝛬 =
𝑐

𝑟⋅𝐹𝑆𝑅
  .  2.8 

The measured distance (L) equivalent to the OPD of the interferometer arms is given 

by: 

 𝑂𝑃𝐷 =
𝑁

2

𝛬

𝑛
=
𝑁

2

𝑐

𝑟⋅𝐹𝑆𝑅
  ,  2.9 

where, N is the number of fringes and n is the refractive index of the propagation 

medium. 

Dandliker R et al reported on a multiple wavelength interferometer (MWI) which 

increased the measurement range (200 mm) with no phase ambiguity [71], had a 

resolution of  ̴10 μm and a variable sensitivity. Advances in laser source technology 

have established the technique in the field of optical metrology. The application of 

WSI in 2-D and 3-D coordinate measurements in the ATLAS experiment and 

vibration analysis has been reported by [72, 73] respectively. 

It is worth noting that one of the major sources of error is movement or drift of the 

target during measurement. To compensate for this, most setups employ a second 

laser source – often called the reference source, of fixed wavelength [69]. However, 

B. L. Swinkels et al recently reported on correction for movement errors without the 

need for a second non scanning laser source [74]. The technique is applicable only to 

smooth drifts. The system was based on a Mach-Zehnder arrangement and combined 

four phase measurements in place of the more usual two previously used. The 

smooth drifts were achieved by heating the fibres of the system and allowing them to 

slowly cool down. As a result, slow fringes corresponding to drift only, and fast ones 
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due to the movement and frequency sweeping, were obtained as illustrated in figure-

2.2. 

According to [70] there are two factors generating fringes during a measurement 

using FSI. These are: (a) synthetic wavelength fringes (Λ-fringes) due to frequency 

sweep and (b) optical wavelength fringes (λ-fringes) owing to changes in distance 

caused by the drift. The two types are indiscernible and therefore lead to the λ-

fringes being misinterpreted as Λ-fringes. As a result, the error due to the drift is 

amplified by a factor of Λ/λ (equation-7 in [70]). Assuming that drift occurs during a 

measurement of length L (equivalent to the OPD) and the drift amplitude is denoted 

ΔLdrift, the total number of detected fringes is given by: 

 𝑁 =
2𝑛

𝛬
𝐿 +

2𝑛

𝜆
𝛥𝐿𝑑𝑟𝑖𝑓𝑡  .  2.10 

Equation-2.10 neglects the effect of drift on Λ-fringes and the influence of 

wavelength variation on λ-fringes on the basis that these generated effects several 

orders of magnitude smaller. Rearranging equation-2.10 gives: 

 𝐿 = 𝑁
𝛬

2𝑛
−
𝛬

𝜆
𝛥𝐿𝑑𝑟𝑖𝑓𝑡  .  2.11 

Assuming a sweep range (Δν) of 50 GHz corresponding to a synthetic wavelength 

(Λ) of 6mm and the use of a light source operating in the visible spectrum (i.e. λ ~ 

600 nm), yields an amplification factor (Λ/λ) of ~ 10,000. In other words, a 1 nm 

drift (Δλdrift) would result to an error of 10μm in the measurement. This clearly 

demonstrates the devastating effect in high precision and accuracy measurements. 

Minimising the amplification factor is, therefore, of great importance.  There are two 

ways to achieve this, either by increasing the wavelength of the source (λ) to the NIR 

or by decreasing the synthetic wavelength (Λ), which by direct observation of 

equation-2.6 corresponds to an increase in the frequency or wavelength scanning 

range. In the latter case, care must be taken not to increase the sweep duration as this 

would result in an increase of drift. Another disadvantage of this approach would be 

the subsequent increase in complexity of the fringe counting process due to the 

increase in the number of Λ-fringes. Finally, an alternative way is to directly 

minimise the drift (Δλdrift) via independent relative metrology and actuate a delay line 

during the sweep [70]. Again this would result in an increase in complexity. 
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For the above mentioned reasons and under the condition that the assumption of a 

constant rate of drift holds, equation-2.11 was modified as follows: 

 𝐿 = 𝑁
𝛬

2𝑛
− 𝑠𝑖𝑔𝑛(𝛥𝜈) ⋅ 𝑉 ⋅ 𝛥𝑡 ⋅

𝛬

𝜆
  ,  2.12 

where 𝑠𝑖𝑔𝑛(𝛥𝜈) is the sign of the frequency sweep (+1 for increasing and -1 for 

decreasing frequency), V is the drift velocity and 𝛥𝑡  is the inter-sample time or 

sweep duration. This results in the equation 

 𝐿2 = 𝐿1 +  𝑉 ⋅ 𝛥𝑡3  ,  2.13 

where L1 and L2 are the OPDs for two consecutive measurements 1 and 2 obtained by 

direct substitution of the subscripts 1 and 2 in equation-2.12 respectively, and Δt3 

represents the time between the end of the first measurement and the end of the 

second measurement. Consequently, the drift speed and the corrected absolute 

distance for the second measurement were obtained using equations 2.7, 2.12 and 

2.13. 

Following the work of [70] previously summarized, and realizing the importance of 

the sign of frequency sweeping, the authors of [75] suggested a method utilizing two 

lasers with opposite scanning directions to cancel drift errors. A precision of 

approximately 0.2μm for a 0.41m absolute distance measurement was reported. Drift 

is, however, not the only parameter introducing uncertainty in absolute distance 

interferometry (ADI) measurements. A comprehensive discussion on the various 

factors influencing uncertainty is provided in [70] and includes: a) turbulence and 

vibration, b) scale errors, c) electronics, d) ghost reflections in the detector and 

optical beam splitters, e) alignment errors, f) dispersive effects and g) laser diode 

spectral characteristics. 

Thickness and refractive index measurements of thin transparent films and 2-D as 

well as 3-D profilometry are amongst the other fields that WSI has been applied to so 

far [76-80]. An important observation in the work of [78] is that when performing 

thickness measurements, a broad bandwidth can actually reduce the accuracy of the 

measurement, due to the frequency dependence of the refractive index. 

The mathematical descriptions that follow aim to demonstrate the depth sensing 

capability offered by WSI and related techniques, and are adopted from [81]. These 
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were outlined in [54] and follow the earlier works of de Groot and Surrel [82-84]. 

The formulations are initially based on a single scattering surface to relax the 

mathematical complexity but will be extended to volume scatterers in the next 

section. 

Assuming an opaque surface is illuminated and observed in an interferometric 

arrangement similar to that illustrated in figure-2.3, where the illumination and 

observation directions are parallel to the z-axis (i.e., the axis that measures the 

distance along the normal to the surface of zero OPD) then the intensity of the 

recorded interference signal on the pixels of a photo detector array with indices (m, 

n) can be expressed as: 

 
𝐼(𝑚, 𝑛, 𝑡) = |𝐴𝑟(𝑚, 𝑛, 𝑡) + 𝐴𝑜(𝑚, 𝑛, 𝑡)𝑒

𝑖𝜙(𝑚,𝑛,𝑡)|
2

                         =  𝐼𝑜(𝑚, 𝑛, 𝑡)⏟      
𝐷𝐶 𝑡𝑒𝑟𝑚

+ 𝐼𝑀(𝑚, 𝑛, 𝑡) 𝑐𝑜𝑠[𝜙(𝑚, 𝑛, 𝑡)]⏟                
𝑀𝑜𝑑𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑡𝑒𝑟𝑚

  ,  2.14 

where m, n are spatial indices such that m = 0, 1, 2,..., Nm-1 and n = 0, 1, 2,…, Nn-1, t 

is a dimensionless time variable, is the phase shift between the object and reference 

waves, and Ar and Ao represent the amplitudes of the reference and object waves, 

respectively. Their relation to the d.c and modulation terms is described by the 

following expressions: 

 
  𝐼𝑜 = 𝐴0

2 + 𝐴𝑟
2

𝐼𝑀 = 2𝐴𝑜𝐴𝑟
  ,  2.15 

The OPD between the reference and object arms of the interferometer is defined as 

 𝐷 = 2𝑛𝑜𝑧(𝑥, 𝑦)  ,  2.16 

where no is the refractive index of the surrounding medium and x, y are the 

coordinates of the scattering point measured in a plane perpendicular to z. With these 

in mind, the phase shift () between the reference and object wave can be expressed 

by: 

 𝜙 = 𝑘(𝑡)𝐷(𝑚, 𝑛) + 𝜙𝑠(𝑚, 𝑛) ,  2.17 

where k is the wavenumber (2π/λ), λ is the wavelength in vacuum and s an unknown 

potential shift in phase that could possibly arise upon reflection or microscopic 
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random contributions of scatterers that contaminate the true signal by making 

amplitude contributions onto the pixel (m, n). 

As the name implies, WSI involves scanning of the wavelength (λ) or indeed the 

wavenumber (k) with time. There are two ways towards achieving this; a) to linearly 

change λ with time or b) to linearly change k with time. An example of the former is 

given in [85]. However, the authors had to develop a post processing algorithm to 

transform the linearly swept wavelength to linearly swept frequency in order to avoid 

the signal becoming chirped. After Fourier transformation this would result in peak 

broadening and consequently in a sacrifice in depth resolution of the system (depth 

resolution will be discussed later in this section). In references [3, 4] the authors scan 

the wavelength linearly. However, due to the small bandwidth of the source (<0.12 

nm) the non-linearity is small enough to be ignored without significantly affecting 

the results. In the ideal case, therefore, it should be the wavenumber as opposed to 

the wavelength that should be linearly varied. 

 𝑘(𝑡) = 𝑘𝑐 + 𝛿𝑘 ⋅ 𝑡  ,  2.18 

where, kc is the central wavenumber and δk is the wavenumber increment or 

wavenumber step as it is often called in the literature with k ϵ [-k/2,k/2] 

between successive frames and t ϵ [-k/2k,k/2k]. Substituting equation 2.18 into 

2.17 gives: 

 𝜙(𝑚, 𝑛, 𝑡) = 𝑘𝑐𝐷(𝑚, 𝑛) + 𝜙𝑠(𝑚, 𝑛) + 𝛿𝑘 ⋅ 𝐷(𝑚, 𝑛) ⋅ 𝑡  .  2.19 

Recall that: 

 𝜙(𝑚, 𝑛, 𝑡) = 2𝜋𝑓𝑡  .  2.20 

Differentiating both expressions with respect to time and substituting the 

differentiated form of equation-2.20 after expressing it in terms of frequency (f) and 

substituting the result of d/dt obtained from equation-2.19 finally yields: 

 𝑓𝐷 = 𝛿𝑘𝐷(𝑚, 𝑛) 𝜋⁄   .  2.21 

The importance of equation-2.21 is that it highlights the fact that a linear variation of 

the wavenumber with time results in an intensity modulation at a temporal frequency 
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f = fD which is proportional to the OPD (D). The units of f are ‘cycles per frame’. An 

alternative way would be to express the frequency in ‘cycles per scan duration’:  

 𝑓 = 𝑓 𝛥𝑘 𝛿𝑘⁄   .  2.22 

In other words, the depth-encoding frequency shift separates the signal from different 

slices within the material as illustrated in figure-2.4. In WSI both modulation 

frequency and phase change between two successive scans are accessible. Their 

calculation is achieved by means of the 1-D Fourier transform [81], and will be dealt 

with in the subsequent sections. 

In full-field swept source OCT (SS-OCT), which is the name given to WSI in the 

OCT community, three dimensional imaging of the structure with the best possible 

lateral resolution throughout also requires scanning of the focus. Marks DL et al 

suggested that by solving the inverse scattering problem, it is possible to reconstruct 

the full three dimensional volumes while the focus is fixed at one plane. It is known 

that the lateral resolution of OCT systems is determined by the point spread function 

(PSF=1.22λ/NA) which in turn is a function of the numerical aperture of the system. 

Low NA systems can tolerate defocus due to the large depth of field. However, this 

is not the case for high NA and defocus needs to be taken into account. The authors 

report on the simulation of an algorithm that recovers the object structure both inside 

and outside the depth of field and hence allows for focus to be fixed at a particular 

plane even for high NA systems [86]. Two years later, the same authors reported on a 

model for SS-OCT with partial coherence that has the advantage of diffraction 

limited resolution in regions usually regarded as out-of-focus. In their work, they 

claim that the partial spatial coherence of the source is advantageous, in that it 

mitigates against multiple scattering effects that are known to be responsible for 

artefacts in whole-field coherent imaging [87]. 

2.4.2 Fourier-domain optical coherence tomography (FD-OCT) 

Fourier domain OCT (FD-OCT) or spectral OCT (SOCT) as it is often called can be 

viewed as a parallel version of WSI. In WSI the recorded interference signal is 

modulated along the time axis. On the other hand, in SOCT the signal is modulated 

along a spatial axis (spectrometer axis) that samples a range of wavelengths 

simultaneously as opposed to the sequential sampling that takes place in WSI. As in 
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WSI, a broadband source (BBS) with a bandwidth Δλ and a wavelength λ centred at 

λc is also used here to illuminate the reference surface and a sheet of scattering points 

within the test sample (object). After recombination of the reference and object 

beams at the beam splitter (BS), the signal is passed through a diffraction grating (G) 

which spatially separates the different wavelengths. The latter form an interference 

pattern on a two dimensional photo detector array [5]. A schematic representation of 

a typical SOCT setup is illustrated in figure-2.5. 

Considering that the sample consists of a set of slices, each of which has a thickness 

equal to the depth resolution of the system δz, then the phase difference between the 

reference beam and the light backscattered from the j
th

 slice of the sample [5] is: 

 𝜙𝑗(𝑘) = 𝜙𝑗0 + 2𝑘𝑧𝑗   .  2.23 

Following a similar approach to that in section-2.4.1 the spatial frequency along the 

k-axis is: 

 𝑓𝑘 =
1

2𝜋

𝜕𝜙

𝜕𝑘
=
𝑧𝑗

𝜋
  .  2.24 

Assuming weak scattering within the material (an assumption normally adopted in 

OCT) and that the object consists of Nk independent slices, the intensity distribution 

along the k-axis (I(k)) can then be expressed as follows: 

 

𝐼(𝑘) = 𝐼𝑜⏟
𝐷𝐶

+ 2∑ √𝐼𝑅𝐼𝑗
𝑁𝑘
𝑗=1 𝑐𝑜𝑠[𝜙𝑗(𝑘)]⏟              
𝐶𝑟𝑜𝑠𝑠−𝑐𝑜𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛

                                    + 2∑ ∑ √𝐼𝑖𝐼𝑗
𝑁𝑘
𝑗=𝑖+1

𝑁𝑘
𝑖=1 𝑐𝑜𝑠[𝜙𝑖(𝑘) − 𝜙𝑗(𝑘)]⏟                        

𝐴𝑢𝑡𝑜𝑐𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛

    2.25 

Note that equation-2.25 is a generalised form of equation-2.14 and accounts for 

volume scatterers. Terms IR and Ij represent the intensities coming from the reference 

and the j
th

 layer respectively. The cross-correlation term corresponds to the intensity 

modulation along the k-axis with frequencies fkj = zj/π, with the latter being 

proportional to the optical path difference between the reference and the object 

surfaces. The third term is associated with the autocorrelation or auto-interference of 

light from within the object and is closely related to the main assumption in OCT 

systems of weak scattering. i(k)-j(k) is the phase difference introduced to the light 
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scattered from the i
th

 and j
th

 layers within the object and can also be represented in 

terms of frequencies: 

 𝜙𝑖(𝑘) − 𝜙𝑗(𝑘) = 2𝜋(𝑓𝑘𝑖 − 𝑓𝑘𝑗)𝑘  .  2.26 

That in turn can also be related to the optical path difference between these layers 

according to: 

 𝑓𝑘𝑖 − 𝑓𝑘𝑗 =
𝑧𝑖−𝑧𝑗

𝜋
  .  2.27 

The sought modulation frequency is obtained by the 1-D Fourier transformation of 

I(k) for a single scattering surface. The mathematical description that follows is the 

same as that reported in reference [81] but applied in the k-space as opposed to t-

space. The Fourier transform of a set of Nk sampled intensity values I(k) can be 

expressed as follows: 

 𝐼(𝑓) = ∫ 𝐼(�̌�)
+∞

−∞
𝑊(�̌�)[∑ 𝛿(�̌� − 𝑘′)∞

𝑘′=−∞ ]𝑒
−
2𝜋𝑖�̂��̌�

𝑁𝑘 𝑑�̌�  ,  2.28 

where, δ is the Dirac delta function, �̌� is a continuous version of the discrete variable 

k, 𝑊(�̌�)  is a continuous and even window function which is non-zero only for 

|�̌�| ≤ 𝑁𝑘 2⁄  and 𝑓 is a continuous non-dimensional spatial frequency. Finally, k´ is 

where the sampling takes place. Considering the right hand side of equation-2.28 as 

the Fourier transform of a sampled (discrete) intensity distribution multiplied by a 

continuous window function, then by the convolution theorem: 

 𝐼(𝑓) = �̃�(𝑓) ∗ ∑ [
𝐼𝑜𝛿(𝑓 − 𝑗𝑁𝑘) +

𝐼𝑀

2
𝑒𝑖𝜙𝑜𝛿(𝑓 − 𝑗𝑁𝑘 − 𝑓𝐷)

+
𝐼𝑀

2
𝑒𝑖𝜙𝑜𝛿(𝑓 − 𝑗𝑁𝑘 + 𝑓𝐷)

]∞
𝑗=−∞   .  2.29 

In the case of volume scatterers, equation-2.29 takes the form [81]: 

 𝐼(𝑓) =
(𝐴𝑟

2 + ∑ 𝐴𝑖
2𝑁𝑘

𝑖=1 )�̃�(𝑓) + 𝐴𝑟 ∑ 𝐴𝑖𝑒
±𝑖𝜙𝑁𝑘

𝑖=1 �̃�(𝑓 ± 𝑓𝐷,𝑖)

+∑ ∑ 𝐴𝑖𝐴𝑗𝑒
±𝑖[𝜙𝑖(𝑘)−𝜙𝑗(𝑘)]𝑁𝑘

𝑗=𝑖+1 �̃�[𝑓 ± (𝑓𝐷,𝑖 − 𝑓𝐷,𝑗)]
𝑁𝑘
𝑖=1

  .  2.30 

Note that the index (i) takes two different meanings. In the summation symbol, it 

indicates the i
th

 layer while in the exponential form it is used to express the usual 

complex quantity (i = (-1)
1/2

). Additionally, all the terms above the Nyquist limit 

have been dropped for simplicity. 
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The second term of equation-2.30 (volume scatterers) or equation-2.29 (single 

scattering surface) provides means of mapping the internal structure of the object 

under study and needs to be separated from the autocorrelation term to avoid cross-

talk [88, 89]. This is usually achieved by moving the reference surface (R) away 

from the object (see figure-2.5 for example). However, this has the undesirable effect 

of halving the effective depth range of the system [5, 81] (see figure-2.6 and figure-

2.7). An alternative way of separating the two terms without the compromise of 

reducing the depth range of the system was reported by M, Wojtkowski et al in 

reference [90]. The authors demonstrated a way to suppress the autocorrelation term 

by using phase shifting. Another approach was reported by Steiner P, Meier C and 

Koch VM where a simple background subtraction technique is applied which seems 

to minimise the artefacts caused by the interference between the autocorrelation and 

cross-correlation terms [89]. 

In SOCT, depth range (Δz) is defined as the maximum optical path difference 

between the i
th

 slice within the object and the reference surface and is limited by the 

spectrometer resolution. The modulation frequency fk in equation-2.24 is limited by 

the Nyquist frequency (Nk/2Δk). N is the number of pixels required to sample I(k) 

over a total wavenumber range of 2πΔλ/λ
2

c [5]. Therefore: 

 ∆𝑧 =
𝑁𝜆𝑐

2

4𝛥𝜆
  .  2.31 

The depth resolution, which essentially is the minimum size that can be fully 

resolved in the Fourier domain by the system, is given by: 

 𝛿𝑧 = 𝛾
𝜆𝑐
2

𝛥𝜆
  ,  2.32 

where γ is a constant associated with the shape of the window function. For a 

rectangular window γ = 1 or γ = 0.603 depending on whether the resolution is 

measured as the distance between first zeroes or the FWHM (full width half 

maximum of the Fourier peak). In the case of a Hanning window, γ = 2 or γ = 1 

respectively [91]. Strictly speaking, the use of a rectangular window would result in a 

narrower peak and therefore in a lower depth resolution. However, this comes at the 

expense of the signal becoming contaminated by side lobes. For this reason, a 

Hanning window is often used as it reduces the side lobes but increases the width of 
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the peak. Another type of windowing function was reported in reference [92], with 

the particular characteristic of all the side lobes on either side of the peak having the 

same maximum level. Its application, however, also resulted in peak broadening. An 

alternative way to evaluate the depth resolution is by considering the round trip of 

the light source giving a theoretical lower limit of γ = 2ln2/π [66, 90]. 

From equation-2.31 and equation-2.32 it is clear that the larger the bandwidth of the 

source, the better the depth resolution of the OCT system. Realizing this, a 

significant amount of research has been conducted over the past few years in order to 

develop laser sources with as wide a bandwidth as possible [16, 24, 93, 94]. An 

excellent summary of the available laser sources for OCT was reported in table-1 in 

reference [66]. Table-2-1 below is an updated version of the aforementioned table 

providing a more recent summary of the advances in laser source technology for 

OCT. The different laser sources have been grouped in terms of the central 

wavelength (c), bandwidth (), coherence length (lC) and deliverable power.  

Table-2-1: Examples of sources used in OCT. (Updated table-1 in [66].) 

Light source c (nm) nm lC (m) Power Ref Year 

SLD 

675 10 20 40 mW 

[95] ’02 

820 20 15 50 mW 

820 50 6 6   mW 

930 70 6 30 mW 

1300 35 21 10 mW 

1550 70 15 5 mW 

Kerr lens       

    Ti:Sapphire 810 260 1.5 400 mW [96, 97] ’95,’99 

 795 130  1     mW [98] ’08 

    Cr:Forsterite 1280 120 6 100 mW [99] ’96 

    Cr:LiCAF 715 89  37   mW [100] ’04 
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Table-2-1 continued 

Light source c (nm) nm lC (m) Power Ref Year 

    Cr:LiSAF 890 220  few mW [101] ’91 

LED 

1240 40 17 0.1  mW 

[102] ‘97     

1300    

ASE fibre sources 1300 40 19 60  mW 
[103] ’02 

 1550 80 13 40  mW 

Super fluorescence       

    Yb-doped fibre 1064 30 17 40  mW [104] ’98 

    Er-doped fibre 1550 80-100 16 100 mW [105] ’98 

    Tn-doped 1800 80 18 7     mW [105] ’98 

 1300 370 2.5 6     mW [106] ’01 

Photonic crystal 

fibre 

725 370 0.75  [107] ’02 

800 110  30   mW [108] ’06 

1300 150  48   mW [108] ’06 

Thermal tungsten 880 320 1.1 0.2   W [109] ’00 

    halogen     [110] ’02 

Parametric down-

conversion 
      

Krypton Ion/LiO3 812 200  few pW [111] ’06 

Note: ASE refers to amplified spontaneous emission in laser technology. Source: [112-114]. 

From the table above, it is evident that solid-state lasers (i.e. Ti:Sa etc.) provide a 

good compromise between available power and bandwidth, thereby placing them at 

the forefront of laser sources suitable for OCT applications. An interesting approach 

for increasing the spectral bandwidth of the source was reported by Tony H. Ko et 

al., where the authors suggested coupling the output from two single SLDs and 

achieved an overall source spectral width of 155nm [115] (see figure-2.7). 

Gong JM et al approached the issue of the source’s influence on the resolution from 

a different angle. They demonstrated that resolution can be improved by means of a 
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post-processing modeless reshaping of the source spectrum. Their work concludes 

stating: ‘the optimal spectrum has a priori surprising ``crater-like`` shape, providing 

a 0.74 micron axial resolution in free space, representing a ~50% improvement 

compared to the resolution using the original spectrum of a white light lamp’ [116]. 

2.4.3 Phase-contrast optical coherence tomography (PC-OCT) 

Phase contrast, as the name implies, refers to the determination of phase. PC-OCT 

encompasses the family of techniques that is not restricted to imaging the amplitude 

of the interference signal. Instead it takes advantage of the full potential of the 

interferometric nature of OCT by allowing, in addition, the calculation of phase 

maps. The first to have demonstrated PC-OCT in solid mechanics are the authors of 

[5]. In their work the phase change between two states – a deformed and an un-

deformed state, was obtained using the difference of phase equation stated in [54]. 

The advantage of this approach is that it allowed evaluation of the phase change 

before and after deformation in a double shot, hence eliminating the need to evaluate 

each phase separately and subtract them afterwards. The calculation of the out-of-

plane displacement was achieved by: 

 𝑤𝑗 = (𝑛0 − 𝑛)𝑑1 + 𝑛𝑑𝑗   ,  2.33 

where, d1 being the displacement corresponding to the surface of the object (slice 

1:S1) and dj that of the j
th

 slice (a subsurface slice: Sj) – refer to figures: 2.4, 2.5 for 

schematic illustrations). Equation-2.33 implies that the refractive index of the 

material is the same throughout the volume. This, however, is clearly not the case for 

composite materials. For this reason, the authors suggested that, ‘for more complex 

distributions of known refractive index within the object an integral over [d1,dj] and 

therefore the displacement of shallow slices should be calculated first and used to 

correct the displacement of deeper ones’ [5]. 

It is worth noting that this assumes a priori knowledge of the refractive index of the 

material and also that it does not change during the loading scheme. The latter being 

the basis of depth resolved imaging and displacement measurement techniques seen 

as linear filtering operations [35, 36]. From the above it follows that, since 

displacement sensitivity is the minimum displacement the system can detect, it 

depends on the minimum phase change that can be detected by the system [5]. 
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Three years later the same authors reported on a PC-OCT technique to 

simultaneously measure both in-plane and out-of-plane displacement fields within 

scattering media [7]. In biomedical applications the technique is predominantly used 

for flow determination and therefore utilises the Doppler Effect [117, 118]. 

2.4.4 Optical coherence elastography (OCE) 

Disease is known to alter the mechanical properties of tissue on scales spanning from 

nanoscopic (subcellular) to macroscopic (whole organs). Elastography maps the local 

mechanical properties of tissue by measuring the deformation in response to 

mechanical loading. The technique is based on the analysis of images, commonly 

termed as elastograms in the literature [119], that encode the axial or lateral strains, 

the elastic moduli and/or the Poisson ratio distributions in tissues. From a historical 

point of view the method was largely developed as a diagnostic tool using ultrasound 

in the 1980’s and magnetic resonance imaging (MRI) in the 1990’s [120]. Optical 

imaging techniques that date back to the early 1950’s were proposed by Jacques et 

al. [121] and Schmitt [122] for elastography applications. A list of insightful and 

recently published review papers on which the information presented henceforth 

relies upon can be found in refs [123-125]. 

OCT-based elastography relies on 2-D cross-correlation algorithms on OCT 

amplitude images to detect the speckle shifts and consequently estimate motion in 

OCT image sequences. A good example of the technique was reported by 

Kirkpatrick SJ et al who demonstrated the quantification of displacements, strains 

and strain rates for both small and large speckle motions [126]. 

In general, in elastography there are four key parameters that determine the 

performance of the system. These are: 

a. The imaging resolution, also known as depth resolution in the OCT 

community. 

b. The data acquisition speed.  

c. Mechanical sensitivity, also known as displacement sensitivity in the field of 

interferometry. 

d. Image penetration, or in other words the depth range of the system. 
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In optical coherence elastography the depth resolution is in the order of 1-10 m and 

is considerably better than that offered by ultrasound elastography and magnetic 

resonance elastography (MRE).  

As far as data acquisition speeds are concerned, OCE offers once again superior data 

acquisition speeds that span from 10s to 100s of kHz [127], due to the continuous 

development in laser technology, compared to ultrasound elastography which is 

limited by the speed of sound and MRE, although multi-kHz 2-D scans have been 

reported with supersonic shear imaging (SSI) [128]. 

Displacement sensitivity is another key parameter that is affected by the frequency or 

the wavelength of the type of wave (light or sound) employed to perform the 

measurement. A typical value of the measurement sensitivity in DSPI is c/30 from 

which it is clear that the smaller the wavelength used the higher the measurement 

sensitivity. This is an inherent advantage that optical techniques possess over their 

contenders in the field of non-destructive testing (NDT) like ultrasound and magnetic 

resonance. 

Finally, the image penetration in OCE is significantly lower to that offered by 

ultrasound elastography and MRE with typical values in the order of a few 

millimetres. To overcome this limitation, endoscopic or needle versions of OCE have 

been developed [129]. 

The first optical coherence elastography technique was reported in 1998 by Schmitt 

JM [122] and was based on a TD-OCT system. It followed seven years after the first 

demonstration of OCT in 1991 [130]. Ever since the first OCE demonstration, a 

number of different techniques have emerged which are commonly referred to as 

OCE in the literature. Classification of the different OCE types can be done in 

different ways. One approach that is commonly used in the literature is based on the 

loading scheme used in [123]. For example, in the case of spatial excitation of the 

sample, OCE techniques are classified as internal or external excitation OCE. If on 

the other hand a temporal excitation is used, OCE techniques can be classified as 

either static or dynamic. Figure-2.9 shows a schematic illustration of the loading type 

classification of OCE techniques. Figure-2.9 (reprinted fig.2 in ref [125]) provides 

schematic illustrations of (a) external excitation static/quasi-static OCE, (b) external 
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excitation dynamic OCE and (c) internal excitation dynamic OCE. A demonstration 

of internal excitation (thermal loading) static/quasi-static OCE can be found in ref 

[131]. 

2.4.5 Polarization-sensitive optical coherence tomography (PS-OCT) 

Polarization sensitive OCT has been the first and to date the only OCT technique 

applied as a non-destructive tool for characterization of composite materials [25]. 

The technique is based on the principle of photo elasticity and typical setups are 

based on Michaelson interferometers with the necessary additions of optical 

components for photo elasticity. The technique utilises pulsed broad bandwidth light 

sources [22] and is based on monitoring the birefringence of the material. Its abilities 

are not restricted to imaging only the morphology of the structure, but have also been 

extended to strain-field mapping [22, 132, 133]. It is worth noting that all the works 

referring to strain or stress field mapping refer to residual stresses that already exist 

within the structure and are probably induced during the manufacturing process or 

service of the material in question.  

Arne Røyset reported on a novel noise model to monitor the birefringence accurately 

[134]. Measurement and imaging of backscattered intensity, birefringence, and fast 

optic axis orientation was reported by [135]. The optic axis orientation was 

determined from the phase difference recorded in two orthogonal polarization 

channels. 

2.5 Summary of WSI [21] 

The absolute measurement of optical path differences by Wavelength Scanning 

Interferometry has a long history, though several different terms have been used to 

describe essentially the same technique. For example, optical frequency domain 

reflectometry was developed to locate defects in optical fibres [136, 137], in the OCT 

community it is commonly called Wavelength Tuning Interferometry, or ‘swept-

source’ [138, 139]. Variations on the basic theme, called Frequency Scanning 

Interferometry in [140], have also been developed for large volume metrology 

applications. Parallel versions of WSI were developed in the mid-90s for 

profilometry applications [141, 142] in which each pixel of a 2-D array is turned into 

an independent range sensor. More recently, de Groot described a wavelength 



70 

 

scanning interferometer able to separate the interferograms from two different optical 

surfaces on a common optical path [143]. A phase shifting formula tuned to the 

temporal frequency of the surface of interest effectively eliminated the signal from 

the unwanted surface, allowing an accurate phase map of the first surface to be 

obtained. The use of phase information to measure 2-D depth-resolved displacement 

fields takes this idea a stage further. Proof-of-principle experiments on a pair of 

specularly-reflecting surfaces [3] showed how independent displacement fields 

associated with rigid body rotation of the two surfaces could be separated. In these 

cases, a windowed Fourier transform was used to separate the signal from the 

different surfaces and to extract phase maps. Phase difference maps then encoded the 

out-of-plane displacement field. 

What follows is a summary of the governing equations in WSI and SS-OCT. To 

avoid complexity, a two-beam interferometer is considered, which is applicable to 

the case of a single scattered object wave interfering with a reference wave. This 

produces a single Fourier peak for each camera pixel in the volume reconstructions. 

Weakly scattering media generally give rise to multiple-beam interference patterns, 

which result in multiple Fourier peaks. However, the two cases have identical depth 

resolutions, and unambiguous depth ranges that differ by only a factor of 2 [81]. 

Consider the light received by a detector at location (x, y) within a 2-D photo 

detector array. The intensity is given by [91]: 

 𝐼(𝑥, 𝑦, 𝑘 − 𝑘𝑐) =
{𝐼0(𝑥, 𝑦) + 𝐼1(𝑥, 𝑦) 𝑐𝑜𝑠[(𝑘 − 𝑘𝑐)]𝛬0(𝑥, 𝑦) + 𝜙0}

× 𝑊(𝑘 − 𝑘𝑐)
  ,  2.34 

where k is wavenumber, kc is the wavenumber at the centre of the scan range, 0 is a 

phase offset, Λ0is the optical path difference between the interfering beams, I0 and I1 

are respectively the background (d.c) and fringe modulation intensities, and W(k-kc) 

is a function to represent the case either of windowing the data to reduce spectral 

leakage, or of a non-uniform laser power during a wavelength scan. 

k is changed with time over a total range k whilst image sequences are recorded 

using the 2-D photo detector array. Ideally one aims for a linear variation of k with t, 

i.e. 

 𝑘(𝑡) =  𝑘𝑐 + 𝛿𝑘 ∙ 𝑡  ,  2.35 
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where kc is the central wavenumber, k is the increment in wavenumber between 

successive frames, and integer variable t ranges from -k/k to k/k. The Fourier 

transform of equation-2.34 may be calculated using the Fourier shift and convolution 

theorems as follows [81] : 

 𝐼(𝛬) =  [𝐼0𝛿(𝛬) +
𝐼1

2
𝛿(𝛬 − 𝛬0)𝑒

𝑖𝜙0 +
𝐼1

2
𝛿(𝛬 + 𝛬0)𝑒

−𝑖𝜙0] ∗ [�̃�(𝛬)𝑒−𝑖𝑘𝑐𝛬]  2.36 

in which the (x, y) dependence has been dropped for clarity, where  (...) is the Dirac 

delta function, �̃�(Λ)  is the Fourier transform of W(k), and where * represents 

convolution. A copy of �̃�(Λ) is centred on each of the three delta functions at  = 0 

(the d.c term) and  = ± 0 (the cosine term). 

2.5.1 Critical parameters in WSI 

There are two main parameters that define the performance of WSI system. These 

are, the depth range (i.e. how deep inside the material the system can image) and the 

depth resolution or optical path resolution (i.e. what is the smallest size in the 

internal structure of the material under test that can be resolved by the system). 

The maximum unambiguous depth range is given by the Shannon sampling theorem 

which states that in order to ensure adequate sampling of the I(x,y,k-kc) signal, the 

term k0(x,y) in equation-2.34 should not change by more than π between successive 

k samples. This leads to a maximum allowed value of  =  M where: 

 𝛬𝑀 =
𝜋

𝛿𝑘
  ,  2.37 

and where k is the (constant) wavenumber jump between frames. Any larger  

values will be aliased onto a lower  value thus creating an under-sampling artefact. 

The minimum allowed value of , on the other hand, is  = 0, because the cosine 

function in equation-2.34 is even. Negative  values cannot therefore be 

distinguished from positive ones. We therefore have the allowable path difference 

range 

 0 ≤ 𝛬 ≤ 𝛬𝑀  .  2.38 

The discrete Fourier transform 𝐼(𝑥. 𝑦, Λ)  contains Nk/2 positive frequency 

components, where Nk is the number of k samples, with a separation between sample 
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points of 2/(Nkk). The width of the spectral peak (i.e., distance between zero 

crossing points) is 4/(Nkk) for the case of a uniform spectral profile of width Nkk. 

If the spectrum is not uniform but rather has a non-constant profile W(k-kc), then the 

width of the peak is given by the width of �̃�(Λ). In general we can write the width 

of the spectral peak as, 

 𝛿𝛬 = 𝛾
2𝜋

𝑁𝑘𝛿𝑘
  ,  2.39 

where the constant  takes the value 2 for a rectangular window, and 4 for a Hanning 

window, for example. If, on the other hand, the width is measured on a full width 

half maximum (FWHM) basis then the corresponding  values are 1.207 and 2.000, 

respectively. 

The relationship between optical path length resolution,  and the corresponding 

depth resolution, z, depends on the geometry of the illumination and observation 

directions. For the typical case of backscattered light (illumination and observation 

directions coincident), 

 𝛿𝑧 = 𝛿𝛬 2𝑛⁄   .  2.40 

2.5.2 Electronically tuned laser sources in WSI 

Over the past two decades, wavelength scanning interferometry has become quite 

popular in the fields of profilometry and absolute distance measurement (ADM) 

owing to the developments in electronically tuned laser source technology. Table-2.2 

below provides a historical review, in chronological order, of the different types of 

tuned laser sources used in WSI over the last twenty years. 

Table-2.2: Historical review in chronological order of the different light sources used 

in WSI and their corresponding application. c: central wavelength, : tuning range 

used in the experimental results of the corresponding reference, Power: max power 

output of light source, Inter.type: Interferometer setup used. 

Source c  Power Inter.type Application Ref 

Diode laser 670nm 20nm 10mW Michelson Profilometry [141] 

Dye laser 577nn 25nm 300mW Michelson Profilometry [142] 
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Table-2.2 continued 

Source c  Power Inter.type Application Ref 

Diode laser 577nm 25nm 2.5mW Michelson Topometry [144] 

Dye laser 577nm 4.2nm 300mW Michelson Profilometry [145] 

Dye laser 577nm 4.2nm 300mW Michelson Profilometry [146] 

Diode laser 

SDL TC-40 
776nm 8nm 500mW Michelson 

Height 

gauging 
[147] 

Solid state 

Ti:Sa 
791.1nm 102.3nm 300mW Michelson NA [148] 

NA 680nm 7.5pm NA Fizeau Flatness test [143] 

Diode laser 

SDL TC-40 
775.8nm 6.4nm 500mW Michelson Profilometry [149] 

Solid state 

Ti:Sa 
791.15nm 102.3nm 300mW Michelson Step gauging [26] 

Diode laser 1556nm 4nm NA Fizeau ADM [150] 

Dye laser 573.8nm 4.28nm 300mW Michelson Profilometry [76] 

Diode laser 690.7nm 0.028nm NA Fizeau ADM [151] 

Diode laser 633nm 0.134nm 15mW Fizeau Profilometry [31] 

Diode laser 690.7nm 0.25nm NA Fizeau 

Surface shape 

and optical 

thickness 

[77] 

Diode laser 690nm 0.095nm NA Fizeau Surface shape  [152] 

Diode laser 670.15nm 10.1nm NA Fabry-Perot ADM [73] 

Diode laser 690nm 0.095nm NA Fizeau 

Surface shape 

and optical 

thickness 

[153] 
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Table-2.2 continued 

Source c  Power Inter.type Application Ref 

Shapix™ 

2000 
840nm 16nm NA Michelson Profilometry [154] 

Diode laser 

Agilent 

81680A 

1534nm 8nm 15mW 
Mach-

Zehnder 

Effect of 

detuning in 

swept sources 

[155] 

Diode laser 1550nm 4nm NA Fizeau ADM [156] 

Shapix™
.
 622.5nm 15nm 15mW Michelson 

Height 

gauging 
[157] 

Diode laser 637nm 10nm NA Fizeau ADM [158] 

Diode laser 841nm 16nm NA 
Pseudo-

Fizeau 
ADM [159] 

Custom 1569nm 18nm 5mW Fizeau 
Surface 

profilometry 
[160] 

2.6 Summary and conclusions 

This chapter has provided a detailed overview of the main developments in the 

related fields of absolute distance measurement and depth resolved measurement of 

displacement fields in weakly scattering materials, as well as the light sources used 

for the optical measurement techniques. It is clear that an optical approach is 

appropriate to the problem of depth resolved displacement field measurement in 

composites because of the required spatial resolution. This is of the order of 10 m 

or better, to match the length scale of the microstructural features and damage 

regions. A wide tuning range of 100 nm or more is required to achieve such depth 

resolutions. Parallel OCT is preferred to scanned pointwise OCT, to ensure the 

stability when measuring phase difference maps from two different scans. The rest of 

the thesis describes the development of a system based on an electronically tuneable 

Ti:Sa source. The fairly limited penetration depth of a few mm will be partially 

overcome by the use of multiple illumination directions, which will also provide the 

ability to measure multiple displacement components. 
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2.7 Figures 

 

Figure-2.1: Schematic diagram showing the main processes involved in the analysis 

of interferograms. I (m, n, t) is the intensity distribution in the interferogram with m, 

n being the spatial indices and t a dimensionless time index.  is the phase of the 

intensity signal and  the change in phase relative to some reference state. 

Subscripts w and u indicate whether the phase or phase change is wrapped or 

unwrapped. Finally, u, and k are examples of parameters that the unwrapped phase 

change u may be converted to, and correspond to displacement map, strain map or 

wavenumber axis respectively. Reproduced variation of figure-2.1 in [54]. 

 

 

Figure-2.2: (a) interferometric phase, (b) transmission of the Fabry-Perot cavity, (c) 

unwrapped phase of (a). The dashed line indicates the threshold value. (Figure 

adopted from [74]). 
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Figure-2.3: Illustration of a typical scanning white light interferometer (SWLI) setup. 

CL: Collimating lens, PZT: piezo-electric transducer, RM: reference mirror, BS: 

Beam splitter, TS: Test sample, FL1: Focussing lens 1, AS: Aperture stop, FL2: 

Focussing lens 2. Source: [81]. 
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Figure-2.4: Schematic illustration of how the depth encoding frequency shift 

separates the signal from different slices within the material in WSI. S: Slice, d: 

depth, f: frequency of light. Source: [161]. 

 

 

Figure-2.5: Schematic representation of a SOCT system. Broadband source (BBS), 

beam splitter (BS), object (O), reference mirror (R), diffraction grating (G), lens (L) 

with focal length f and 2-D photo detector array. βc is the diffraction angle of the 

central wavelength and θ is the incident angle of the light from the broadband source. 

Reproduction of fig-1 in reference [5]. 
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Figure-2.6: Schematic diagram of a 1-D Fourier transformation of I(k) at one pixel in 

a SOCT system with a sample cosisting of a single scattering surface. (Adopted and 

adjusted for SOCT, source: figure-2.7 in [81].) 

 

Figure-2.7: Scattered light amplitude distribution Nk scattering layers (top) and 

reconstruction from the Fourier transform (below) of the intensity at a single camera 

pixel. Labels 1, 2, 3 correspond to the three terms of equation-2.30. Note that ΛD is 

the max allowable OPD. (Adaptation of figure-2.10 in [81].) 
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Figure-2.8: (a) Individual output spectra of the two super luminescent diodes. (b) 

Fibre-coupled multiplexed spectrum of the broadband SLD source. (c) Coherence 

point spread function of the broadband SLD source. (d) Logarithmic demodulated 

coherence point spread function. A 3.0 OD filter was used to prevent detector 

saturation.(Source: fig.2 in [115]). 

 

Figure-2.9: Classification of OCE techniques based on loading type scheme. 

Adaptation of fig.1 in ref [123]. 
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Figure-2.10: Illustrative examples of three different loading schemes commonly used 

in OCE and elasticity estimation – descriptions from top to bottom: (a) Static/quasi-

static loading (compression): concentric loading and on-axis detection in a bi-layer 

sample; depth-resolved displacement vs depth yield the corresponding local strain l; 

(b) SAW: periodic loading and off-axis detection; depth-dependent amplitude decay 

for high and low SAW frequencies f1 and f2 respectively; the measured phase 

velocity cp is frequency dependent in a layered sample with the higher SAW 

frequencies depending more on the elasticity of the soft layer whilst the lower SAW 

frequencies depend on both soft and hard layers; (c) MM: upward movement of 

magnetic nanoparticles (MNPs) that are embedded in a homogeneous sample in 

response to a step application of the magnetic field causes a localized load to the 

surrounding sample; applied magnetic field; corresponding sample response vs time, 

where fn is the natural frequency of oscillation and Tn is the period. This is identical 

to fig.2 in [125] with caption text slightly modified. 
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Chapter-3: Development of electro-mechanical hardware 

3.1 Introduction 

The original project aim was to develop a tomographic system able to analyse three-

dimensional displacement fields within weakly scattering materials such as glass 

fibre reinforced polymers (GFRP’s). Consequently, it is necessary to develop a 

device able to introduce the desired displacement boundary conditions to the test 

sample in an unambiguous manner. A set of intermediate experiments was also 

devised to align the coordinate systems of the 6 independent interferometers and to 

test the performance of the system on an ideal weakly-scattering phantom that 

undergoes pure translation and rotation. Experiments using these devices will 

ultimately increase the confidence of success when testing the much more complex 

GFRPs. 

During the course of the PhD research, however, failure of the tuneable laser meant 

that it was necessary to refocus the project to one based on image analysis of existing 

image sequences. The loading stage and rotation device described in this chapter 

were ultimately not used, apart from some experiments involving rotation field 

measurement. They are however documented in this chapter for the benefit of future 

researchers working on the same or a related project.  

3.2 Development of miniature tensile machine 

The following section of the report deals with the design of a miniature tensile test 

machine suitable for installation within the tomographic system shown in figure-1.4. 

As described in the previous chapter, this is based on the technique called WSI 

(Wavelength Scanning Interferometry), which it is anticipated will allow the analysis 

of three-dimensional displacement fields within weakly scattering materials, such as 

GFRP’s (Glass Fibre Reinforced Polymers), by recording a sequence of two-

dimensional interference patterns while the wavelength of the light source is tuned at 

a constant rate [3]. 

3.2.1 General aspects 

The following part of the thesis aims at summarizing and discussing the main design 

aspects of such a device (i.e. the miniature tensile machine under development), 
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which occurred during a final year project [162] which the author of this present 

work closely supervised throughout its course. It should be noted that this design 

work is a continuation of the work done on the same subject by [163]. Both 

undergraduate projects were based on a similar project undertaken by [164] as part of 

their doctoral thesis [165] and relevant publications to it [166, 167]. It is also worth 

noting the comprehensive work of [168] on the testing procedures of composite 

materials, on which much of the current work has been based. 

Tensile machines are classified into two main types: those which apply a prescribed 

load to the test piece and those which induce the load by applying a controlled 

displacement. The former typically deliver the load by means of a servo hydraulic 

machine while the latter by means of an electro mechanical machine equipped with 

displacement sensors. Both machines can perform quasi-static tests. Servo hydraulic 

machines offer both loading regimes whilst allowing for the addition of dynamic 

loading (fatigue tests). For the current project, however, fixed displacement boundary 

conditions are more appropriate to reduce the sample motion during the scan time 

[168]. 

The mechanical configuration of such experimental rigs has not changed greatly over 

the years, the main components of which are: the frame, grips, load cell and actuators 

as illustrated in figure-3.1. It should be noted that the generic machine configuration 

illustrated in figure-3.1 does not imply that all machines utilize a two column design. 

Opting for single or dual column design highly depends on the load capacity of the 

machine, the size of the samples to be tested, the additional equipment for 

environmental control of the test specimen as well as the required stiffness of the 

instrument [169]. The latter constitutes one of the most important factors in the 

design of such instruments and is often expressed in terms of a parameter called 

compliance (C): 

 𝐶 = 𝑃 𝛥⁄  , 3.1 

where P is the load applied and  is the total displacement of the sample and the 

individual components of the machine. 

There are two fundamental problems to be addressed in mechanical testing, 

irrespective of the material under test. The first of these is to minimise and ideally 
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eliminate undesirable interactions between the means of load application and the test 

material. This is particularly relevant to composites where the load introduced to the 

material goes through an inherently weak phase (the matrix) and can cause spurious 

effects. It is therefore important to take care not to overload the outer layers of the 

fibres as, depending on the construction, these may contribute a disproportionately 

large amount to its strength and will be inherently susceptible to damage. The second 

is to produce as nearly a pure state of stress to the sample as possible [168]. Although 

one could argue such a state to be practically impossible to accomplish, in reality it is 

achieved by long and thin specimens according to the Saint Venant’s Principle. The 

above further highlights the importance of the test piece size as well as the means of 

transferring the load to the specimen, commonly referred to as the gripping method. 

Another important factor which contributes to reliable experimental results is the 

correct alignment of the test coupon onto the rig. The literature is inundated with 

evidence of the detrimental effect of small misalignments [170] originating either 

from the machine or the specimen itself, giving rise to bending and ultimately into 

large localized stresses. 

Finally, a less obvious but nevertheless equally important source of error is the 

incorrect loading rate of the sample. Composites, particularly the ones with a 

polymeric matrix, exhibit time-dependent viscoelastic behaviour under load. In the 

case of constant stress, the strain exhibits time-dependent `creep` while in the case of 

constant strain or displacement the resulting stress exhibits time-dependent 

‘relaxation’ [171]. 

3.2.2 Overview and design analysis 

One of the main disadvantages of the design developed by [163] was the absence of 

appropriate bearings to deal with the forces developed in the system. Although the 

instrument’s ultimate goal is not to load the sample to failure, but to introduce (in 

steps) an overall displacement of the order of a few tens of micrometres, high axial 

loads nevertheless develop in GFRPs as a result of their high elastic moduli. The 

selection of the correct type of bearings with sufficient load capacity to deal with the 

forces developed is therefore an important element of the design. In the light of this 

change, which is a significant one due to the limited space available to mount the 
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instrument onto the OCT system, (see figure-3.2 and figure-3.3) it was decided to re-

evaluate the entire design. 

Several configurations were taken into account while trying to reduce the number of 

bearings from four in the case of a double-column design to two in the case of a 

single-column design. Due to the limitations imposed by the design of the main cube 

(shown in figure-3.3) the single-column design was rejected. More specifically, the 

location of the holes on the cube where the sample is to be introduced would require 

the bearings to be offset from the centre of the holes. Such an arrangement was 

deemed to be unfeasible for a number of reasons: 

a. It would introduce a pitching moment onto the moving crossheads, giving 

rise to unnecessary displacements due to bending. 

b. It would over complicate the force analysis, making the correct choice of 

bearings difficult. 

c. It could potentially introduce alignment issues during tests, the importance of 

which has already been highlighted in the introductory section of this chapter. 

d. It would reduce the stiffness of the structure. 

The use of guide bars was omitted due to the necessary tight manufacturing 

tolerances which would raise the cost of the machine. With the above in mind the 

mechanical configuration was finalised as illustrated in figure-3.4. This shows one 

half of the machine, with a second identical system applying a force in the opposite 

direction. The use of two moving crossheads allows the centre of the sample to 

remain stationary, or to be moved back into the starting position following a load 

step, which is important to avoid speckle decorrelation associated with large rigid 

body motion. 

As mentioned earlier, due to the limited space provided in the experimental setup, 

certain components need to be kept to a minimum size while having to fulfil the rest 

of the design requirements (see product design specification (PDS) in reference 

[162]) and therefore become critical to the design process of the tensile test machine. 

These are: 

a. The bearing support plates. 

b. The lead screws. 
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c. The gears. 

It is important that the size of the bearing support plates is selected such that they do 

not obstruct the optical paths of the laser beams. Their size is primarily controlled by 

the size of suitable bearings as well as the diameter of the lead screws. The bearing 

size will effectively determine the minimum separation of the lead screws which in 

turn becomes the key stiffness parameter. The length of the lead screws will be 

determined by the thread pitch and the rotational speeds of the two gears (wheels) 

shown in figure-3.4 which will combine to produce the required extension of the 

sample. 

3.2.3 Mechanical aspects 

In view of the above, the bearing function is primarily to account for the high axial 

loads developed and secondly to account for the much lower radial loads developed 

during the machine’s operation. It should be mentioned, however, that the two gears 

contribute to the larger amount of the radial forces present. It is, therefore, important 

to calculate and include the latter in the bearing calculations. Due to the very low 

rotational speeds occurring during the operation of the tensile test machine, there are 

hardly any dynamic phenomena to be taken into account. Spur gears are 

consequently sufficient for this application. The choice of gears was preferred to that 

of belts [164-167] due to the long scanning times (about 2 hours) which could result 

in the polymer belts creeping. 

From the above it is evident that in order to calculate the radial force exerted on the 

bearings by the two rotating gears, the size and power of the motor need to be 

estimated. This has to be taken into account when deciding the precise size of the 

thread on the lead screw. Based on the choice of size for the two identical gears, a 

gear reduction ratio will result. The reduction ratio is a key parameter controlling the 

loading rate of the test piece. In the current system, the overall reduction arises from 

the gears and the pitch of the lead screws. 

Once the above have been determined, a secure method of mounting the bearing 

support plate onto the cube needs to be determined. The plate is loaded effectively in 

three-point bending. With the dimensions of the plate (width, height) known, the 

thickness can therefore easily be calculated so that the bending of the structure is 

insignificant. 
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The previous design was held together by means of three screws. As stiffness is an 

important factor, the use of locating pins (dowel pin or stud with nut) is a better 

solution. 

3.2.4 Optical aspects 

The importance of the loading rate and its effect on viscoelastic creep of polymeric 

matrix composites has already been highlighted. This parameter, however, strongly 

affects the nature of the interferograms recorded by the near infrared (NIR) CCD 

cameras utilized in the tomographic interferometer. It is, therefore, required to 

choose an appropriate loading rate so that a sufficient number of fringes are obtained 

at each loading step. As stated above, the system utilizes two independent loading 

machines attached symmetrically to either side of the cube. This concept was 

introduced in order to avoid any rigid body motion [167] of the test coupon and to 

ensure that its centre remains at the centre of the field of view (FOV) at all times. 

With this loading regime and depending on the displacement introduced at each step, 

a number of fringes will appear on either side of the static central fringe (see figure-

3.5). Although each interferometer has an almost pure out-of-plane sensitivity, the 

viewing direction of each station is located away from the normal to the sample’s 

surface so there is a component of the sensitivity vector parallel to the in-plane 

motion of the sample. These fringes will appear to be moving away from the central 

one and it is the number of those that needs to be reasonably controlled. Each of the 

moving fringes will correspond to a displacement of order /2n, where  is the 

wavelength and n is the refractive index of the material under investigation [36]. 

Theoretically, a large number of fringes could be obtained without a significant 

effect on the results. The larger the number of fringes present in the interferogram, 

however, the more difficult the phase unwrapping process becomes [172-174]. 

An estimate of the required crosshead speed can be obtained by performing some 

simple calculations on how fast the fringe patterns will move. The edges of the field 

of view (FOV) will move at a speed of ± (FOV × VCH) / 2L as illustrated in figure-

3.5, where VCH is the speed of the crosshead and L is the length of the sample. Note 

that the factor of two in the denominator arises from the symmetrical nature of the 

setup. Therefore, the distance moved by one of the edges in time (t): 

 𝑑 =  (𝐹𝑂𝑉 × 𝑉𝐶𝐻 × 𝑡) 𝐿⁄ ,  3.2 
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If we require Nf fringes across the full field of view, each one corresponding to a 

displacement of the order of /2 (note the refractive index of the material has been 

omitted to ease the calculations) [48], 

 𝑑 = (𝑁𝑓 2⁄ ) × (𝜆 2⁄ ),  3.3 

The FOV is determined in the current system by the size of the CCD array of the 

NIR cameras and is approximately 5 mm. Assuming a total number of fringes Nf = 

10 over a period of time t = 10 s, an overall length of the sample L = 50 mm and a 

wavelength  = 825 nm, the crosshead velocity is readily obtained by equating 

equations 3.2 and 3.3 resulting in a crosshead speed VCH = 0.124 mm/min.  

Another important parameter that needs to be estimated during the design process is 

the force required to deform the glass re-enforced polymer GFRP specimen.  

Recalling that each fringe pattern will contain approximately Nf  = 10 fringes and that 

each fringe corresponds to a displacement of order /2 we can deduce an estimate for 

the step displacement required by the tensile machine as follows: 

 𝑑𝑠𝑡𝑒𝑝 = 𝑁𝑓 × 𝜆 2⁄⏟      
𝑤𝑖𝑡ℎ 𝑁=5 𝑎𝑛𝑑 𝜆=825 𝑛𝑚

≈ 2 𝜇𝑚, 3.4 

Since there are two of these machines in the experimental setup, the overall step 

displacement amounts to 4 μm. Assuming a total number of steps Ns = 14 and 

rounding the overall step displacement to 5 μm, the overall displacement can be 

found as follows: 

 𝑑𝑡𝑜𝑡𝑎𝑙 = 𝑁𝑠 × 2𝑑𝑠𝑡𝑒𝑝 = 70 𝜇𝑚,  3.5 

Having established the overall displacement required and assuming that this 

displacement falls well within the linear elastic response region of the composite 

material, the overall force required can be estimated by direct application of Hooke’s 

Law. 

3.2.5 Detailed design of loading stage 

The detailed final design of the loading stage is illustrated in figure-3.6, which shows 

the position of the motor, bearings, load cell and load pin. Two copies of this design 

were manufactured and assembled in-house. Figure-3.7 shows them after partial 

assembly and after attachment to the cube. The chamfered corner on the plate of the 
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left hand machine that attaches to the cube is needed to prevent obstruction of the 

optical path into the cube. The cube with loading machines attached after 

reinstallation into the interferometer setup is shown in Figure-3.8. In parallel with the 

mechanical design, an electronic control unit was designed by the Wolfson School 

electronic workshop to control the rotation rate of each motor. By driving them in the 

same direction, the sample is translated within the cube with no loading, whereas 

driving them in the opposite direction causes loading of the sample with no 

translation. In addition, the control unit acts as a data logger for the load cell. Figure-

3.9 shows the control unit after manufacture. 

3.3 Development of calibration artefact 

In this section, a second opto-mechanical system is described. The purpose of this 

system is to establish the ability of the interferometer setup to record and 

successfully analyse the intensity signals, carrying the sought displacement 

information, from multiple illumination/observation directions. In this first phase, the 

design of the experiment was focused on introducing a well-controlled, and easily 

traceable displacement field onto the sample. Furthermore, prior to testing the more 

complex GFRP samples which may result in low quality signals induced by multiple 

scattering, a simpler yet still classified as weakly-scattering material needs to be 

tested. Consequently, the following part of this section is divided into two main 

sections, namely the design of the necessary hardware for the introduction of a 

controlled displacement field, and the samples themselves. 

3.3.1 General aspects 

As with the loading stage described in the previous section, it is important to make 

sure that the displacement introduced by the mechanism is sufficiently small to avoid 

excessive speckle pattern de-correlation. Another important consideration is the 

instrument’s high sensitivity to environmental disturbances like temperature and/or 

humidity variations, light conditions and external vibrations. Although all of the 

above were taken into consideration during the design process of the interferometer, 

it is important to ensure that the design of the displacement device does not introduce 

unnecessary environmental disturbances throughout the course of its function. 

Multiple reflections which are a well-known factor contributing towards signal 

degradation also need to be suppressed wherever possible. 
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The spatial configuration of the interferometer places strict size limitations on any 

mechanical device introduced into the setup. The current setup utilizes six 

illumination and six observation beams (all collimated) that should not be disrupted 

at any time. 

As far as the delivery of the displacement to the sample is concerned, it should be 

done in a well-defined and controlled manner. In other words, readings should be 

easy to take, highly repeatable and accurate. Moreover, the displacement introduced 

should remain constant throughout the duration of each scan and give rise to no more 

than approximately 4-5 fringes per step to avoid problems with the phase 

unwrapping. Uncertainty during the introduction of displacement should also be kept 

to a minimum as the device will be used as a reference to validate the displacement 

fields obtained from the optical system. Finally, the weight of the device should be 

kept at reasonable levels to ease the installation procedure. 

3.3.2 Conceptual and final design  

Although straining of the sample is to be excluded from these first phase 

experiments, on account of the difficulty in establishing a stable displacement field 

for a sample under load, these displacements need to be of the most general form 

possible for an object undergoing pure rigid body motion. Consequently, both 

translation and rotation displacements are required. In addition, since for this first 

phase of the experiment only three of the six cameras will be employed and will 

subsequently be used for measuring the three orthogonal displacement components 

introduced to the sample (see below), it is desired to ensure that the three 

displacement components are of the same order of magnitude.  

These requirements can be met by introducing a controlled rotation about one of the 

three diagonals of the cube. There exist already two planar surfaces normal to one of 

these diagonals, which act as mounting surfaces for the loading machines described 

in the previous section. The chosen solution therefore consists of a rotation stage 

mounted onto one of these surfaces with an inner threaded sample holder that also 

allows translation along the diagonal. 

The CAD model for the final design is shown in cross section in figure-3.10, as well 

as the view from one of the interferometer heads (figure-3.11) to demonstrate that the 
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rotation stage does not obstruct the beam paths. The manufactured and assembled 

system is shown in figure-3.12. 

3.3.3 Alignment and calibration artefact and phantom  

Two cuboid samples of side 3 mm were made, one consisting of steel to act as an 

alignment and calibration device, the other consisting of a polymer resin with fine 

titanium powder to act as a weakly scattering volume phantom (see figure-3.13). The 

original plan was to etch small dots onto the 6 sides of the steel cube with an excimer 

laser, the positions of which would subsequently be measured to allow the coordinate 

systems of the 6 viewing directions to be aligned with respect to each other. The plan 

for the polyester sample was to make depth resolved displacement measurements 

from each of the three viewing directions and to test for consistency between them 

using the fact that the imposed sample rotation is common to all three. These plans 

were put on hold when the laser developed the fault mentioned at the start of this 

chapter. Nevertheless, initial rotation experiments were carried out on the steel 

sample, with the laser operating at a single wavelength and using a single 

measurement station. The two speckle patterns (one recorded before, one after the 

rotation) and the subtraction ESPI fringe pattern calculated from the two are shown 

in figures-3.14 to 3.16. The subtraction fringes are of high contrast, and as expected 

appear parallel to one another and at an angle of approximately 45° to the horizontal 

axis. This simple experiment thus demonstrates that the various opto-mechanical 

components, laser and interferometer are working as expected, albeit at just a single 

wavelength. 

3.4 Summary and conclusions 

This chapter has provided an overview of two important hardware devices that have 

been designed and manufactured for the tomographic setup, namely a miniature 

tensile testing device and a rotation stage. These have been designed to induce 

controlled displacements of a sufficiently low magnitude and to be small enough to 

fit into the multi-axis interferometer without obstructing any of the beams. Although 

these devices were not ultimately used with the tuneable source, preliminary 

experiments at a single wavelength on the cuboid calibration device have 

demonstrated that the main elements of the interferometer are working as expected.  
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3.5 Figures 

 

Figure-3.1: Schematic representation of a typical tensile test machine. 

 

Figure-3.2: Multi-axis tomographic interferometer under development. 
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Figure-3.3: Close-up view of the aluminium cube used to host the test samples. 

 

 

Figure-3.4: Schematic diagram showing the key components of the miniature tensile 

machine under development. 
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Figure-3.5: Schematic representation of the moving fringes. FOV: Field of view, CH: 

crosshead and V: speed.  

 

 

Figure-3.6: Cross-section of the final CAD assembly model for the miniature tensile 

machine showing the main components. 
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Figure-3.7: Partial assembly showing the arrangement of the two-part miniature 

tensile machine after manufacture. Arrows indicate the loading direction 

 

Figure-3.8: Partial assembly of the miniature tensile machine fitted in the multi axis 

tomographic interferometer under development. 
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Figure-3.9: Control unit power supply developed by the electronic workshop of 

Wolfson School at Loughborough University. The unit is used to control: a) the 

position of the sample inside the host cube b) the load introduced to the sample by 

controlling the speed of motor rotation and c) is connected to the load-cell (shown at 

the front) which in turn sends the stored load increments to a text file in the lab PC 

used to operate the multi-axis interferometer.  
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Figure-3.10: Cross section of the CAD model for the rotation stage and calibration 

cube. 
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Figure-3.11: Side view of the CAD model showing the calibration artefact assembly 

from the second view point optical window. 
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Figure-3.12: Manufactured assembly of the calibration artefact positioning device. 

 

Figure-3.13: Calibration artefacts: (Left) Calibration artefact for depth resolved 

measurements made out of polymer resin and titanium inclusions, (right) steel cube 

for alignment of coordinate systems. 
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Figure-3.14: Speckle pattern of the steel cube before the induced rotation by the 

rotation stage. 

 

Figure-3.15: Speckle pattern of the steel cube after the induced rotation by the 

rotation stage. 



100 

 

 

Figure-3.16: Fringes resulting from the subtraction of the speckle pattern after the 

induced rotation from the corresponding one recorded before the rotation. 
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Chapter-4: Development of the multi-axis interferometer 

4.1 Introduction 

In this section of the thesis, a description of the different parts comprising the phase-

contrast wavelength scanning interferometer under development is provided. Much 

of the work described in this chapter was done by Dr. Abundio Davila-Alvarez who 

joined the optical engineering group at Loughborough University as a post doc while 

on a sabbatical leave from the Centro de Investigaciones en Optica (CIO), Loma del 

bosque 115, Leon Gto 37 150 México, for a three year period from 2008 to 2011 and 

with whom the author worked closely for the last one and a half years of his visit. 

Moreover, it is worth noting that although some parts of the overall setup description 

were mentioned in chapter-1 and chapter-3, they are repeated here for three reasons: 

a) for completeness, b) due to the critical failure of the tuneable source and c) due to 

major issues with the software development. The aforementioned reasons have 

caused the refocusing of this thesis on a number of occasions, ultimately forcing the 

research away from the originally planned experimentally-orientated work, to one 

relying on the numerical analysis of the limited data sets captured before the critical 

hardware failure (see chapters 5, 6 and 7). 

First a more detailed description of the design process followed for the construction 

of the multi-axis interferometer than that presented in chapter-1 is given in section-

4.2. Second, a brief description of the imaging hardware and the software used to 

control the seven cameras is provided in section-4.3. Third, section-4.4 is devoted to 

the key component of the tomographic interferometer under development and is 

divided into two subsections. Section-4.4.1 provides descriptions of the general 

principle of operation of the widely tuned Ti:Sa laser source used in this thesis and 

the necessary customizations to it for WSI applications which were briefly 

mentioned in ref [21]. In section-4.4.2 the performance of the laser source is assessed 

by means of preliminary results based on short scans on glass wedges. The results 

presented are based on work done prior to the author joining the group and were 

presented in [175]. The aforementioned results provide an insight of the issues 

associated with the particular laser source (the first of its kind) and are consequently 

used here to set the ground on which the remainder of the thesis is built. 
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4.2 Development of optical setup for tomographic displacement 

sensing 

Recalling that the long term goal of this research is to ultimately extract the 3-D 

depth-resolved mechanical properties of composite materials like GFRP’s, the need 

for multiple illuminations and or observation/s of the sample becomes obvious. The 

description of the optical setup starts by giving a brief review of the work reported on 

the 3-D displacement sensing for surface measurements (see section-4.2.1) followed 

by a review on the current state of the art optical setups used for calculating the depth 

resolved 3-D displacements to date (see section-4.2.2), thereby revealing some of the 

novel aspects of the current work. 

4.2.1 Optical setups for 3-D-displacement sensing: surface 

measurements  

Although theoretical studies for the determination of 3-D displacements using 

holographic interferometry date back to the early 70s [176-182], Takatsuji et al 

(1995,1997) were the first to report on an optical setup for the simultaneous 

measurement of three orthogonal displacement components using ESPI and the 

Fourier transform method [183, 184]. In this example a total of three object beams 

and one reference beam, realized in a Mach-Zehnder setup, were used to extract the 

sought displacements on the surface of the sample (see figure-4.1). The four beam 

configuration resulted in three two-beam interferometers with the resulting 

interference patterns carrying the information on the three individual displacement 

components. A single CCD camera was used for the recording of the three patterns. 

A setup utilizing two illumination beams and one observation using ESPI was 

reported by Sun P (2006) that was used to extract the 3-D displacement with 

particular attention to distinguishing between the in-plane and out-of-plane 

displacement components [185]. Saucedo-A et al (2010) used an almost identical 

setup to that described by Takatsuji et al (see figure-4.2) but employed three laser 

sources (458nm, 532nm and 633nm) to illuminate the sample simultaneously and a 

high resolution CMOS sensor [186]. Bhaduri B et al (2011) reported on an ESPI 

system that employed two wavelengths (He-Ne laser 632.8 nm and Ar-Ion laser 457 

nm) in a modified Michelson setup (see figure-4.3) and a single 3-CCD colour 

camera to extract the sought 3-D-diplacements [187]. The novel aspect of this setup 

was that the 3-CCD camera used was able to separate the red (He-Ne laser) and blue 
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(Ar-Ion laser) beams individually through its red and blue channels, essentially 

acting as two CCD detectors (see figure-4.3). Finally another modified Mach-

Zehnder setup was reported in references [188, 189] using a single laser source but 

two CCD detectors for the detection of both in-plane and out of plane deformations 

(see figure-4.4). 

4.2.2 Optical setups for 3-D-displacement sensing: depth-resolved 

measurements  

Unlike the many examples of 3-D-displacement measurement on the surface of 

samples and besides the developments in the OCT community, there is little reported 

in the field of tomographic sensing of 3-D-displacement measurements. Although 

phase-contrast schemes of OCT and OCE (see section-2.4.3 and section-2.4.4) are 

being continuously developed, research is still limited to just a single viewing 

direction along the depth-axis (see ref [190] for example) owing to the complexity 

associated with combining multiple data volumes. Another project running in parallel 

to that described here has recently been reported (see refs [27, 191]. The optical 

setup used in the aforementioned example features three illumination beams and one 

observation direction (i.e. a single photo-detector array) in a Mach-Zehnder 

arrangement (see figure-4.5) and is inherently similar to the optical arrangement 

described earlier in [183]. The main difference is the use of a mode-hop free 

broadband tuneable laser source (TSL-510 Type A, Santec Ltd.  = 100 nm, c = 

1310 nm,  = 0.011nm) and the addition of delay lines for frequency multiplexing 

of the different channels on a single image sequence. 

To date, and to the best of the author’s knowledge there have been no reports on 

systems utilizing more than a single CCD in the 1.3 m region. This is partly due to 

the high cost of CCDs sensitive to this spectral bandwidth of light but also due to the 

limited available power output available from tuneable laser sources operating in this 

region which in turn pose strict limitations on the number of channels light can be 

divided to in any of the amplitude division interferometers. However, as discussed 

earlier in section-2.4.2 and section-2.4.4, advances in solid state laser technology 

have resulted in laser sources with large tuning ranges operating in the region of 700-

900 nm and with power output of several hundreds of mW. These have therefore 
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become an attractive alternative allowing the development of multi-channel setups 

using multiple low cost CCDs. 

4.2.3 Multi-channel Mach-Zehnder interferometer 

The brief survey provided above suggests that the Mach-Zehnder interferometer is 

the most suitable for the measurement of 3-D deformations with a minimum of three 

illumination directions and one observation direction. Generally, in this type of 

interferometer two beam splitters and two mirrors are used that allow the reference 

and object paths to be widely separated and traversed only once in contrast to the 

Michelson type. The multi-channel tomographic interferometer developed in this 

thesis is also based on a Mach-Zehnder arrangement. In contrast to the setup 

illustrated in figure-4.5 the current setup is built on the principle of viewing the 

sample from a minimum of three and a maximum of six orthogonal directions as 

illustrated in figure-4.6. Although as far as the number of measurable displacement 

components is concerned the additional three channels may seem redundant, there 

are several benefits including them in the setup. As the sensitivity vectors between 

pairs of opposite channels are practically the same, for the case of symmetrical 

displacements, the additional channels provide an easy way of checking the validity 

of the calculated depth-resolved displacements. A less obvious reason is that two of 

the critical parameters, namely the depth range and the depth resolution of the system 

are positively affected. Given a specific bandwidth () and wavelength step () 

the two parameters are practically fixed. However, the introduction of the additional 

three viewing directions from opposite sides has as a result the doubling of the depth 

range for the same  and identical depth resolution. In addition, it allows the 

fraction of the sample that is accessible to the measurement system to be increased 

for situations where the penetration depth is less than the sample dimensions. 

Figure-4.7 provides a schematic illustration of the optical setup to aid understanding 

of the interferometer working principle. The light emitted by the laser source ( ̴460 

mW) is equally split, with one portion directed towards the top station and the other 

towards the bottom. The two stations are practically mirror images of each other and 

for this reason the following description refers only to the optical paths for the 

bottom lower half of the system. The reduced intensity beam is first expanded by 

microscope objective (MO) and illuminates a 90° parabolic mirror that acts as a 
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collimator while at the same time changes the direction of the beam. The collimated 

light is then equally split into three object beams and three reference beams by an 

equal number of mirrors in a triangular arrangement as illustrated in figure-4.7. It is 

worth noting that this stage further reduces the intensity of the beam from ~ 260 mW 

down to a few tens of mW for each of the six beams. 

After the successful equal distribution and the subsequent division of light into 

reference and object beams, the two beams required to produce the interference 

travel different paths, guided by a series of mirrors, which are traversed only once 

and are eventually recombined at the pellicle beam splitter. The resulting interference 

signal is then imaged onto the CCD for that channel. A delay line is introduced in the 

path traversed by the reference beam that allows adjustment of the optical path 

difference, and hence the centre frequency of the signal recorded for a given tuning 

rate of the laser. A variable focus lens is used to image the scattered light from the 

sample. The angle between the reference and object beams is approximately 5°. 

It should be noted that the illustration provided in figure-4.7 is an approximate 

schematic of the actual system, used here, as a means of describing the general 

working principle of the interferometer, which would otherwise prove difficult to do 

so from more accurate representations (see for example figure-4.8). The main 

drawback of the optical setup described so far is its complexity which makes it 

difficult to align, particularly as the light is not visible to the eye. This is a common 

problem with most interferometers that are based on a Mach-Zehnder setup and in 

most cases a He-Ne laser is used while a sequence of steps involving fine 

adjustments is repeated until the required quality of the interference pattern is 

achieved (see appendix-G in ref [48]). 

4.3 Hardware and software for image acquisition 

In phase-contrast interferometry, the first step prior to analysing the interference 

pattern involves the recording of the interference signal. As the interferogram is 

specified by the digitized intensity distribution I(m,n,t) where m, n are the detector 

spatial indices and t is the time index, it becomes clear that the correct choice of the 

detector is crucial to the accuracy of the phase measurement. 
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Errors arising from the digitization of the intensity signal closely resemble those 

related to the conversion of an analog signal to a digital one using an analog-to-

digital converter (ADC). These errors are induced by truncating or rounding the 

intensity signal to the nearest integer representation and are therefore commonly 

referred to in the literature as intensity quantization errors (QE) [192, 193]. 

The first study on the effect of intensity quantization on phase measurement errors 

was reported by Brophy, C.P (1990) for phase-shifting interferometry [192]. It was 

shown, analytically (see eqn.6 in ref [192]), that even though intensity quantization 

errors are not of a statistical nature, for cases where many bits are used to represent 

the modulated intensity the quantization error fluctuates rapidly with phase. The 

effect of quantization errors of CCD cameras and their influence on phase calculation 

in fringe pattern analysis was revisited by Skydan, O.A., et al (2003) [193]. In their 

study cameras with different bit-depths (6, 8 and 10 bits) were tested and the 

associated phase measurement error quantified. More specifically, it was shown that 

by increasing the number of grey-scale levels from 64 (6-bit depth CCD: 2
6
=64) to 

1024 (10-bit CCD) the error in the calculated phase reduced very significantly (see 

figure-4.9 for example). Moreover, it was highlighted that when the fringe pattern 

intensity approaches a local minimum or maximum, the quantization error and thus 

the phase error becomes maximum. The study concludes by comparing the 

quantization induced phase error between two identical systems where one is using 

an 8-bit CCD and the other a 12-bit one with the error being 4× smaller for the latter 

case. It is worth noting that the effective bit-depth of the CCD is nearly always less 

than the nominal value due to readout noise and shot noise.  

Ever since the first report on QE and their influence on the accuracy of phase 

measurements [192], several research groups have studied this error source [194-

197]. More specifically, Shiyuan, Y. and T. Hiroaki (2004) tested several CCD 

cameras with 8, 16 and 24 nominal bit depths confirming the significant reduction in 

phase error as the grey-scale levels of the CCD are increased [194]. Unlike previous 

studies, of particular importance was the observation that the error reduction below 

2
12

 quantization levels is very small (see fig.4 in ref [194]), suggesting that the 

practical lower limit for a phase measurement system is the use of a 12-bit CCD. 

More recently, Song, L. and D.S. Elson (2013) studied the influence of QE on laser 

speckle contrast analysis (LASCA), a technique used for the measurement of blood 
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flow and tissue perfusion. It was found that the influence of the mean intensity on the 

speckle contrast is in many cases due to the quantization of intensity which is 

digitised with limited bit depth. Provided that the signal level is high enough to use 

additional grey levels, the use of a 16-bit depth CCD was suggested as a means of 

removing the contrast bias from the change of mean intensity [197]. 

On the other hand, increasing the quantization levels of the CCD has the adverse 

effect of significantly increasing the cost. Another drawback related to high bit depth 

CCDs, is that they also increase the memory requirements of the system and thus the 

computational effort for extracting the sought phase maps. For this reason phase 

retrieval algorithms that aim to reduce errors coming from the digitization of the 

intensity distribution are being continuously developed [195, 196].  

From the above brief review, it is clear that for any phase measurement system using 

cameras and frame grabbers, the accuracy of the system depends on the accuracy of 

the acquisition subsystem which in turn is determined by the camera spatial 

resolution and the bit depth. As the most effective way of reducing intensity 

quantization errors is by increasing the numbers of bits used to sample the intensity 

I(m,n,t), the choice of CCD camera was a Prosilica GC1380H model with the Sony 

ICX285 EXview sensor for increased response in the NIR and 16-bit resolution (with 

12-bit true resolution) with speeds of up to 30 frames per second at full resolution 

(1360 × 1024 pixels). The PC used for storing and processing the images captured by 

the six CCDs was based on a first generation i7 quad-core processor, 6GB memory 

(RAM), an AMD Radeon 6900 HD graphics processing unit (GPU) and a total of 

seven hard disc drives (HDD) of 1TB capacity each to store the large data sets. 

For the recording of the images from the multiple CCDs, specialised software with 

the brand name NorPix StreamPix 4 was used. The software offers a state of the art 

interface and allows the viewing, controlling and image acquisition from multiple 

cameras simultaneously all in the same user interface (see figure-4.10). Furthermore, 

StreamPix allows the monitoring of CCD input and output lines. As a result, any 

level change in input or output lines can be configured to trigger user specified 

events. 

In the context of wavelength scanning interferometry an event is characterised by the 

triggering of the frame grabber each time a different wavelength is emitted by the 
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tuneable laser source and/or the controlling of the time duration the shutter is open 

depending on the laser power output. This is a rather important feature that is crucial 

for the synchronisation of the laser source with the several CCDs used in the system. 

The current system is also equipped with a digital signal amplifier (DSA) whose 

purpose is to: 

a. amplify the TTL pulse generated by the tuneable source (see section-4.4.1) 

and format to the range 0 to 5 V, 

b. synchronise up to eight cameras, 

c. provide power along with the sync signal to each camera and 

d. ensure no delay on exposure occurs compared to the master slave setup. 

Following the image acquisition and storage all image processing and data analysis 

presented in this thesis were done in the MATLAB R2013b programming language 

and relevant toolboxes. 

4.4 Development of tuneable laser source 

Wavelength scanning interferometry and swept source OCT require the use of highly 

coherent tuneable light sources. Such sources in the visible or NIR regions are 

generally not very linear or repeatable, at least over the large scan ranges required for 

the current work. Two main phenomena are associated with the instability of this 

type of light source: a) mode hopping and b) laser jitter [198]. Both contribute to 

limiting the technique from fully exploiting its ability to perform phase 

measurements. The origins of the mode hops lie in the way wide tuning ranges are 

achieved [199]. A schematic representation of a typical Ti:Sa broadband laser source 

is shown in figure-4.11.  

4.4.1 Ti:Sa laser customization 

A SolsTis CW Ti:Sapphire laser manufactured by M Squared Ltd [200] has been 

customized by the manufacturer specifically for this system. The laser operates in a 

bow tie laser cavity configuration (similar to the configuration shown in figure-4.11), 

with a gain curve in the near infrared region spanning ~150 nm. The dimensions of 

the laser cavity result in a cavity mode spacing of 416 MHz or approximately 0.78 

pm. The bandwidth of the laser output is reduced significantly using two main 

components: a birefringent filter (BRF) and an etalon. The BRF reduces the cavity 
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gain by 7% over a range of ~300 GHz and thus acts as a coarse mode selection 

device. The etalon has a free spectral range (FSR) of 320 GHz allowing selection of 

cavity modes over a 0.6 nm tuning range (see figure-4.12 for a schematic illustration 

of the wavelength selection process described above). 

In the laser’s normal mode of operation for spectroscopy applications, the motorized 

BRF is tilted first through the user interface to provide a coarse wavelength 

adjustment. It is then followed by a fine tuning step using the etalon whose thickness 

is changed by means of a piezo electric translator (PZT), again through the user 

interface. Although very precise adjustment is possible (wavelength resolution better 

than 0.001 nm), it would be impractical to perform a complete WSI scan consisting 

of upwards of 10,000 individual images, each at a different wavenumber, in this way. 

The laser was therefore customized by the manufacturer by introducing the following 

features: 

1. The software controlling the embedded digital signal processor (DSP) 

was modified to perform both the coarse and fine tuning fully 

automatically. 

2. A wavelength-sensitive diode (WSD) was introduced and monitored by 

the DSP. This became part of a feedback loop to ensure that tilt of the 

BRF induces a wavelength shift of only a single (as opposed to multiple) 

etalon FSR.  

3. Between movements of the BRF, each etalon scan was implemented as a 

staircase-like voltage profile to the PZT such that the voltage steps 

produced a nominally-constant user-defined jump in wavenumber. 

4. External TTL trigger pulses were made available, coincident with the 

etalon scan voltage steps, to initiate the light integration period of the 

cameras. 
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5. Automatic changes in timing pulse duration were provided to allow 

exposure compensation for the change in power output of the laser with 

wavelength. 

The duration of the external synchronization pulses from the laser is controlled by 

means of a look-up table that is input manually by the user. An initial calibration 

scan is required to detect the intensity variations (or, more precisely, the combined 

variation of laser power and camera sensitivity) along the intended wavelength 

scanning interval. An initial exposure duration, 0, is chosen such that almost the full 

dynamic range of the camera is used at the peak laser power. Mean intensity vs. 

wavelength 𝐼(̅𝜆) data is first obtained by calculating the average grey level over each 

camera frame where the wavelengths are measured by the WSD and logged by the 

DSP. In this preliminary step, it is not necessary to have a detailed scan, as the laser 

gain curve changes smoothly over the ~100 nm Ti:Sa tuning range. Only 30 samples 

are typically sufficient to track the intensity changes.  

A polynomial fit p() is obtained from the mean intensity values and then normalized 

to give 

 𝑝1(𝜆) = 𝑝(𝜆) 𝑚𝑎𝑥 (𝑝(𝜆))⁄   . 4.1 

Assuming a linear camera response, a fully compensated exposure time could be 

calculated as, 

 휀1(𝜆) = 휀0 𝑝1(𝜆)⁄   .  4.2 

However, this has the drawback that the exposure time diverges as the ends of the 

usable tuning range are approached. In practice, an alternative compensation scheme 

calculated as 

 휀2(𝜆) = 휀0(2 − 𝑝1(𝜆)) ,  4.3 

provides a partial compensation that corresponds closely to 1() for small changes 

in laser power and yet is limited to a maximum two-fold increase in exposure time as 

p1→0. Figure-4.13 shows a typical experimental plot of p1, 1()/0 and 2()/0 

(maximum laser power = 500 mW, initial pulse duration ε0 = 600 s, and polynomial 

1



111 

 

order = 12). Figure-4.14 illustrates the effect of controlling the width of the camera 

synchronisation signal so as to adjust its shutter speed in this way over a full 100 nm 

scan. The shape of the envelope that multiplies the high frequency modulation is 

seen to be far more uniform for the adjustable shutter speed case (b) than for the 

constant shutter time (a). 

4.4.2 Ti:Sa laser behaviour aspects and limitations 

The principle of operation of the wavelength selection for the electronically tuned 

Ti:Sa laser was described in the previous section. Considering that there had been no 

reports of using this type of source with such a wide tuning range in the relevant WSI 

and SS-OCT scientific communities (refer back to section-2.5.2 and table-2.2), its 

behaviour is worth investigating for two reasons: a) due to its uniqueness and b) 

because the accuracy of the phase measurements to follow (see section-4.5 and 

chapters 5, 6 and 7) depends strongly on the ability of the customised Ti:Sa source to 

conform with equation-2.35. 

To do so a simple experiment that reveals the actual laser behaviour is devised in 

which the BRF is manually tuned. More specifically, the light emitted by the Ti:Sa 

laser head was directed onto a conventional power meter head that is sensitive only 

to the laser’s spectrum (approximately 0.65 to 1.2 m). The BRF was then manually 

tilted by rotating a screw controlling its angle through a full 360-degree rotation in 

five second intervals while the power (from the power meter) and the wavelength 

fluctuations (from the user interface of the laser controlling software) were manually 

recorded. The procedure described above was repeated by tilting the BRF towards 

the opposite direction for a full rotation for consistency and revealed the same four 

BRF orders shown in figure-4.15 with the first lasting five seconds and the other 

three lasting approximately 55 seconds. Unlike the first and second BRF orders 

where the wavelength fluctuations were limited in the region of 897-905 nm and 

888-905 nm respectively, inside the third and fourth orders the wavelength 

fluctuations spanned much greater regions that were much closer to the laser’s 

normal tuning range of 750-850 nm. It should be noted that at the time, the tuneable 

source had already started malfunctioning, as is evident from the limited power 

recorded by the power meter in figure-4.15 and this simple experiment was 

performed in part as an attempt to understand the reason for the malfunction with the 
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manufacturer. Unfortunately, the laser eventually failed permanently due to failure of 

the etalon scanning device. Nevertheless, according to the manufacturer, the second 

and third BRF orders are the ones within either of which continuous wavelength 

scanning is achievable with the use of the etalon fine filter. 

Another aspect revealed by the experiment described above is the sensitivity of the 

instrument to misalignment. Although subsequent generations of the CW Ti:Sa laser 

that are fully automated are now available [201], the current system which was the 

first ever produced by M-squared lasers that was able to be electronically tuned over 

the full wavelength range, suffers from the fact that once a full scan is performed 

manual alignment of the BRF followed by the tuning of the etalon via the user 

interface is required before the system is ready for the next scan (see appendix-A4 

for more details on the laser operating procedure). 

As mentioned earlier in section-4.4.1, in theory, the selection of a single mode that 

corresponds to a single wavelength (determined by the minimum linewidth of the 

system which in this case is approximately 5 kHz) is performed simultaneously by 

the BRF and the etalon. In practice, the combined movement of the two 

complementary to each other wavelength selection mechanisms results in the 

bypassing of some of the cavity modes inside the BRF order thereby causing the 

phenomenon commonly termed as mode hopping. This has in turn the undesirable 

effect of causing the wavelength to jump up and down as the scan progresses and 

violates the necessary condition for WSI applications which strictly speaking 

requires the sequential and monotonic tuning of the wavelength or wavenumber of 

the laser source (equation-2.35). 

Figure-4.16 illustrates the presence of mode hops using the recorded wavelength 

values (WSD) from the wavelength sensitive diode (WSD) which are plotted versus 

the non-dimensional time index t that corresponds to the frame number, for a full 100 

nm scan. It is clear from figure-4.16 that certain areas of the tuning range are more 

affected by the wavelength jitter than others (i.e., around t ϵ [9000, 10500]). One 

possible reason for this behaviour, according to the manufacturer, is moisture in the 

air which has certain resonances in this wavelength range, and which is normally 

dealt with by nitrogen purging of the cavity. However, this solution comes at the 

expense of increasing the cost and was therefore omitted from the particular system. 



113 

 

Yet another aspect revealed from figure-4.16 is that although a full scan was 

performed, only 25 of the total 100 nm scanned were recorded by the WSD. This was 

due to the WSD memory limitations associated with the number of data points in the 

scan. In this case a wavelength step,  of 2 pm resulted in a data set with 50,000 

entries and is consistent with the 100 nm scan. The WSD was put into the system as 

a guide to aid the understanding of the laser behaviour rather than to act as a real 

time and accurate wavelength meter. 

Finally, the optimum speed of wavelength scanning for such small wavelength steps 

was experimentally determined from the quality of the captured images to be 6 Hz 

(see section-5.4 for more details), a value that is much lower than the maximum 

number of frames that the CCDs of the system can capture every one second (30 

fps). This suggests that the speed that the data is acquired in this system is in fact 

controlled by the speed of the unambiguous scanning of the laser frequency rather 

than that of the frame grabber. 

4.5 Depth-resolved intensity imaging: preliminary results using 

glass samples 

So far a description of the multi-axis tomographic wavelength scanning 

interferometer under development along with its constituent components has been 

provided. From the above description it is clear that the behaviour of the laser source 

is a key aspect to the performance of the system. In this section its ability to perform 

depth-resolved measurements is assessed using a series of glass wedges (see 

appendix-A4 for more details) with central thicknesses of 9.6, 12.0, 12.6 and 12.8 

mm respectively. The optical setup used for these simple experiments is illustrated in 

figure-4.17. The resulting interference signal formed from the front and back 

reflections of the glass samples is imaged onto the CCD while the wavelength of the 

source is tuned sequentially. By analysing the digitised intensity distribution I(x,y,t), 

where x,y are the pixel indices of the 2-D CCD array and t is the non-dimensional 

time index corresponding to the wavelength of the source and therefore the frame 

number of the data sequence captured, insight into the laser performance is possible. 

Figure-4.18(a) shows the intensity signal I(x,y,t) for a short 2 nm scan from which it 

is clear that certain regions of the signal deviate significantly from the ideal cosine 
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form (at t ~ 300,600 and 900). One possible reason to explain this signal degradation 

is the presence of wavenumber jumps caused by the laser mode hops in the scan. In 

figure-4.18(b) the wavenumber change k0-k (k =2/) for the short scan is shown as a 

function of t using the WSD readings, where the presence of wavenumber jumps for t 

~ 300 and t ~ 900 is clearly visible. This on the other hand is not the case for t ~ 600, 

suggesting that either the reading from the WSD for that particular frame is faulty or 

that there has been some problem with the hardware and/or software used for the 

data acquisition. As it is difficult, at this stage, to isolate the reason for this 

occurrence it will be left to deal with in the future. In figure-4.18(c) the intensity 

distribution, I(x,y,k0-k), after its re-registration onto the wavenumber change axis, k0-

k, using the WSD readings, is shown from which the effect of small and large 

wavenumber jumps during the scan on the intensity signal degradation is clear. 

Moreover, the re-registration step should result in an intensity signal which is 

varying sinusoidally with k0-k, the frequency of which is proportional to the OPD 

through equation-2.19 and equation-2.20 (see section-2.4.1). The intensity signal in 

figure-4.18(c) is however noticeably less sinusoidal than that of the uncorrected 

signal in figure-4.18(a), which may be a consequence of the use of the low accuracy 

WSD readings to perform the correction. 

Figure-4.19 illustrates the normalised intensity spectrum |𝐼| for a short (left column 

of figure) and longer scan duration (right column of figure), with and without re-

registration onto the wavenumber axis. The presence of multiple peaks in the 

intensity Fourier-transform was expected due to the wavenumber jumps that 

randomise the signal. However, the spectral lobes of the Fourier-transform of I(x,y,t) 

look cleaner than those of I(x,y,k0-k). This further confirms that the readings of the 

WSD used to estimate the wavenumber change are insufficiently accurate to re-

register the intensities as a function of wavenumber change and should only be used 

as a guide. 

Figure-4.20 shows the results of performing the same analysis on each pixel along 

the cross section x = xc for each of four wedges, where xc is the pixel index 

corresponding to the centre of each wedge.  Results are shown for a ~2 nm (left 

column) and a ~25 nm scan (right column). Ideally these should appear as bright 

lines revealing the shape of the back surface of the four glass wedges. This, however, 
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is clearly not the case, with the main Fourier peak showing significant splitting and 

in some cases becoming hardly visible. The most likely reason for this phenomenon 

is attributed to the presence of wavenumber jumps whose effect in randomising the 

signal is amplified as the width of the scan is increased. To demonstrate how 

significant the deviation of the wavenumber change k(t) = k(0) – k(t) from the ideal 

linear behaviour is, a linear least square fit was performed on the k(t) from the WSD 

readings (see figure-4.21(a)) to determine the best fit line (figure-4.21(b)) for the first 

400 frames only and then extending it for the rest of the sequence, with the 

difference between the two shown in figure-4.21(c). Note that the reason of 

performing the LSF to the 400 frames only is to illustrate the detrimental effect that 

this has if one was to assume that the behaviour of the laser can be safely assumed to 

follow the same trend for the rest of the sequence. This last point will become clearer 

from chapter-5 onwards where a short scan lasting 400 frames is analysed followed 

by the analysis of the full scan range (~50,000 frames) covering the entire 100 nm 

operating range of the Ti:Sa laser (Chapter-6 onwards). 

4.6 Summary 

In this chapter a detailed description of the multi-channel wavelength scanning 

interferometer and its constituent parts has been provided. Unlike in other multi-

channel systems previously reported, the current is comprised of by multiple (6×) 

CCDs owing to the high power output of the Ti:Sa laser source. The specifications of 

the CCDs were carefully chosen so that the well-known issue of quantization errors 

is reduced by ensuring that sufficient grey levels are available. The broadband source 

employed in this system was manufactured by M-squared lasers and was initially 

designed for spectroscopic applications. However, it was highly customised for WSI 

applications and is therefore a key aspect contributing to the novelty of this research 

project. Finally, a set of preliminary results using glass samples has been presented 

that provided insight of the performance and limitations of the system developed so 

far. An important observation made during the experiments was that the data 

acquisition speed is determined by the unambiguous wavelength scanning speed 

rather than the frame grabber speed. One of the main drawbacks revealed was the 

presence of a significant amount of mode hops throughout the scan durations. These 

were also confirmed by the readings of the WSD that was put in place as part of a 
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feedback loop that ensures the selection of a single wavelength. These mode hops 

have the undesirable effect of causing the wavenumber (k) to deviate significantly 

from the linear behaviour required for WSI applications. As a result, the phase of the 

recorded intensity distribution is randomised causing significant artefacts in the 

computed optical thickness distribution. Although the use of the WSD readings may 

seem an attractive solution to overcoming this problem, the accuracy is seen to be 

insufficient to resolve the mode hop issue. 

4.7 Conclusions 

From the preliminary experiments presented here, it is clear that without precise 

knowledge of the wavenumber changes during the scan, the imaging of the 

interference signal of the WSI system developed and consequently the accuracy of 

phase contrast measurements is significantly compromised. It is for this reason that 

the remainder of this work is focused on the development of hardware and software 

that will allow the accurate monitoring of wavenumber changes and will therefore 

enable successful depth reconstructions and the sought phase measurements. 

 

 

 

 

 

 

 



117 

 

4.8 Figures 

 

Figure-4.1: Optical configuration of the first setup used for the simultaneous 

measurement of three orthogonal displacement components using ESPI. Object 

beams HP, HN, and V illuminate the object at angles θHP, θHN, and θV, respectively, 

with respect to the Z axis. The scattered light is combined with the reference beam 

(R) through the beam splitter (BS) and captured with the CCD TV camera (TVC). 

sHP, sHN, and sV are the sensitivity vectors of the interferometer composed of HP and 

R beams, HN and R beams, and V and R beams, respectively; tHP, tHN, and tV are the 

directions of tilt of the object beams to generate carrier fringes. NOTE: This is a 

copy of fig.1 in ref [183].  



118 

 

 

Figure-4.2: (a) Schematic view of the optical set up using three lasers, (b) 

Mechanical rig used to illuminate and constrain the sample under study. In this 

geometry θ1 = θ2 = θ3 = θ. NOTE: This is a copy of fig.1 in ref [186]. 
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Figure-4.3: Schematic of the optical arrangement for simultaneous 3-D displacement 

measurement using two wavelength illumination: BS, beam splitter; OF, optical 

fibre; λb, blue wavelength; λr, red wavelength; CCD, charge coupled device (copy of 

fig.1 in ref [187]). 
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Figure-4.4: Proposed optical system for in-plane and out-of-plane deformation 

measurements (Copy of fig.3 in ref [188]).  
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Figure-4.5: WSI setup showing the tuneable laser (TL), 2 × 4 PLC splitter, InGaAs 

detector, pellicle beam-splitter (PBS), absorber plate (AP), pinhole (PH), aperture 

stop (AS), sample (S), lenses (L1–L7), optical fibres (OF1,OF2,OF3,OFR), and 

personal computer (PC). NOTE: This is a copy of fig.1 in ref [27]. 
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Figure-4.6: Schematic that illustrates the principal geometric layout of a cubic 

sample viewed from a minimum of three and a maximum of six directions, onto 

which the multi-axis tomographic interferometer was developed. The black arrows 

indicate one of the possible sets of the necessary directions to extract the three 

orthogonal deformation components. The red arrows are complementary as far as the 

calculation of the displacement components is concerned but can be used as means of 

ensuring the consistency of the calculated 3-D displacements (complementary red 

and black arrows have in principle the same sensitivity) as well as for effectively 

doubling the depth range of the system while the depth resolution remains identical. 
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Figure-4.7: Schematic illustration of the multi-channel WSI optical setup. PM: 

parabolic mirror, MO: microscope objective, M: mirror, RBM: reference beam 

mirror, OBM: object beam mirror, DL: delay line, PBS: pellicle beam splitter, CCD: 

charged coupled device, O: object or sample, BS: beam splitter, VFL: variable focus 

lens, DSA: digital signal amplifier to amplify and format the TTL generated pulse by 

the laser source to the range 0 to 5 V. 
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Figure-4.8: (a) CAD model of the multi-axis WSI system under development 

(reproduced with permission from [175]). The red arrows indicate the sensitivity 

direction and sense of the bottom station, 3-channel interferometer, while the purple 

ones correspond to the sensitivity vector direction and sense of the top station 3-

channel interferometer (b) Partially complete assembly of the interferometer. 
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Figure-4.9: Phase measurement error as a function of camera bit-depth illustrating 

how insufficient grey-scale levels during the digitisation of the modulated intensity 

affect the measured phase. Copy of fig.3 in ref [193].  

  

 

Figure-4.10: Typical NorPix StreamPix software user interface that allows easy 

control of any number of cameras through the same interface. On the left: real time 

images from the three cameras used in this case. On the right: easy access to the 

control parameters of each camera such as image size, frame rate, pixel saturation 

control etc. Adopted from [202] for illustration purposes only. 
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Figure-4.11: Ti:Sa laser operating in a bow tie cavity arrangement. (Adopted from 

ref [203]) 

 

Figure-4.12: Schematic representation of the ideal/theoretical wavelength selection 

mechanism for the customised Ti:Sa laser source for WSI applications. The BRF 

shown as a Gaussian modulation function (blue line) filters a set of cavity modes 

while the etalon filters out each cavity mode at 7% cut-off emission (range of black 

to white bars) in a sequential manner. The BRF is then tilted and a new set of cavity 

modes is selected followed by the etalon fine tuning until the entire spectrum is 

covered. 

1) Broad Emission Stage 

2) Coarse 

Tuning Stage 

 

3) Fine Tuning Stage 
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Figure-4.13: Camera exposure duration compensation schemes to account for 

variation in laser power and camera sensitivity. 1: full compensation; 2 partial 

compensation with upper exposure duration limit (Reproduction of fig.1 of ref [21]). 
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Figure-4.14: Intensity signal I(x,y,t), after subtraction of the d.c level, for a single 

pixel where x,y are pixel coordinates and t is a non-dimensional time index 

equivalent to the data sequence frame number for a 100 nm scan range. (a) Fixed rate 

shutter speed and (b) adjustable shutter speed. Adopted with permission from [175]. 

 

Figure-4.15: Experimental data showing the four BRF orders. Red dots: experimental 

values of the laser power. Black line: fitted line to the experimental line.  
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Figure-4.16: Wavelength of the Ti:Sa laser source as a function of the non-

dimensional time index t (equivalent to the frame number of the data sequence 

recorded for a full 100 nm scan (750-850 nm). Note that the WSD can only record a 

limited number of entries due to memory limitations. This is why the plot stops at 

approximately 775 nm as opposed to the actual finishing wavelength of 850 nm. 

 

Figure-4.17: Exaggerated experimental optical setup used for assessing the 

performance of the electronically tuned Ti:Sa laser source. Right: glass sample 

whose front and back reflections form the interference signal I(x,y,t) which is imaged 

onto the CCD with x, y denoting the pixel coordinates and t the frame number 

corresponding to the instantaneous wavelength of the laser source. POM: Pump 

optics module where a set of three mirrors control the spatial orientation of the beam 

entering the Ti:Sa laser head (used for alignment purposes). 
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Figure-4.18: (a) Intensity distribution I(x,y,t) for a single pixel as function of frame 

number t for a short scan of ~2nm (1000 frames). (b) Corresponding wavenumber 

change k0-k using the WSD readings as function of t. (c) Re-registered intensity 

signal onto the wavenumber change axis showing the effect that small (t~300) and 

large wavenumber jumps (t~900) have on the recorded raw intensity data. 

 

Figure-4.19: Normalised Fourier-transform spectrum of the interference signal 

I(x,y,t) and I(x,y,k0-k) for a short (left column) and a larger scan (right column) for a 

glass wedge with central thickness of 9.6 mm. 
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Figure-4.20: Fourier transform spectrum of the intensity distribution |𝐼𝑖(𝑥, 𝑦, 𝑡)| at 

the central pixel x = xc and along the y-axis of each of the four glass wedges 

examined (subscript i = 1,2,34 indicates the wedge number with 1 being the thickest 

and four the thinnest). Left column: short scan of 2000 frames equivalent to ~ 2 nm. 

Right column: larger scan of 16000 frames equivalent to ~ 20 nm. 
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Figure-4.21: (a) Wavenumber change k(t) = k(0)-k(t) calculated using the WSD 

readings. (b) Best fit line estimated using linear least squares fit to (a) for the first 

400 frames only and then extending the result for the rest of the sequence. (c) 

Difference of the estimated linear best fit from the actual wavenumber change 

behaviour as recorded by the WSD that demonstrates how significant the deviation 

from the ideal linear behaviour is. 
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Chapter-5: Dynamic wavenumber change monitoring 

5.1 Introduction 

Wavelength scanning interferometry (WSI) and swept-source optical coherence 

tomography (OCT) provide absolute one-dimensional range maps at each camera 

pixel. In addition to surface profilometry [26, 158] applications, three-dimensional 

volumes of both structure and displacement within scattering media can be obtained 

from the magnitude and phase fields measured by a two-dimensional (2-D) array of 

such pixels [4, 27, 66]. The image reconstruction algorithms depend, however, on 

accurate knowledge of the changes in wavenumber, k, over time, denoted here Δk 

[69]. Tuneable laser technology is constantly evolving. In particular, new 

semiconductor lasers [204] have achieved ∼100 nm scanning capabilities for fibre 

optics communication wavelengths, and solid state titanium-doped sapphire lasers 

(Ti:Sa) offer similar scanning capability but operate in the near infrared (NIR) with 

higher output powers. However, for any light source used in WSI applications, 

precise phase detection is crucial for displacement measurements. A key element for 

reducing the uncertainty in the phase measurements is to detect the time-varying 

wavenumber changes at high precision, and simultaneously avoid false readings from 

temporary incoherence of the light source. 

The capabilities of commercial wave-meters are restricted as they usually provide 

slow responses (typical maximum acquisition rate of order a few tens or hundreds of 

Hz), determined by the processing time of interferometric data, and do not provide 

instantaneous light coherence detection [205]. Wavelength detection methods with 

high sensitivity have been available for some time. The most precise ones are based 

on measurement of the fringe patterns from a Michelson interferometer. For 

increased precision, the fringes are compared with a wavelength stabilized reference 

(see, for example, the Bristol Instruments model 621A). In this particular example, 

wavelengths are measured to an accuracy of ±0.2 parts per million by counting 

fringes while an internal mirror is displaced. However, the need for temporal 

scanning makes this approach unsuitable for instantaneous wavelength 

measurements. 
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The approach to be adopted in this project therefore involved tracking wavenumber 

changes by the use of a 7
th

 camera that images the interference patterns produced by 

a set of wedges. As the thickest wedge is 2-3 times thicker than the anticipated 

maximum sample depth, and because the wedge is a smooth wavefront 

interferometer rather than one involving speckled wavefronts as is the case for the 

depth-resolved measurements on composites, the phase changes measured from the 

wedges will be more precise than those from the sample and can therefore be used to 

infer to sufficient accuracy the changes in wavenumber over time. Furthermore, the 

phase measurements will be precisely synchronised with those from the other six 

cameras as identical exposure timing pulses are applied to all the cameras in the 

system.   

5.2 Wavenumber monitoring in WSI 

The interference pattern from a wedge changes according to the phase shifts 

introduced by the tuning of the wavelength of the broadband source thereby allowing 

this phenomenon to be used as means to monitor the wavenumber changes. A single 

wedge, however, is insufficient to provide such measurements with sufficient 

sensitivity for the large wavenumber range of a 100 nm scan. The following analysis 

starts with the fundamental equations for a single wedge. 

5.2.1 Theoretical aspects: general wedge equations 

Consider a thin, transparent wedge, of angle  and refractive index n that is imaged 

onto a photo detector array. Let dj denote the thickness of the wedge at the centre of a 

region of interest from which phase values are computed. The phase difference ψ 

between light reflected from front and back surfaces, refracted at angle θ to the 

normal of the front surface, may be written [206, 207]: 

 𝜓
𝑗
(𝑥) = 𝑘(2𝑛𝑑 𝑐𝑜𝑠 𝜃 + 𝜆 2⁄ ),  5.1 

where, 𝑑 = 𝑑𝑗 + 𝑥 𝑡𝑎𝑛 𝛼, is the local wedge thickness, k is the wavenumber (=2 

where is the wavelength), and x is a spatial coordinate. Strictly speaking, equation-

5.1 is correct only for a thin plane-parallel plate, i.e. for the case  = 0. It is, 

however, possible to show it is also applicable with minor changes to the more 
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general case of nonzero wedge angle . To do so, consider the general case of a 

wedge as illustrated in figure-5.1. 

The interferometric phase, ΨB, resulting from the interference between the reflection 

of light from the back and front surfaces of the wedge in question at any given 

wavenumber (k), is given by: 

 𝛹(𝑘) = 𝑘 ∙ 𝑂𝑃𝐿𝐵𝑆 − 𝑘 ∙ 𝑂𝑃𝐿𝐹𝑆,  5.2 

where the parameters 𝑂𝑃𝐿𝐹𝑆 and 𝑂𝑃𝐿𝐵𝑆 denote the optical path lengths for the front 

and back surfaces of the wedge. For a camera focused on the front surface of the 

wedge (plane across line OCB), the light received from a given point B is a coherent 

superposition of contributions from paths OAB and DB (neglecting multiple 

reflections). In order to relate the interference phase 𝛹 =  𝛹𝐵 to the wedge thickness 

at point B (d = dB) in figure-5.1, the following set of path lengths need to be 

considered: 

 

𝑂𝐴 =  𝐴𝐶 𝑐𝑜𝑠 𝜃⁄ =  𝑑𝐶 𝑐𝑜𝑠 𝜃  ⁄       

                     𝐴𝐵 =  𝐴𝐶 𝑐𝑜𝑠(𝜃 + 2𝛼)⁄ =  𝑑𝐶 𝑐𝑜𝑠(𝜃 + 2𝛼) ⁄

 𝑂𝐶 =  𝑑𝐶 𝑡𝑎𝑛 𝜃                                    

  𝐶𝐵 =  𝑑𝐶 𝑡𝑎𝑛(𝜃 + 2𝛼)                       

      𝐷𝐵 =  𝑂𝐵 𝑠𝑖𝑛 𝜃′ = (𝑂𝐶 +  𝐶𝐵) 𝑠𝑖𝑛 𝜃′

                 =   𝑑𝐶(𝑡𝑎𝑛 𝜃 + 𝑡𝑎𝑛(𝜃 + 2𝛼)) 𝑠𝑖𝑛 𝜃
′ }

  
 

  
 

.  5.3 

Thus, using the group of equations-5.3, the general interferometric phase in equation-

5.2 may be written as: 

 

    𝛹𝐵 = 𝑛 ∙ 𝑘 ∙ (𝑂𝐴 + 𝐴𝐵) − 𝑘 ∙ (𝐷𝐵)  

         =  𝑛 ∙ 𝑘 ∙ 𝑑𝐶 (
1

𝑐𝑜𝑠 𝜃
+

1

𝑐𝑜𝑠(𝜃+2𝛼)
)  

                           − 𝑘 ∙ 𝑑𝐶 ∙ 𝑠𝑖𝑛 𝜃
′ (𝑡𝑎𝑛 𝜃 + 𝑡𝑎𝑛(𝜃 + 2𝛼))     

} ,  5.4 

where n is the refractive index in the medium, and the refractive index of the 

surrounding air is assumed to be 1. From Snell’s law, sin 𝜃′ = 𝑛 sin 𝜃. Therefore: 

 𝛹𝐵 = 𝑛 ∙ 𝑘 ∙ 𝑑𝐶 {
1

𝑐𝑜𝑠 𝜃
+

1

𝑐𝑜𝑠(𝜃+2𝛼)
− 𝑠𝑖𝑛 𝜃 [𝑡𝑎𝑛 𝜃 + 𝑡𝑎𝑛 (𝜃 + 2𝛼)]}.  5.5 

As the interferometric phase of interest is that at point B, it makes sense to express 

the above equation in terms of  𝑑𝐵 . Once again, from the ray tracing diagram 

illustrated in figure-5.1: 
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𝑑𝐵 = 𝑑𝐶 + 𝐶𝐵 𝑡𝑎𝑛 𝛼                                              

= 𝑑𝐶[1 + 𝑡𝑎𝑛(𝜃 + 2𝛼) 𝑡𝑎𝑛 𝛼]               
} .  5.6 

Consequently, 

 𝛹𝐵 =
𝑛∙𝑘∙𝑑𝐵{

1

𝑐𝑜𝑠𝜃
+

1

𝑐𝑜𝑠(𝜃+2𝑎)
−𝑠𝑖𝑛𝜃[𝑡𝑎𝑛𝜃+𝑡𝑎𝑛(𝜃+2𝛼)]}

[1+𝑡𝑎𝑛(𝜃+2𝛼) 𝑡𝑎𝑛𝛼]
   5.7 

Using trigonometric identities, the bracketed term in the numerator of equation-5.7 

can be simplified as follows: 

 

1

𝑐𝑜𝑠 𝜃
− 𝑠𝑖𝑛 𝜃 𝑡𝑎𝑛 𝜃 =

1−𝑠𝑖𝑛2 𝜃

𝑐𝑜𝑠 𝜃
= 𝑐𝑜𝑠 𝜃                                 

1

𝑐𝑜𝑠(𝜃+2𝑎)
− 𝑠𝑖𝑛 𝜃 𝑡𝑎𝑛(𝜃 + 2𝛼) =

1−𝑠𝑖𝑛𝜃 𝑠𝑖𝑛(𝜃+2𝛼)

𝑐𝑜𝑠(𝜃+2𝑎)
             

} .  

Thus, it follows that: 

 
𝛹𝐵 = 𝑛 ∙ 𝑘 ∙ 𝑑𝐵

[𝑐𝑜𝑠 𝜃 𝑐𝑜𝑠(𝜃+2𝑎)+1−𝑠𝑖𝑛 𝜃 𝑠𝑖𝑛(𝜃+2𝛼)]

𝑐𝑜𝑠(𝜃+2𝑎)[1+𝑡𝑎𝑛(𝜃+2𝛼) 𝑡𝑎𝑛 𝛼]
 

       = 𝑛 ∙ 𝑘 ∙ 𝑑𝐵
[𝑐𝑜𝑠 𝜃 𝑐𝑜𝑠(𝜃+2𝑎)+1−𝑠𝑖𝑛𝜃 𝑠𝑖𝑛(𝜃+2𝛼)]

𝑐𝑜𝑠(𝜃+2𝑎)+𝑠𝑖𝑛(𝜃+2𝛼) 𝑡𝑎𝑛𝛼

} .  5.8 

Further simplification of the above expression is possible by making use of the 

identity  cos(𝐴 + 𝐵) = cos 𝐴 cos 𝐵 − sin𝐴 sin𝐵 , in both the numerator and 

denominator (after substituting for tan 𝛼 = sin 𝛼 cos 𝑎⁄ ). The reduced expression for 

the interferometric phase at point B is, therefore, given by: 

 𝛹𝐵 = 𝑛𝑚𝑘𝑑𝐵 [
𝑐𝑜𝑠 2(𝜃+𝑎)+1

𝑐𝑜𝑠(𝜃+𝛼)
] 𝑐𝑜𝑠 𝛼

⏟            
𝑓(𝜃,𝛼)

 .  5.9 

A quick check on this equation can be performed by considering the limiting case 

𝛼 = 0; Equation-5.9 then reduces to that for a plane-parallel plate (equation-5.1), as 

expected. 

Whilst classical two beam interference is a valid assumption for a thin plane-parallel 

plate with low reflectivity front and back surfaces, non-sinusoidal intensity 

distributions resulting from multiple beam interference become more significant with 

increasing reflectivity of front and/or back surfaces. The resulting multiple 

reflections can, however, be handled by the 2-D Fourier transform provided the 

aliased higher harmonics do not interfere with the fundamental fringe frequency 

during the phase estimation process described in Subsection-5.4. 
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With this in mind, the successive phase changes in ψ, denoted henceforth δψ, owing 

to the sequential changes in wavenumber (δk) between successive frames may be 

expressed by: 

 𝛿𝜓𝑗(𝑡, 𝑡 − 1) = 𝑛𝑑𝑗𝛿𝑘(𝑡, 𝑡 − 1)𝑓(𝜃, 𝛼) ,  5.10 

where t denotes the frame index (t = 0, 1, 2…, Nt -1) but can also be considered as a 

dimensionless time index. Integration of equation-5.10 over the entire time sequence 

yields: 

 𝛥𝛹𝑗(𝑡, 0) = 𝑛𝑑𝑗𝛥𝑘(𝑡, 0)𝑓(𝜃, 𝛼)  ,  5.11 

In WSI, the target δk value between two adjacent frames is the one that induces a 

phase change of ̴ /2 between the waves reflected respectively from the front and 

back of a sample of thickness T. This places the resulting temporal frequency 

midway between the zero frequency and Nyquist frequency points in the Fourier 

depth reconstruction. Unfortunately, laser mode hops can cause ψ values to fall well 

outside the desired range – to  and since only the wrapped phase is measured, Δk 

is estimated incorrectly. Providing that an upper bound Δkm can be defined for Δk 

based on the physics of the tuneable laser, a reduced value for dj can be chosen such 

that: 

 𝑑𝑗 <
𝜋

𝑛𝑑𝛥𝑘𝑚𝑓(𝜃,𝛼)
  ,  5.12 

which ensures that the right-hand side of equation-5.10 always lies in the range - to 

. However, this has the undesirable consequence of also scaling down the 

magnitude of the phase changes produced during the rest of the scan, and hence 

degrading the accuracy of the wave number estimation by the same factor.  

As mentioned earlier, two of the key aspects in any depth-resolved imaging 

technique, like WSI, are the depth resolution and depth range, denoted δz and Δz 

respectively. The two crucial parameters, which constitute a performance measure, 

are in turn linked to the wavenumber range Δk and the wavenumber step δk. It is, 

therefore, desirable to have as wide a wavenumber range as possible with the 

smallest possible wavenumber step. 
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5.2.2 Phase unwrapping using a set of wedges 

The analysis so far (refer to chapter-3), suggests the use of a single wedge is 

insufficient to reconstruct a wide enough Δk with sufficient sensitivity in δk to allow 

for successful depth-resolved imaging of both intensity and phase. To overcome this 

problem, a solution is proposed here to use a set of wedges of varying thicknesses 

allowing for high k resolution without compromising the width of the operating 

range. This is done by recognising that, by sequential subtraction of phase change 

values between pairs of wedges in turn, a variety of phase sensitivities for a given 

wavenumber change can be achieved. The use of phase differences between wedges 

is proposed, rather than just the phase values from the individual wedges. This is 

because it would be impractical to make a wedge thin enough to satisfy inequality 

5.12, whereas it is easier to make two wedges whose thickness difference satisfies 

the same inequality. The remainder of this chapter is dedicated to mathematically 

expressing and validating the proposed solution. 

Let the difference in the phase change between frames 𝑡′ − 1 and 𝑡′ and between the 

wedges i and j be denoted by: 

 𝛥𝛷𝑖,𝑗(𝑡′, 𝑡′ − 1) = 𝛿𝜓𝑖(𝑡
′, 𝑡′ − 1) − 𝛿𝜓𝑗(𝑡

′, 𝑡′ − 1)  ,  5.13 

where δψi and δψj correspond to the phase changes due to the physical wedge 

thicknesses di and dj, as well as the incremental wavenumber change δk between two 

successive frames. Assuming that δψi and δψj are each wrapped onto the range - to 

, then ΔΦ
i,j

 lies in the range: -2 to 2. It is, therefore, convenient to wrap this onto 

the principal range of - to  by the wrapping operator: 

 𝛥𝛷𝑤
𝑖,𝑗(𝑡′, 𝑡′ − 1) = 𝒲{𝛥𝛷𝑖,𝑗(𝑡′, 𝑡′ − 1)}  ,  5.14 

where 𝒲 is defined mathematically later in this section. The wrapped phase change, 

ΔΦ𝑤
𝑖,𝑗

 calculated in this way, can be thought of as the change produced by a wedge 

with a synthetic thickness: 

 𝑑𝑠
𝑖,𝑗
= 𝑑𝑖 − 𝑑𝑗   .  5.15 

Provided ds satisfies the same inequality given by 5.12, i.e. 
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 𝑑𝑠
𝑖,𝑗
<

𝜋

𝑛𝑑𝛥𝑘𝑚𝑓(𝜃,𝛼)
  ,  5.16 

the incremental wrapped phase change between a given pair of successive frames 

equals the true (unwrapped) phase change between those frames. Therefore, the 

running sum of incremental wrapped phase changes, 

 𝛥𝛷𝑖,𝑗(𝑡, 0) = ∑ 𝛥𝛷𝑖,𝑗𝑡
𝑡′=1 (𝑡′, 𝑡′ − 1)  ,  5.17 

represents the true unwrapped phase change between frame 0 and the current frame t, 

i.e. 

 𝛥𝛷𝑢
𝑖,𝑗(𝑡, 0) = 𝛥𝛷𝑖,𝑗(𝑡, 0) .  5.18 

We denote the indices defining the pair of wedges that satisfy the inequality in 5.16 

as i = i1, j = j1. The resulting temporally unwrapped phase change ΔΦ𝑢
𝑖1,𝑗1(𝑡, 0) 

provides the reference signal for the subsequent unwrapping across wedge thickness. 

Suppose a second pair of wedges, denoted i = i2, j = j2, are not sufficiently close in 

thickness to satisfy 5.16. ΔΦ𝑖2,𝑗2(𝑡, 0), can still be calculated according to equation-

5.17, yet it cannot be guaranteed to equal the correctly unwrapped phase 

change  ΔΦ𝑢
𝑖2,𝑗2(𝑡, 0), because some of the ΔΦ𝑤

𝑖2,𝑗2(𝑡′, 𝑡′ − 1) values in equation-5.17 

may miss one or more 2 phase jumps. We can, however, use the reference signal 

ΔΦ𝑢
𝑖1,𝑗1(𝑡, 0) to unwrap ΔΦ𝑖2,𝑗2(𝑡, 0) in the following way. According to equations 

5.1 (or indeed the more precise in our case equation-5.9) and 5.10, the expected 

phase change ΔΦ𝑖2,𝑗2(𝑡, 0) is a factor R1 greater than ΔΦ𝑢
𝑖1,𝑗1(𝑡, 0), where: 

 𝑅1 =
𝑑𝑠
𝑖2,𝑗2

𝑑𝑠
𝑖1,𝑗1
  ,  5.19 

Therefore, a scaled phase change signal 𝑅1ΔΦ𝑢
𝑖1,𝑗1(𝑡, 0)  can be used to 

unwrap  ΔΦ𝑖2,𝑗2(𝑡, 0), according to the following expression: 

 𝛥𝛷𝑢
𝑖2,𝑗2(𝑡, 0) = 𝒰{𝛥𝛷𝑖2,𝑗2(𝑡, 0), 𝑅1𝛥𝛷

𝑖1,𝑗1(𝑡, 0)}  ,  5.20 

where 𝒰{ΦΑ, ΦΒ}  represents the unwrapping operator that subtracts an integral 

multiple of 2 from a given phase value ΦA such that ΦA-ΦB  lies within the range -π 

to π, that is: 
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 𝒰{𝛷𝛢, 𝛷𝛣} = 𝛷𝛢 − 2𝜋𝑁𝐼𝑁𝑇 (
𝛷𝛢−𝛷𝛣

2𝜋
)  ,  5.21 

and where NINT denotes rounding to the nearest integer. At this stage it is 

convenient to note that the wrapping operator used in equation-5.14 is defined in 

terms of the unwrapping operator such that 

 𝒲{𝛷𝛢} = 𝒰{𝛷𝛢, 0}  .  5.22 

Once the ΔΦ𝑢
𝑖2,𝑗2(𝑡, 0) sequence of unwrapped phase values has been obtained by 

equation 5.20, this can be used to unwrap a third sequence of phase values, measured 

from a third pair of wedges that are specified by the indices i = i3, j = j3 and that have 

a greater synthetic thickness 𝑑𝑠
𝑖3,𝑗3 than those of the second sequence. These can then 

be used to unwrap a fourth sequence, and so on, until finally the phase data from the 

thickest wedge alone has been unwrapped, which gives the maximum possible 

sensitivity from the chosen set of wedges. At the m
th

 step in the sequence, equations 

5.19 and 5.20 become: 

 𝑅𝑚 = 𝑑𝑠
𝑖𝑚+1,𝑗𝑚+1 𝑑𝑠

𝑖𝑚,𝑗𝑚⁄   ,  5.23 

 𝛥𝛷𝑢
𝑖𝑚+1,𝑗𝑚+1(𝑡, 0) = 𝒰{𝛥𝛷𝑖𝑚+1,𝑗𝑚+1(𝑡, 0), 𝑅𝑚𝛥𝛷

𝑖𝑚,𝑗𝑚(𝑡, 0)}  .  5.24 

The equations above were originally derived in [1] for the case of shape 

measurement by projected fringes, in which an exponentially growing sequence of 

fringe frequencies was used to achieve exponentially growing depth-measurement 

sensitivity. The current case is analogous in that an exponentially growing sequence 

of synthetic wedge thicknesses is used to achieve exponentially growing Δk-

measurement sensitivity. This can be produced by choosing the dj according to the 

following rules: 

 
𝑑1 = 𝑑0𝑅

𝑠−1                                                  

𝑑𝑗 = 𝑑1 − 𝑑0𝑅
𝑗−2, 𝑤ℎ𝑒𝑟𝑒 𝑗 = 2,3, . . , 𝑠   

}  ,  5.25 

where d0 and R, are constants and s is the total number of wedges required. A lower 

bound on the synthetic thickness difference   𝑑𝑠
𝑚𝑖𝑛 = 𝑑𝑠

𝑖1,𝑗1  may be defined using 

inequality 5.16. Taking into account that for the particular laser source used in this 

thesis (see chapter-3 for more details) wavenumber jumps (Δkm) as high as 6000 m
−1
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may occur, which result in a 𝑑𝑠
𝑖1,𝑗1 value of 175 μm or less for n = 1.5. Since the 

designed WSI system described in this thesis aims at inspecting specimens 

approximately 5 mm thick, a convenient upper limit for the synthetic thickness 

difference 𝑑𝑠
𝑚𝑎𝑥   is twice the maximum specimen thickness. Thus, for Ns unwrapping 

steps used to span the ds range of 𝑑𝑠
𝑚𝑖𝑛 to  𝑑𝑠

𝑚𝑎𝑥  , the optimal choice of thickness 

ratio for each step would be  𝑅1 = 𝑅2 = ⋯ = 𝑅𝑁𝑠 = 𝑅, where: 

 𝑅 = (
𝑑𝑠
𝑚𝑎𝑥

𝑑𝑠
𝑚𝑖𝑛)

1
𝑁𝑠
⁄

  .  5.26 

Keeping equal thickness ratios throughout the entire sequence of unwrapping steps is 

desirable because noise as well as the phase signal gets amplified by R.  

Noise-amplification-induced phase unwrapping errors pose a threat in the case where 

the amplified phase noise falls outside the range -π to π. To avoid this, and by 

denoting the standard deviation of phase noise present in the signal by  𝜎𝜙 , the 

following requirement needs to be satisfied: 

 |𝑅𝜎𝜙| ≪ 𝜋  .  5.27 

This suggests that an appropriate upper limit on R is approximately 10, for a typical 

value 𝜎𝜙 ≈ 2𝜋 50⁄ . Substituting the values 𝑑𝑠
𝑚𝑖𝑛 = 175 𝜇𝑚  and 𝑑𝑠

𝑚𝑎𝑥 = 10 𝑚𝑚 

into equation-5.26 gives the values R = 57, 7.6, 3.9, 2.7 for Ns = 1, 2, 3, and 4, 

respectively. Upon completion of the multi-step phase unwrapping process, the 

sought wavenumber change axis Δk (t, 0) may be computed as follows: 

 𝛥𝑘(𝑡, 0) =
𝛥𝛷𝑢

𝑖𝑁𝑠+1,𝑗𝑁𝑠+1(𝑡,0)

𝑛𝑑𝑠
𝑚𝑎𝑥𝑓(𝜃,𝛼)

  ,  5.28 

It is worth noting that if a phase unwrapping error does occur when applying 

equation-5.20 it affects only the δk value at a single frame and does not propagate 

throughout the rest of the phase sequence. Another important remark is that in 

equation-5.28, n is assumed to be independent of the wavelength. Strictly speaking, 

this is not true in most cases and a more accurate treatment of the dispersion is 

presented in Chapter-7. 
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As far as the dimensional characterization of the wedge is concerned, its lateral 

dimensions are determined by the size of the wave-front as well as the magnification 

of the imaging lens used. Finally, the remaining parameter - the wedge angle α - can 

be expressed in terms of the number of fringes Nf across the field of view of a wedge 

with width W by: 

 𝛼 = 𝑁𝑓𝜆 2𝑛𝑊⁄   ,  5.29 

provided that a small illumination angle is used. Nf is chosen in turn to be a 

convenient number for the subsequent fringe analysis, a value 10 or 20 being 

reasonable. 

5.3 Experimental setup description 

In this section a brief description of the optical setup used for the dynamic 

wavenumber change monitoring is provided. The setup was originally developed by 

A. Davila and J. M. Huntley with a few modifications added at the time the author 

joined the research group. The description starts with the design and manufacture of 

the four wedges comprising the optical sensor used in this thesis, followed by the 

description of the interferometer setup. 

5.3.1 Wedge design and manufacture 

A four-wedge sensor, with each wedge having a polished area of 30 × 7.5 mm
2
, and 

with target thickness values equal to 12.8, 12.6, 12.0, and 9.6 mm ± 0.05 mm 

(denoted wedges 1-4, respectively), had previously been manufactured from fused 

silica to a flatness of λ∕10 by a commercial optical component supplier. This set of 

wedge thicknesses is defined by the two equations in 5.25 with the parameters d0 = 

200 μm, s = 4, and R = 4. The specified wedge angle α was 2 min ± 0.2 min. The 

four wedges were stacked adjacent to one another, in order 1–4 along their largest 

unpolished surfaces, to form a 30 × 30 mm
2

 wave-front sensor. One polished face of 

each wedge was aligned by gravity to a flat surface while the adjacent sides were 

cemented together as shown in figure-5.2 (left). 

The composite optical element formed by the bonded wedges was placed in a gimbal 

mount for alignment purposes with the other components of the setup as shown in 

figure-5.2 (right). 
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5.3.2 Optical setup (Fizeau interferometer) 

Phase shifting interferometry (PSI) is a well-established technique in the field of 

optical metrology. Interferometers of this type utilize a monochromatic laser source 

and a set of piezo-electric transducers (PZT) that are used for introducing the 

required phase shifts (typically in steps of ¼ waves) realised in a Fizeau setup. Most 

phase shifting formulae require one or at most two cycles of the cosine wave and 

allow phase to be calculated to an accuracy of typically 1/30th to 1/100th of a fringe, 

with a typical fringe separation distance of λ/2. Consequently, for a light source with 

λ = 800 nm the fringe separation is 0.4 μm resulting in an accuracy of approximately 

10 nm.  

An alternative way of performing temporal PSI is achieved by introducing small 

shifts in the frequency of the light source. This requires the use of a narrowband 

source whose wavelength is scanned sequentially and eliminates the need for any 

mechanical movement in the setup. Although a tuneable light source is used in the 

current setup, this was not the method used here because of the lack of a priori 

knowledge of the laser scan behaviour. Instead spatial phase shifting was used which 

allowed phase values to be obtained from a single interferogram consisting of 

approximately parallel uniformly-spaced fringes. 

As with a traditional PSI setup (see figure-5.3 for a representative example), the 

optical setup incorporating the four-wedge optical sensor was also built in a Fizeau 

arrangement as illustrated in figure-5.4. The tuneable Ti:Sa laser manufactured by 

M-Squared Lasers, as used in the main interferometer, was used to illuminate the 

composite optical element. The laser beam LB was expanded and collimated by an 

achromatic doublet to illuminate the four wedges. The angle of illumination was 

approximately 2 deg. The back-reflected light was collected by Lens L2, which with 

lens L3 forms an afocal system for the observation of fringes over the CCD (see 

figure-5.4 for a schematic representation of the setup adopted from [20]). 

The CCD camera was a Prosilica GC1380H model with the Sony ICX285 EXview 

sensor for increased response in the near infra-red (NIR) and 12-bit resolution with 

speeds of up to 30 frames per second at full resolution (1360 × 1024 pixels). A 

sample image of the four wedge interferograms is shown in figure-5.5(a). The fringe 

orientation and spacing vary from one wedge to another due to the difficulties in 
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manufacturing a set of wedges with completely consistent wedge angle and 

orientation. However, the variation between the wedges is automatically handled by 

the 2-D Fourier transform phase extraction procedure described in the next section. 

One complicating feature of the analysis is that laser mode hops, arising due to the 

mechanical movement of the BRF during wavelength tuning, resulted in a temporary 

loss of laser light coherence causing some of the images in the recorded sequence to 

become blurred (see figure-5.5(b) for a representative example of such an event). 

The issue is also addressed in the next section. 

5.4 Fourier transform phase estimation and coherence detection 

The image acquisition software used (Norpix-4) allowed the recording and storing of 

large image sequences at video frequencies. The aforementioned sequence consists 

of a stack of fringe patterns, similar to those shown in figure-5.5(a), essentially 

forming a 3-D fringe pattern with each recorded image synchronized to a particular 

wavelength of the tuneable laser (see figure-5.6).  

However, the presence of blurred images in the sequence poses a threat to the 

accuracy of the phase extraction process. In order to assess the reliability of the phase 

estimation process, a coherence detection procedure, based on analysing the fringe 

contrast from the set of wedges using the ratio of the zero and first positive order 

amplitudes in the 2-D Fourier transform, had been put in place by A. Davila. Figure-

5.7 shows how the amplitude of the first order peak is reduced when incoherent 

emission of the Ti:Sa laser occurs. By defining a threshold value for the contrast, 

images recorded with incoherent light are detected: they are tagged as unreliable, and 

subsequently they are discarded from the measurements. 

In order to extract the required phases, each of the compound fringe patterns was 

broken down to smaller regions of interest (ROI) corresponding to the area of each 

wedge, followed by a 2-D Fourier transform (see figure-5.8). As the slope of the 

wedge produces approximately parallel uniformly spaced fringes, its 2-D Fourier 

transform gives three main orders labelled as d.c, +P, and –P. The associated phase is 

obtained from the arc tangent of the imaginary over the real parts of the resulting 

complex value found at the detected maximum of the positive frequency order 

(labelled +P). 
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Errors during the manufacturing stage of the wedges (e.g. surface flatness) and/or 

imperfect beam collimation resulting in a spherical wave-front as opposed to the 

required plane wave-front, can however cause the fringes to deviate from the ideal 

case of fringes of equal spacing, particularly around the edges. To suppress these 

edge effects, and spectral cross-talk in the frequency domain, a 2-D Hanning window 

is applied to the interference pattern from each ROI of all the recorded frames prior 

to the 2-D Fourier transformation of the signal. The benefit of this approach to phase 

extraction, in addition to its ‘single shot’ nature, is that the signal from a large 

number of pixels (>10
5
) is concentrated onto a small region of the Fourier domain, 

thus providing a very high signal to noise ratio for the phase value at the centre of 

each ROI.  

In its basic form, the resulting location of the estimated phase for each of the fringe 

patterns corresponds to that at the image pixel at the origin of the ROI. This position 

can, however, be shifted to the centre of the ROI by swapping the four image 

quadrants prior to performing the 2-D Fourier transform. This is easily done, for 

example, by using the fftshift function in the MATLAB programming language 

(see figure-5.9 for a schematic illustration that explains the principle of image-

quadrant swapping and the corresponding shift in the location the phase is 

calculated). This procedure allows the phase to be computed at the centre of the ROI 

where the signal to noise ratio is highest and where the fringes are closest to being 

parallel and equally spaced. 

5.5 Experimental validation: results from a short wavenumber scan 

So far, for the unwrapping procedure described in section-5.2.2 it has been implicitly 

assumed that the wedge thickness values di are known. This may be possible if the 

most cutting edge manufacturing processes are employed at the expense of high 

manufacturing cost. The four wedges comprising the optical sensor here are, 

however, far from perfect as the interferograms (e.g., figure-5.5(a)) reveal. In 

practice, no manufacturing process is perfect and small deviations equivalent to just a 

small fraction of the normal manufacturing tolerances are inevitable in almost any 

process. Considering the sensitivity of the technique used here, these deviations are 

likely to cause significant unwrapping errors. Absolute distance metrology (ADM) is 

one approach that could be used to verify the wedge profiles. It is, however, 
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inconvenient as it usually requires expensive instrumentation. In the following 

section, a simple low-cost procedure for computing the required wedge thickness 

ratios Rm is described. The procedure is validated using direct measurement of 

wavelength during a scan with a commercially available high-end wavelength-meter 

(High Finesse model Ångstrom WS7; acquisition rate: up to 400 Hz; absolute 

accuracy at 800 nm = 0.13 pm [205]). 

5.5.1 Determination of true wedge-thickness ratios 

Assuming the value of Rm for the m
th

 step is chosen correctly, the terms 

𝑅𝑚ΔΦ𝑢
𝑖𝑚,𝑗𝑚(𝑡, 0) and ΔΦ𝑢

𝑖𝑚+1,𝑗𝑚+1(𝑡, 0) in equation-5.24 will agree with each other. 

Deviations between the two will be due to experimental phase noise, which in the 

case of ΔΦ𝑢
𝑖𝑚,𝑗𝑚(𝑡, 0) is amplified by Rm. Provided Rm is not too large, these noise-

induced phase deviations will be typically a small fraction of 2π. On the other hand, 

in the event of a small error present in the assumed value of Rm, the two terms will 

start to deviate from one another as the scan progresses. Naturally, the unwrapping 

function (equation-5.24) will limit the magnitude of these excursions to ±π, while the 

rms deviation between them will, for a sufficiently long scan, be that of a random 

variable with uniform probability density function over the range -π to π, which 

is 𝜋 √3⁄ . Consequently, the proximity of a postulated value for Rm to its true value 

can be tested by calculating the value of S given by: 

 𝑆 = √
∑ [𝛥𝛷𝑢

𝑖𝑚+1,𝑗𝑚+1(𝑡,0)−𝑅𝑚𝛥𝛷𝑢
𝑖𝑚,𝑗𝑚(𝑡,0)]

2𝑁𝑡
𝑡=1

𝑁
  ,  5.30 

Indeed, equation-5.30 can be regarded as a 1-degree of freedom cost function that 

should be minimised during an optimisation of the unknown variable Rm. From 

equation-5.24 it is evident that ΔΦ𝑢
𝑖𝑚+1,𝑗𝑚+1(𝑡, 0)  depends nonlinearly on 

ΔΦ𝑢
𝑖𝑚,𝑗𝑚(𝑡, 0), so that in general an iterative solution is required for determining the 

optimum Rm. For step 1, involving wedge pairs 1,2 and 2,3, (see figure-5.10) a linear 

least squares fit was performed to the initial portion of ΔΦ𝑢
𝑖𝑚+1,𝑗𝑚+1(𝑡, 0)  and 

ΔΦ𝑢
𝑖𝑚,𝑗𝑚(𝑡, 0) versus t curves, with the initial estimate for Rm taken to be the ratio of 

their respective gradients. For the remaining steps, a slightly different approach was 

followed. As the corresponding phase changes underwent much more frequent 2π 

phase jumps, the initial estimates for Rm were computed based on a simple ratio of 



147 

 

the thickness differences as derived from micrometre measurements from the edges 

of the wedges. Recognising that there is only one free parameter in equation-5.30, 

subsequent refinement of the initial estimates was quickly and simply achieved by 

manual iteration.  

In the remaining part of this section an illustration of the general approach described 

earlier in section-5.2.2 is provided, using experimental data lasting 400 frames 

(approx. 1 nm scan range) and a total of four wedges. The wavelength step (δλ) and 

the frame rate acquisition during the scan were set to 2 pm and 6 Hz respectively. 

Schematic illustrations of the relevant phase changes and other key parameters 

related to the experiment are provided in figure-5.10 and figure-5.11 to aid 

understanding. 

The temporally unwrapped time-varying phase difference values for wedge pairs 1 

and 2 (𝛥𝛷𝑢
1,2(𝑡, 0)), as well as for 2 and 3 (𝛥𝛷2,3(𝑡, 0)) are shown in figure-5.12. In 

terms of the notation used in section-5.2.2, the relevant wedge indices are (i0, j0) = (1, 

2) and (i1, j1) = (2, 3). It is worth noting at this stage that temporally unwrapped in 

this context refers to the cascade of three simple operations; differentiating, wrapping 

and integrating [208] but does not necessarily imply that the treated, in this manner, 

signal is free of 2π-ambiguities. For example, the synthetic wedge thickness 𝑑𝑠
1,2

 is 

small enough to satisfy the inequality given by 5.16 and thus able to cope with large 

wavenumber jumps of ∼6000 m−1
 that occur after frames t = 74, 150, 163, 238, and 

245. An independent check described in section-5.2.2 was carried out to ensure that 

the inequality (5.16) for this particular wedge pair (1 and 2) was held. Consequently, 

by simply taking the cumulative sum of consecutive re-wrapped (onto the principal 

range -π to π), phase differences is sufficient to retrieve the true, 

unwrapped  𝛥𝛷𝑢
1,2(𝑡, 0) as specified by equation-5.18. 

Unlike 𝑑𝑠
1,2

, the thickness difference 𝑑𝑠
2,3

 does not satisfy 5.16. This, in turn explains 

the presence of 2π phase errors in the temporally-unwrapped signal  𝛥𝛷2,3(𝑡, 0) as 

shown in figure-5.12. The errors become even more evident once the scaled up 

version of the phase signal from wedges 1 and 2, i.e. 𝑅1ΔΦ𝑢
1,2(𝑡, 0) is plotted on the 

same axis (with the value R1 = 10.314 determined by the procedure outlined earlier). 

Figure-5.13: illustrates the result of unwrapping 𝛥𝛷𝑖1,𝑗1(𝑡, 0) using as a reference 
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signal the 𝑅1ΔΦ𝑢
𝑖0,𝑗0(𝑡, 0) according to equation-5.24. The two signals appear to be in 

close agreement with a root mean square difference of 0.4602 rad and 

with 𝛥𝛷𝑢
2,3(𝑡, 0) clearly possessing a much better signal to noise ratio than that of 

𝑅1𝛥𝛷𝑢
1,2(𝑡, 0). This is of course attributed to the fact that the amplification factor R1 

affects not only the signal itself but also its associated phase errors. 

In figure-5.14 and figure-5.15 the results of repeating the same process for steps 2 

and 3 are shown. Step 2 refers to the use of previously unwrapped ΔΦ𝑢
2,3(𝑡, 0) from 

step 1 as the reference signal in order to unwrap 𝛥𝛷𝑤
3,4(𝑡, 0) from wedges 3 and 4. 

Similarly, in step 3 the resulting 𝛥𝛷𝑢
3,4(𝑡, 0) is then used to unwrap 𝛥𝛷𝑤

1,5(𝑡, 0). Note 

that the superscript ‘5’ refers to a fictitious fifth wedge that has zero thickness and 

hence ΔΨ5(𝑡, 𝑡 − 1) = 0, for all t (see equation-5.11). This fictitious wedge allows 

one to apply the same general equations: 5.13, 5.14, 5.16, 5.17 and 5.24, derived 

earlier, while obtaining maximum sensitivity through the use of the maximum 

available wedge thickness of 12.8 mm. The ratios used were R2 = 3.1242 and R3 = 

5.42975 for these two steps. 

Finally, as a last check to validate the multi-step phase unwrapping approach, the 

effect of choosing an incorrect Rm is investigated. Choosing step 2 for this 

investigation, deviations of 1.12 and 0.87 below and above the true value of R2 = 

3.1242 were introduced. These were seen to have caused deviations approaching ±π 

between 𝑅2𝛥𝛷𝑢
2,3(𝑡, 0) and 𝛥𝛷𝑤

3,4(𝑡, 0) as illustrated in figure-5.16 with R2 = 3.1242 

shown at the top. The rms deviation between 𝑅2ΔΦ𝑢
2,3(𝑡, 0) and 𝛥𝛷𝑤

3,4(𝑡, 0), denoted 

, for the three values of R2 were 0.046, 1.7133, and 1.8871 rad. A plot of  versus 

Rm (see figure-5.17) illustrates how finding the minimum of the cost function given 

in equation-5.30 can be used to optimize the choice of Rm. 

5.5.2 Measurements from a single wedge 

In previous sections, phase measurements from one region of interest on two 

consecutive but separate wedges were described. A similar procedure may, in fact, be 

adopted for two ROIs lying on the same wedge. In the following section, the benefits 

of doing so are discussed and validated. It should be noted that the previous notation 

can still be applied here by simply interpreting the indices i = i0 and j = j0, as labels to 
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the two distinct ROIs lying on the same wedge as opposed to two distinct wedges 

used earlier. 

The first benefit of the single wedge analysis is that it allows one to test that the 

required condition described by inequality-5.16 is held for 𝑑𝑠
𝑖1,𝑗1, by simply applying 

equation-5.24 to the phase signal from the two ROIs with each region having a 

slightly different thickness due to the wedge angle. Consequently, as the two ROIs 

are brought closer, the synthetic thickness 𝑑𝑠
𝑖0,𝑗0  can be made arbitrarily small. In 

order to verify that 𝑑𝑠
𝑖1,𝑗1, did indeed satisfy the inequality in 5.16 two ROIs situated 

at the two extreme ends of wedge 1 were used. The aforementioned justification step 

can be regarded as step 0 in the general scheme outlined earlier, with the resulting 

thickness ratio R0 taking the value of 8.6787. 

The second benefit from the use of two windows on the same wedge is that it allows 

the absolute measurement of wavelength, thereby providing a useful guide for the 

alignment between different scans and in dispersion correction (see Chapter-7 for 

more details on this aspect). Finally, the use of absolute wavelength measurements as 

opposed to the changes in wavenumber that have been considered so far, make it 

easier to compare the performance of the composite sensor to that of commercially 

available wave-meters.  

According to equation-5.23, the R0, R1, R2,…,RNs, values, which are determined by 

the procedure described earlier, are related to 𝑑𝑠
𝑖𝑁𝑠+1,𝑗𝑁𝑠+1and 𝑑𝑠

𝑖0,𝑗0 as follows: 

 𝑑𝑠
𝑖0,𝑗0 =

𝑑𝑠
𝑖𝑁𝑠+1,𝑗𝑁𝑠+1

𝑅0×𝑅1×𝑅2×…×𝑅𝑁𝑠
  ,  5.31 

where 𝑑𝑠
𝑖𝑁𝑠+1,𝑗𝑁𝑠+1 corresponds to wedge thicknesses of the order of mm or tens of 

mm and can be measured to sufficient accuracy with a mechanical probe such as a 

micrometre. The thickness difference between the centres of the two ROIs can, 

therefore, be determined using equation-5.31. The fact that there is a continuous path 

between the two ROIs means that for any given frame t, the phase difference 

between their centres, 

 𝛥𝛹 = 𝛹(𝑥𝑖0 , 𝑦𝑖0 , 𝑡) − 𝛹(𝑥𝑗0 , 𝑦𝑗0 , 𝑡)  ,  5.32 
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can be computed with no 2π ambiguity by counting fringes along any chosen path 

between them. This is conveniently achieved by the 2-D version of the Takeda 

Fourier transform method [209], followed by spatial unwrapping of the resultant 

wrapped phase maps. The wavelength used to record the current frame is then given, 

using equation-5.9, as: 

 𝜆 =
2𝜋𝑛𝑑𝑠

𝑖0,𝑗0𝑓(𝜃,𝛼)

𝛿𝜓
  .  5.33 

Figure-5.18 shows the fringe pattern from wedge 1 in frame 1, with the white boxes 

indicating the positions of the two ROIs, while the corresponding wrapped phase-

map is shown in figure-5.19. The phase difference between the centres of the two 

ROIs can be easily estimated by counting the number of fringes spanning across the 

region marked by the two crosses to be ∼31 × 2π. However, a more precise value of 

δΨ = 195.941 rad is obtained by computing the difference between the unwrapped 

phase values at the two crosses. By substituting R0 = 8.6787 and the other Rm values 

as stated earlier in section-5.5.1, a 𝑑𝑠
𝑖0,𝑗0 value of 8.4 μm is obtained. Substituting this 

and the δΨ value obtained earlier into equation-5.33 and assuming a constant value 

for the refractive index of n = 1.45395 yields a wavelength value of 782.5 nm. A 

value of 764.8 nm was reported by the wave-meter. Strictly speaking the fact that n is 

dependent on λ implies that equation-5.33 should be solved iteratively. However, the 

weak dependence of n on λ for the limited scan used here indicates that there is no 

need to do so. (Only 400 frames were recorded, equivalent to a 1nm scan in the 

region of 764.81nm – 765.81nm) – see figure-5.20. The accuracy is not particularly 

high due to the use of only the pair of wedges with the lowest thickness difference; 

however, agreement to within 2.5% is considered acceptable. Subsequent changes in 

wavenumber are determined to a much higher accuracy, as we have already seen, 

through the use of the thicker wedges. 

In order to validate the method proposed in this thesis for the dynamic monitoring of 

wavenumber changes, the final result of the analysis was compared to the 

wavelength measured simultaneously with a commercial wave-meter. This was a 

loan instrument and no simple way existed to log the wavelengths in synchronisation 

with the camera frames. To solve this problem, a second identical camera triggered 

by the same exposure pulses as the one that recorded the wedge images was used to 
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capture images of the PC screen that displayed the wave-meter readings. An example 

is shown in figure-5.21. Each of the recorded images was then analysed using a 

widely available optical character recognition (OCR) program. Moreover, to 

eliminate errors due to electronic delays, the scanning speed was reduced to 4.5 Hz. 

A comparison between the results of the analysis described here, and the 

wavenumber versus frame number as measured by the commercial wave-meter, is 

shown in figure-5.22 where the offset from the initial wavelength value has been 

removed. The agreement is seen to be close, with a rms deviation between the two 

signals of 3.86 m
−1

, i.e., 0.44 × 10
−3

 of the wavenumber range covered here. The 

most likely source of this discrepancy is the error in wedge thickness measurement 

by the micrometre, which results in an error in the scaling factor 𝑛𝑑𝑓(𝜃, 𝛼) relating 

phase change to wavenumber change [using equation-5.11] of order 5 μm in 12 mm 

≈ 4 × 10
−4

. By comparison, the error arising from the approximation 𝑓(𝜃, 𝛼)~2 cos 𝜃 

[i.e., by assuming the parallel plate formula of equation-5.1] is approximately 20× 

smaller. The variability in refractive index of fused silica is smaller still with a 

typical relative value of ∼1 × 10
−5

 [210]. 

5.6 Discussion 

Wavelength detection methods have been available for some time. Simple Fizeau 

interferometers utilising a single wedge [28, 29] and with a set of wedges [30] have 

been reported in the literature, whilst an alternative method based on a polarization-

sensitive interferometer combined with a homodyne detection system was described 

in [31]. In this present chapter an alternative method for dynamic monitoring of the 

time-varying wavenumber is provided, based on whole-field analysis of wave-fronts 

using interference patterns generated by an array of wedges. Unlike others (see for 

example the aforementioned [28-30]), the method also allows the instantaneous 

detection of incoherent images owing to the mechanical movement of the BRF and 

the subsequent loss of coherence, thereby making it particularly useful for WSI 

applications. The fact that a phase change value is obtained from just one frame 

means it can be applied to arbitrarily high scan rates, given a camera with sufficiently 

high framing rate. 
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To limit the phase errors that would normally arise from the use of wedges and the 

fact that the arms of the interferometer are not balanced [142] a modification to the 

phase equation for a plane parallel plate was proposed. The wrapped phase values 

were computed from 2-D transformation of the interference patterns from each 

wedge, while the instantaneous coherence detection was based on a fringe contrast 

analysis. As speed and accuracy are of primary importance in WSI applications, the 

use of the reverse exponential temporal unwrapping algorithm [1, 211] is more 

appropriate to the complex Fourier transform ranging algorithm [149]. Therefore, by 

choosing the wedge thicknesses to follow a reverse exponential sequence the 

algorithm described in [1] can be implemented to provide Δk measurement to high 

accuracy and precision without the errors that would arise from a single wedge in the 

presence of large wavenumber jumps. As a result, dynamic acquisition of 

wavenumber changes that is limited only by the speed of the wavelength scanning 

mechanism and/or the camera used to detect the interference patterns was achieved. 

To compensate for errors induced by the manufacturing tolerances which in turn may 

cause the wedge thicknesses to deviate significantly from the ideal reverse 

exponential sequence, a simple method to characterise the wedge thicknesses based 

on micrometre readings was implemented. Moreover, the method allowed the 

dynamic monitoring of absolute wavelength. Agreement to within 2.5% between the 

wavelength values obtained from the composite sensor and those from the high end 

wavelength meter was observed. However, when changes in wavenumber were 

computed, instead of the absolute values, much better agreement to within 

approximately 0.4 pm was achieved between the two independent measurements 

over the scan range used. Two reasons were suggested to explain the mismatch in 

accuracy between the two: a) a potential error in the micrometre measurements and 

b) the effect of refractive index dispersion. It is worth noting that whilst the 

dependency of the refractive index to the wavelength of the source may be negligible 

for a short scan of only 1 nm, this will certainly not be the case for larger scans and a 

more accurate treatment of the effect of dispersion will be required. A higher level of 

accuracy in absolute wavenumber monitoring is possible through the use of more 

wedges. 

The significance of the approach described in this chapter lies in that it provides easy 

synchronisation between the camera used for the wavenumber monitoring and the 
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identical ones used to image the 3-D displacement of the sample. More specifically it 

will allow the registration of the interference signal between the deformed and 

undeformed states of the sample with several cameras to several WSI directions. 

5.7 Conclusion 

Wavelength scanning interferometry and swept-source optical coherence tomography 

require accurate measurement of time-varying laser wavenumber changes. In this 

chapter a method based on recording interferograms of multiple wedges to provide 

simultaneously high wavenumber resolution and immunity to the ambiguities caused 

by large wavenumber jumps is described. All the data required to compute a 

wavenumber shift are provided in a single image, thereby allowing dynamic 

wavenumber monitoring. In addition, loss of coherence of the laser light is detected 

automatically. The chapter gives details of the analysis algorithms that are based on 

phase detection by a two-dimensional Fourier transform method followed by 

temporal phase unwrapping. A simple but robust method to determine the wedge 

thicknesses, which allows the use of low-cost optical components, is also described. 

The method is illustrated with experimental data from a Ti:Sa tuneable laser, 

including independent wavenumber measurements with a commercial wave-meter. A 

root mean square (rms) difference in measured wavenumber shift between the two of 

∼4 m
−1

 has been achieved, equivalent to an rms wavelength shift error of ∼0.4 pm. 
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5.8 Figures 

 

Figure-5.1: Wedge ray-tracing diagram. Green and red arrows indicate front and 

back reflections. B is the location where interference between the two wavefronts 

takes place (and also the corresponding point in the image plane of the camera) while 

dB is the corresponding wedge thickness at that point. α and θ are the wedge angle 

and the angle of refraction, respectively, while d.C is the central wedge thickness. 

 

 

Figure-5.2: (Left) Wedge assembly with associated central thicknesses (dj) and 

synthetic thicknesses (tj). (Right) Wavefront sensor assembly on gimbal mount. 
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Figure-5.3: Typical Fizeau interferometer setup for PSI applications. 

 

Figure-5.4: Overview of the Fizeau interferometer with the wedge sensor on the left 

(set of four wedges with thickness increasing along +x). NDF: neutral density filter, 

MO: Microscope objective L1: collimating lens, L2: Focussing lens, L: Camera lens, 

CS: camera cover slip, CCD: Charged coupled device, OA: Optical axis, DSA: 

Digital signal amplifier, θ: angle formed between the viewing direction (CCD optical 

axis shown as dotted line) and the z-direction (approx. 2°) also termed as the 

refracted angle of the illuminating beam. 
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Figure-5.5: a) Wedge fringe patterns at a wavelength of 750 nm, where the thickest 

wedge is at the top and the thinnest at the bottom. b) Blurring of the wedge fringe 

patterns when coherence is lost due to mechanical movement of the BRF. Figure 

reproduced from [20]. 

 

Figure-5.6: Concatenated 2-D image sequence to form a 3-D fringe pattern. 

a) b) 
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Figure-5.7: (a), (b) 2-D Fourier transforms of the fringe patterns from the top wedge 

shown in figure-5.5 (a) and figure-5.5 (b) respectively. Figure reproduced from[20]. 

 

Figure-5.8: Schematic representation of a typical image sequence, after the removal 

of blurred images, showing the chosen ROIs for each wedge (dotted parallelograms) 

as well as the complex amplitude of the 2-D Fourier transforms. The big central 

black spots show the d.c components while the others represent the +ve and the -ve 

components of the Fourier transform. The distance of the symmetrical to the d.c 

component +ve and –ve orders is variable to reflect on the variability of the 

individual wedge angles. 

(a) (b) 
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Figure-5.9: Visual means to demonstrate how the location of the extracted phase can 

be shifted from the image origin to the centre using the fftshift function in 

MATLAB. Letters A, B, C and D denote the four quadrants. As the 2-D Fourier 

transform is an operation that essentially spans through  in both x and y directions 

the shuffled quadrants show the shifting of the phase computation to the centre of the 

image. 

 

Figure-5.10: Schematic showing the four-wedge optical sensor for the experiment 

and the four phase changes used in this thesis. Note that the last phase change is 

between wedge-1 and a fictitious wedge-5 with zero thickness (in other words: 

ΔΦ𝑤
1,5 = Ψ1). 
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Figure-5.11: Schematic showing the four wedges in an expanded view with their 

associated central thickness dimensions. Note that the Z-direction and the optical 

axis of the camera are at a slight angle. 

 

Figure-5.12: Measured phase change over a wavelength scan of 400 frames for step 1 

(wedge pairs 1, 2 and 2, 3). Temporally unwrapped phase signals 𝛥𝛷𝑢
1,2(𝑡, 0) (dotted 

black line) and 𝛥𝛷2,3(𝑡, 0) (continuous red line). 
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Figure-5.13: Measured phase change over a wavelength scan of 400 frames for step 1 

(wedge pairs 1, 2 and 2, 3). Scaled thin wedge phase signal 𝑅1𝛥𝛷𝑢
1,2

 (black dotted 

line) and the resultant unwrapped thick wedge signal ΔΦ𝑢
2,3

 (continuous red line) 

after unwrapping according to equation-5.24. 

 

Figure-5.14: Unwrapped phase change values over a wavelength scan of 400 frames. 

Step 2 (in which wedges 2 and 3 are used to unwrap the difference between wedges 3 

and 4). 
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Figure-5.15: Unwrapped phase change values over a wavelength scan of 400 frames. 

Step 3 (in which wedges 3 and 4 are used to unwrap the phase of wedge 1). 

 

Figure-5.16: (a) Previous figure-5.14 for comparison of phase unwrapping errors, 

where the optimal thickness ratio R = 3.1242 has been used to unwrap the high-

sensitivity phase data. Incorrect R2 ratios (R2 = 2, (b) and R2 = 4, (c)) result in 

unwrapping errors E1 and E2 together with linear portions of incorrect slope in 

between. 

(a) 

(b) 

(c) 
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Figure-5.17: Cost function S(Rm) (equation-5.30) for: (a) step m = 1, (b) step m = 2 

and (c) step m = 3. Note: m = n. 

 

Figure-5.18: Fringe pattern at 764.81 nm: intensity distributions from wedge 1 after 

application of Hanning window. Rectangular boxes show the regions from which 

phase values were extracted, with their centres indicated as crosses. Reproduced 

from [20]. 

 

Figure-5.19: Corresponding wrapped phase-map from wedge 1 (764.81 nm). 

Reproduced from [20]. 

(a) 

(b) 

(c) 
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Figure-5.20: Fused silica refractive index dispersion curve for (a) the wavelength 

range from 750 to 850 nm and (b) the corresponding wavenumbers for the same 

wavelength range. The plots were produced using equation-1 in [210]. 

 

Figure-5.21: Image of the PC-screen displaying the wavelength-meter reading. Upon 

completion of the short scan the sequence of images was read using a readily 

available OCR algorithm and was converted to a MATLAB 1-D-array for the 

subsequent performance comparison between the commercial instrument and the 

optical sensor described in this thesis. 

(a) 

(b) 
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Figure-5.22: Calculated wavenumber changes from the four-wedge optical sensor 

using the procedure described in this chapter (solid black line) and the corresponding 

changes measured simultaneously by the commercial wave-meter (solid red line with 

an offset of 700 m
-1

 to aid visualisation). The rms deviation between the two curves 

was 3.86 m
-1

. 
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Chapter-6: Data analysis in phase-contrast WSI 

6.1 Introduction 

Wavelength scanning interferometry (WSI) can be regarded as a volume imaging 

technique in which 2-D image sequences are recorded while the wavenumber of the 

light source is changed over time. The intensity of the light from a given scattering 

point is modulated by a temporal carrier whose frequency is proportional to the 

optical path difference between the object and reference waves. Provided that 

contributions from neighbouring scattering points can be neglected (assumption for 

weakly-scattering materials), one-dimensional Fourier transformation of the signal at 

each camera pixel separates the contributions from different regions in the 

measurement volume according to their distance from the zero optical path 

difference (OPD) surface. The approach has been used both for 3-D profilometry of 

opaque surfaces [26, 141] and for depth-resolved displacement field mapping in 

weakly-scattering materials [3, 81] 

Like in any other tomographic technique, the two key parameters in WSI are the 

optical path difference resolution, , and the unambiguous depth range z. The 

former varies inversely with the total wavenumber scan range k, whist the latter is 

proportional to Nf/n, where Nf is the total number of recorded frames spanning k 

and n is the refractive index. It follows that, in order to achieve sufficiently good 

depth resolution without compromising the depth range, a laser source featuring both 

a wide tuning range and fine frequency resolution is required. Thus, the high-power 

(up to 600 mW) offered by the continuous-wavelength titanium sapphire (CW Ti:Sa) 

laser previously described in Chapter-3, along with its wide tuning range of ~100 nm 

and its fine wavelength resolution (down to 0.001 nm), make it suitable for WSI. 

In spite of its capability to operate over such an extended range compared to those 

offered by the laser diodes used in earlier studies [3, 81], the main challenge with a 

Ti:Sa laser is the nonlinear variation of wavenumber with displacement or rotation of 

the BRF or etalon. This behaviour is due to the physics of the wavelength selection 

devices in the laser cavity which in turn lead to the large wavenumber jumps – see 

Chapter-4 for more details with regards to the behaviour and customization of the 

laser source. Although the algorithms in the embedded digital signal processor (DSP) 
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in the Ti:Sa laser source have been modified by the manufacturer to reduce the 

nonlinearities of the scan, it has proved difficult to fully suppress the issue. 

In order to further supress this problem and thus improve the quality of the volume 

reconstructions, two fringe analysis techniques are implemented. The first involves 

the phase estimation described in Chapter-5 while the second is concerned with the 

analysis of the 1-D temporal signals obtained from each camera pixel for the duration 

of a full 100 nm scan. 

This section of the thesis is concerned with the majority of data analysis involved in 

phase-contrast wavelength scanning interferometry. The term data analysis here 

refers to: a) the reconstruction of the k-axis from the phase measurements obtained 

with the four-wedge sensor described earlier and b) the subsequent resampling and 

registration of the raw intensity data onto that axis. The ultimate purpose of such an 

approach is to demonstrate the importance of a precise and accurate k-axis for 

phase-contrast tomographic instruments that do not necessarily feature ‘balanced’ 

reference and object arms. 

First, an in-depth description of the Fourier-transform phase calculation that was 

briefly described in section-5.4, is provided in section-6.2. A number of issues 

associated with the algorithm are addressed and an improved approach is proposed.  

6.2 Fourier-transform phase extraction 

The precise and accurate measurement of phase is of paramount importance in any 

phase contrast scheme. The following section provides an in-depth description of 

how the interferometric phase from the four-wedge optical sensor described earlier in 

chapter-5 (section-5.4) is extracted, followed by an analysis of some of the factors 

that may compromise the precision of this process. 

For a wave-front from a perfectly formed wedge i.e. one with perfectly flat front and 

back surfaces and a constant wedge angle α, the spatial distribution of phase can be 

described as follows: 

 𝛹(𝑥, 𝑦) = 𝛹0(𝑥, 𝑦) + 2𝜋(𝑥𝑘𝑥 𝑁𝑥⁄ + 𝑦𝑘𝑦 𝑁𝑦⁄ ) ,  6.1 
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where x,y are the spatial coordinates, kx,ky are the spatial frequencies and Nx,Ny are 

the total number of samples in x and y. Consequently, the corresponding intensity 

distribution (fringe pattern), I(x,y), is given by: 

 𝐼(𝑥, 𝑦) = 𝑑. 𝑐. + 𝑐𝑜𝑠[𝛹(𝑥, 𝑦)]  ,  6.2 

The paper published by Takeda et al [209] in the early 80’s was the first to point out 

the significance of the Fourier transform as a tool to analyse fringe patterns with 

spatial carriers. In accordance to their work, the wrapped phase can, therefore, be 

retrieved as follows: 

 𝛹(𝑥0, 𝑦0) =  𝑡𝑎𝑛
−1 {

ℑ[𝐼(𝑘𝑥,𝑘𝑦)]

ℜ[𝐼(𝑘𝑥,𝑘𝑦)]
}  ,  6.3 

where, 𝐼, is the Fourier transform of I, ℑ is its imaginary part and ℜ its real part. 

Note that the wrapped phase computed in this manner, corresponds to that at the 

image origin (x0, y0) = (0, 0). Taking into account the infinite and symmetric nature 

of the Fourier transform, the location of the extracted phase can be shifted to the 

centre of the image, (xc, yc) = (Nx/2, Ny/2), by swapping the image quadrants prior to 

Fourier transformation (see figure-5.9). 

In practice, the d.c offset is never zero because measured intensity is always positive 

or zero, and the Fourier transform of a fringe pattern described by equation-6.2 

therefore consists of three orders, namely the d.c. peak and two side lobes. The three 

peaks are located at spatial frequencies (fx,fy)=(0,0),for the d.c peak, and (fx,fy)= ± ( 

kx, ky), for the two symmetric side lobes as shown in figure-6.1(a). In this case, the 

required phase (plus the carrier, if one is present) is normally computed by isolating 

the positive frequency lobe followed by numerical extraction of its spatial location 

and the subsequent application of equation-6.3. Frequency isolation is usually 

achieved by multiplying the transform by an appropriate shifted ‘top hat’ window. 

The removal of the spatial carrier, on the other hand, is done by a process known as 

demodulation involving the shifting of the isolated peak back to the Fourier image-

plane origin (0,0) [54, 209]. In the current case, there is no spatial carrier, however, 

the non-zero wedge angle ensures that the positive and negative frequency lobes are 

well-separated. In addition, the fact that the wedge angle is primarily along the x-axis 

means that we can assume the side lobes to lie close to the fx axis.  
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6.2.1 Integer phase calculation 

Figure-6.1(b-d) shows a practical way of selecting the positive frequency lobe in 

such a case. It was originally proposed and implemented by A. Davila, but has since 

been improved by the current author as will be described in subsequent sections. The 

approach involves three steps where, at first, half of the Fourier spectrum is set to 

zero. Second, as the d.c always appears at the origin, the neighbouring region to the 

origin is also set to zero. Finally, by swapping the quadrants of the Fourier plane 

(shown as A, B, C, D in figure-6.1), the peak of interest is placed towards the centre 

of the Fourier plane. The swapping of the four quadrants is equivalent to moving the 

origin of the Fourier plane from the bottom left corner to the centre. The three-step 

process described above is similar to filtering out the negative frequency lobe while 

at the same time it provides a simple way of removing the d.c offset. Note that the 

rectangular window, shown in red in figure-6.1(c) and figure-6.1(d), is an alternative 

to the shifted ‘top hat’ window mentioned earlier. 

6.2.2 Non-integer phase calculation 

The procedure described in the previous section, which was initially put together by 

A. Davila, may be considered as similar to the Takeda Fourier transform method. 

However, it does not involve transforming back to the spatial domain and calculating 

the phase at each pixel. Instead, the phase is calculated at just one pixel (central pixel 

in the ROI) in the spatial domain from the phase at the point P in the spatial 

frequency domain. This method termed ‘integer phase calculation’ was used for the 

computation of the total change in wavenumber for the proof of principle short scan 

in chapter-5 (section-5.4) and in [20]. It did, however, have a number of defects such 

as (a) measuring the peak position only to the nearest integer and (b) masking out the 

d.c peak, rather than removing the d.c term at source, thereby introducing the 

potential for phase errors due to the d.c. peak’s side lobe structure in the case of low 

spatial frequency fringe patterns. 

One significant improvement made on the original Davila method was therefore to 

identify the peak location to sub-pixel accuracy, and then measure the phase at this 

true peak, rather than at the nearest integral spatial frequency values. An algorithm to 

estimate the location of a peak in the spatial frequency domain to sub-pixel accuracy 

was proposed by Huntley J.M [2]. The proposed solution, which was based on a 
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discrete Fourier transform of the recorded speckle fringe patterns coupled with an 

optimization algorithm based on a Newton-Raphson method, resulted in a significant 

improvement in the accuracy and precision of the sought displacement vector. 

Although at this stage we are not concerned with displacements, the significance of 

such an approach may be realized by recalling that the fine wavelength step 

resolution used in a phase-contrast wavelength scanning interferometry scheme will 

almost always produce interferograms with a non-integer number of fringes across 

the field of view. Therefore, the use of an algorithm which is immune from such 

rounding errors is most likely going to improve the quality of the phase estimation 

process and is thus worth investigating. Another possible factor contributing to 

limiting the accuracy and precision of the phase extraction process is that related to 

the imaging geometry. Its effect was demonstrated by the same author, a few years 

later, by pointing out that, when compared to that for a square image, the Fourier-

peak of interest for a non-square image is broadened along the frequency axis 

corresponding to the short image side [212]. 

To demonstrate the effect of non-square imaging geometry and non-integer spatial 

frequencies on phase errors, simulated data sets with varying imaging dimensions 

and spatial frequencies in the absence of a d.c. offset are compared using the 

algorithm described in the previous section and that described in [2]. In addition to 

the above, the validity of the proposed method for extracting the phase corresponding 

to the centre of the region of interest by swapping the image quadrants prior to phase 

extraction is also tested. More specifically, the chosen parameters for the numerical 

case study conducted are as follows: 

a.  Square imaging geometry (512 × 512 pixels) with integer spatial frequencies 

(kx = 15, ky = 12) - see figure-6.2. 

b.  Square imaging geometry (512 × 512 pixels) with non-integer spatial 

frequencies (kx = 14.45, ky = 12.43) - see figure-6.3. 

c.  Non-square imaging geometry (714 × 86 pixels) with integer spatial 

frequencies (kx = 15, ky = 12) - see figure-6.4. 

d.  Non-square imaging geometry (714 × 86 pixels) with non-integer spatial 

frequencies (kx = 14.45, ky = 12.43) - see figure-6.5.  
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By visually comparing figure-6.2 and figure-6.3 (correponding to cases of a and b 

above), it is obvious that in the presence of non-integer spatial frequncies the shape 

of the Fourier peak appears to be broadened (see for example figure-6.2 (a) and 

figure-6.3). Moreover, the effect of swapping the image quadrants prior to 

transformation is now more apparent as shown in figures 6.2(d) , 6.3(d). A less 

obvious, yet quite intetresting point is that related to the precision and accuracy of 

the phase estimation in the presense of non-integer kx, ky. Using equation-6.1 the 

‘true’ phase at the image origin and centre can be computed and can, therefore, serve 

as a valid reference to test the precision of the phase extraction. In order to aid the 

comparison of the numerical results from the two algortitms used to extract the 

phase, the relevant data are presented in tabular form (see tables 6.1-6.2 below) 

Table-6.1: Tabular form of the results from a simulated fringe pattern for a square 

image (512 × 512) with integer kx, ky of 15 and 12 respectively, showing the 

estimated phase values by the Fourier transform method (‘integer phase calculation’), 

the sub-pixel Fourier transform phase value (‘non-integer phase calculation’) and 

their corresponding deviation from the true phase 

True phase 

 Ψtrue 

Integer-based phase 

calculus Ψ = Ψint 

Non-integer based phase 

calculus Ψ = Ψnon-int 

Origin Centre Origin Centre Origin Centre 

0.3313 rad -2.81029 rad 0.3313 rad 0.3313 rad 0.3313 rad -2.8102 rad 

Deviation from true value: |Ψtrue - Ψ| |Ψtrue - Ψ| |Ψtrue - Ψ| |Ψtrue - Ψ| 

 0 rad 3.1416 rad 1.7542e-14 rad 5.3291e-15 rad 

Table-6.2: Same as table-6.1, but for a square image (512 × 512) and non-integer kx, 

ky of 14,45 and 12.43 respectively. 

True phase 

 Ψtrue 

Integer-based phase 

calculus Ψ = Ψint 

Non-integer based phase 

calculus Ψ = Ψnon-int 

Origin Centre Origin Centre Origin Centre 

0.3421 rad -0.0348 rad 3.1014 rad 3.1014 rad 0.3424 rad 1.3052 rad 

Deviation from true value: |Ψtrue - Ψ| |Ψtrue - Ψ| |Ψtrue - Ψ| |Ψtrue - Ψ| 

 2.7593 rad 3.1363 rad 2.5839e-04 rad 1.3400 rad 

As seen from the tabular data above the integer-based algorithm significantly 

underestimates the phase at the centre by nearly 9.5× for case-a, while it overstimates 

both the phase at the origin and that at the centre by approximately 8× and 9× 

respectively for case-b. The performance of the non-integer algorithm on the other 

hand, shows more promising results albeit it overestimates the true phase at the 
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image centre suggesting that for non-integer values of spatial frequncies the 

swapping of the image quadrants prior to phase extraction does not yield the true 

phase at the centre. The analysis for a non-square imaging geometry gives very 

similar results as seen from table-6.3 and table-6.4 shown below. 

Table-6.3: Same as table-6.1, but for a non-square image (714 × 86) and integer kx, ky 

of 15 and 12. 

True phase 

 Ψtrue 

Integer-based phase 

calculus Ψ = Ψint 

Non-integer based phase 

calculus Ψ = Ψnon-int 

Origin Centre Origin Centre Origin Centre 

1.0087 rad -2.13287 rad 1.0087 rad 1.0087 rad 1.0087 rad -2.13287 rad 

Deviation from true value: |Ψtrue - Ψ| |Ψtrue - Ψ| |Ψtrue - Ψ| |Ψtrue - Ψ| 

 6.6613e-16 rad 3.1416 rad 1.5099e-14 rad 9.77e-15 rad 

Table-6.4: Same as table-6.1, but for a non-square image (714 × 86) and non-integer 

kx, ky of 14.45 and 12.43, respectively 

True phase 

 Ψtrue 

Integer-based phase 

calculus Ψ = Ψint 

Non-integer based phase 

calculus Ψ = Ψnon-int 

Origin Centre Origin Centre Origin Centre 

1.0441 rad 0.6671 rad -2.4923 rad -2.4923 rad 1.0444 rad 1.9889 rad 

Deviation from true value: |Ψtrue - Ψ| |Ψtrue - Ψ| |Ψtrue - Ψ| |Ψtrue - Ψ| 

 3.5364 rad 3.1594 rad 2.9372e-04 rad 1.3219 rad 

 

The case study above highlights the benefit of sub-pixel accuracy in detecting the 

location of the Fourier peak of interest. Although an error is present in the estimated 

phase for non-integer spatial frequencies of the fringes, it is significantly lower than 

the case for integer pixel phase estimation.   

Finally, the answer to the natural question as to why the phase should preferably be 

evaluated at the centre of the region of interest as opposed to the image origin is 

related to the manufacturing quality of the sensor itself. The likelihood of deviations 

from flatness towards the edges of the four wedges is higher than that at the centre. 

While a perfectly flat wavefront would give equally spaced parallel fringes, a curved 

wavefront would result in fringes with a level of curvature related to the deviation 

from flatness. In addition to that, the presence of edge effects owing to unwanted 

reflections around the edges of the optical sensor may further contaminate the signal. 
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To ensure their effect is kept to a minimum, a 2-D  Hanning window was applied to 

the recorded fringe patterns which gives maximum weight towards the centre of the 

image and minimum at the edges. 

6.2.3 Estimation and suppression of background intensity-artefacts 

So far, the analysis presented in the previous section did not account for the effect of 

the d.c. term on the phase estimation process. As pointed out by Huntley J.M. the 

zero-order peak has the undesirable effect of shifting the location of nearby peaks in 

the frequency domain [2]. The background intensity in speckled interferograms is a 

well-established factor known to affect the accuracy of phase related measurements. 

The study by Kaufmann et al was amongst the first to point out the significance of 

the diffraction halo on phase errors by means of numerical analysis of 1-D 

photodiode data [213]. In their study, two approaches for removing the diffraction 

halo were examined. The first involved the direct subtraction of the estimated 

diffraction halo, while the second was based on the ratio of the recorded fringe 

pattern over the estimated halo. The term “background” is rather generic and is often 

mixed with the more familiar d.c. term used in signal processing where in most cases 

it is associated with the mean value of the signal. To clarify this, consider the ideal 

case of a digitized fringe pattern as stated in [2]: 

 𝐼(𝑥, 𝑦) =  𝐼0(𝑥, 𝑦){1 + 𝑐𝑜𝑠[2𝜋(𝑥𝑘𝑥 𝑁𝑥⁄ + 𝑦𝑘𝑦 𝑁𝑦⁄ ) + 𝑐]} ,  6.4 

where I0(x, y) is the intensity background and c is a constant. For the setup described 

in section-5.3, there are two additional factors contributing to  the measured intensity 

distribution that are not included in equation-6.4: 

a. Intensity variations owing to the combined variations of the laser power and 

camera sensitivity during the scan which strictly speaking therefore introduce 

an additional time dependence which is not present in equation-6.4 

b. Multiple reflections inside the wedges resulting in harmonics of the 

fundamental frequency. 

The former is mostly dealt with using the variable exposure compensation method as 

described in chapter-4 section-4.4.1. The latter is not a major effect as the higher 

harmonics appear at different locations in the 2-D Fourier transform and therefore 

should not interfere with the phase detection at the principal peak.  
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Recalling that the direct subtraction of I0(x, y) from the recorded signal prior to 

Fourier transformation is preferable to calculating the Fourier transform of I(x, y) / 

I0(x, y) the former will be adopted in the following analysis [2]. Both authors in [2, 

213] estimated the background intensity by recording its effect prior to the 

measurements. More specifically, the former used a total number of 16 frames before 

the recording of the speckled fringe patterns which were subsequently used for 

estimating the diffraction halo by averaging the contributions of each pixel. Although 

this could formulate a perfectly valid approach in determining the effect of multiple 

reflections in the 4-wedge sensor, it would on the other hand suffer from inaccuracies 

on account of the fact that laser scans are not necessarily identical to one another. 

Instead, an approach which is similar to that described in [2] is adopted but differs in 

that the entire scan sequence, consisting of ~ 50,000 frames, is used for estimating 

the diffraction halo thereby reducing uncertainties related to scanning consistency. 

By averaging such a large number of frames, the interference fringe amplitude can 

reasonably be assumed to be reduced to negligible levels. However, changes in halo 

shape as the scan progresses are not taken into account by the proposed procedure. 

The proposed algorithm for estimating the background term after removing the non-

linear effects due to the laser power variations and the sensitivity in the photodetector 

is as follows. The recorded intensity distribution of the fringe patterns along the k-

axis can then be written as: 

 𝐼(𝑥, 𝑦, 𝑘𝑡) =  𝐼0(𝑥, 𝑦){1 + 𝑐𝑜𝑠[2𝜋(𝑥𝑘𝑥(𝑘𝑡) 𝑁𝑥⁄ + 𝑦𝑘𝑦(𝑘𝑡) 𝑁𝑦⁄ ) + 𝑐(𝑘𝑡)]} ,  6.5 

where x,y are the spatial coordinates of the individual regions of interest for each of 

the four wedges (see figure-6.6), 𝑘𝑡 is the instantaneous wavenumber of the source in 

frame t and N is the total number of recorded frames for a full 100 nm scan (in this 

case 48,971). An estimate of the background intensity I0(x,y) can then be calculated 

from the following expression: 

 𝐼0̅(𝑥, 𝑦) = ∑ 𝐼(𝑥, 𝑦, 𝑘𝑡)
𝑁−1
𝑡=0 ,  6.6 

The sums: 

 𝑠1(𝑘𝑡) = ∑ ∑ 𝐼(𝑥, 𝑦, 𝑘𝑡)
𝑁𝑦
𝑦=1

𝑁𝑥
𝑥=1   ,  6.7 

 𝑠2 = ∑ ∑ 𝐼0̅(𝑥, 𝑦)
𝑁𝑦
𝑦=1

𝑁𝑥
𝑥=1   ,  6.8 
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can then be regarded as estimates of the zero frequency Fourier components of 

I(x,y,  𝑘𝑡 ) and 𝐼0̅(𝑥, 𝑦) respectively. Consequently, the free-of-background-intensity 

signal, Ib, can then be approximated as follows: 

 𝐼𝑏(𝑥, 𝑦, 𝑘𝑡) = 𝐼(𝑥, 𝑦, 𝑘𝑡) − (𝑠1 𝑠2⁄ )𝐼0̅(𝑥, 𝑦)  ,  6.9 

A visual representation of the estimated diffraction halo by implementing the 

algorithm described above is shown in figure-6.7. To demonstrate the combined 

effect of the improvements implemented so far related to the phase extraction 

process, a comparison of the resulting phase-change from the last unwrapping step in 

chapter-5 using the integer based phase calculation approach and that which 

combines the removal of the background intensity and the sub-pixel peak detection 

algorithm is provided in figure-6.8. The difference between the two approaches is at 

first sight not very obvious. However, by zooming in to the four regions of the full 

sequence that were previously most affected by phase unwrapping errors, the 

superiority of the proposed approach becomes evident, as demonstrated in figure-6.9. 

As indicated in figure-6.9(d), although the majority of the phase unwrapping errors 

have been suppressed, some residual phase unwrapping errors are still present. These 

errors will be ignored for now as their origin and effect are different from those 

considered in the current chapter and will be dealt with later in chapter-7. 

6.3 Registration of raw intensity data onto k-axis 

The camera and the 4-wedge optical element, in effect constitute a wave-meter that is 

precisely synchronised to the other cameras in the system. The intensity data from a 

given pixel in any camera can then be located at the correct position along the k 

axis. The raw intensity data can then be temporally interpolated onto a regularly 

spaced wavenumber change vector. The numerical analysis presented in this chapter 

describes this process for the case of a full scan of 100 nm (start = 750 nm to end = 

850 nm with a nominal wavelength step = 4pm). 

6.3.1 Non-uniform k-space sampling  

The data processing for WSI involves one-dimensional spectral analysis of the 

recorded time-varying signal at each pixel, It (x, y, t). In what follows, we focus on 
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the j
th

 pixel with image plane coordinates x = xj, y = yj. The assumption in previous 

WSI implementations [3, 81], which used narrow tuning ranges, was that: 

 𝐼(𝑥𝑗 , 𝑦𝑗 , 𝑘) = 𝐼𝑡(𝑥𝑗 , 𝑦𝑗 , 𝑡)  ,  6.10 

with k and t related through the following expression: 

 𝑘(𝑡) =  𝑘𝑐 + 𝛿𝑘 ⋅ 𝑡  .  6.11 

Thus a discrete Fourier transform of the sampled 3-D intensity volume 𝐼𝑡(𝑥𝑗 , 𝑦𝑗 , 𝑡) 

along the t axis provides a scaled version of 𝐼(𝛬) for the jth pixel, where Λ is the 

optical path difference between the reference and object beams. As discussed in 

Section 6.2, this should consist of three delta functions, one at  = 0 (the d.c term) 

and the other two at Λ = ± Λ0 (the cosine term), convolved with the Fourier 

transform of the window function, �̃�(𝛬). 

To investigate the validity of equation-6.10 and equation-6.11, to the much longer 

sequences offered by the Ti:Sa laser, and to illustrate some of the issues involved in 

the data analysis, the 3-D data sets It(x,y,t) from the camera recording the wedges are 

used. As a first step, the ability of the laser to emit distinct wavelengths during a full 

scan was assessed by comparing the wavenumber change between successive frames 

to an appropriately chosen threshold value δκ such that: 

 𝛿𝜅 = 𝑐 ∙ 𝛿𝑘𝑠𝑡𝑒𝑝  ,  6.12 

where c is a constant and δkstep is the user defined wavenumber step between 

successive frames such that: 

 
0 < 𝑐 ≤ 1                                               

19.635 𝑚−1 < |𝛿𝑘𝑠𝑡𝑒𝑝| < 9817 𝑚
−1                                         

}  .  6.13 

Note that the latter is a parameter required by the software controlling the laser 

wavelength selection which for a perfect scan would be identical to δk in equation-

6.11. Apart from providing a first indication as to how linear the scan is, this 

intermediate data processing step also acts as a memory efficient way to deal with 

the large data sets. Equation-6.12 is essentially a criterion used to decide: a) which 

frames are static (i.e. no significant change in k was produced by the tuneable laser 

source) and b) which slice of the 3-D intensity volume should each frame be placed 
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at. The second point is important because the laser wavenumber can sometimes 

decrease as well as increase with time. Shuffling of the frames is needed to ensure 

that the wavenumber increases monotonically with frame index before subsequent 

interpolation steps. This is conveniently handled by creating a ‘sorting vector’ J 

where the t
th

 element of J specifies position in the 3-D intensity volume of the t
th

 

frame. By doing so the need for a subsequent sorting step is dropped, thereby saving 

an additional 3-D array and thus using only part of the initial memory requirements.  

Figure-6.10 and figure-6.11 show the three-step process that produces the memory 

efficient sorting vector J used for the subsequent data analysis. By choosing a value 

of c = 0.9 and δkstep = 32 m
-1

 to match the wavelength step of 4 pm used for this data 

set, a reduction in the size of the original data set (initial size: 48,971 frames) of 

more than 50% (final size: 15,822 frames) was achieved. 

Figure-6.12 shows the power spectrum |𝐼𝑡(𝑥𝑗 , 𝑦𝑗 , Λ)|
2
 for one pixel near the centre of 

the thickest wedge, over the full range of positive optical path lengths (d.c to Nyquist 

limit). In this case the k value needed to convert the non-dimensional optical 

frequency to optical path length (see equation-6 in [21]), was estimated as the total 

wavenumber change measured by the wavelength sensitive diode (9.81 × 10
5
 m

-1
, 

corresponding to a wavelength range of ~100 nm), divided by the total number of 

frames (15,822). In addition, the horizontal axis has been scaled by (1/2n) to convert 

from optical path difference to physical thickness of the wedge. Initially, a constant 

change in wavenumber between frames was assumed here which allowed the power 

spectrum to be calculated by the use of a fast Fourier transform algorithm (fft in 

MATLAB).  

One important aspect revealed is that the expected single peak is split into multiple 

peaks covering a broad range of frequencies as shown in figure-6.12. A Gaussian fit 

to the spectrum in the region of the peak, shown in red, has a mean value of ~ 10.2 

mm and a full width half maximum (FWHM) value of 1.0410 mm. The mean value 

significantly underestimates the true wedge thickness (12.755 mm) while the FWHM 

value is 750× the expected resolution figure of 2.66 m (FWHM value obtained from 

equation-6 and equation-7 in [21] with  = 1.207). Clearly, the most likely reason for 

such large disagreement between the theoretical and experimental values for the 

optical path difference resolution, δΛ and the depth resolution δz is that the linear 
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scan in k-space assumption (see equation-6.11) is not satisfied for such large tuning 

ranges.  

From figure-6.13(a), it is clear that while the full tuning curve of (k-kc) versus t 

appears to be approximately linear, when a short section is enlarged, etalon induced 

mode-hops become clearly visible. In addition to that, a degree of nonlinear 

behaviour between the mode-hops is seen as shown in figure-6.13(b). In figure-

6.14(a), the intensity signal corresponding to the same t-range as that used in figure-

6.13(b), shows how the mode hops essentially randomize the phase of the 

interference signal. As a result, the expected narrow Fourier peak is significantly 

broadened and split, thus eliminating the main benefit of the long tuning range. 

Furthermore, between the mode hops, the gradient of the (k-kc) versus t tuning curve 

is significantly less than the average gradient, thus leading to a downshift in temporal 

frequency and hence underestimation of the optical path difference. 

6.3.2 Fourier-transform of non-uniformly distributed intensity data 

One solution to the problem outlined in the previous section is to use the measured k 

values, instead of the assumed vector of linearly spaced k values, when performing 

the 1-D Fourier transform along the t axis of It(xj,yj,t). Algorithms have been 

developed for Fourier transformation of non-uniformly sampled data (see for 

example [214]). However, to the best of our knowledge, no fast algorithms exist. 

With typical Nf values of at least 10
4
, the computation time of the fast Fourier 

transform (FFT) algorithm is reduced by a factor of at least ~ Nf /log2(Nf)   750 

compared to a non-fast discrete Fourier transform. In view of the large data volumes, 

interpolation onto a linearly-spaced vector of k values followed by a FFT is a better 

option. 

The re-sampling of the signal is performed by first sorting the measured (k-kc) vector 

into monotonically increasing order, and then using the re-ordering vector J 

described earlier to sort in the same way the corresponding intensity values It(xj,yj,t) 

as was shown earlier in figure-6.11. A linear interpolation of the intensity values to a 

uniformly-spaced k vector is then achieved using the MATLAB interp1 function. 

Figure-6.14(b) shows the pixel intensity data I(xj,yj,k-kc) following interpolation of 

the It(xj,yj,t) data from figure-6.14(a). The four wavenumber jumps displace the 
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interference signal to the correct positions in k space, ensuring phase continuity 

between signals on either side of the mode hops. 

6.3.3 Effect of k-scan gaps 

In the example shown in figure-6.13(b) four mode hops that result in an upwards 

jump in wavenumber are clearly visible. From figure-6.14(a) and figure-6.14(b), it is 

evident that the interpolation procedure described in the previous section is unable to 

provide valid data in the regions where the aforementioned mode hops occur. This is 

in fact one of the main disadvantages of any interpolation procedure for regions 

where the data density is poor and has, thus, formed the basis of research in treating 

non-uniformly sampled data as mentioned earlier. 

One way of handling the random, laser-induced gaps in the k range would be to 

interpolate the vector of frame indices (t) using the vector of linearly spaced k values 

on which the experimental (k-kc) values were interpolated as described above. This 

allows the gradient, dk/dt, to be estimated on the interpolating k vector such that: 

 𝑊1 = {
1, ∀𝑘: 𝑑𝑘 𝑑𝑡⁄ ≤ 𝑐2
0, ∀𝑘: 𝑑𝑘 𝑑𝑡⁄ > 𝑐2

  ,  6.14 

where c2 is a threshold value for the wave number gradient which in this case was 

chosen to be 2.9× the mean value, i.e. 2.9×k/t. k and t refer to the total changes 

in k and t respectively, over a full scan duration. This is equivalent to multiplying the 

interpolated data by a window function, W1(k-kc), that takes the value 1 for all k 

values for which dk/dt lies below the specified threshold, but zero elsewhere. Figure-

6.15(a) shows the experimental window function, W1(k-kc), for the example shown in 

figure-6.14 (b), with the windowed interpolated intensity data W1(k-kc) I(xj,yj,k-kc) 

over the same range shown in figure-6.15. 

Given that the point spread function (PSF) of the WSI system in the axial direction is 

equivalent to the Fourier transform of the window function, |𝑊1
̃ (Λ)| , the 

representation of the missing data in terms of the window function allows one to 

examine the effect of such gaps on the depth resolution of the system. Figure-6.16 

illustrates this issue for a mid-scan range, showing (a) the isolated window function 

and (b) the windowed sample intensity data after interpolation. The normalised 

Fourier transform of the window function, |𝑊1
̃ (Λ)| , is shown in figure-6.17(a), 
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compared to the Fourier transform of ‘k-gap free’ top hat window function of equal 

length. The interesting observation is that the axial resolution (i.e. depth resolution of 

the system) is almost completely unaffected by the presence of the multiple zeros in 

the window function representing the laser-induced gaps in k-space. The price to be 

paid is, however, more apparent when a wider range of |𝑊1̃(Λ)| is considered. The 

long range side lobes become more significant whilst at the same time they are seen 

to decay at a slower rate than those for a top-hat window function of equal width as 

shown in figure-6.17 (b). One possible reason for the long range artefacts could be 

that they are caused by the sharp edges within the window function; convolution of 

the window with a smoothing function could potentially reduce the effect, but was 

not attempted here.  

In order to further investigate the effect of k-gaps, a comparison between the 

experimental and theoretically predicted depth resolutions for different sections of 

the signal is provided. Figure-6.18 (a), shows an example of a small portion of the 

full scan, that is sufficiently short (k = 4.6 × 10
3
 m

-1
) for it to lie between etalon 

mode hops, with its corresponding spectrum shown in figure-6.18 (b). The 

theoretical depth resolution in the glass, obtained from equation-7 in [21], is 946.4 

μm between the first minima on either side of the central lobe and is shown by the 

distance between the vertical dashed lines in red. These almost coincide with the first 

minima of the experimental transform. The corresponding signal for a mid-range 

scan, which now encompasses multiple mode hops, is shown in figure-6.18 (c). As 

anticipated by the results in figure-6.17, the depth resolution (55 m) in figure-6.18 

(d) is practically unaffected by the presence of the mode hops and is still close to the 

theoretical value (47.5 m), which is again indicated by the distance between the 

vertical dashed lines. Finally, figure-6.18 (e) and figure-6.18 (f), show the signal and 

its transform respectively, for a full scan range, (k = 1.00784 × 10
6
 m

-1
,  = 80.1 

nm). Once again the experimental depth resolution (10.8 m) is close to the 

theoretical value (4.3 m), although the deviation of the zero crossing points from 

their corresponding theoretical ones is now somewhat more significant. The results 

for the three scan ranges illustrated in figure-6.18 are grouped in tabular form in 

table-6.5 below.  
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Table-6.5: Tabular form of the results illustrated in figure-6.18 showing a 

comparison between the theroretical and experimentally measured depth resolutions 

for the three scan ranges and the corresponding zero-crossing point drifts (i.e., 

deviations from the theoretical value) for each case. 

Scan-range Depth resolution (z) 
Zero crossing point 

drift 

k (m
-1

) nm Scan % Experimental Theoretical Left right 

4.568×10
-3

 0.4085  0.45 976.0 m 946.4 m 14.8 m 14.8 m 

9.096×10
4
 8.0521 9.00 55.0 m 47.5   m 4.5 m 3.0 m 

1.00784×10
6 

80.5031 100 10.8 m 4.3     m 4.5 m 2.0 m 

 

It is clear from this table that, as one might expect, the short-scan-range Fourier 

transform has a peak width closest to the theoretical value (in fractional terms) and 

that as more gaps are introduced for the medium and full-range scans, the width of 

the Fourier peak (as a fraction of the theoretical value) is somewhat increased.  

6.4 Independent wedge measurements 

One of the main research aims in this chapter has been the development of signal 

processing procedures that allow the successful and unambiguous decoupling of the 

k-axis from the intensity signal. For this reason, the procedure described above 

involving the resampling and re-registration of the raw intensity data onto a regularly 

spaced wavenumber change was implemented. The results of the aforementioned 

procedure seems to be quite promising in that, now, unlike in previous work (see 

reference [21]) where the useful scan range was limited to 37 nm out of the 

approximately 100 nm available, the full scan range can be used. Moreover, the 

experimental depth resolution of the system acquired by evaluating the point spread 

function in the axial direction is quite close to its theoretical counterpart for the same 

wavenumber change. 

One issue with the analysis presented so far is that the spectral analysis has been 

applied to the data from the highest sensitivity wedge, which was also the wedge that 

provided the unwrapped signal to estimate wavenumber change. It makes sense to 

perform the same spectral analysis on the other three wedges, which were only 

indirectly involved in the calculation of wavenumber change, to ensure that the 
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results from the thickest wedge were not influenced by a correlation between the 

two. Figures 6.19(b), 6.20(b), 6.21(b), 6.22(b) show the spectrum of wedge intensity 

in OPD-descending order, starting from the highest sensitivity (thickest) wedge. The 

width of the experimental peak is close to that of the theoretical peak for each wedge. 

This clearly demonstrates that the results from the thickest wedge described earlier 

were not appreciably influenced by the fact that the wavenumber values are derived 

directly from the same wedge. For the case of the thinnest wedge, however, some 

significant side lobe structure is seen as shown in figure-6.22 (b), a fact that is 

discussed in the next sub-section.  

6.4.1 Effect of phase unwrapping errors 

One interesting observation that emerged during the calculations in the previous 

paragraph is that related to the build-up of artefacts around the main spectral lobe as 

the optical path difference starts to deviate from that used for the total k 

computation (see figure-6.21 (b) and figure-6.22 (b) for example). To investigate the 

cause of such discrepancies it would be interesting to compare the results of the data 

processing described in section-6.3 using the two different phase extraction 

algorithms discussed in section-6.2 earlier. 

Figures 6.19-6.22 provide a visual comparison between the two phase extraction 

approaches using a) the integer-based method and b) the improved algorithm 

involving the removal of the diffraction halo and the use of the more accurate and 

precise phase extraction algorithm based on a sub-pixel (non-integer) peak detection 

technique. The benefits of using the proposed approach are not so evident with the 

thickest wedge, with the integer based phase calculation based method resulting in a 

clear, free from side lobes spectrum as shown in figure-6.19 (a). As the OPD differs 

from that for the thickest wedge, the side lobe structures around the main frequency 

peak become more significant as shown in figure-6.21(a) and figure-6.22(a). 

Although these artefacts are present in both cases, it is clear that the improved 

algorithm suppresses these quite significantly (refer to the comparison between 

figure-6.21 (a) with figure-6.21 (b) and figure-6.22 (a) with figure-6.22 (b)). 

A second, quite important observation is that the location of the spectral peak 

corresponding to the wedge central thickness is shifted for all four cases examined 

here. It is, therefore, interesting to compare the measured wedge thicknesses using 
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the three different methods, amongst each other and finally to the manufacturer’s 

data. Note that Method-A is used here to denote the integer-based phase extraction 

algorithm described in section-6.2.1. Method-B refers to the subpixel phase accuracy 

approach in section-6.2.2 after the diffraction halo removal. Method-C on the other 

hand refers to the independent thickness measurements using a conventional 

micrometre. These were taken by measuring the thickness of each wedge at the edges 

and then using linear interpolation to extract the central thickness to avoid damaging 

the sensitive equipment. 

Table-6.6: Tabular form of the resulting central wedge thickness using the three 

different methods in comparison to the manufacturer’s data. Method-A and Method-B 

denote the two algorithms described in section-6.2 while Method-C refers to the 

independent measurements using a conventional micrometer. For the manufacturer’s 

data the three digit figures denote the target value while the superscript entries set the 

minimum and maximum values as given by the allowed tolerance.  

 Central wedge thickness 𝒅𝒄
𝑾𝒏 mm 

Wn Method-A Method-B Method-C Manuf. Data 

1 12.7471 12.7516 12.7550 12.8  
12.8500
12.7500 

2 12.6740 12.6780 12.6600 12.6  
12.6500
12.5500 

3 11.9216 11.9265 12.4350 12.0  
12.0500
11.9500 

4 9.5747 9.5813 9.5900 9.6   
9.6500
9.5500 

 

Table-6.6 above provides a summary of these measurements. It is evident that the 

results obtained using Method-B, are in general close to the micrometre 

measurements, the manufacturer’s data and in most cases fall well within the claimed 

tolerance limits (±0.05 mm). The major disagreement between Method-C and the 

rest, highlighted in red, for wedge-3 is most likely due to human error while reading 

the micrometer. Note that the sub-pixel peak detection algorithm modified to process 

1-D-signals was used to extract the optimised spectral peak location which was then 

converted to length units for both Method-A and Method-B. 

In view of these results and recalling that the main advantage of Method-B over its 

predecessor, Method-A, was that a significant number of the phase unwrapping errors 

in the final phase signal (recall figure-6.9) was removed, it is suggested that the 

effect of phase unwrapping errors is of high importance. The unwrapping errors on 
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the final wedge data simply result in a shift along the wavenumber axis by a whole 

number of intensity cycles which is impossible to detect when the intensity data from 

the same wedge were used to evaluate the depth resolution of the system at first and 

later to extract the central wedge thickness. However, by using intensity data from 

the other three wedges the true impact of the unwrapping errors is revealed and 

twofold: a) taking the form of secondary lobes around the main spectral peak and b) 

distorting the k-axis and in turn causing errors in measuring the true thickness of 

the wedges. It is, therefore, worth investigating how to remove as far as possible 

these errors. This will be the subject of research in the following chapter.  

6.5 Discussion 

Various phase related errors have been reported in the literature on several occasions 

termed as phase instabilities in [215], multiple interference in [216, 217] and phase 

jitter in [198], which are known to contribute towards signal degradation. Scanning 

and other non linearities have also been reported in the literature [66, 77, 153, 218]. 

Hibino et al. used a 19-sample algorithm to suppress the effects of multiple 

interference, which was in turn used to measure a 20 mm thick BK7-glass plate. In 

this chapter, some errors of this type that limit successful depth reconstructions in a 

PC-WSI scheme were identified and appropriate methods to overcome them were 

devised. 

At first, a simple yet effective way to shift the location of the extracted phase of the 

recorded fringe patterns from the image origin to the centre of the image by 

swapping the image quadrants prior to Fourier transformation. Initially, numerical 

simulations were used to demonstrate the validity of the method. At a later stage, 

however, the method was further validated using real data by successfully measuring 

to an acceptable degree of accuracy the individual wedge thicknesses.  

A summary of the main observations made in this chapter is as follows: 

1. Swapping of the image quadrants prior to Fourier transformation can be used 

to extract the phase at the image centre. This was proven using numerical 

simulations and later by successfully measuring the central thickness of the 

wedges. 
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2. The geometry and size of the region of interest plays an important role in the 

accuracy and precision of the extracted phase.  

3. By implementing the sub-pixel peak detection algorithm developed by 

J.M.Huntley in [2], the phase is extracted from the point in the frequency 

domain with maximum signal to noise ratio and therefore results in a more 

accurate phase estimation procedure than that previously used.  

4. A brief analysis of the different factors contributing to the generic term 

“background intensity” has been given, together with a simple way to 

estimate and remove it from the overall signal. Its overall effect on phase 

errors is assessed and its link to fringe contrast is demonstrated. 

5. It was shown that laser mode hops and other nonlinearities in the scans 

prevent successful depth reconstructions using the standard 1-D-Fourier 

transform approach. A method involving the re-sampling and re-registration 

of raw intensity data onto a regularly spaced wavenumber change vector was 

proposed. The reconstructed k axis resulted from the highly sensitive optical 

sensor developed earlier. As a result, full access to the entire scan duration 

which was previously limited down to approximately 40 nm out of the total 

100 nm available, was achieved [21]. 

6. Missing gaps in the data due to upward etalon mode hops have negligible 

effect on the experimentally measured depth resolution, which is close to its 

corresponding theoretical one.  

7. Significant side lobe structure appears on either side of the main spectral 

peak, and is worse for the shorter OPD wedges than for the longest OPD 

wedge. The missing gaps in the data result in identical time-domain window 

functions for all four wedges, and thus identical side lobe structure in the 

frequency domain, and therefore cannot be the main cause of such artefacts. 

Phase unwrapping errors are a more likely cause since they result in a 

distortion of the k axis which affects the different wedges to different 

extents.  

8. It was demonstrated that by supressing some of the unwrapping errors in the 

signal the measured thickness gets closer to the specified value and to the 

independent micrometre measurements. Residual phase unwrapping errors 
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are thus classified as a very significant source of errors in the overall 

measurement process. 

6.6 Conclusions 

A tuneable CW Ti:Sa laser with large scanning ranges (>100 nm) and wavelength 

steps down to a few pico-meters has been developed for wavelength scanning 

interferometry applications. Modifications to the embedded DSP algorithms 

controlling the mode selection devices in the laser have allowed high speed linear 

scans of several tens of thousands of frames at rates of up to 30 frames s
-1

, with 

variable exposure time to compensate for wavelength variation of laser power output 

and camera sensitivity. However, mode hops and other nonlinearities in the scans 

prevent successful depth reconstructions by the standard approach of 1-D Fourier 

transformation of the image sequences on a pixel wise basis. A solution to this 

problem has been developed, which involves measuring wavenumber changes from 

the phase changes in the interferograms from four wedges. The measured 

wavenumber changes are then used to resample the intensity signals on a regularly 

spaced wavenumber vector. With these improvements, depth-resolutions 

approaching the theoretical values are achievable for the full scan. Missing gaps in 

the data due to upward etalon mode hops have negligible effect on the depth 

resolution, but result in some long range signal leakage. Although the missing data 

gaps are a contributory source of the side lobe structure, the main cause is believed to 

be residual phase unwrapping errors. These will cause highly undesirable 

reconstruction artefacts in the eventual application of the system, and additional 

approaches to reducing unwrapping errors further are therefore considered in the next 

chapter. 
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6.7 Figures 

 

Figure-6.1: Diagram showing the three steps involved in the integer-based Fourier 

transform phase extraction process for an image 𝓜𝒎×𝒏 with 𝒎 = 𝒏 and 𝒎,𝒏 ∈ 𝟐ℤ, 

where a) shows the three peaks (d.c and ±P), b) shows the first step where the 

negative frequencies are set to zero, c) shows the second step where the d.c offset is 

removed by setting its neighbouring region also to zero and d) shows the final step 

where the positive peak is shifted in the negative frequency region and its spatial 

coordinates are extracted. 
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Figure-6.2: Simulated fringe pattern using equation-6.1 to demonstrate the effect of 

swapping the image quadrants prior to 2-D-Fourier transformation on the location of 

the phase computed using the ‘Fourier transform method’. a) Simulated fringe 

pattern with kx =15, ky = 12, Nx = Ny = 512, d.c = 0 and the corresponding phase 

value at the image origin Ψ(1,1) in radians using equation-6.1.b) Plan view of the 2-

D-Fourier transform of the fringe pattern in  a), showing the location of the 2-D-

Fourier peak in the spatial frequency domain and the phase computed using 

equation-6.3. c) Fringe pattern in a) after swapping the image quadrants and the 

phase at the image centre Ψ(257,257) using equation-6.1. d) Same as b) but for the 

fringe pattern in c). 
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Figure-6.3: Demonstration of the effect of non-integer kx, ky values by means of 

numerical simulation. Same as figure-6.1 but with kx = 14.45 and ky = 12.43. 

 

Figure-6.4: Demonstration of the effect of non-integer kx, ky values by means of 

numerical simulation. Same as figure-6.1 but with Nx = 714,  Ny = 86. 
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Figure-6.5: Demonstration of the effect of non-integer kx, ky values by means of 

numerical simulation. Same as figure-6.4 but with kx = 14.45 and ky = 12.25. 

 

Figure-6.6: First image of the recorded 48,971 image sequence for a full 100 nm 

scan, showing the identical regions of interest (ROI) for each wedge - ROI size of 

714 × 86 pixels. 
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Figure-6.7: Visual representation of the estimated ‘halo’ for each of the four wedges 

as described in section-6.2.3, with the thickest wedge at the top. 

 

Figure-6.8: Comparison between the phases extracted from the thickest wedge using 

the integer based phase calculation method and the non-integer based phase 

calculation method with the diffraction halo removed. 
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Figure-6.9: Comparison of the extracted phase using the two algorithms described in 

sections 6.2.1-6.2.3. (a) - (d): sections of the full sequence with the highest density of 

phase unwrapping errors (black line) and the evident improvement (red line). 

 

Figure-6.10: Initial data sequence prior to sorting. Reproduction of figure-5.6 
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Figure-6.11: (a) sorted 2-D image sequence in ascending k where the index of each 

frame is stored in the sorting vector J. (b) Reduced size vector J after removing 

duplicate frame entries according to equation-6.12 
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Figure-6.12: Power spectrum |𝐼𝑡(𝑥𝑗 , 𝑦𝑗 , Λ)|
2

 for one pixel near the centre of the 

thickest wedge (black); best fit Gaussian distribution (red). 

 

Figure-6.13: Wavenumber change (k-kc) as a function of non-dimensional time, t. (a) 

Full range; (b) sub-range from (a) showing mode hops. 
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Figure-6.14: (a) Raw intensity signal, It(xj,yj,t), prior to resampling, corresponding to 

the same t-range to that shown in figure-6.13(b); (b) Resampled and re-registered 

intensity signal, I(xj,yj,k-kc), onto the linearized wavenumber change axis, k-kc, using 

linear interpolation for the same t-range as (a). 

 

Figure-6.15: (a) Window function W1(k-kc) over the same range as for figure-6.14; 

(b) Windowed interpolated intensity data, W1(k-kc) I(xj,yj,k-kc), over the same range. 
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Figure-6.16: (a) W1(k-kc) and (b) windowed Intensity data. 

 

Figure-6.17: (a) |𝑊1̃(𝛬)| for the window function in figure-6.16(a) compared to the 

Fourier transform of a ‘gap-free’ top-hat window function of equal width; (b) same 

as (a) but over a wider  range.  is the position of the first zero in |𝑊1̃(𝛬)| for the 

top-hat function. 
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Figure-6.18: Signals for short (a), medium (c) and full-range (e) scans, and their 

corresponding Fourier transforms (b, d, and f). Theoretical and experimental depth 

resolutions (full width down to zero crossing points) are shown by the dashed lines in 

red and black respectively. 

 

Figure-6.19: Decoupling of intensity data from the k-axis for wedge-1: a) Using the 

integer-based method and b) using the improved method described in section-6.2. 

The red and black dashed lines show the theoretical and experimental depth 

resolutions respectively. 
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Figure-6.20: Decoupling of intensity data from the k-axis for wedge-2: a) Using the 

integer based method and b) using the improved method described in section-6.2. 

The red and black dashed lines: theoretical and experimental depth resolutions  

 

Figure-6.21: Decoupling of intensity data from the k-axis for wedge-3: a) Using the 

integer based phase calculation method and b) using the improved method described 

in section-6.2. The red and black dashed lines show the theoretical and experimental 

depth resolutions respectively. Significant side lobe is starting to build up a) with 

some of it suppressed in b). 
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Figure-6.22: Decoupling of intensity data from the k-axis for wedge-4: a) Using the 

integer  based phase calculation method and b) using the improved method described 

in section-6.2. The red and black dashed lines show the theoretical and experimental 

depth resolutions respectively. Significant side lobe is starting to build up a) with 

some of it suppressed in b). 
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Chapter-7: Identification of error sources in wide tuning 

range WSI  

7.1 Introduction 

In Chapter-6, a significant improvement in data processing, owing to the removal of 

the diffraction halo (digitization of the intensity distribution along the wavenumber 

axis, k) and the improved phase extraction algorithm (phase-change w calculation), 

allowed a full 100 nm scan too be analysed in contrast to the more limited 37 nm 

scan range previously reported in [21] with the same setup. The main reason for such 

a significant improvement was attributed to the reduction of the phase unwrapping 

errors in the phase signal used to extract the sought wavenumber axis, k. In spite of 

the aforementioned improvement, however, a curious phenomenon was observed, 

namely a build-up of side lobe structure around the main spectral peak that is worse 

for the shorter OPD wedges than for the longest OPD wedge. 

The investigation of the root cause of such errors and the development of appropriate 

tools for their subsequent suppression will be the main focus of this chapter. More 

specifically, in section 7.2 of this chapter a method based on time-frequency analysis 

(TFA) to assess the performance of the algorithm developed so far is described. TFA 

methods date back to the mid 70’s [219] and have found a wide variety of 

applications in power quality analysis [220-223], fault detection [224], biometric 

authentication [225] and interferometry [226-229]. 

One of the limiting factors to successful depth reconstruction in optical coherence 

tomography (OCT) is dispersion [230-232]. That is, the dependency of the refractive 

index n to the wavelength of light  or the wavenumber k (2/). The standard 

technique to avoid this problem has for a long time been to introduce a dispersive 

element in the sample arm of the interferometer that matches the dispersion in the 

object arm. The development of broadband sources with wide tuning ranges, such as 

the Ti:Sa laser used in this thesis, has significantly improved the depth resolution of 

OCT systems to the few m level. However, as dispersion is in general a depth 

dependent phenomenon a corresponding depth dependent compensation is complex 

and cumbersome to achieve in this manner – see for example references [233, 234]. 
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As a result, a large number of digital methods have been developed instead to 

provide automatic dispersion compensation – see references [235-238] for 

representative examples. 

Apart from the obvious degradation in depth resolution, dispersion is also 

responsible for additional phase terms [230]. Considering that the accuracy and 

precision of the reconstructed wavenumber change axis relies on the measurement of 

the laser induced phase shifts an in-depth investigation of dispersion induced phase 

shifts is given in section-7.3 alongside other factors like laser beam induced errors 

and material induced errors. The chapter concludes by identifying the main error 

sources during a full 100 nm scan, thereby paving the way towards the development 

of appropriate methods for their subsequent suppression.  

7.2 Temporal and spatial signal analysis 

Over the last two decades, the Fourier-Transform (FT) representation of intensity 

data has been established as the most prominent approach in the field of 

interferometry [82-84]. In parallel with the FT representation, an alternative 

technique, often termed as wavelet analysis within the field of digital signal 

processing, was used to detect local variations in the signal frequency [54]. Berger E, 

et al used the wavelet transform (WT) to filter noisy speckled interferograms and to 

identify features of interest [226, 227]. Kaufman G H and Galizzi E G also used the 

wavelet method to reduce speckle noise and study transient phenomena in TV 

holography [239]. Recalling that the parameter of interest in interferometric signals 

is the evaluation of phase, Cherbuliez M et al proposed the wavelet transform as the 

method to extract the sought phase from a time-varying signal with a temporal carrier 

[228]. The method has predominantly been used to study speckled data; however, it 

can be used as a method to assess the performance of the algorithm used on the 

wedge data. To help determine which approach best fits as a suitable criterion for 

evaluating the performance of the algorithm developed so far, a brief description on 

the wavelet analysis approach and the simpler short-time Fourier-transform method 

is given in section-7.2.1 and section-7.2.2 respectively. 
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7.2.1 Wavelet analysis approach 

First, a brief description of the conventional Fourier transform method is given and 

its links to the wavelet transform are highlighted. Following the approach described 

by de Groot [82] and Surrel [83, 84], the Fourier transform of a set of M sampled 

intensity data I(t) where t = 0,1,2,…,M-1 is given by: 

 𝐼(𝑘𝑡) = ∑ 𝐼(𝑡)𝑊(𝑡)𝑒−2𝜋𝑖𝑘𝑡𝑡 𝑁⁄𝑀−1
𝑡=0   ,  7.1 

where W(t) is a continuous window function, kt is a continuous non-dimensional 

temporal frequency and N is the number of samples per cycle of the carrier. 

According to Cherbuliez M et al [228] on the other hand, the equivalent one-

dimensional wavelet transform may be written as follows: 

 𝐼∗(𝑘𝑡, 𝑡) = ∑ 𝐼(𝑡 + 𝑡′)𝑊(𝑘𝑡, 𝑡
′)(𝑀−1) 2⁄

𝑡′=(−𝑀+1) 2⁄ 𝑒−2𝜋𝑖𝑘𝑡𝑡
′ 𝑁⁄   .  7.2 

Comparing the two equations above one can notice two differences between the 

wavelet transform 𝐼∗(𝑘𝑡, 𝑡)  and the Fourier transform  𝐼(𝑘𝑡, 𝑡) . That is, a) an 

unimportant shift in the limits on the summation and b) that the shape of the window 

function is now dependent on kt. 

Consider a symmetrical Gaussian window function as the one used in [54], such that: 

 𝑊(𝑘𝑡, 𝑡) =
𝑘𝑡

𝑁
𝑒−𝑘𝑡

2𝑡2 2𝑁2⁄   .  7.3 

When the window function W(kt,t) is multiplied by the complex exponential in 

equation-7.1 it is an example of a Morlet wavelet. The intuitive advantage of 

wavelets over constant time-duration windows is that they are adaptive. Therefore, it 

follows that the wavelet window used for searching fast changing signals will 

automatically be short compared to one used for slower signals, thereby ensuring that 

the same number of oscillations occur within the window at each one time. 

As we have seen earlier in Chapter-6, prior to Fourier transformation of the intensity 

signal, the extracted wavenumber change from the four wedge sensor is interpolated 

onto a uniformly spaced k-space followed by resampling and re-registration of the 

intensity signal onto the final k-axis. One of the reported issues of using the wavelet 

transform for TFA in non-uniformly sampled data is that the resampling operation 

induces unwanted low-pass filtering and artefacts in the spectrum of non-uniform 
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data [240-242], thereby negating the use of adaptive window sizing offered by the 

method. Arguably, this issue was demonstrated by examining the effect of k-scan 

gaps earlier (see Chapter-6 section-6.3.3 and the figures therein) and was shown to 

be negligible. 

7.2.2 Short-time Fourier-transform approach 

To avoid the unnecessary complexity associated to the variable window function size 

required by the wavelet transform approach, a simpler tool termed the short-time 

Fourier-transform (STFT) method will be used here instead. Its mathematical 

description is almost identical to equation-7.2 with the exception that the dependency 

of the window function to the frequency kt is now dropped. The STFT method has 

been used for the determination of phase and phase derivatives in fringe pattern 

analysis in 1-D [243], and later in 2-D [244, 245]. The method has been suggested 

for refractive index measurement in [243], phase shifter calibration in [244] and local 

frequency measurement in [245]. However, none of the aforementioned publications 

provide real life practical applications. The main focus of this section will be limited 

to the use of STFT in studying the behaviour of the local frequency kt across 

different segments of the total scan duration. 

Finally, it has been reported that errors associated with the STFT stem from end 

effects or transient signals present in the measured time-domain output blocks that 

are uncorrelated with the respective input block [246]. Moreover, in recent studies 

[247, 248], it was shown that the magnitude of the transient effects can be reduced 

with the use of a window function like the well-known Hanning-window, while the 

variance of the frequency estimates can be reduced by introducing a percentage of 

overlap between each block, owing to the increase in the number of averaging 

blocks. The choice of window function used for the TFA was a Hamming-window 

W(t): 

 𝑊(𝑡) = 𝛼 − 𝛽 𝑐𝑜𝑠 (
2𝜋𝑡

𝑁𝑤−1
)  ,  7.4 

where  = 0.54,  = 1- = 0.46 and Nw is the fixed length of the window function. 

Table-7.1 below provides a summary of the parameters used henceforth anywhere in 

the text where the STFT is be used. 
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Table-7.1: Summary of the short-time Fourier-transform parameters used for 

producing the spectrograms of figure-7.1 and figure-7.2. The same parameters hold 

for all spectrograms unless otherwise stated 

Short-time Fourier-transform (STFT) parameters 

Total number of data points in scan sequence Nt 125155 

Window function type W(t) Hamming 

Number of data points in each window Nw 8192 

Percentage overlap  98% 

Zero-padding factor in number of data points Np 16384 

 

Figure-7.1(a) and figure-7.1(b) show the absolute value of the resulting spectrograms 

following the implementation of STFT for the intensity data of wedges one and two 

respectively where the line kt = 1 stretching across the width of the figure is where 

the Fourier peak should appear. The thick white lines, on the other hand, indicate the 

actual location of the Fourier peak. Finally, Wn is the window number and is 

effectively a dimensionless time index similar to t used earlier. Apart from some 

small fluctuation in the width of the Fourier peak indicated by the widening and 

thickening of the white lines as well as some level of reduction in the amplitude of 

the Fourier transform (decaying colour of the white lines from Wn = 700 onwards), in 

both figures the location of the peak is consistent and coincides with line kt = 1 as 

expected. However, this is not the case for the spectrograms of the intensity data for 

wedges three and four. As shown in figure-7.2(a) and figure-7.2(b), around the 

region where Wn ϵ (400,550) the location of the Fourier peak is not unique and in 

some cases it even completely vanishes. Furthermore, unlike figures 7.1(a) and (b) its 

location is no longer coincident with the kt = 1 line showing a relative amount of 

oscillation around kt = 1, particularly towards the end region where Wn ϵ (700,912) 

for wedge three but also at the very beginning for wedge four. The spectrogram 

results shown in the aforementioned figures are quite consistent with figures 6.19(b), 

6.20(b), 6.21(b) and 6.22(b) in that they all illustrate the fact that for the thinner 

wedges the data quality is reduced. However, they also provide the additional 

information of whereabouts within the scan the problems are arising. 
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7.2.3 Wedge thickness-ratio variation 

As it was mentioned earlier (Chapter-6) the main reason for the observed signal 

degradation is likely to be the presence of residual phase unwrapping errors. To 

further investigate the validity of this assumption a simple test is devised involving 

two key quantities. That is phase unwrapping errors and the wedge thickness ratio Rm 

(where m is the index indicating the unwrapping step and in this case is equal to 1). 

Prior to the 1-D optimization using equation-5.30, the ratio R1 for the first 

unwrapping step involving pair of wedges (1,2) and (2,3) was estimated to be equal 

to the ratio of their respective central thicknesses as indicated by equation-5.23 and 

the results for Method-B in Table-6.6, i.e. R1 = (12.7516-12.6780)/(12.6780-

11.9265) = 10.21. This is quite close to the optimum value of 10.314 used. 

R is in effect a spatial parameter which should naturally, in the absence of any 

changes in the physical thickness of the wedges, remain constant throughout the 

duration of the scan. To test this assumption, the scan sequence was divided into 

segments of equal length (590 frames long each), for each of which the unwrapping 

process described in chapter-5 and the 1-D-optimisation for R, was performed 

individually. Figure-7.3(a) shows in green the unwrapped phase change ΔΦ𝑢
1,2(𝑡, 0) 

scaled by the optimum ratio 𝑅𝑜𝑝𝑡
1 = 11.219  for the first scan section where t ϵ 

[1,590], in red the unwrapped phase change ΔΦ𝑢
2,3(𝑡, 0)  using 𝑅𝑜𝑝𝑡

1 × ΔΦ𝑢
1,2(𝑡, 0) 

and in blue the unwrapped phase change ΔΦ𝑢
1,2(𝑡, 0) scaled up by 𝑅𝑜𝑝𝑡

15 = 9.501. 

Note that, the superscripts 1 and 15 in Ropt are used to indicate the optimum R-ratios 

for the initial and 15
th

 segment (for which t ϵ [1,590] and t ϵ [8261, 8850] 

respectively), out of the total 82 segments that the data sequence was divided into. 

Figure-7.3(b) on the other hand shows similar plots to those in figure-7.3(a) with the 

only difference being that the unwrapped phase change shown in red for the segment 

where t ϵ [8261, 8850] was obtained using the optimum ratio for the first segment 

with t ϵ [1,590]. Finally, figure-7.4(b) shows the resulting unwrapped phase change 

ΔΦ𝑢
2,3(𝑡, 0) in red using ΔΦ𝑢

1,2(𝑡, 0) scaled by optimum ratio 𝑅𝑜𝑝𝑡
15 = 9.501 for that 

section. Note that figure-7.4(a) is identical to figure-7.3(a) and is reproduced to aid 

the following comparison. Close inspection of the plots shown in the aforementioned 

figures yields a number of notable remarks. More specifically: 
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a) In figure-7.3(a), after the second wavenumber jump at t = 300, a gap between 

all three plots is starting to build up. As expected given the difference in 

between 𝑅𝑜𝑝𝑡
1  and 𝑅𝑜𝑝𝑡

15 , the deviation for the blue line is largest, whereas the 

red and green lines follow another one another more closely. However, 

whereas the red curve lies under the green curve for t between 300 and 400, it 

lies above it for t > 430, suggesting that an unwrapping error has occurred 

between t = 400 and 430.The optimization process would have therefore 

apparently returned a value for R1 that, whilst it minimizes the cost function, 

is nevertheless too high in this case. 

b) In the same figure, at t = 400 a smaller jump occurs that causes the red and 

green lines to significantly deviate from the blue. At this stage, it is unclear 

whether this small upward hop is in fact due to a laser induced mode hop or it 

is caused by an unknown error source. The fact that it occurs in all three lines 

is reassuring suggesting that this is a laser-induced behaviour. A more in-

depth investigation on this matter will be given in a subsequent section. 

c) In principle, given that the correct ratio for the unwrapping step is chosen, the 

unwrapped phase change shown in red should follow the blue line closely. 

However, the gradient of the unwrapped phase change shown in red tends to 

vary, appearing below the green line and then on top of it at the end of the 

segment (see figure-7.3(a) ) 

d) In figure-7.3(b), apart from the expected mismatch in the gradients between 

the red and blue lines owing to the deliberate choice of an incorrect Ropt for 

that segment of the scan, unwrapping errors are starting to become visible 

(see region just before t = 8700), thereby illustrating that unwrapping errors 

can be caused by incorrect R-ratios. 

e) In figure-7.4(b) on the other hand, even though the correct R-ratio was used 

for the corresponding segment of the scan, the unwrapped phase change 

ΔΦ𝑢
2,3(𝑡, 0)  still suffers from a significant amount of unwrapping errors 

starting at t = 8455 and t = 8800. Moreover, the small downward step 

occurring at t = 8400 in both green and blue lines is not resolved by the 

unwrapped phase which was in fact the case in figure-7.3(b) as well. 

Finally, figure-7.5 shows in black the optimum ratio R as a function of position Wn 

with the latter referring to the scan segment and n being the index of the 82 in total 
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sections (n = 1, 2 ... 82). The line situated at R = 10.550 shown in red indicates the 

average value of the optimum R over the total 82 sections and is fairly close to the 

optimized R of 10.314 value previously reported in chapter-5 and in [20] for the 

limited 400-frame scan. The reasons as to why the fluctuations in the spatial 

parameter R(Wn) are so violent as well as why they span over such a large region 

(Rmin = 9.5, Rmax = 11.5) will be the main focus of the analysis to follow. 

7.3 Error propagation and uncertainty analysis 

Recalling that the extraction of the wavenumber axis is a four step process involving 

the use of phase signals from the four-wedge sensor (see Chapter-5 and [20]), it is 

possible that the accumulation of residual phase unwrapping errors in the 

intermediate steps ultimately lead to distortion of the k-axis that becomes apparent 

when intensity data other than that coming from the highest sensitivity wedge is used 

(refer to Chapter-6 for a more detailed description of the phenomenon). In this 

section, an in-depth investigation of the potential reasons for such errors is provided. 

In section-7.3.1 and in view of the violent fluctuations in the optimum R-ratio 

demonstrated earlier, a simple error propagation analysis is provided to see if 

differences between refractive index could potentially be the cause. In section-7.3.2 

the effect of inaccuracies during the manufacturing stage of the four wedges is 

investigated using the sub-pixel peak detection algorithm used in chapter-6. In 

section-7.3.3, a simple method is described that attempts to extract the refractive 

index dispersion curves of the four wedges and the resulting three synthetic wedges 

is reported. Finally, error sources due to the behaviour of the Ti:Sa laser used here 

are discussed in section-7.3.4. 

7.3.1 Effect of wedge thickness  

Consider three wedges with central thicknesses d1, d2 and d3 and refractive indices 

n1, n2 and n3 respectively as shown in figure-7.6. As mentioned earlier (Chapter-5), 

the interferometric phase for each of the three wedges is given by: 

 

𝜙1 = 2𝑘𝑛1𝑑1
𝜙2 = 2𝑘𝑛2𝑑2
𝜙3 = 2𝑘𝑛3𝑑3

  ,  7.5 
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where k is the wavenumber. Note that the f (θ,α) term has been dropped here for 

simplicity. The interferometric phase changes for the two resulting synthetic wedges 

are then given by: 

 
𝛷2,1 = 2𝛿𝑘[𝑛2(𝑘)𝑑2 − 𝑛1(𝑘)𝑑1]

𝛷3,2 = 2𝛿𝑘[𝑛3(𝑘)𝑑3 − 𝑛2(𝑘)𝑑2]
  .  7.6 

For an infinite small change in k, i.e. k = k0: 

 

𝛿𝛷2,1 =
𝑑𝛷2,1

𝑑𝑘
|
𝑘=𝑘0

= 2[𝑛2(𝑘0)𝑑2 − 𝑛1(𝑘0)𝑑1]

𝛿𝛷3,2 =
𝑑𝛷3,2

𝑑𝑘
|
𝑘=𝑘0

= 2[𝑛3(𝑘0)𝑑3 − 𝑛2(𝑘0)𝑑2]
  .  7.7 

The temporal phase unwrapping algorithm employed so far is a two-step process. At 

first, the unwrapped low sensitivity yet noisy signal is scaled up by a factor R. The 

scaled up version is then used to unwrap the higher sensitivity phase. Therefore, 

strictly speaking the correct R ratio is: 

 𝑅 =
𝛿𝛷3,2

𝛿𝛷2,1
=
𝑛3(𝑘0)𝑑3−𝑛2(𝑘0)𝑑2

𝑛2(𝑘0)𝑑2−𝑛1(𝑘0)𝑑1
  .  7.8 

Assume that the refractive index of the wedges can be expressed as the sum of a 

nominal value �̅� and a deviation 𝛿𝑛 from the latter, such that: 

 

𝑛1(𝑘0) = �̅�1(𝑘0) + 𝛿𝑛1(𝑘0)

𝑛2(𝑘0) = �̅�2(𝑘0) + 𝛿𝑛2(𝑘0)

𝑛3(𝑘0) = �̅�3(𝑘0) + 𝛿𝑛3(𝑘0)
  .  7.9 

Figure-7.7 shows a schematic representation of such behaviour. It, therefore, follows 

that the expression for R can be re-written as follows: 

 𝑅 =
�̅�3𝑑3−�̅�2𝑑2+𝛿𝑛3𝑑3−𝛿𝑛2𝑑2

�̅�2𝑑2−�̅�1𝑑1+𝛿𝑛2𝑑2−𝛿𝑛1𝑑1
  .  7.10 

Note that the dependency of the refractive index to the wavenumber has been 

dropped to aid mathematical simplicity. By letting: 

 
𝑋 = �̅�3𝑑3 − �̅�2𝑑2 , 𝛿𝑋 = 𝛿𝑛3𝑑3 − 𝛿𝑛2𝑑2
𝑌 = �̅�2𝑑2 − �̅�1𝑑1 , 𝛿𝑌 = 𝛿𝑛2𝑑2 − 𝛿𝑛1𝑑1

  .  7.11 

the expression for R can be simplified to: 
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 𝑅 =
𝑋+𝛿𝑋

𝑌+𝛿𝑌
  .  7.12 

Assuming that X << X and Y << Y: 

 𝑅 = (
𝑋+𝛿𝑋

𝑌
) (1 +

𝛿𝑌

𝑌
)
−1

  .  7.13 

Using a first order Taylor expansion for the second term,(1 + 𝛿𝑌 𝑌⁄ )−1, the equation 

above can be re-written as follows: 

 𝑅 =
𝑋

𝑌
+
𝛿𝑋

𝑌
−
𝑋𝛿𝑌

𝑌2
(+ 2𝑛𝑑 𝑜𝑟𝑑𝑒𝑟 𝑡𝑒𝑟𝑚𝑠)  .  7.14 

Neglecting the higher order terms, the sought expression for R may be further 

simplified to a simple sum of a nominal value �̅� and a deviation 𝛿𝑅 such that: 

 𝑅 = �̅� + 𝛿𝑅  ,  7.15 

where, �̅� = 𝑋 𝑌⁄  and 𝛿𝑅 = (𝑌𝛿𝑋 − 𝑋𝛿𝑌) 𝑌2⁄ . The aforementioned transformation 

allows one to investigate the error propagation in computing R, given that there will 

always be some fluctuations from the nominal value. Following some straight 

forward algebraic manipulation, the ratio of R to the nominal value �̅�  can be 

reduced to: 

 
𝛿𝑅

�̅�
=
𝛿𝑋

𝑋
−
𝛿𝑌

𝑌
  .  7.16 

If we now treat the X and Y as random variables, then the refractive index 

fluctuations therefore give rise to an uncertainty 𝜎𝑅  in the calculated �̅� , which is 

described by the general expression: 

 (
𝜎𝑅

�̅�
)
2

= (
𝛿𝑋

𝑋
)
2

+ (
𝛿𝑌

𝑌
)
2

  ,  7.17 

The importance of the numerical expression above lies in that it allows in a straight 

forward manner the investigation of the individual contributions of X/X and Y/Y to 

the overall error in calculating R for a given fluctuation in n. 

Consider for example the simple case where the refractive indices for all three 

wedges have equal and constant nominal values throughout the scan duration, such 

that: 
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�̅�3=�̅�2 ,𝛿𝑛3=−𝛿𝑛2
�̅�2=�̅�1 ,𝛿𝑛2=−𝛿𝑛1

  ,  7.18 

as shown in figure-7.7. The error contributions for such case are given by: 

 

𝛿𝑋

𝑋
=(

𝛿𝑛3
�̅�3
)(
𝑑3+𝑑2
𝑑3−𝑑2

)

𝛿𝑌

𝑌
=(

𝛿𝑛2
�̅�2
)(
𝑑2+𝑑1
𝑑2−𝑑1

)
  .  7.19 

Substituting for the central thicknesses in equation-7.19, yields an error amplification 

factor of 41 and 127 respectively. Consequently, the error propagation equation 

becomes: 

 (
𝜎𝑅

�̅�
)
2

= (41
𝛿𝑛3

�̅�3
)
2

+ (127
𝛿𝑛2

�̅�2
)
2

  .  7.20 

It is worth noting that the mathematical derivation described so far leading to the 

error propagation equation above (equation-7.20) was developed on the assumption 

that the nominal value of the refractive index of the wedges remains constant with 

respect to the wavenumber. This of course is not the case for fused silica in the 

wavelength bandwidth of 750 to 850 nm where the Ti:Sa laser operates. Instead a 

linear behaviour in that region has been reported in the literature [210]. However, it 

can be shown that the analysis required to extracting the equivalent analytical 

expressions for the linear as well as for non-linear cases is similar. The reason for 

choosing the simplest case here was to demonstrate the effect of sample thickness in 

calculating the optimum R-ratio while keeping the mathematical complexity to 

minimum. 

Finally, it is not clear whether the amplification factors in equation-7.20 are capable 

of causing such large and violent fluctuations in R as those illustrated in figure-7.4. It 

is possible that unaccounted errors related to the unwrapping process described in 

chapter-5 are also responsible for these large oscillations in the optimum R-ratio. For 

this reason the phenomenon is further investigated in section-7.4 where an in-depth 

assessment on the performance of the phase unwrapping algorithm developed so far 

is provided. 

7.3.2 Uncertainty in instantaneous peak position 

Consider a simple wedge with an angle  along the wedge direction such as that 

shown in figure-7.8. The difference in phase of the interference signal across the 
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wedge due to the reflections from the front and back surfaces of the wedge is given 

by: 

 𝛥𝛹 = 2𝑘𝑛𝛥𝑑  ,  7.21 

where k is the wavenumber (2/), n is the refractive index of the wedge and d is 

the change in the physical thickness of the wedge across the field of view due to the 

angle  It follows that the number of interference fringes observed across the field 

of view is given by: 

 𝑁𝑓 = 𝛥𝛹 2𝜋⁄   .  7.22 

An alternative way to calculate the number of fringes (Nf ) is from the 2-D-Fourier 

transform of the recorded fringe pattern. After the removal of the d.c and any 

background artefacts, the location of the maximum positive spectral lobe in the 

Fourier domain can be determined using the same sub-pixel peak detection algorithm 

that was used earlier in chapter-6. The spatial coordinates kx and ky where the 

maximum of the 2-D Fourier peak appears in the Fourier domain given by the 

algorithm are in fact equivalent to the number of fringes in the x and y directions of 

the field of view. Therefore, for a perfectly formed wedge the total number of fringes 

across the field of view can be computed by the following expression: 

 𝑁𝑓
(𝑖)(𝑡) = 𝑘𝑟

(𝑖)(𝑡) = √(𝑘𝑥
(𝑖)(𝑡))

2

+ (𝑘𝑦
(𝑖)(𝑡))

2

  ,  7.23 

where t is a dimensionless time index and is equivalent to the frame index. Note that 

the superscript i in the parenthesis indicates the wedge index which in our case takes 

the values i = 1,2,3,4. 

Figure-7.9 and figure-7.10 show the instantaneous 2-D Fourier peak position as a 

function of time, calculated according to equation-7.23. A close inspection of the 

figures yields a number of observations. Wedges 2 and 4 are seen to have a rather 

smooth variation of the number of fringes with frame index, whereas a rather curious 

fluctuation in the instantaneous peak position starting at t = 1 up to t̴ 40,000 is 

observed for wedge 1, and from t̴ 40,000 lasting until the end of the scan for wedge 

three. The origins of the fluctuations are rather difficult to determine at this stage. 

One possible reason for this behaviour is the laser behaviour, for example laser-beam 
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drift and/or beam clipping during the scan. A more detailed justification will be 

given in subsequent sections. 

Table-7.2: List of the coefficients for the resulting polynomials after the LSF. Note 

that, the coefficients a-f appear in descending order i.e.5
th

 power to 0
th

. 

Wedge 

index (i) 

Polynomial coefficients 

a b c d e f 

1 -1.1×10
-23 

1.7×10
-18

 -9.6×10
-14

 1.5×10
-9

 -4.6×10
-5

 42.3 

2 -3.8×10
-25

 1.6×10
-19

 -1.7×10
-14

 3.0×10
-10

 -6.6×10
-5

 37 

3  4.6×10
-19

 -3.3×10
-14

 5.4×10
-10

 -8.4×10
-5

 45 

4  3.3×10
-19

 -3.7×10
-14

 9.2×10
-10

 -1.1×10
-4

 47.7 

The best fit curves illustrated by the red lines in figures 7.9 and 7.10 were obtained 

by least squares fitting 4
th

 or 5
th

 order polynomials to the raw data with the resulting 

coefficients given in Table-7.2 above.  

Moreover, there are three parameters revealed in figures 7.9-7.10 which are of 

particular importance. These are the initial and final number of fringes and the total 

change in the number of fringes during the full scan and are summarized in table-7.3 

below. By inserting the initial number of fringes in equations-7.21 and 7.22 the 

wedge angle  can be estimated. Note that the value used for the starting wavelength 

(  = 750 nm) was extracted from the recorded wavelength values by the embedded 

wavelength sensitive diode (WSD) in the Ti:Sa laser, while the refractive index at 

that wavelength was set to 1.45 in accordance with the Sellmeier equation for fused 

silica (equation-1 in [210]). 

Table-7.3: Summary of parameters using the polynomials in table-7.2 for the four 

wedge cases. Note that t0 and tN in 𝑁𝑓
(𝑖)

, are used to indicate the initial and final time 

instances of the scan, while Δ𝑁𝑓
(𝑖)
 indicates the change in the number of fringes between 

these two instances. 

Wedge 

index (i) 
𝑵𝒇
(𝒊)
(𝒕𝟎) 𝑵𝒇

(𝒊)
(𝒕𝑵) 𝚫𝑵𝒇

(𝒊)
 

Curve fitting: Least 

squares fit 

Wedge angle (

at  =  ~750nm 

1 42.3 39 3.3 5
th

 order polynomial 1.254 min 

2 37 33.3 3.7 5
th

 order polynomial 1.096 min 

3 45 41 4 4
th

 order polynomial 1.334 min 

4 47.7 42.3 5.4 4
th

 order polynomial 1.408 min 
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The results show that the estimated angles for the four wedges are up to a factor of 

two lower than the manufacturer specified value of 2 min (± 0.2 min). On the other 

hand, the change in number of fringes at the start of the scan compared to that at the 

end is not quite the same for all four wedges, with the biggest the difference (2.1 

fringes) observed between wedges one and four and the smallest (0.3 fringes) 

between wedges two and three. This suggests that the rate at which the fringe 

separation changes as the wavelength of the source is tuned is not the same (see later 

section for more details on this observation). 

One concern with the analysis so far, is that it has been implicitly assumed that all 

four wedges comprising the optical sensor have been perfectly formed. It is, 

however, possible that during the manufacturing process of the four wedges, angles 

other than those along the required wedge direction have been introduced. Figure-

7.11 shows a schematic representation of such a case. In fact the tilted fringes as well 

as the change in fringe orientation amongst the four wedges (see figure-7.12), 

suggests rather clearly that this is the case. The presence of such spurious angles 

means that the number of fringes calculated using equation-7.23 is significantly 

underestimated.  

To account for this discrepancy equation-7.23 was modified using a correction factor 

equal to the ratio of the number of pixels along the x-direction (Nx = 714 pixels) over 

the number of pixels in the y-direction (Ny = 86 pixels) in the region of interest, such 

that: 

 𝑁𝑓
(𝑖)(𝑡) = 𝑘𝑟

(𝑖)(𝑡) = √{𝑘𝑥
(𝑖)
}
2

+ {(𝑁𝑥 𝑁𝑦⁄ )𝑘𝑦
(𝑖)
}
2

  ,  7.24 

This represents in effect the number of fringes that would be observed across a 

square wedge with the same wedge angles. It should be noted that the modified 

version of equation-7.23 above only holds true for the case where the pixels in the 

CCD sensor are of square geometry, which is the case for the ICX285 EXview 

sensor in the Prosilica GC1380H model used in this thesis.  

Figure-7.13 and figure-7.14 illustrate the updated tracking of 𝑘𝑟
(𝑖)(𝑡) using equation-

7.24. By comparing figures-7.9(a) and 7.13(a), it is evident that the correction factor 

introduced had a significant impact on the estimated number fringes for wedge-1 
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with the updated number of fringes almost double to that predicted by equation-7.23 

suggesting that the wedge is far from ideal. Another interesting fact revealed by 

using equation-7.24 is that the estimated difference between the number of fringes at 

the start of the scan to that at the end (Δ𝑁𝑓
(1)

), is now almost three times higher to 

that estimated using equation-7.23. 

The parameters, 𝑁𝑓
(𝑖)(𝑡0), 𝑁𝑓

(𝑖)(𝑡𝑁) and Δ𝑁𝑓
(𝑖) = 𝑁𝑓

(𝑖)(𝑡0) − 𝑁𝑓
(𝑖)(𝑡𝑁) ,where t0 and tN 

are dimensionless time indices indicating the start and end of the scan respectively, 

on the other hand, for the rest of the wedges (i.e. i = 2,3,4) remained almost 

unaffected. Table-7.4 below provides a list of the updated parameters. 

Table-7.4: Same as table-7.3 but using equation-7.24 that accounts for wedge plane 

angles other than along the wedge angle direction. Comparing the parameters in 

table-7.3 previously and the current table, suggests that wedge-1 suffers the most 

compared to all other wedges from the presence of the additional angle. 

Wedge 

index (i) 
𝑵𝒇
(𝒊)
(𝒕𝟎) 𝑵𝒇

(𝒊)
(𝒕𝑵) 𝚫𝑵𝒇

(𝒊)
 

Curve fitting: 

Piecewise spline 

Wedge angle (

at  =  ~ 750nm 

1 84.9 75.1 9.8 5
th

 order polynomial 2.516 min 

2 37.8 33.9 3.9 5
th

 order polynomial 1.120 min 

3 48.2 43.6 4.7 5
th

 order polynomial 1.428 min 

4 48.6 43.0 5.6 5
th

 order polynomial 1.440 min 

 

One of the problems encountered in calculating the best fit curve using the least 

squares fit method (LSF) was that slow signal variations were not captured (see 

figure-7.9(a). In fact, a polynomial of degree N can possess N-1 relative maxima and 

minima. A method that allows capturing this behaviour is by performing piecewise 

spline interpolation in which adjacent portions of the curve are tied together at the 

knot (common point shared by the two portions) forming a piecewise polynomial 

curve [249]. The best fit curves shown in figures 7.13 and 7.14 were extracted by 

sectioning the data in blocks of 2,500 data points to each of which a 5
th

 order 

polynomial curve was fitted. The best fit polynomials for each section were then tied 

together to form the best fit curves. In contrast to the LSF method the slow signal 

variations are now better captured thereby clearly demonstrating the benefit of the 
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piecewise approach (see, for example, a comparison of figure-7.13(a) to its 

predecessor figure-7.9(a)). 

7.3.3 Wedge refractive index dispersion curve estimation 

The total change in the unwrapped phase u(t,0) due to the total change in 

wavenumber k (t,0) from a starting wavenumber ki to final value of kf is: 

 𝛥𝛷𝑢(𝑡, 0) = 2𝛥𝑘(𝑡, 0)𝑛(𝑡, 0)𝛥𝑑  .  7.25 

where t is the usual dimensionless time index which is equivalent to the frame index 

and in this case is equal to tN where N is the total number of recorded frames (48,971 

in this experiment). Consequently, the corresponding change in the recorded number 

of fringes for the scan duration may be written as follows: 

 𝛥𝑘𝑟(𝑡, 0) = 𝛥𝛷𝑢(𝑡, 0) 2𝜋⁄ = (1 𝜋⁄ )𝛥𝑘(𝑡, 0)𝑛(𝑡, 0)𝛥𝑑  .  7.26 

At the starting instance of the scan (t = 0) the number of recorded fringes is given by: 

 𝑘𝑟(0) = (1 𝜋⁄ )𝑘(0)𝑛(0)𝛥𝑑 .  7.27 

It follows that the normalised change kr (t,0) with respect to the starting value kr(0) 

at the beginning of the scan can be easily obtained by taking the ratio of the two 

quantities. After some straight forward algebraic simplification using the above two 

equations the normalised change in number of fringes with respect to the initial value 

is given by the expression: 

 
𝛥𝑘𝑟(𝑡,0)

𝑘𝑟(0)
=
𝛥𝑘(𝑡,0)

𝑘(0)

𝑛(𝑡,0)

𝑛(0)
  ,  7.28 

where, k(t,0) = k(0)-k(t), n(t,0) = n(t)-n(0) is the change in the refractive index of 

the wedge as a function of time t and n(0) is the refractive index at the start of the 

scan i.e. at t = 0.  

The significance of the above expression lies in that the first term on the right hand 

side is the same for all four wedges, while the second term is the normalised change 

in the refractive index of the wedge. In the absence of any errors in computing the 

term on the left hand side, equation-7.28 provides a simple way for the estimation of 

the changes in the refractive index of each wedge and consequently a measure of the 

level of dispersion in each of the four wedges.  
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Figure-7.15 illustrates this point showing the normalised changes in the refractive 

index �̃�𝑖  of each wedge as a function of t. Although in the first 4,000 frames the 

difference amongst the four plots is small a gap starts to build up around t = 5,000 

resulting to a significant deviation at the end of the scan in �̃�𝑖  amongst the four 

wedges, suggesting that there is a mismatch in the dispersion curves. This is a rather 

surprising result as the material used to form the optical sensor was claimed to be the 

same for the four wedges. Similarly, figure-7.16 shows the normalised refractive 

index change �̃�𝑖,𝑗, as a function of time t, for the three synthetic wedges where: 

 �̃�𝑖,𝑗(𝑡, 0) = |�̃�𝑖(𝑡, 0) − �̃�𝑗(𝑡, 0)|  ,  7.29 

with i,j used here to indicate wedges pairs (1,2), (2,3), (3,4) and (1,5) where 5 is a 

fictitious wedge with zero thickness. Once again the gap observed earlier in figure-

7.15 is present. However, its starting point tends to drift as shown in figures-7.16(a)-

(c) indicating that its location depends on the synthetic thickness of the wedge. 

Although the study of the refractive index of fused silica as a function of wavelength 

dates back to the early 60’s, reports of its behaviour in the 750-850 nm bandwidth, 

where the CW Ti:Sa laser source operates, are limited to one or two experimental 

data points [210, 250-253] at the start and end of the range. As a result, it is rather 

difficult to validate the behaviour shown in figure-7.15 with real experimental data 

reported in the literature. Nevertheless, it is worth pointing out that nonlinear 

behaviour of the refractive index of fused silica (SiO2) has been reported on several 

occasions [251-253] and has been modelled based on the perturbation theory (see 

eqn-1 in [251]) such that: 

 𝑛 =  𝑛0 + 𝛥𝑛  ,  7.30 

where n0 is the linear index of refraction and n is the intensity-dependent index 

change. According to equation-1 in [251] and the equation in the introduction of 

[252], the second term on the right hand side of equation-7.30 is given by: 

 𝛥𝑛 =  𝛾𝐼  ,  7.31 

with  defined as: 

 𝛾 =
𝑚𝜆

𝐼0𝑇(1+𝑇2)

𝛼

(1−𝑒−𝛼𝐿)
  ,  7.32 
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where m is a phase shift induced due to the change n, I0 is the beam intensity 

incident on the sample, T is the fraction of the intensity transmitted by the sample 

surface,  is the absorption coefficient and L is the sample length (see equation-16 in 

[251]). The importance of equation-7.32 lies in that it includes a dependence of n 

on the sample thickness L. Assuming that all other parameters of equation-7.32 are 

the same for the four wedges, it becomes evident that refractive index n for the four 

wedges would be slightly different, therefore providing a possible explanation for the 

difference in the gradients of the four plots in figure-7.15 and the deviation in the 

refractive indices of the synthetic wedges in figure-7.16. However, the above is only 

a theory as if indeed the wedge material is fused silica then α = 0. 

7.3.4 Laser beam induced errors 

One potential error source that has not been accounted for yet, is that related to the 

shape of the incident beam on the four-wedge optical sensor. Figure-7.17 provides a 

visual comparison between the first and last images in the scan sequence where it is 

clear that the shape of the incident beam on the four wedges is considerably different. 

Even though the beam appears to have shifted to the left compared to its initial 

location, the most likely reason for this change in shape is that the beam at the 

beginning of the scan has been clipped by the optical window at the exit of the Ti:Sa 

head. 

Although a change in beam shape would practically leave the number of fringes seen 

by the CCD unaffected, this is unlikely to be the case for the phase calculated at that 

frequency. To clarify this point, one may consider for the moment that the shape of 

beam can be regarded as a natural window function multiplying the fringe pattern. It 

follows that a change in the shape of the window function would automatically result 

in a change in phase which is not necessarily linked to a change in the number of 

fringes.  

A less obvious, yet rather important point associated with the clipping of the laser 

beam illustrated in figure-7.17 is that the estimated phase at the centre of each of the 

four wedge ROIs, resulting from the swapping of the image quadrants is most 

probably going to be affected. The issue has been partially suppressed by the 

removal of background artefacts (see section-6.2.3 equation-6.11 and figure-6.7), 

however, residuals may still exist that may well contribute towards degrading the 
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accuracy of the estimated phase signal as well as towards the appearance of residual 

phase unwrapping errors. For this reason the issue will be dealt with in more detail in 

section-8.3.5. 

Finally, on closer inspection of figure-7.17(e) and figure-7.17(f) which refer to the 

first and last images of the scan sequence for wedge 3, it is clear that the shape of the 

beam in the last image is more complex with ring-like wrinkles clearly visible. This 

observation suggests that the shape of the beam for wedge 3 towards the end of the 

scan is the most likely reason for the increased fluctuation in 𝑘𝑟
(3)(𝑡) illustrated in 

figures 7.10(a) and 7.14(a) earlier. Although proof of this statement could be 

achieved by accurately tracking the shape of the beam in time, this falls outside the 

scope of this work and will, consequently, be left as a task to be dealt with in future. 

However, an alternative reason to the ring-like structure illustrated in figure-7.17(f) 

may be attributed to the different behaviour of the anti-reflecting coating, applied to 

the wedges, to different wavelengths. This observation was in fact pointed out by 

Yamamoto, A et al. (2001) in a study where the ability to perform surface shape 

measurements by wavelength scanning interferometry using an electronically tuned 

Ti:Sa laser was examined [26]. In this work, the authors concluded that even though 

all optical components were coated with wide-band anti-reflecting coatings, back 

reflections coming from optical components such as imaging lenses and the CCD 

cover slip were responsible for what is termed as ‘coherent noise’. Non-compensated 

residuals of these ‘coherent noises’ were illustrated in figure-5 and figure-9 in [26] 

and were the main reasons for limiting the performance of the WSI system 

developed. The similarity between the aforementioned figures in [26] to figure-

7.17(f) clearly suggests that a similar phenomenon is present in the current WSI 

system and a method to suppress it is worth investigating. 

7.3.5 Material induced errors 

From a material point of view, fused silica is a non-crystalline (glass) form of silicon 

dioxide (quartz, sand). Its atomic structure lacks long range structure, while its highly 

cross linked three-dimensional structure is responsible for the low thermal coefficient 

of thermal expansion the material possesses making it ideal for high temperature 

applications. In general there are different grades of fused silica. High purity sand 

deposits provide the raw material for bulk refractory grade which is electric arc 
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melted at extremely high temperatures. Optical and general purpose fused silica rods 

and tubing are drawn from a melt that is made from high purity chemicals, while 

fibre optic purity is made by thermal decomposition of chemicals that are rich in high 

purity gaseous silica. The glass may be clear or translucent, in which case it is often 

referred to as fused quartz. Its high viscosity allows the glass to be formed, cooled 

and annealed without crystallising [254]. From the above it is obvious that ‘fused 

silica’ is a term that encompasses a range of materials of different grades and 

therefore with slightly different properties tailored to match the application each of 

them is intended for. Although the criteria used to determine the grade of fused silica 

may alter depending on the manufacturer [254-260], these can be generically reduced 

to the following two: a) the impurities content and b) the optical homogeneity, both 

of which are linked to the manufacturing process used to produce the material. 

Table-7.5: Summary of characteristics of different types of materials classified as 

fused silica from two different manufacturers (Heraeus and Corning). 

Product 

name 

Production 

method 

Impurities 

content 

Homoge

neity 

 

range 
Application Ref 

Heraeus 

HOMOSIL 

101 

Quartz glass 

manufactured 

by flame 

fusion of 

natural quartz 

crystals 

Bubble size: 

≤ 0.10 mm  

Free from 

inclusions and 

spots. 

OH content: 

~150 ppm 

From n: 

of ≤ 3 ppm 

to ≤ 1 ppm 

depending 

on grade 

UV and 

visible 

range 

Excellent for 

multiple axis 

optics such as 

prisms, steep 

lenses, beam 

splitters or etalons 

[260] 

Heraeus 

INFRASIL 

301 

Optical quartz 

glass grades 

manufactured 

by fusion of 

natural quartz 

crystals in 

electronically 

heated 

furnace. 

Bubble size: 

≤ 0.15 mm. 

Free from 

inclusions and 

spots. 

OH content: 

 ≤ 8ppm 

From n: 

of ≤ 5 ppm 

to ≤ 2 ppm 

depending 

on grade IR and 

visible 

range 

Multiple axis 

optics such as 

prisms, steep 

lenses, beam 

splitters or 

etalons. 
[259] 

Heraeus 

INFRASIL 

302 

Bubble size: 

≤ 0.20 mm. 

Free from 

inclusions and 

spots. 

OH content: 

≤ 8 ppm 

From n: 

of ≤ 6 ppm 

to ≤ 3 ppm 

depending 

on grade 

Demanding optics 

in one directional 

use such as 

lenses, IR-laser 

windows, optical 

flats etc. 
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Table-7.5 continued 

Product 

name 

Production 

method 

Impurities 

content 

Homoge

neity 

 

range 
Application Ref 

Heraeus 

INFRASIL 

303 

 

Bubble size: 

≤ 0.30 mm. 

Free from 

inclusions and 

spots. 

OH content: 

≤ 8 ppm 

From n: 

of ≤ 10 

ppm to ≤ 6 

ppm 

depending 

on grade 

 

commercial 

optical IR 

application: light 

guide elements, 

beam delivery 

elements, 

microscope slides 

and IR-windows 

 

Heraeus 

SUPRASIL 

Standard 

High purity 

synthetic 

fused silica 

materials 

manufactured 

by flame 

hydrolysis of 

SiCl4. 

Bubble size: 

≤ 0.15 mm  

Free from 

inclusions and 

spots. 

OH content: 

< 1000 ppm 

Not 

specified 

Deep 

UV and 

visible 

range 

Most economic 

grade within the 

SUPRASIL 

family. Used for 

substrates, 

mirrors, light 

guide elements, 

beam delivery 

elements, 

microscope slides 

and 

UV-windows. 

[258] Heraeus 

SUPRASIL 

1 

Bubble size: 

≤ 0.1 mm  

Other: Same 

as above 

From n: 

of ≤ 5 ppm 

to ≤ 2 ppm 

depending 

on grade 

Multiple axis 

optics such as 

prisms, steep 

lenses, beam 

splitters or 

etalons. 

Heraeus 

SUPRASIL 

2 

Bubble size: 

≤ 0.15 to ≤ 

0.25mm 

depending on 

weight. 

Other: Same 

as above 

From n: 

of ≤ 5 ppm 

to ≤ 2 ppm 

depending 

on grade 

preferred 

materials for 

demanding optics 

in one directional 

use 

such as lenses, 

UV-laser 

windows, optical 

flats, etc. 

Heraeus 

SUPRASIL 

3 

From n: 

of ≤10ppm 

to ≤ 5 ppm 

depending 

on grade 



220 

 

Table-7.5 continued 

Product 

name 

Production 

method 

Impurities 

content 

Homoge

neity 

 

range 
Application Ref 

HPFS
®
 

Standard 

Grade, 

Corning 

code 7980 

High purity 

synthetic 

amorphous 

silicon dioxide 

manufactured 

by flame 

hydrolysis. 

Inclusion size: 

≤ 0.1mm to ≤ 

1.27 mm-class 

(0 to 5) 

dependent. 

OH: 800 to 

1000 ppm. 

Other:1 ppm 

Grade 

dependent 

(AA to G): 

n ≤ 0.5 

ppm to 

 ≤ 5 ppm 

UV 

range 
Microlithography [255] 

HPFS
®
 

KrF Grade, 

Corning 

code 7980, 

High purity 

synthetic 

amorphous 

silicon dioxide 

manufactured 

by 

flame 

hydrolysis 

Variable 

inclusion size 

(≤ 0.1 mm to 

≤ 0.5 mm) 

depending on 

class (0 to 2). 

OH content: 

800 to 1000 

ppm. 

Other:  

≤ 0.5 ppm 

Grade 

dependent 

(AA to F): 

n ≤ 0.5 

ppm to 

 ≤ 5 ppm 

Deep 

UV 

range 

248 nm 

lithography 
[256] 

HPFS® 

ArF Grade, 

Corning 

code 7980 

High purity 

synthetic 

amorphous 

silicon dioxide 

manufactured 

by 

flame 

hydrolysis 

Variable 

inclusion size 

( ≤ 0.1mm to 

≤ 0.5mm) 

depending on 

class (0 to 2). 

OH content: 

800 to 1000 

ppm. 

Other: 

 < 0.1 ppm 

Grade 

dependent 

(AA to F): 

n ≤ 0.5 

ppm to 

≤ 5 ppm 

Deep 

UV 

range 

193 nm 

lithography 
[257] 

       

Table-7.5 above provides a list of the different types of fused silica from two of the 

main manufacturers, Heraeus and Corning, along with some of their characteristics 

based on the aforementioned two criteria. Generally speaking, the different types of 

impurities vary in size and content depending on the process and conditions under 
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which the material is formed affecting its optical homogeneity. The latter, is perhaps 

the most important parameter providing a measure of the variability of the refractive 

index n in all three dimensions which for fused silica varies from 10 ppm down to 1 

ppm. In the technical reports describing the products from Heraeus [258-260], 

optical homogeneity is also assessed by the presence of striations in the functional 

and or all three dimensions. More specifically, the products INFRASIL-302,303 and 

SUPRASIL-2, 3 and Standard are likely to have weak striations that are parallel to 

the major faces of the material. This is a rather important point as it provides a 

possible reason that explains the formation of the striations observed on the 

estimated intensity background (recall figure-6.7 and section-6.2.3). On the other 

hand, Corning does not specify such artefacts. However, as these are most likely to 

be caused by the presence of certain types of impurities (see bubble size or inclusion 

size in table-7.5) it is possible that they can be observed in their products as well. 

Generically speaking, crystalline and amorphous (non-crystalline) semiconductors 

and insulators are characterised by exponential optical absorption-edges that are 

generally referred to as the Urbach edges or region (see fig-1(b) in ref [261]). Over 

the past decade there have been a number of experimental and theoretical studies 

suggesting that disorder is responsible for affecting the features of the absorption 

edge in both crystalline and amorphous materials [261-267]. More specifically, the 

absorption edge in amorphous materials like fused silica (-SiO2) is affected by two 

contributing factors to disorder: a) thermal and b) non-thermal [261, 268]. According 

to Vella, E. and R. Boscaino (2009) the non-thermal component of disorder, also 

termed as structural disorder, for amorphous materials originates from the intrinsic 

lack in long-range order and from point defects such as dangling bonds and 

impurities [269]. The concentration of OH is one of the factors contributing to 

impurities that is responsible for the formation of silanol groups (Si–OH) [270]. The 

effect of these groups on structural disorder and the shape of the absorption-edges in 

amorphous SiO2 have been studied by Vella, E., R. Boscaino, and G. Navarra (2008) 

and by Vella, E. and R. Boscaino (2009) [267, 269] respectively. More specifically, it 

was found that the intrinsic absorption edge is affected by the Si-OH concentration 

with high silanol group contents allowing for lower Urbach energy levels [267]. For 

this reason, a year later, the authors studied the effects of temperature on the 

absorption edge in the range of 4-300K for samples having negligible (dry, <10
17

 cm
-



222 

 

3
) and significant (wet, >10

19
 cm

-3
) silanol groups contents [269]. It was found that a 

remarkable difference in the values of the absorption edge and in the temperature 

dependence of the Urbach energy occur in the comparison between the wet and dry 

samples. These were ascribed to the drastic reduction in the degree of disorder in wet 

materials which turn out to be characterised by an electronic structure more similar to 

that of crystalline quartz. The study concludes that silanol groups affect the thermal 

component of disorder by modifying the vibrational modes of the network. It is 

worth noting that the studies on the effect of disorder in amorphous silicon dioxide 

were predominantly carried out in the ultraviolet region of the light spectrum where 

absorption occurs. 

Kitamura, R., L. Pilon, and M. Jonasz (2007) thoroughly and critically reviewed 

studies reporting the real (refractive index) and imaginary (absorption index) parts of 

the complex refractive index of silica glass over the spectral range from 30 nm to 

1000 m from the late twenties up to 2006. From their study it can be concluded that 

the general features of the optical constants over the aforementioned electromagnetic 

spectrum are fairly consistent throughout the literature. More specifically, silica glass 

can be regarded as optically opaque for wavelengths that are shorter than 200 nm and 

longer than 3.5-4.0 m. Strong levels of absorption occurs in three distinct bands of 

the spectral range investigated; a) below 160 nm owing to, the interaction with 

electrons, absorption by impurities, the presence of OH groups and point defects, b) 

at ~ 2.73–2.85, 3.5, and 4.3 m due to OH groups and c) at ~ 9–9.5,12.5, and 21–23 

m caused by Si-O-Si resonance modes of vibration. As far as absorption is 

concerned, the above is quite consistent with the more recent reports mentioned 

earlier. However, one important outcome of the critical review reported in [271] was 

that the actual values of the refractive and absorption indices can vary significantly. 

This is clearly demonstrated in figure-7.18, which is a reproduction of fig-1 in 

reference[271]. More specifically and as far as the refractive index values of silica 

glass are concerned, a rather significant mismatch between the calculated values is 

observed particularly in the region where the Ti:Sa laser operates. On the other hand, 

the absorption indices appear to be fairly consistent and clearly indicate that in that 

specific wavelength range absorption is practically negligible. According to the 

authors, some of the plausible reasons to explain such mismatches were ascribed to 

the following six factors: 
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a. due to the glass manufacturing process, 

b. due to crystallinity, 

c. due to wavelength range, 

d. due to temperature effects, 

e. due to the presence of impurities such as point defects, inclusions and 

bubbles, 

f. and finally, due to the experimental uncertainties and approximations in the 

retrieval methods. 

Although the origin of the material used for the four-wedge optical sensor was not 

specified by the supplier (see appendix-A4 for more information), the varying level 

of striations present in the four wedges (figure-6.7) suggests that it is possible that 

the four wedges were manufactured from slightly different grades of fused silica with 

optical homogeneity that is much lower than that specified by the high end products 

from Heraeus and Corning reviewed in table-7.5. Moreover, the extensive review in 

[271] indicates that a mismatch in the refractive index dispersion curves amongst 

different silica glasses is possible, thereby providing a potential explanation for the 

behaviour of the refractive index change trends shown in figure-7.15 and figure-7.16 

earlier. 

7.4 Discussion 

In the view of the recent improvements reported in the previous chapter, in this 

chapter, an investigation of the error sources present in the full 100 nm scan using 

the wedge intensity data is presented. The reason behind this lies in that besides the 

ability to access the full 100 nm scan in contrast to the previous limit of 37 nm 

reported in [21] with the same setup, a phenomenon in the form of side lobe structure 

around the main spectral peak was observed. As the wavenumber change is the same 

for all four wedges, the re-registration of the raw intensity data onto the k-axis 

followed by Fourier transformation should yield clear spectral peaks at frequencies 

that are proportional to the thickness of the wedges in all four cases. Despite the fact 

that the resulting estimated frequencies closely matched the independent thickness 

measurements using a conventional micrometer, the presence of side lobe structure 

around the main spectral peaks, for wedges three and four, raises concerns about the 

accuracy of the estimated k axis that is crucial for the successful depth 
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reconstruction from the intensity of the interference signal and its associated phase. 

The aforementioned structure was attributed to residual phase unwrapping errors that 

are still present in the phase signal used for the estimation of k-axis and are 

therefore likely to cause distortions in k. Considering that the wavenumber-change 

monitoring sensor constitutes only a part of the phase-contrast, full-field, multi-axis 

tomographic interferometer under development and whose ultimate purpose is to 

provide accurate means of calculating the laser induced wavenumber changes onto 

which the interference signal from the 6 channels will be re-registered and 

subsequently analysed, it becomes clear that the identification of the error sources 

responsible for the residual phase unwrapping errors is of paramount importance for 

their subsequent suppression. 

At first, a tool that is based on a time frequency analysis with the use of the short-

time Fourier transform method has been employed to assess the performance of the 

algorithms developed so far. The resulting spectrograms are consistent with the 

presence of the structure observed around the main Fourier peak earlier by the 

occasional signal loss and in some cases the slow time-varying location of the 

spectral peak above or below the expected line of kt =1. In the second step of the time 

frequency analysis a check on the optimum wedge thickness ratio variation was 

performed revealing unexpectedly large fluctuations in R as a function of time t. 

Strictly speaking, the ratio R is a spatial parameter which in the absence of any 

changes in the dimensions of the wedges, should in principle remain constant 

throughout the whole scan duration.  

In previous studies on WSI systems developed for absolute thickness measurements 

and/or profilometry there have been no reports on a system with such a wide tuning 

range as that used in this work. More specifically, de Groot, P (2000) reported on a 

WSI system based on a Fizeau setup for the measurement of a 10 cm thick 

transparent plate with a tuning range of 7.5 pm [143]. Two years later Deck, L.L 

(2002) reported on a similar setup that was capable of measuring the optical 

thickness of a transparent flat (Fused silica 84 mm thick) with a tuning range of 4 nm 

[150]. Hibino, K., B.F. Oreb, and P.S. Fairman (2003) successfully measured the 

thickness of transparent plates (25 mm thick) with a tuning range of 0.028 nm [151], 

while Deck, L.L., (2003) measured an 8-mm thick plate using a slightly larger range 
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of 0.134 nm [31]. Hibino, K., et al. (2004) reported on a similar system and measured 

a transparent near parallel flat BK7 glass sample that was 25 mm thick with a similar 

tuning range of 0.095 nm [77]. Within the same year, Hibino, K., et al. (2004) 

reported on a similar WSI setup that was used for the measurement of a BK7, 20 mm 

thick glass flat with a significantly larger tuning range of 0.25 nm [152]. A similar 

report was published two year later by the same authors [153]. Following a four year 

period of pause in the field of absolute thickness measurements, Ghim, Y.-S., A. 

Suratkar, and A. Davies (2010), reported on a reflectometry based WSI setup to 

measure the thickness of thin silicon wafers of 200 m and 60 m thick with a much 

wider wavelength tuning range of 4 nm [156]. Two years later, Hibino, K., et al. 

(2012), revisited the approach by reporting on the successful depth-resolved 

measurement of a synthetic fused silica glass plate with a thickness of 3.1 mm using 

a much larger tuning range than previously reported of 10 nm [158]. Finally, Yu, H., 

C. Aleksoff, and J. Ni, (2013), further pushed the tuning range limit, by an additional 

6 nm to 16 nm, by measuring a 3 mm thick quartz block [159].  

From the above brief review, it is clear that the larger the tuning range used, the 

smaller the thickness of the transparent plate measured. One of the main reasons that 

limit the measureable thickness is the effect of refractive index dispersion. Apart 

from the undesirable effect of degrading the depth resolution of the system, 

dispersion is also responsible for additional phase terms [230, 231] that in turn limit 

the accuracy of the phase measurement and thus the ability of the system to perform 

absolute thickness measurements. It follows that the longer the physical distance, in 

this case the thickness, the light has to travel inside the test sample the larger the 

effect of these additional phase terms. For this reason, the effect of the wedge 

thickness on the approach adopted so far was studied theoretically for the simple case 

of a nominal refractive index value that is constant and equal for all four wedges but 

with small variations that in the worst case scenario are diametrical opposite. The 

analysis showed that in the presence of these excursions, an error amplification factor 

of 41 and 127 in the error propagation expression in R (see equation-7.20) derived 

for the first unwrapping step appears. Considering that these get further amplified by 

the scaling ratios in steps two and three, it seems like a plausible explanation for the 

residual unwrapping errors still present in the signal. However, it is unlikely that the 

violent fluctuation in R for the first step can be explained solely by this reason. 
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In the brief review of similar studies provided earlier, all of the optical setups were 

realized in a Fizeau arrangement with the measurement volume (transparent flat 

surface to be measured) stacked behind a series of reference surfaces [77, 143, 150-

153, 156, 159]. In contrast to the aforementioned studies, in the optical setup 

described in this work the four wedges are stacked on top of each other such that the 

intensity of the interference signal recorded and any artefacts associated with it are 

isolated to each individual wedge alone. Following the suppression of intensity 

background artefacts and with the use of the non-integer peak location algorithm 

introduced earlier in section-6.2.2 and section-6.2.3 respectively, a method of 

estimating the changes of the refractive index n of each of the wedges as function of 

wavenumber k was introduced. To limit errors owing to the potential existence of 

angles along directions other than the wedge direction, a simple correction factor was 

introduced. The resulting refractive index change curves for both the four individual 

wedges (recall figure-7.15) and the synthetic wedges (recall figure-7.16) used for the 

extraction of the k-axis, verify the presence of the non-linearities whose effect was 

previously investigated in the hypothetical scenario of a constant nominal value of 

the wedge refractive index but with the presence of excursions with opposite signs. 

More importantly, however, the results indicate: a) significant deviation from the 

expected linear behaviour of n(k) for fused silica and b) a surprising, yet significant, 

difference in the gradient of the estimated dispersion curves that suggest there is a 

mismatch in the refractive index dispersion trend amongst the four wedges. 

The theoretical model based on perturbation theory reported in the early study of 

Weber, M.J., D. Milam, and W.L. Smith (1978) [251] (see equation-7.32). provides 

one possible explanation for the observed n(t) curves. The model predicts a 

dependence of n on the parameter L in equation-7.32 that is linked to the length of 

the path travelled by light inside the sample which of course is significantly different 

for the four wedges used in this work. 

Finally a review of the potential material-induced errors was performed in section-

7.3.5. The study revealed that the generic term fused silica encompasses a wide range 

of materials that may possess different optical properties depending on the 

manufacturing technique used. Moreover, a recent review (2007) on studies of the 

refractive index dispersion for fused silica that dates back to the early 30’s and 



227 

 

stretches until the first decade of this millennium [271], confirmed that a small 

mismatch amongst the dispersion curves of the four wedges is after all quite possible. 

7.5 Conclusion 

As the title indicates, in this penultimate chapter, an attempt to identify the potential 

errors sources that may contribute towards degrading the accuracy and precision of 

the reconstructed wavenumber axis using the four-wedge optical sensor has been 

provided. These are: (a) residuals of intensity background artefacts, (b) a mismatch 

amongst the refractive index dispersion curves for the four wedges and (c) the 

amplifying effect that the wedge thickness has in the presence of such n-dispersion 

mismatches. Although all three effects are likely to play a role, residual phase 

unwrapping errors are still believed to be responsible for much of the undesirable 

structure in the observed spectra. Further attempts to reduce their influence will 

therefore be investigated in Chapter 8.  
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7.6 Figures 

 

Figure-7.1: Time-frequency analysis using the short-time Fourier-transform for the 

intensity data from wedge-1 (a) and wedge-2 (b). 

 

Figure-7.2: Time-frequency analysis using the short-time Fourier-transform for the 

intensity data from wedge-3 (a) and wedge-4 (b). 
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Figure-7.3: (a) Blue: temporally unwrapped phase change ΔΦ𝑢
1,2(𝑡, 0) scaled by the 

optimum ratio for the 15
th

 segment. Green: same as blue but scaled by the optimum 

ratio for the 1
st
 segment of the scan. Red: unwrapped phase change ΔΦ𝑢

2,3(𝑡, 0) using 

the green plot. (b) Same as (a) for the 15
th

 segment of the scan. 

 

Figure-7.4: (a) Same as figure-7.3(a) to aid comparison. (b) Same as figure-7.3(b) 

but with the unwrapping performed using the blue line instead of the green used 

earlier. 
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Figure-7.5: Black line: Optimum R-ratio variation as a function of scan position Wn 

with n indicating here the index of the 82 in total sections that the scan was divided 

to. Red line: Average optimum ratio (R = 10.250) over the total 82 segments. 

 

Figure-7.6: Schematic showing the three wedges considered for the error propagation 

analysis in section-7.3.1. 

X-direction 

𝒅𝟐 

WG3 

𝒅𝟑~𝟏𝟐. 𝟎 𝒎𝒎 

𝒅𝟐~𝟏𝟐. 𝟔 𝒎𝒎 

𝒅𝟏~𝟏𝟐. 𝟖 𝒎𝒎 

Ζ-direction 

𝜶𝟑 

𝜶𝟐 

𝜶𝟏 

 

 

 

 

WG1 

WG2 

𝒅𝟏 

𝒅𝟑 

𝜶𝟑 ≈ 𝜶𝟐 ≈ 𝜶𝟏 ≈ 𝜶 ≈ 𝟐𝒎𝒊𝒏 

n1 

n
2
 

n
3
 



231 

 

 

Figure-7.7: Hypothetical behaviour of the refractive index n with respect to the 

wavenumber k (=2π/) of the laser source for the analytical derivations involving the 

three wedges considered in section-7.3.1 

 

Figure-7.8: Schematic diagram showing a simple wedge. The interferometric change 

in phase due to the front and back reflections at the two points denoted by the black 

spots is given by  = 2knd, where k is the wavenumber, n is the refractive index 

and d the difference in thickness due to the wedge angle . 
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Figure-7.9: Instantaneous 2-D Fourier peak position as a function of time 𝑘𝑟
(𝑖)(𝑡) 

using equation-7.23, for (a) wedge-1 and (b) wedge-2, where i is the wedge index. 

Red lines indicate the best fit curve using LSF (see table-7.2); black lines show the 

row data extracted from the sub-pixel peak detection algorithm in section-6.2.2 after 

applying equation-7.23. 𝑘𝑟
(1)(𝑡)  shows an increased level of fluctuation when 

compared to 𝑘𝑟
(2)(𝑡), the signal also shows some slow varying changes which are not 

present in (b) and are not captured by the best fit curve. 

 

Figure-7.10: Same as figure-7.9 but for (a) wedge-3 and (b) wedge-4. A rather 

curious increase in the fluctuation of 𝑘𝑟
(3)(𝑡) towards the end of the scan is clearly 

visible which is not present for 𝑘𝑟
(4)(𝑡). 
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Figure-7.11: Schematic diagram showing (a) a perfectly formed wedge with a single 

wedge angle  and (b) a wedge where apart from angle  an additional angle  

exists. 

 

Figure-7.12: First image in the scan sequence illustrating the presence of tilted 

fringes as well as the difference in fringe tilt in the four wedges comprising the 

optical sensor developed in this thesis. Rectangles indicate the individual regions of 

interest (RoI) for each wedge with dimensions (Nx, Ny) = (714, 86) pixels. 
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Figure-7.13: Instantaneous 2-D Fourier peak position as a function of time 𝑘𝑟
(𝑖)(𝑡) 

using equation-7.24 for wedge-1(a) and wedge-2 (b) where i is the wedge index. As 

previously, red lines indicate the best fit curve while black lines show the row data 

extracted from the sub-pixel peak detection algorithm. Note that the best fit curves 

were fitted using the piecewise method described in section-7.3.2 instead of the LSF 

method. 

 

Figure-7.14: Same as figure-7.13 but for (a) wedge-3 and (b) wedge-4. 
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Figure-7.15: Plots showing the normalized change in the refractive index �̃�𝑖 of each 

wedge as a function of time (t) using the piecewise curve fitting method to the raw 

data using equation-7.28, where i is the wedge index (i = 1,2,3,4). 

 

Figure-7.16: Comparison of the absolute changes in the refractive indices of the 

synthetic wedges (i,j) using equation-7.29: (a) Between synthetic wedge (1,2) and 

(2,3), (b) (2,3) and (3,4) and (c) (3,4) and (1,5) where 5 is a fictitious wedge of zero 

thickness. Note that the starting location of the gap that gradually increases as the 

scan progresses, between the pair of graphs gradually drifts to the left as the synthetic 

wedge thickness d
i,j

 is exponentially increased. 
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Figure-7.17: Left column (a, c, e, g) demonstrates the shape of the laser beam at the 

start of the scanning sequence while the right column (b, d, f, h) shows the shape of 

the beam in the last image of the sequence. Visual comparison of the two columns 

gives the impression that the beam has drifted to the left compared to its initial 

location. 
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Figure-7.18: Copy of fig-1 in ref [271] showing the real (refractive index n) and 

imaginary (absorption index, k) of the complex refractive index of silica glass as 

function of wavelength for the 0.01 to 1000 m range. Note the discrepancies in n in 

the wavelength range where the Ti:Sa laser operates. 

 

Ti:Sa operating range 

Ti:Sa operating range 
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Chapter-8: Phase unwrapping for tomographic applications 

8.1 Introduction 

All phase-contrast optical techniques rely upon the evaluation of the phase of a fringe 

pattern (smooth wave-fronts) or speckled pattern, commonly known as 

interferograms, followed by the subsequent transformation of the latter to the 

parameter of interest [53, 54]. There are four main steps involved in the analysis of 

interferograms after the digitization of the intensity distribution as shown in the 

schematic diagram of figure-2.1. The first step involves the extraction of the phase 

(w) by measuring the intensity as known shifts are introduced between the two 

interfering waves. In the next step, the phase-change (w) relative to some reference 

interferogram is calculated. In the case where the true phase-change value is slightly 

greater than π, the calculated value will appear to be 2π lower. In such cases, phase 

unwrapping is required where integral multiples of 2π are added to the phase-change 

values in order to remove the 2π discontinuities. Finally, in the last step the 

unwrapped phase map (u) is converted to the quantity of interest. If the sought 

parameter is a displacement field (u) or the extraction of the wavenumber axis (k) 

of a tuneable laser source as in our case, a simple scaling factor is required [54]. It is 

therefore obvious that the quality and reliability of the sought quantity highly 

depends on the robustness of the unwrapping algorithm used. 

In this final chapter a detailed investigation on the performance of the temporal phase 

unwrapping algorithm used and described earlier in chapter-5 is provided. At first an 

overview of the temporal phase unwrapping strategies developed so far and their 

application is given in section-8.2. In view of the main error sources contributing 

towards the degradation in the accuracy of the k-axis being the refractive index 

dispersion and non-compensated residuals of intensity background artefacts owing to 

the multiple reflections inside the wedges, a set of new phase unwrapping strategies 

designed to address issues related to depth-resolved thickness measurements is 

provided in section-8.3. Finally in section-8.4 the ability of the different approaches 

to produce a more accurate and precise k axis is assessed by testing the accuracy 

with which the thickness of each of the wedges can be determined using as a 

reference the independent micrometer measurements. The importance of the work 
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presented in this chapter lies in that, to the best of the author’s knowledge, this is the 

first time that established links between the error sources highlighted earlier in 

chapter-7 and phase unwrapping errors is provided. 

8.2 Overview of temporal phase unwrapping strategies 

Ideally, in wavelength scanning interferometry the wavelength of the source is tuned 

sequentially thus providing known phase shifts that are proportional to the change in 

wavelength. As each wavelength during the scan corresponds to a unique time 

instance, it becomes obvious that temporal as opposed to spatial phase unwrapping 

is, therefore, an appropriate strategy to use provided the signal is sampled 

sufficiently rapidly along the time axis. 

From a historical point of view, it was in the early 90’s that Huntley, JM and Saldner, 

H proposed an alternative approach to the existing phase unwrapping strategies that 

at the time were restricted to searching the two-dimensional spatial domain for 2 

discontinuities [172]. The new approach was based on a one-dimensional 

unwrapping strategy along the time axis, instead of the traditional two-dimensional 

spatial domain, thereby opening the ground to an important subclass of 

interferometry where the parameter of interest is phase differences as opposed to 

phase values [172]. Finally, as far as the applicability of the method was concerned, 

the authors clearly state that it is only suitable in situations where a) the phase map 

builds up slowly and b) where the parameter of interest is phase-changes as opposed 

to phase values. In other words, the gradient of the computed phase-changes should 

be such that: 

 |𝑑𝜙 𝑑𝑡⁄ | ≤ 𝜋 𝜏⁄   ,  8.1 

at all pixels throughout the experiment and where  is the phase sampling interval.  

It is worth noting, however, that almost a decade before the published work of [172] 

a similar approach was proposed in a short study by Itoh, K independently (compare 

equation-7 in [208] to equation-10 in [172]), albeit the applicability of the strategy to 

interferometry and in particular the transferring of the unwrapping problem from the 

spatial to the time domain was not highlighted. 
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A few years later, in an attempt to compare the success rate of two temporal phase 

unwrapping strategies where in the first the unwrapping was performed through a 

sequence of phase maps with a linear change in the spatial frequency with time and 

the second where only the first and last maps in the sequence were used, a new 

approach emerged [1]. That is, a method in which the spatial frequency is changed 

exponentially with time instead. The new method, termed temporal phase 

unwrapping using a forward exponential sequence to indicate the manner in which 

the fringe density is changed, was found to be superior to its linear contender [1]. 

In parallel to the discovery of the benefits associated with the use of the forward 

exponential algorithm, the same authors undertook a study on different methods 

aiming at reducing shape measurement errors rising from the use of four temporal 

phase unwrapping algorithms [211]. What follows is a brief description of the study 

published in [211] and the reasons for doing so will become clear shortly. 

In practice measured phase values will almost always suffer from errors associated 

with them. Assuming that these errors are additive and of Gaussian nature, the 

measured sequence of unwrapped phase values is given by: 

 𝛷(𝑡) = 𝑔(𝑡) + 𝜖𝜙  ,  8.2 

where ϵ is a random variable taken from a Gaussian distribution, with a mean of 

zero and a standard deviation of . On the other hand, the first term on the right 

hand side of equation-8.2 denoted by the letter g is a function of time t which in the 

case of a linear growth in fringe density becomes: 

 𝑔(𝑡) = 𝜔𝑡  ,  8.3 

where ω is a non-dimensional frequency that represents the rate of change in phase 

as a function of the non-dimensional time t which in other words is the slope of (t). 

Note that after substituting equation-8.3 into equation-8.2 the resulting expression 

reduces to equation-9 in [211]. In order to reduce the error in estimating ω that would 

otherwise result by simply dividing the last term in the unwrapped sequence by the 

total number of terms in the presence of noise (see equation-10 in [211]), for the 

linear case, the authors proposed the use of least square fitting to equation-8.2. The 

proposed approach showed great improvement as far as the estimation of ω was 



241 

 

concerned for the linear case but very little for the case of the forward exponential 

algorithm. This was attributed to the fact that in the latter case, the phase values used 

for estimating ω were all clustered around the lower end of the  versus t plots. 

Naturally, these do not provide reliable estimates of the sought gradient and have 

therefore insignificant contribution to the least square estimate of ω. To overcome 

this issue, the number of fringes was decreased exponentially from a maximum value 

to zero instead, resulting to what is termed as ‘the reverse exponential temporal 

phase unwrapping algorithm’. The method combined an increased reliability in 

unwrapping, a reduced data acquisition and processing time as well as lower number 

of measurement errors deeming it superior to its predecessor. This in fact is the 

underlying reason as to why the four wedges comprising the optical sensor 

developed in this thesis were designed such that their individual central thicknesses 

follow a reverse exponential sequence. 

Last but not least, it should be noted that the non-dimensional frequency ω, 

mentioned earlier, practically corresponds to the thickness of each of the four wedges 

here. This is a rather important point in that it will form one of the two criteria used 

henceforth to assess the ability of the unwrapping algorithm in successfully 

estimating the true central thickness of the four wedges examined here; the other 

being the quality of the resulting spectrograms (i.e. the short-time Fourier transform 

method described in section-7.2.2). 

Ever since its emergence as a valid method for phase measurements, the temporal 

phase unwrapping approach has found a wide range of applications. These include 

shape measurements using fringe projection methods [272-276], the study of 

dynamic events using high-speed phase-shifted speckle pattern interferometry [277-

281], the measurement of subsurface delaminations in carbon fibre re-enforced 

polymers (CFRP) [282], the detection and sizing of delamination cracks in composite 

panels [283] and the real-time visualization of deformation fields [284] in speckle 

pattern interferometry as well as for stress analysis in photo-elasticity [285] to name 

a few. However, to the author’s best knowledge, there have been no reports of phase 

unwrapping been used as a tool for dispersion compensation and the suppression of 

coherent noise induced errors [26] to date. 
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8.3 Dispersion and noise immune phase unwrapping 

As mentioned earlier, dispersion [230-232] is one of the factors that limit the 

successful depth-resolved imaging of both intensity and phase. Moreover, multiple 

reflections inside the test sample give rise to spurious background artefacts termed 

‘coherent noise’ [26, 89, 286-299] which in turn degrade the accuracy of phase 

measurements. Unlike previous studies in which appropriate filters are designed to 

suppress the effects of noise [89, 286-299] and refractive index dispersion [235-238], 

a different approach is adopted here in which links between these type of errors to 

phase unwrapping errors are established. As a result a group of different phase 

unwrapping strategies that are immune to dispersion and ‘coherent noises’ are 

investigated.  

8.3.1 Initial dispersion correction considerations 

One of the main assumptions to the analysis presented so far is that the dependency 

of the refractive index n on the instantaneous wavenumber of the light k is weak. 

Thus, a constant value of n = 1.4532 was assumed for the wedge material. If on the 

other hand, the wedge material is dispersive, a method for dispersion correction is 

required. One way of doing so is by modifying equation-5.28 to take account of the 

changing refractive index as the wavelength scan progresses. By rearranging 

equation-5.28, the following expression is obtained: 

 𝛥𝑘(𝑡, 0) =
𝛥𝛷𝑢

𝑖𝑁𝑠+1,𝑗𝑁𝑠+1

𝑛(𝑡)𝑑𝑠
𝑚𝑎𝑥𝑓(𝜃,𝛼)

− 𝑘(0) (
𝑛(0)

𝑛(𝑡)
− 1),  8.4 

where k(t) and n(t) denote the wavenumber and the refractive index for the t
th

 frame. 

According to the standard Sellmeier formula (equation-1 in ref [210]), the 

dependence of n on k for fused silica glass is almost linear over the wavelength range 

750 to 850 nm, as was shown earlier in figure-5.20. Due to the dependency of n on k, 

the procedure to solve equation-8.4 is of iterative nature and is described by the 

following two steps. At first, the starting wavenumber, k(0), and the refractive index, 

n(0), at t = 0 are obtained iteratively through the use of equation-5.33. In the second 

step another iterative solution is required involving equation-8.4 in which at first n(t) 

is assumed to be equal to n(0). This allows an initial estimate for the time-varying 

wavenumber to be obtained according to: 

 𝑘(𝑡) = 𝑘(0) − 𝛥𝑘(𝑡, 0).  8.5 
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An improved estimate for n(t) can then be calculated from the dispersion curve, 

which in turn [through equation-8.4] gives an improved estimate for k(t,0), and 

hence for k(t). In the case of the dispersion curve (see figure-5.20) used here, only 

five iterations are needed to achieve convergence to 11 significant figures.  

8.3.2 Constant Fourier-peak re-referencing 

Huntley, J.M., G.H. Kaufmann, and D. Kerr (1999) reported on a phase-shifting out-

of-plane speckle interferometer operating at 1 kHz for the study of dynamic events in 

which phase extraction was performed using a standard four-frame algorithm (to 

calculate w) and temporal phase unwrapping (to calculate u) [277]. In their 

work it was pointed out that, if the deformation of the object (analogous to phase) to 

be measured becomes too large, the recorded speckled interferograms become 

completely de-correlated causing a significant increase in the noise of the calculated 

displacement fields. Figure-8.1(a) provides a schematic illustration of this 

phenomenon, where u denotes the speckle movement across the field of view of the 

CCD and D is the diameter of the entrance pupil. When the ratio ρ = u / D is greater 

than or equal to unity (i.e. u ≥ D), complete speckle decorrelation occurs, as 

schematically illustrated in figure-8.1(b). To overcome this issue, the authors 

proposed the updating of the initial reference state t = 0 to a new one at times t = t1, 

t2, t3 etc. Figure-8.2 provides a schematic illustration of the proposed approach. The 

total unwrapped phase change over  such referenced events is therefore given by the 

following expression: 

 𝛥𝛷𝑢(𝑡, 0) = 𝛥𝛷𝑢(𝑡, 𝑡𝜅) + ∑ 𝛥𝛷𝑢(𝑡𝑘, 𝑡𝑘−1)
𝜅
𝑘=2 + 𝛥𝛷𝑢(𝑡1, 0).  8.6 

Wavelength changes can also cause speckles to move across the aperture thus 

making the above approach attractive for the analysis of speckle interferograms in 

WSI in the future. Although the analysis presented so far is not concerned with 

speckled interferograms but rather with the processing of the fringe patterns formed 

by the smooth wavefront (four-wedge sensor), an analogy can be drawn. That is, as 

the wavelength is tuned the position of the 2-D Fourier peak is gradually shifted and 

is, therefore, necessary to update the frequency at which the phase is evaluated after 

several wavelength increments. Strictly speaking this would be necessary regardless 

of whether the wedge material is dispersive or not. However, in the presence of 

dispersion an additional phase-term owing to the change of the refractive index as a 
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function of the wavelength will cause the computed phase-change to change faster 

than expected. Although, to date, there has been no reports on the actual relation 

between the position of the spectral peak position and its associated phase, the study 

by Huntley, J.M. and H.O. Saldner (1997) on error-reduction methods for shape 

measurements by temporal phase unwrapping suggested that it is of direct nature 

(visual comparison of fig.6 (b) to fig.6 (e) in ref [211]). In other words, a shift in the 

frequency at which the Fourier peak appears is directly encoded in the phase 

calculated using equation-6.3. Assuming that this holds true it follows that the 

change in phase due to the change in the refractive index is also encoded at the 

location of the Fourier peak. Therefore, the periodical updating of the frequency at 

which the Fourier peak appears and the phase estimated provides an effective way of 

correcting for phase errors caused by both the gradual drift owing to the changes in 

wavelength and dispersion. 

With this in mind, the total unwrapped phase change for each of the four synthetic 

wedges considered here over  such re-referenced phase maps is given by: 

 𝛥𝛷𝑢
𝑖,𝑗(𝑡, 0) = 𝛥𝛷𝑢

𝑖,𝑗(𝑡, 𝑡𝜅) + ∑ 𝛥𝛷𝑢
𝑖,𝑗(𝑡𝐾, 𝑡𝐾−1)

𝜅
𝐾=2 + 𝛥𝛷𝑢

𝑖,𝑗(𝑡1, 0),  8.7 

where the superscripts i,j are used to denote the synthetic wedges as usual and K = 

2,3,... In the analysis presented so far an interval between re-referencing events of 

400 frames (equivalent to approximately a 1 nm change in wavelength) was used. 

However, the time frequency analysis (TFA) results presented earlier, suggest that 

the approach adopted so far is not capable of resolving the issue. For this reason, a 

number of the assumptions made so far will be re-visited in the sections to follow 

and a more accurate treatment of dispersion will be given with emphasis on temporal 

phase unwrapping. 

8.3.3 Performance of 1-D cost function for Rm optimization 

One of the main observations revealed by the time frequency analysis so far was the 

violent fluctuation in the optimum wedge thickness ration R
opt

. In this section the 

performance of the 1-D cost function used to estimate this ratio is examined. In brief, 

the optimised R-ratio in section-7.2.3 (refer to figure-7.5) was determined for the first 

unwrapping step by repeating the unwrapping process described earlier (see chapter-

5) for a range of R values spanning the 9.5 to 11.5 region in steps of 0.001 for each 
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of the eighty two sections of the data sequence. The results of this process were 

stored in a 2×2 matrix where each row corresponded to the unwrapped phase change 

values for a unique R. An additional two-dimensional matrix was also stored in 

memory with each row containing the scaled version (by R) of the lower sensitivity 

phase change data. The data contained in each of the rows of the two matrices were 

then used to perform the 1-D optimisation through equation-5.30 and the R value 

corresponding to minimum RMSE between 𝑅ΔΦ𝑢
1,2

 and  ΔΦ𝑢
2,3

 was chosen as the 

optimum for each of the scan sections. However, as it was pointed out earlier in 

section-7.2.3, even though the optimum ratio was used, in some cases, the 

unwrapped phase change ΔΦ𝑢
2,3

 still suffered from phase unwrapping errors (recall 

figure-7.3(b) and figure-7.4(b)). Considering that the test was only performed for the 

first of the four unwrapping steps in each of which the previously unwrapped phase 

change is further amplified to help unwrap the next, higher sensitivity change, raises 

the concern that a significant number of unwrapping errors in the final phase change 

signal may originate from this process. Moreover, the optimization strategy used so 

far does not account for the presence of unwrapping errors, raising an additional 

concern as to how accurate the estimation of the optimum R-ratio is. It is therefore 

imperative to further investigate the issue and ensure that the signal is free from 

phase unwrapping errors owing to the incorrect choice of the optimum R-ratio. 

Recall that the original assumption of the temporal phase unwrapping strategy used 

in this work was that a wrapped phase value A can be unwrapped using another 

phase value B that is notionally the same value but typically contains a higher noise 

level through the use of equation-5.21 (originally reported in ref [1] – eqn.3). 

Although here we are concerned with phase changes the principle idea remains the 

same with the only difference that the reference phase change is amplified by the 

ratio R (recall equation-5.24). As mentioned earlier, phase unwrapping refers to the 

process of adding the correct multiple of 2 to a phase signal that is wrapped in the 

region between - and . In the unwrapping operator 𝒰(ΔΦ2,3, 𝑅 × ΔΦ1,2) defined 

earlier by equation-5.21, which is used to subtract the integral multiple of 2 from 

the wrapped phase change value ΔΦ2,3 such that ΔΦ2,3 − 𝑅 × ΔΦ𝑢
1,2

 lies within the 

range -π to π , NINT denotes a rounding operator which was implemented using the 

round function in the MATLAB programming language. It is, therefore, likely that 
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the amplified noise levels in the reference phase change 𝑅 × ΔΦ𝑢
1,2

 are responsible 

for the appearance of phase unwrapping errors in places where there should not be 

any. 

To examine the significance of the above observations, an additional check to the 

existing algorithm was introduced. At first the two dimensional matrix, N
m×n

, 

containing the unwrapped phase change ΔΦ𝑢
2,3

 for the different R values was loaded 

into the memory, where m is the number of rows and is equal to the number of 

different R values and n is the number of columns that is equal to the length of the 

scan section examined. The adjacent entries of each row were then compared, and in 

places where the difference was greater or equal to 2 the difference between the 

adjacent entries of matrix, M
m×n

, corresponding to the scaled by the R-ratio reference 

phase change was also taken, such that if the condition: 

 
|𝛥𝛷𝑢

2,3(𝑡 − 1,0) − 𝛥𝛷𝑢
2,3(𝑡, 0)| ≥ 2𝜋

             |𝑅 × 𝛥𝛷𝑢
1,2(𝑡 − 1,0) − 𝑅 × 𝛥𝛷𝑢

1,2(𝑡, 0)| < 𝜋
      ,  8.8 

is satisfied, the relevant entry on the unwrapped phase change is replaced by NaN: 

 𝛥𝛷𝑢
2,3(𝑡, 0) = 𝑁𝑎𝑁,  8.9 

indicating that an unwrapping error has occurred due to the amplified noise levels in 

the reference phase change 𝑅 × ΔΦ𝑢
1,2(𝑡, 0) which in turn can cause the incorrect 

estimation of the multiple of 2(round operation in equation-5.21) that is necessary 

for the successful unwrapping of ΔΦ𝑢
2,3(𝑡, 0). The outcome of this process is a new 

two dimensional matrix 𝑳𝒎×𝒏 = ΔΦ�̃�
2,3(𝑡, 0) with the same dimensions and number 

of rows m and of columns n as previously but with its entries replaced by NaN in 

places where a phase jump of greater or equal to 2 occurs due to noise. Note that 

the ~ in equation-8.9 is used to denote the updated unwrapped phase change. The 

above constitutes a rather important achievement in that the strategy described thus 

far provides an easy way to distinguish between phase jumps that are due to noise in 

the signal to those arising from the wavenumber jumps that would otherwise be 

difficult to do so. 

In the second and final step, the optimisation of the R-ratio is once again performed 

through the use of the 1-D cost function described by equation-5.30, as before, with 
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the only difference being that any of the rows in L
m×n 

containing NaN entries and 

thus the corresponding R values are discarded from the process. It should be noted 

that the algorithm that performs the above steps is repeated until all sections of the 

scan are checked. Figure-8.3 provides a schematic of the flowchart for the modified 

optimisation algorithm implemented here. 

In order to validate the proposed approach the same test as that described earlier in 

section-7.2.3 for the first unwrapping step is performed only for much longer scan 

sections. The reason for doing so is to ensure that the rms deviation between the 

reference phase change,  𝑅 × ΔΦ𝑢
1,2

, and the unwrapped phase change, ΔΦ�̃�
2,3

, 

approaches that of a random variable with uniform probability density function over 

the range - to , which is /3, if the R value is chosen incorrectly. Consequently, the 

full ~100 nm scan of 48970 frames was divided into ten equal sections, as opposed to 

the previous eighty two segments, of 4897 frames long each (equivalent to 

approximately 12 nm). After the implementation of the modified 1-D cost-function 

optimisation procedure used for the estimation of the optimum R-ratio for each of the 

segments, the temporally unwrapped reference phase change ΔΦ𝑢
1,2(𝑡, 0) was scaled 

using the optimum R-ratio for the first and fourth segments and the result was plotted 

onto the same graph to provide a visual comparison of the effect of changing R. In 

addition to that, the reference phase-change, 𝑅𝑜𝑝𝑡
1 × ΔΦ𝑢

1,2(𝑡, 0) , where the 

superscript 1 denotes the optimum R-value for the first segment of the scan, 𝑡 ∈

[1,4897] , was used to unwrap the phase-change ΔΦ𝑤
2,3(𝑡, 0) for the same t. The 

resulting unwrapped phase-change, ΔΦ𝑢
2,3(𝑡, 0) , was then plotted on the same graph 

to aid comparison (see figure-8.4(a)). The process was repeated but this time for the 

fourth segment of the scan where  𝑡 ∈ [19588,24484]. Once again, the reference 

phase change was scaled up by the optimum ratios for the first and fourth segments 

with the only difference that this time the unwrapping of ΔΦ𝑤
2,3(𝑡, 0) was performed 

using  𝑅𝑜𝑝𝑡
4 × ΔΦ𝑢

1,2(𝑡, 0) instead and the results were plotted on the same graph as 

shown in figure-8.4(b). Last but not least, the optimum values of R were extracted 

and were subsequently plotted for each of the ten scan segments (Wn = 1, 2, .., 10) as 

it is illustrated in figure-8.4(c).  

By comparing figure-8.5(a) to its equivalent for a shorter scan section figure-7.3(a), 

which did not include the modified algorithm described earlier, it is evident that the 
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behaviour of the phase signals is similar albeit the drift amongst them is now much 

smaller. A similar conclusion can be drawn by comparing figure-8.4(b) with figure-

7.4(b). However, the phase unwrapping errors in ΔΦ𝑢
2,3(𝑡, 0),that were previously 

present in figure-7.4(b), have now been fully supressed as illustrated in figure-8.4(b), 

suggesting that a clear improvement in the signal processing has been achieved. 

Moreover, the violent fluctuations in R, depicted in figure-7.5, are now significantly 

reduced as shown in figure-8.4(c). 

As mentioned above, after the implementation of the modified algorithm the gap 

amongst the three phase change signals shown in figure-8.4(a) and figure-8.4(b) 

appears to be much smaller and in many cases insignificant. Considering that this is 

likely due to the much larger section examined here, a zoomed version showing a 

1000 frame subsection towards the end of the section of figure-8.4(a) and figure-

8.4(b) is shown in figure-8.5(a) and figure-8.5(b) respectively, confirming its 

presence. In contrast to the behaviour revealed by figure-7.3(a) and figure-7.4(b) 

earlier, the red line showing the unwrapped phase change ΔΦ𝑢
2,3(𝑡, 0) in figures 

8.5(a) and 8.5(b) always follows closely the temporally unwrapped and scaled by the 

optimum ratio for that section of the scan reference phase change  𝑅𝑜𝑝𝑡
𝑖 × ΔΦ𝑢

1,2(𝑡, 0) 

(the green line for which 𝑅𝑜𝑝𝑡
𝑖 = 𝑅𝑜𝑝𝑡

1 = 10.264 in the case of figure-8.5(a) and the 

blue line 𝑅𝑜𝑝𝑡
𝑖 = 𝑅𝑜𝑝𝑡

4 = 10.38 in the case of figure-8.5(b)) ,which in turn further 

justifies the improvement in the data analysis by the modified algorithm. 

In order to examine the effect of the aforementioned improvements to the data 

quality from the four wedge sensor the short time Fourier transform (STFT) tool, that 

was previously developed in section-7.2.2 with the same parameters, was once again 

employed. The resulting spectrograms for the raw intensity data from wedges one 

and two are shown in figures-8.6(a) and figure-8.6(b) ,while those corresponding to 

the intensity data from wedge three and four are shown in figure-8.8(a) and figure-

8.8(b) respectively. 

Considering the improvements introduced by the modified algorithm presented in 

this section, it would be reasonable to expect that the improvements would also be 

captured by the spectrograms in figure-8.7 and figure-8.8. Surprisingly, this clearly is 

not the case. By comparing figure-8.7(a) to figure-7.1(a) and figure-8.7(b) to figure-

7.1(b), it is obvious that a strange ‘zero’ structure is now present. In what is more, a 
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curious ‘ghost’ spectral line just above kt = 1.5 appears in the spectrograms for the 

intensity data of wedge three and four that was not present before (compare figure-

8.8(a) to figure-7.2(a) and figure-8.8(b) to figure-7.2(b)).  

In brief, although the unwrapping errors that were previously present in the phase 

change signals have been practically eliminated for the first unwrapping step the 

spectrogram quality appears to have degraded. One possible reason to explain the 

structure in the spectrograms may be that additional unwrapping errors, in steps two 

and three of the unwrapping strategy where ΔΦ𝑢
3,4(𝑡, 0)  and ΔΦ�̃�

1,5(𝑡, 0)  are 

estimated, creep in. As the wavenumber-change axis (k), used to resample and re-

register the intensity distribution that is in turn used to perform the STFT, practically 

relies on the accuracy of ΔΦ𝑢
1,5(𝑡, 0), it is possible that the presence of unwrapping 

errors for reasons that have not been addressed yet, cause distortions in k that are 

consequently responsible for the artefacts in the spectrograms. The following 

sections provide an in-depth investigation as to whether the above assumption holds 

true followed by methods of suppressing the curious structure in the spectrograms.  

8.3.4 Adaptive Fourier-peak re-referencing 

One of the main issues presented with analysis so far is that it has proven difficult to 

distinguish between phase unwrapping errors and phase jumps owing to the laser 

induced mode hops. In this section, an attempt to shed light into this area is provided 

starting with a simple thought experiment and followed by an improved strategy that 

establishes clear links with physical phenomena that are most likely to be responsible 

for the signal degradation mentioned in the previous section.  

Consider the simple case where the reference phase change 𝑅𝑚(𝑊𝑛) × ΔΦ𝑢
𝑖,𝑗(𝑡, 0) is 

free of the phase jumps caused by the laser mode hops. Note that m takes the value of 

one, two or three denoting the unwrapping step, Wn = 1, 2,…10 is a window 

containing all the t values corresponding to the segment of the scan examined and i,j 

are the usual indices denoting the wedges forming the synthetic wedge in question. 

As seen earlier, even though the violent fluctuations in R have been considerably 

reduced a relative amount of variation in R is still present in the unwrapped phase 

signal, suggesting that R is a slowly varying function of time. In the absence of any 

other non-linearities the reference phase signal would be a linear function of the non-
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dimensional time index t with a gradient, d/dt, that is directly linked to the ratio Rm. 

Figure-8.8 provides a schematic illustration of such case showing the reference phase 

change ΔΦ𝑢
1,2(𝑡, 0) scaled by the optimum ratios for two different segments of the 

scan.  

In the analysis presented so far the fluctuations in R were handled by taking the 

average value of the optimized R values for each of the scan sections. The approach 

seemed to produce reasonable results and was therefore carried over to this point. 

However, one concern that has been overlooked is that the rounding operation for the 

estimation of the R value used to perform the unwrapping of the phase change signal 

may be responsible for phase unwrapping errors that are not captured by the 

approach adopted. As it is seen from the schematic illustration in figure-8.8, for the 

ideal case scenario described above, the deviation between the two linear graphs can 

be described by the error quantity  defined such that: 

 
휀𝜙 = |휀𝑅 × 𝛥𝛷𝑢

1,2(𝑡, 0)|

                           휀𝑅 = |𝑅
𝑜𝑝𝑡(𝑊𝑛 = 2) − 𝑅

𝑜𝑝𝑡(𝑊𝑛 = 1)|
.  8.10 

By comparing equation-8.1 to equation-8.10 it becomes obvious that the error 

quantity  is equivalent to the term on the left hand side of equation-8.1; that is the 

rate of change of phase with respect to time. Consequently, for the unwrapping 

operation to be successful, i.e. to avoid 2 oscillations, the following condition must 

be satisfied at all times: 

 휀𝜙 ≤ 𝜋.  8.11 

Now, let the optimum R-ratio for the first scan segment be equal to 10.3 and that of 

the second to be equal to 10.1 such that: 𝑅𝑜𝑝𝑡(𝑊𝑛 = 1) = 10.3  and   𝑅𝑜𝑝𝑡(𝑊𝑛 =

2) = 10.1 . Considering the relatively small fluctuation in the R ratio after the 

implementation of the modified algorithm described earlier, this is a reasonable 

assumption for the theoretical case investigated here. With this in mind, the 

aforementioned condition described by equation-8.11, reduces to the following 

simple expression: 

 𝛥𝛷𝑢
1,2(𝑡, 0) ≤ 10𝜋 2 ≅ 15 𝑟𝑎𝑑⁄ .  8.12 
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The condition described by the inequality-8.12 is of course applicable to the first 

unwrapping step. However, it is straight forward to show that the generalised 

condition is described by the following expression: 

 𝛥𝛷𝑢
𝑖,𝑗(𝑡, 0) ≤ 𝜋 |𝑅𝑚

𝑊𝑛 − 𝑅𝑚
𝑊𝑛+1|⁄ ,  8.13 

where, m is the unwrapping step and Wn is the section of the scan. One way of 

implementing the above condition into the temporal phase unwrapping strategy 

developed so far would be by the periodical updating of the optimum R ratio such 

that the inequality-8.13 is satisfied for all t є [1,48970]. To do so would require a 

robust algorithm to estimate the gradient of the phase signals in question which in the 

presence of the phase jumps owing to the laser mode hops could prove cumbersome 

and computationally expensive to achieve. Instead a slightly different approach is 

adopted in the analysis that follows.  

In section-8.3.2 an approach of compensating for the phase shifts owing to the 

dependency of the refractive index on the instantaneous wavelength of the light 

emitted by the broadband tuneable laser source was proposed. The approach was 

based on the assumption that the corresponding instantaneous location of the main 

Fourier peak after the 2-D Fourier transformation of the fringe patterns from the four 

wedge sensor is directly linked to the sought phase quantity at that peak. Therefore, 

the periodical updating of the frequency, at which the Fourier peak appears, provides 

an easy way of compensating for phase errors due to the wedge sensor consisting of a 

dispersive material. The proposed technique was implemented through the use of 

equation-8.7 with an updating rate of 400 frames. The choice for that particular re-

referencing rate was based on the assumption that the material (optical fused silica 

glass) used to manufacture the four wedges is the same for all four of them and, 

therefore, their dispersion curves should be identical. Furthermore, the refractive 

index behaviour of such material as a function of wavelength, in the wavelength 

spectrum that the laser is operating on, has been shown to be of the linear nature with 

its nominal value changing by as little as 0.0019 units over the 750 to 850 nm tuning 

range (recall figure-5.20 and ref [210]).  

As was shown earlier in section-7.3.3, the estimated behaviour of the refractive index 

trends for the four wedges and the resulting three synthetic wedges, recall figure-7.15 
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and figure-7.16 respectively, deviates significantly from the assumed linear 

behaviour. This however, is most likely to be caused due to the fact that the 

refractive index change trends are plotted versus the non-dimensional time index t as 

opposed to the wavelength change ( or the wavenumber change (k). Although t 

is in fact associated with  and k the mode hops present in the scan randomise the 

latter and therefore provide a possible explanation of the unexpected non-linear 

behaviour. One way of reducing the aforementioned non-linearity would of course be 

to sort the t values using the sorting vector J obtained earlier (see section-6.3.1). 

However, a more important observation is that the gradient of these trends is 

considerably different suggesting that there is a mismatch amongst the refractive 

index dispersion curves for the four wedges. As mentioned earlier (see section-7.3.5), 

one possible explanation to justify such a scenario could be that the four wedges 

were manufactured from different batches and thus have a slightly different 

behaviour. Assuming that this is the case, the remainder of this section is dedicated 

to developing a robust algorithm that is capable of accounting for such discrepancies 

that may well be the reason as to why the quality of the spectrograms (recall figure-

8.6 and figure-8.7) appears to suffer from the ‘zero’ like structure for all four wedges 

and the ghost line above the line kt = 1, for wedges three and four. 

In order to investigate whether the difference in the gradients of the refractive index 

change trends is indeed responsible for the signal degradation, a modified algorithm 

that is capable of accounting for these is pursued. Recalling that the plots describing 

the behaviour of the refractive index change for the four wedges are practically 

linked to the instantaneous location of the 2-D-Fourier peak 𝑘𝑟
𝑖 (𝑡), equation-8.7 can 

be modified such that the updating of the frequency at which the phase is evaluated 

for each of the four wedges is different but coincident to the gradient of the plots 

illustrated in figure-7.13 and figure-7.14 respectively. Consequently and in contrast 

to the constant peak re-referencing approach described earlier in section-8.3.2 the 

new algorithm is of an adaptive nature. Although introducing the adaptive re-

referencing approach described above into equation-8.7 may at first seem tricky this 

can be easily achieved by the following expression: 

 𝛥𝛷𝑢
𝑖,𝑗(𝑡, 0) = 𝛥𝛷𝑢

𝑖,𝑗
(𝑡, 𝑡𝜅

𝑖,𝑗
) + ∑ 𝛥𝛷𝑢

𝑖,𝑗(𝑡𝐾, 𝑡𝐾−1)
𝜅
𝐾=2 + 𝛥𝛷𝑢

𝑖,𝑗(𝑡1, 0),  8.14 
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where the superscript and subscript indices are the same as in equation-8.7. Note that 

the only difference between equation-8.7 and equation-8.14 is that the indices i,j are 

now applied to tin order to account for the bias that may well be different due to the 

fact that the phase signal calculated is the synthesis of two phase signals which are 

individually estimated with different updating rates. As a consequence, and in 

contrast to equation-8.7 where tK was regularly spaced, tK is now irregularly spaced. 

As far as the implementation of the modified adaptive peak re-referencing rate 

algorithm is concerned, a new threshold value is introduced that is based on the non-

integer pixel spatial location of the 2-D-Fourier peak in the frequency domain such 

that if: 

 𝛿𝑘𝑟
𝑖 (𝑡, 0) ≥ 𝑐𝜏  {

𝑘𝑟
𝑖 (𝑡) = 𝑘𝑟

𝑖 (𝑡𝐾), 𝐾 = 2,3. . 𝜅
𝑡 = 0

,  8.15 

where i = 1,2,3,4 depending on which wedge is examined. In other words, each time 

the change in the peak position kr(t,0) becomes greater or equal to the threshold 

cin units of pixels in the Fourier-domain) the frequency at which the phase is 

evaluated is updated. Once the re-referencing event has taken place the t value is 

reset to zero and the process is repeated until the entire t-range in the scan is covered 

and the necessary phase signals are computed. 

In order to demonstrate the ability of the new approach to resolving the issues related 

to the quality of spectrograms a set of three different threshold values were chosen 

such that c = 0.06, 0.045 and 0.005 pixels. Figures: 8.9 to 8.11 illustrate the time 

instances at which the peak re-referencing occur for the three c values chosen. In the 

analysis to follow and before the visual inspection of the corresponding spectrogram 

quality, the simple test that involves the unwrapping of the phase signal 
2,3

(t,0) 

using the optimum R-ratio for two different scan segments (the first and fifth 

segments in the following comparisons) is also employed so that: 

a. it is ensured that the sought phase signal in the first unwrapping step remains 

free of unwrapping errors after the implementation of the adaptive updating 

of the Fourier-peak location, 
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b. the behaviour of the resulting plots is not affected by the modified algorithm, 

i.e. the unwrapped phase signal is always following closely the corresponding 

amplified signal R×1,2
(t,0) used to perform the unwrapping, 

c. and finally in order to provide a visual tool of observing the impact of the 

new algorithm on the optimised R-ratio values for the ten different scan 

sections. 

Figure-8.12 illustrates the above for Case-A in which kr = c = 0.6 pixels and 

confirms that the implementation of the modified algorithm does not induce any 

unwrapping errors in the phase signals. That being said the difference between the 

optimum R values for the first and fifth segments is rather small making it difficult to 

spot any differences amongst the signals as it is clearly indicated by the enlarged 

plots shown in figure-8.13. On the other hand, as far as the spectrogram quality is 

concerned, for the data of wedge-1 see figure-8.14(a) a significant improvement is 

observed when compared to figure-8.6(a) in that the ‘zero’ like structure appears to 

have been suppressed. Unfortunately this is not the case for the rest of the wedges as 

illustrated in figure-8.14(b), figure-8.15(a) and figure-8.15(b) with the ghost line 

above kt = 1 appearing more clearly. 

To investigate as to whether any further improvement can be achieved the same tests 

are performed for Case-B, in which kr = c = 0.45 pixels, where the rate at which the 

updating is slightly faster. Once again the phase signals in figure-8.16 and figure-

8.17 show no signs of phase unwrapping errors albeit their deviation from one 

another is now much more evident owing to the more significant difference between 

the optimum R values for the two scan segments. Although this behaviour was 

expected, the plots still follow closely each other and it is only after approximately 

2,500 frames that the expected drift becomes apparent. Last but not least the slightly 

faster updating rate appears to have affected positively the spectrogram quality. More 

specifically, both spectrograms for wedge one and two appear to have improved with 

the zero artefacts almost eliminated as shown in figure-8.18(a),(b). Moreover, and 

although the ghost lines are still present for the spectrograms corresponding to the 

intensity data for wedges three and four (see figure-8.19(a),(b)), the main spectral 

lobe represented by kt = 1 is more consistent and with less peak-splitting (‘zero’ 

structure). 
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For the last Case-C in which kr = c = 0.05 pixels, for which the rate of Fourier-peak 

updating is now considerably faster than in the previous two cases, the behaviour of 

the phase signals is once again free of unwrapping errors as expected (see figure-

8.20(a),(b)). Furthermore, the unwrapping process seems to be insensitive to the 

deviation between the R-ratio values (a change of 0.025) used to obtain the 

unwrapped phase 
2,3

(t,0), suggesting that it is only sensitive to changes in R of the 

order of one decimal place or more. This is verified by the enlarged plots shown in 

figure-8.21. However, on closer inspection of the latter small unwrapping errors start 

to appear at t ~ 3500 and t ~ 4200 in figure-8.21(a) and between t = 2.33×10
4
 and t = 

2.34×10
4
 and t = 2.35×10

4
 and t = 2.36×10

4
 in figure-8.21(b) that cause the 

unwrapped phase signal to deviate slightly from its corresponding scaled version of 

the reference phase signal R×1,2
. Recalling that in the original publication [277], 

where the updating of the reference speckle pattern was proposed as a method to 

suppress errors induced by large speckle motion, the authors suggest that too 

frequent updating induces bias and noise errors it is likely that the occurrence of 

these unwrapping errors is due to approaching this limit. For this reason, c = 0.05 

pixels will constitute the last value examined here.  

By visually inspecting figure-8.22 and figure-8.23, it is clear that the quality of the 

resulting spectrograms for this last case is clearly superior in that almost all artefacts 

are now suppressed suggesting that the adaptive peak re-referencing approach 

implemented here is an effective way of dealing with the potential mismatch in the 

refractive index dispersion curves amongst the four wedges. One concern with the 

proposed approach is that it is unable to suppress the presence of the ‘ghost’ line 

shown in figure-8.23(a) and (b). Although at first sight one might ascribe this artefact 

to a frequency component owing to the multiple reflections in some physical 

component like the camera cover slip [26], the fact that it is only present in the 

spectrograms for the intensity data of wedge three and four as well as the fact that its 

location is not constant (its location moves towards kt = 1 as the rate of updating is 

increased) for the three case studies presented here, rules out this explanation. 

As mentioned earlier, the three-step unwrapping process described so far involves 

the scaling of an unwrapped yet noisy phase signal that is subsequently used for the 

unwrapping of a phase signal with higher sensitivity. In view of the variations in the 
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optimum R, an average value obtained by taking the mean of the optimum R values 

for each of the ten scan segments is used instead. In order to demonstrate the effect 

of the adaptive algorithm proposed here and its influence on the choice of R, the 

reference phase signal 
1,2

(t,0) used for the first unwrapping step is scaled by the 

three different average R-ratios corresponding to the three different rates of updating. 

Figure-8.24 illustrates the behaviour of these phase signals for three different 

sections of the scan: a) ∀𝑡 ∈ [0,4000], b) ∀𝑡 ∈ [6000,10000] and c) ∀𝑡 ∈ [3.95 ×

104, 4.35 × 104] corresponding to the start, middle and the end of the scan sequence. 

Interestingly, the three signals are almost identical for the first 2,500 frames and it is 

only before the first downward laser induced jump that they start to deviate from 

each other as shown in figure-8.24(a). The deviation amongst the three signals is 

more evident in the mid and end scan sections as shown in figure-8.24(b) and (c), 

with the signal corresponding to the more frequent updating (black line) showing a 

reduced number of phase jumps compared to the other two (blue and red lines). 

Finally, in figure-8.25 the RMSE (rms) between the averaged R used for each of the 

three cases of c and for each of the three unwrapping steps and the optimum R for 

each of the scan segments is shown, thereby providing a good indication as to where 

the estimated phase signals may suffer from numerical errors due to the averaging in 

R.  

To conclude, the adaptive Fourier-peak updating approach appears to have resolved 

the majority of issues related to the quality of the spectrograms compared to that 

using the constant re-reference approach described in the previous section, although 

a numerically-induced artefact appeared in the shape of a ghost line above the line kt 

= 1 that represents the location of the main spectral lobe. An analysis of the possible 

reasons that may give rise to this artefact and methods to suppress it will be given in 

the forthcoming section. 

8.3.5 Phase unwrapping along the sensitivity direction 

As clearly illustrated by the spectrograms in figure-8.23(a), and (b), the main issue 

with the adaptive Fourier-peak re-referencing method is that it suffers from what 

appears to be numerically induced artefacts that manifest themselves in the form of 

ghost lines. One possible reason for their appearance may be due to unresolved 

residual phase unwrapping errors that distort the sought k axis and therefore give 
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rise to these artefacts. In fact, and although the segmented unwrapping process for 

the first step seems to be completely free of these errors this may not necessarily be 

the case when the relevant averaged R-ratio is used for the unwrapping of the entire 

sequence. It is therefore possible that the accumulation of these residual unwrapping 

errors as the unwrapping of the higher sensitivity signals is progressing is in fact 

responsible for the ghost lines that appear around kt = 1.5 for the spectrograms of 

wedges three and four. 

In order to justify as to whether this is the case, the reference phase signal and the 

unwrapped phase signal are plotted for all three unwrapping steps and for c = 0.05 

pixels. As the data sequence is long and would be difficult to identify problematic 

areas, the RMSE plot in figure-8.25(a) is used as a guide to select three sections of 

the scan that are likely to contain unwrapping errors. These are situated at 

approximately Wn= 2, 6 and 9 in 8.25(a) where the deviation between the average R 

for the first unwrapping step and the optimum R, at that section of the scan, is at its 

maximum. The idea behind this approach is that if indeed the selected areas for the 

first unwrapping step contain 2 errors, these will in principle be carried to the next 

step and so on, thereby contaminating the highest sensitivity phase signal used to 

calculate the k axis. 

As expected, all three of the chosen scan segments for the first unwrapping step 

contain a significant number of unwrapping errors as shown by the red lines 

depicting the unwrapped phase change ΔΦ𝑢
2,3(𝑡, 0) in figure-8.26(a), figure-8.26(b) 

and figure-8.26(c). Figures-8.27(a)-(c) show the equivalent plots for the same three 

sections but for the second unwrapping step in which the previously unwrapped 

phase change ΔΦ𝑢
2,3(𝑡, 0) is now scaled up and used as the reference to unwrap the 

higher sensitivity signal ΔΦ𝑢
3,4(𝑡, 0) . Once again the unwrapped signal seems to 

contain a large number of 2 phase jumps for all three sections. Unlike in the first 

step where the 2 discontinuities caused the unwrapped phase change (red line) to 

significantly deviate from the reference phase change (black line), in this step the 

two plots appear to follow each other more closely. This is however likely to be a 

result of the much wider phase range for the vertical scale which now spans over 250 

rad in each case, or ca. 40× 2 phase jumps. The same behaviour is observed in 

figures-8.28(a)-(c) for the third and final unwrapping step. With this in mind, it 



258 

 

becomes obvious that a method of suppressing the errors in the first, and possibly 

also subsequent unwrapping steps, is likely to resolve the issue. 

In simple terms, the main cause of the remaining unwrapping errors appears to be 

that over long time intervals, a gap starts to open up between the scaled low-

sensitivity phase signal and the high sensitivity phase signal. This may be due to a 

small error in the value of R, or indeed small changes in R with wavelength due to 

different dispersion curves for the two pairs of wedges. By re-zeroing the phase 

change at regular intervals, and then subsequently adding up the re-referenced phase 

changes, the total phase change since the start of the scan can thus be computed but 

without the 2 phase errors that occurred previously. 

The new unwrapping approach is somewhat similar to the ‘constant’ and the 

‘adaptive Fourier-peak updating’ algorithms described earlier, in that it also involves 

updating. It does however differ from the latter in that the quantity that is being 

updated is now the phase itself as opposed to the spatial frequency components at 

which the phase is evaluated, hence justifying the name of phase unwrapping along 

the sensitivity axis. Moreover, and in contrast to the previous two algorithms which 

were based on the constant or adaptive re-referencing of the location of the 

instantaneous 2-D-Fourier peak of the signal corresponding to each of the four 

wedges, in this approach it is the phase change of the synthetic wedges that is 

updated instead.  

A schematic illustration of the principal idea for the modified strategy that involves 

the regular and equally spaced updating of the phase change signals is shown in 

figure-8.29. One of the key aspects related to this approach is that the last and first 

element of adjacent sections is shared. These data points coincide with the instances 

at which the updating takes place and are consequently acting as pivot points that are 

in turn used to compensate for any changes in the nominal value of the gradients 

between adjacent scan segments. 

As the direct derivation of the mathematical expressions that describe the new 

strategy is a little cumbersome to achieve, these will be first derived for the first 

unwrapping step that involves the pair of wedges (i2,j2) = (2,3) and (i1,j1) = (1,2) and 

will be generalized later. In the original temporal phase unwrapping algorithm 
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described in chapter-5, the unwrapped phase change for the higher sensitivity 

synthetic wedge (i2,j2) was calculated through the use of: 

 𝛥𝛷𝑢
𝑖2,𝑗2(𝑡, 0) = 𝒰{𝛥𝛷𝑖2,𝑗2(𝑡, 0), 𝑅1𝛥𝛷𝑢

𝑖1,𝑗1(𝑡, 0)}.  8.16 

Note that equation-8.16 is practically identical to equation-5.20 but has been repeated 

here to aid the derivation of the necessary expressions. As mentioned above, in the 

new algorithm the same operation is performed only this time in a piecewise manner. 

In other words, the two phase change signals are first segmented before equation-

8.17 is employed. To do so, a new threshold value that determines the length of each 

of the scan segments needs to be defined such that each time that: 

 𝑐𝜓 = 𝜚,  8.17 

the counter t is reset to zero and the reference instance with respect to which the 

relevant phase changes are computed is updated to the last element of the segment, 

with c being the new threshold equal to a user defined constant 𝜚 such that: 

 2 ≤ 𝜚 ≤ 𝑁,  8.18 

and where N is used here to denote the total number of frames recorded by the CCD. 

Consequently, the unwrapped phase change ΔΦ𝑢
𝑖2,𝑗2 for a segment other than the first 

can be expressed as follows: 

 𝛥𝛷𝑢
𝑖2,𝑗2(𝑡, 𝑡𝛹) = 𝒰{𝛥𝛷

𝑖2,𝑗2(𝑡, 𝑡𝛹), 𝑅1𝛥𝛷𝑢
𝑖1,𝑗1(𝑡, 𝑡𝛹)}.  8.19 

where  = 2,3,... Note that the phase change after the 
th

 re-referencing event is 

given by: 

 𝛥𝛷𝑖,𝑗(𝑡, 𝑡𝛹) =  𝛥𝛷
𝑖,𝑗(𝑡, 0) − 𝛥𝛷𝑖,𝑗(𝑡𝛹, 0),  8.20 

where the superscripts i,j take the value of i1,j1 or i2,j2 for the first and second terms 

inside the curly brackets on the right hand side of equation-8.19. It follows that after 

ξ such referenced events the total unwrapped phase change is given by: 

 𝛥𝛷𝑢
𝑖2,𝑗2(𝑡, 0) = 𝛥𝛷𝑢

𝑖2,𝑗2(𝑡, 𝑡𝜉) + ∑ 𝛥𝛷𝑢
𝑖2,𝑗2(𝑡𝛹, 𝑡𝛹−1) +

𝜉
𝛹=2 𝛥𝛷𝑢

𝑖2,𝑗2(𝑡1, 0).  8.21 

Similarly, the generic expressions for the m
th

 unwrapping step are given by the 

following set of equations: 
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𝛥𝛷𝑢
𝑖𝑚+1,𝑗𝑚+1(𝑡, 𝑡𝛹) = 𝒰{𝛥𝛷

𝑖𝑚,𝑗𝑚(𝑡, 𝑡𝛹), 𝑅𝑚𝛥𝛷𝑢
𝑖𝑚−1,𝑗𝑚−1(𝑡, 𝑡𝛹)}

𝛥𝛷𝑖𝑚,𝑗𝑚(𝑡, 𝑡𝛹) = 𝛥𝛷
𝑖𝑚,𝑗𝑚(𝑡, 0) − 𝛥𝛷𝑖𝑚,𝑗𝑚(𝑡𝛹, 0)

𝛥𝛷𝑢
𝑖𝑚,𝑗𝑚(𝑡, 0) = 𝛥𝛷𝑢

𝑖𝑚,𝑗𝑚(𝑡, 𝑡𝜉) + ∑ 𝛥𝛷𝑢
𝑖𝑚,𝑗𝑚(𝑡𝛹, 𝑡𝛹−1) +

𝜉
𝛹=2 𝛥𝛷𝑢

𝑖𝑚,𝑗𝑚(𝑡1, 0)

. 8.22 

It is worth noting that the idea behind the approach described above emerged as a 

tool to suppress the gradual ‘drift’ between the reference phase change and the 

sought unwrapped phase for each of the three steps. It should therefore be capable of 

dealing with the fact that the optimum R-ratio is in practice different for each of the 

ten scan segments and in turn compensate for any errors caused by the use of the 

average R value instead. 

Once again the quality of the spectrograms should in principle reveal if this is the 

case for the new algorithm. Figure-8.30(a) and figure-8.30(b) show the 

corresponding spectrograms for the intensity data of wedges one and two, both of 

which appear to be clear of ‘zero’ like structure and are of comparable quality to 

those produced using the adaptive Fourier-peak updating algorithm (for comparison, 

recall figure-8.22(a) and figure-8.22(b)). Similarly, figure-8.31(a) and figure-8.31(b) 

illustrate the corresponding spectrograms for the intensity data of wedge three and 

four respectively, using the modified phase unwrapping algorithm along the 

sensitivity axis, and are of particular importance as previously the data seemed to 

suffer from a spurious numerical artefact taking the form of a line. This, however, is 

clearly not the case anymore, highlighting the robustness of the proposed 

unwrapping strategy. That being said, the aforementioned spectrograms both show 

some level of deviation of the main spectral lobe from the expected location of kt = 1 

towards the end of the scan, making it difficult to decide which of the two algorithms 

is best. 

8.3.6 Hybrid phase and Fourier-peak updating 

In view of the success in suppressing the numerically induced ghost lines achieved 

by the unwrapping strategy along the sensitivity axis a hybrid approach is pursued in 

this section. That is, an unwrapping algorithm that is capable of combining the 

benefits of the adaptive Fourier-peak approach whose corresponding spectrograms 

showed that the main spectral lobe is situated consistently at kt = 1 but suffered from 

the drawback of ghost lines and those offered by the last strategy in which the ghost 
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lines were fully suppressed at the expense of some level of variation in the location 

of spectral peak. 

Before proceeding, it is worth revisiting the main principles behind the different 

unwrapping strategies proposed so far. In brief, the updating of the frequency at 

which the phase is evaluated was introduced as a means to limit errors owing to: 

a) the gradual drift in the Fourier-peak position due to the incremental changes in 

the wavelength by the tuneable source, 

b) the phase shifts caused by the refractive index dispersion of the wedges. 

In view of the potential mismatch in the refractive index dispersion curves of the four 

wedges, a modified approach was proposed involving the adaptive updating of the 

frequency at which the phase is estimated based on a threshold value c and the use 

of the estimated refractive index change dispersion curves for each of the four 

wedges. Using the time frequency analysis tool (spectrograms), it was shown that by 

increasing the adaptive rate of re-referencing, the quality of the spectrograms is 

improved. Despite the improvement, the spectrograms corresponding to the intensity 

data for wedges three and four were both contaminated by the presence of a spurious 

ghost line above the location of the main spectral lobe. As their spectral location was 

not fixed their nature was ascribed to unresolved numerically induced errors. These 

may well be caused by the fact that an average R value was used to scale the 

reference phase change of each of the three unwrapping steps which in turn has the 

undesirable effect of accumulating phase unwrapping errors over the three-step 

process. However, one of the factors that have been overlooked is that by introducing 

different updating rates for the estimation of the phase of each of the four wedges the 

risk of insufficient updating to compensate for the gradual drift in frequency due to 

the changes in wavelength caused by the laser source may arise. Strictly speaking the 

rate at which the updating should take place in order to avoid the errors caused by the 

light source should be constant. However, so long as the rate of re-referencing is fast 

enough the risk may be avoided. This is possibly the reason why the ghost line is 

approaching the main spectral lobe at kt = 1 as the rate is increased. Although the 

obvious root would be to keep increasing the rate of updating, this runs the risk of 

introducing unwanted phase jumps owing to numerical errors. An indicative example 

of this can be seen in figure-8.21(a) at t ~ 3500, 3700 and 4200 and in figure-8.21(b) 
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at t ~ 2.34×10
4
 and 2.35×10

4
 to point out a few. For this reason, further increase of 

the re-referencing rate was avoided. 

Finally, in the last unwrapping strategy investigated and in an attempt to remove the 

spurious ghost lines in the spectrograms for the intensity data of wedges thee and 

four, an alternative re-referencing approach was proposed. The latter involved the 

constant updating of the sought synthetic wedge phase change quantity as opposed to 

updating the frequency at which the phase of each of the four wedges was evaluated. 

As already mentioned earlier, the reason for doing so was to compensate for 

unwrapping errors due to the fact that the R value used to scale up the reference 

phase change does not always correspond to that with the minimum rms error i.e. the 

optimum R-ratio (see section-8.3.3). As a result, the numerically induced artefacts in 

the spectrograms for wedges three and four were suppressed.  

There is however an additional benefit associated with the unwrapping algorithm 

along the sensitivity direction. So far it has been implicitly assumed that following 

the 2-D-Fourier transform of the fringe patterns for each of the four wedges, the 

frequency at which the peak appears in the Fourier domain is directly linked to the 

phase corresponding to that peak. As pointed out earlier (see section-7.3.4), multiple 

reflections inside the wedges or back reflections from other optical components such 

as the camera cover slip give rise to background artefacts that take the form of a 

complex shaped ring like structure (recall figure-7.17). Although these were limited 

by the estimation and suppression of intensity background artefacts algorithm 

described in section-6.2.3 it is still possible that non-compensated residuals may still 

be present. Even though these are unlikely to cause significant shifts in the location 

of the Fourier-peaks it is possible that they alter the phase value. Therefore, by 

updating the reference phase-change constitutes a method of limiting phase 

excursions owing to the changing shape of the residual intensity background 

structure. 

It follows that, by combining the adaptive Fourier-peak updating algorithm, 

originally developed to address the mismatch in the refractive index dispersion 

curves amongst the four wedges, with the phase unwrapping algorithm along the 

sensitivity axis that amongst others possesses the benefit of removing the 

numerically induced artefacts, it is possible to remove the variations in the peak 
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position while keeping the signal free from numerical errors. As usual, figure-8.32(a) 

and figure-8.32(b) show the corresponding spectrograms for the intensity data of 

wedge one and two, using the hybrid phase unwrapping method in which the 

adaptive Fourier-peak re-referencing rate is controlled using the threshold value c = 

0.05 pixels and a constant updating of the reference phase change that takes place 

every other frame i.e. 𝜚 = 2, both of which are free from artefacts. Figures-8.33(a) 

and (b) show the spectrograms for wedge three and four where the superiority of the 

hybrid algorithm becomes evident in that: 

a. the variations in the location of the main spectral lobe previously seen in 

figure-8.31(a) and (b) have now been supressed, 

b. and the numerically induced ghost lines present in figure-8.23(a) and (b) are 

now eliminated. 

To conclude, and as far as the quality of the spectrograms is concerned, the hybrid 

phase unwrapping algorithm shows an increased robustness and noise immunity 

owing to the possible mismatch in the refractive index dispersion and noise residuals 

that are commonly termed ‘coherent noise’. 

8.4 Phase unwrapping performance assessment  

So far the quality of the spectrograms has been the main criterion used to assess the 

performance of the different algorithms developed so far. Although an excellent tool 

for the visual inspection of the signal, the short-time Fourier transform did not 

provide any information on the accuracy of the frequency at which the main spectral 

lobe occurs. It is therefore possible that despite the quality of the spectrograms being 

good that the resulting wavenumber axis is still distorted. In this final section of this 

chapter the accuracy of the different algorithms to producing highly accurate phase 

change measurements and thus leading to the correct reconstruction of the k axis 

and in future the accurate depth resolved imaging of both the interference signal and 

the phase is tested. 

8.4.1 Initial performance considerations 

One of the aspects that have been deliberately not mentioned so far is that the length 

of data points contained in the wavenumber change axis for the different unwrapping 

algorithms is not necessarily the same. By comparing the number of data sections Wn 
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in the spectrograms for the two cases of the adaptive Fourier-peak updating approach 

in which c = 0.6 pixels (figures-8.14 to 8.15) and c = 0.05 pixels (figures-8.22 to 

8.23), it can be readily seen that Wn for c = 0.05 pixels is larger than Wn for c = 0.6 

pixels. This in turn suggests that the wavenumber change axes corresponding to the 

two cases are different, with the latter being larger that the former. 

As an initial approach to investigating the effect the different unwrapping strategies 

have on the resulting wavenumber change axis, the performance of the adaptive 

Fourier-peak updating approach is compared to that of the constant Fourier-peak 

updating. To do so, the corresponding spectrograms of (a) the adaptive Fourier peak 

re-referencing with c = 0.05 pixels and (b) the constant Fourier peak re-referencing 

with a referencing rate of 400 frames are averaged along the Wn direction according 

to: 

 𝑆 =  ∑ 𝐼(𝑥, 𝑦,𝑊𝑛)
𝜂
𝑊𝑛=1

,  8.23 

where η denotes the maximum value of Wn and 𝐼(𝑥𝑐, 𝑦𝑐,𝑊𝑛) the Fourier transform of 

the intensity data for each data window Wn at the centre of each of the four wedge 

RoIs xc,yc. Figure-8.34(a) and figure-8.34(b) show the resulting averaged 

spectrograms and the location of their respective peaks for the intensity data of 

wedge one and two. As clearly illustrated by the aforementioned figures, the 

difference in the location of the two peaks is almost identical, albeit the signal to 

noise ratio of the signal for the adaptive algorithm (black line) appears to be slightly 

lower than that of the constant re-referencing rate algorithm (red line). The 

corresponding plots of the averaged spectrograms for wedges three and four are 

however significantly different. As clearly illustrated in figure-8.35(a) and figure-

8.35(b), the location of the peak corresponding to the adaptive algorithm appears in 

both cases (intensity data of wedge three and four) to have shifted to the left with 

respect to the peak location of the constant re-referencing rate. Moreover, and apart 

from the expected ghost peaks that are situated next to the main spectral lobe, the 

process has revealed additional peaks. Although their high amplitude is likely to be 

the outcome of the averaging operation, their presence clearly indicates that the 

adaptive algorithm alone suffers from non-compensated errors. 
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8.4.2 Depth resolved thickness measurements 

Although the averaged spectrogram approach can be successfully used as a tool to 

demonstrate that there is a difference in the estimated frequency at which the main 

spectral peak appears, the fact that the resulting wavenumber axis may expand or 

retract depending on which technique is used deems it inappropriate as a criterion to 

distinguish which of the algorithms developed so far yields the most reliable results. 

Despite the fact that optical metrology is a very powerful tool offering unparalleled 

high measurement sensitivity, it is susceptible to errors that are in many cases 

difficult to identify and therefore suppress. For this reason, in the most demanding 

applications and where possible, the optical measurements are often compared to 

mechanical measurements that are traceable to national standards. In line with this 

general rule of evaluation, the accuracy and precision of the different phase 

unwrapping techniques developed so far to estimating the sought wavenumber axis is 

tested by comparing the accuracy to which the central thickness of each of the four 

wedges can be measured against the independent micrometer measurements. In a 

similar way to that presented earlier in chapter-6 and to avoid the long names during 

the forthcoming comparison, the following notation will be adopted. Method-A will 

denote the unwrapping strategy with constant re-referencing rate of 400 frames, 

using the original integer based phase estimation algorithm and without the removal 

of the background intensity artefacts. Method-B will be the short name of the 

approach involving the same constant frame re-referencing rate as method-A, but 

with the non-integer phase estimation method and the removal of the background 

artefacts implemented. Method-C refers to the independent micrometer 

measurements, while method-D is the adaptive Fourier-peak updating (c = 0.05 

pixels) with both non-integer phase extraction and background removal 

implemented. Finally, method-E will denote the hybrid algorithm that combines the 

adaptive Fourier-peak updating (c = 0.05 pixels) and the phase unwrapping along 

the sensitivity direction ( 𝜚  = 2) and where once again the non-integer phase 

estimation and the background suppression procedures are both integrated in the 

technique. In addition to the short names attributed to the different methods used to 

estimate the central thickness of each of the four wedges and to avoid clustering the 

figures used for the following comparisons only the relevant Fourier peaks are 

plotted with the rest being represented by vertical lines where the peaks would occur. 
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In view of the fact that the spectrogram quality for method-E appears to be superior 

in that it is free from artefacts and without major variations in the location of the 

main spectral lobe, only the Fourier peaks of method-E and method-D which 

produced the second best spectrograms will be shown, Figure-8.36 provides a 

comparison amongst the five different methods used to estimating the central 

thickness of the thickest wedge (wedge-1). More specifically figure-8.36(a) shows 

the shape and location of the main spectral lobe using the adaptive Fourier-peak 

updating approach (method-D) as well as the location of the Fourier-peaks after 

conversion of the k-axis to distance d in mm. Similarly, figure-8.36(b) shows the 

shape of the main spectral lobe and its location using the hybrid approach (method-

E), thereby providing a direct way of comparing the depth-resolved measurement 

accuracy and signal to noise ratio achievable by the different approaches. Although 

at this stage the estimated thickness values are reasonably close to each other making 

it difficult to decide which approach is best, the Fourier-peak corresponding to 

method-E appears to be narrower compared to that of method-D, indicating that 

method-E yields better results than method-D. By repeating this process for the 

intensity data from wedge-2 the superiority of the hybrid algorithm starts to become 

more obvious in that the estimated central thickness is much closer to that 

corresponding to the micrometer measurements compared to the other methods as 

illustrated in figures-8.37(a)-(b). 

As the central thicknesses of wedges one and two are fairly close to each other and 

even though there is some evidence that suggests that the k-axis calculated using 

the hybrid algorithm is the more accurate, it is still unclear as to which method is 

best. For this reason, the same process is repeated for the intensity data of wedges 

three and four for which the central thicknesses are significantly smaller to that of 

wedge one. In doing so, any issues related to the fact that the wavenumber change 

axis is essentially computed from the high sensitivity phase changes resulting from 

the wedge-1 data will be revealed. As clearly illustrated in figure-8.38(a), the use of 

the adaptive Fourier-peak updating algorithm yields a sharp peak at a location that is 

significantly underestimating the central thickness of the third wedge. Moreover, a 

spectral artefact around the true thickness of the wedge is clearly visible. On the 

other hand the use of the hybrid approach shows in figure-8.38(b) demonstrates the 

ability to deal with the decoupling of the k-axis from the intensity data by resulting 
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in a sharp peak at a location that is much closer to the true wedge thickness and 

without any spectral artefacts. Finally figure-8.39(a) and figure-8.39(b) show the 

corresponding shapes and locations of the spectral peaks using method-D and 

method-E respectively. Unlike method-D in which the location of the Fourier-peak is 

dramatically underestimated while still suffering from spectral artefacts, the use of 

the hybrid temporal phase unwrapping algorithm (method-E) clearly illustrates the 

robustness and noise immunity of the technique by resulting in a clear Fourier-peak 

at the expected frequency and without any spectral artefacts. 

Table-8.1: Tabular form of the estimated depth-resolved absolute thickness 

measurements of the four wedges using the five different methods (A-E) described 

throughout the thesis.  

Method 
Wedge central thickness in mm 

Wedge-1 Wedge-2 Wedge-3 Wedge-4 

A 12.7471 12.6740 11.9216 9.5747 

B 12.7516 12.6780 11.9265 9.5813 

C 12.7550 12.6600 12.4350 9.5900 

D 12.7527 12.6613 11.7252 9.0855 

E 12.7516 12.6783 11.9295 9.5874 

Table-8.1 above provides the estimated central thicknesses of the four wedges 

comprising the optical sensor, using the five different methods described through the 

thesis in a tabular form. From this final and decisive test, it can be safely concluded 

that the hybrid phase unwrapping algorithm is the preferred method of computing the 

sought wavenumber change axis. 

8.5 Conclusions 

In this chapter, two modifications to the basic unwrapping algorithm used earlier 

have been introduced in an attempt to reduce the artefacts that were present in the 

Fourier reconstruction of the depth profile of the four wedges. Both approaches are 

adaptive and involve signal re-referencing at regular intervals throughout the scan. 

The first is designed to compensate for the gradual change in spatial frequency of the 

fringes that arises from the changing wavelength, and requires continual updating of 

the spatial frequency components at which the phase is evaluated. The second is 

designed to compensate for the gap that starts to open up between the scaled low-

sensitivity phase signal and the high sensitivity phase signal. This may be due to a 
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small error in the value of R, or small changes in R with wavelength due to different 

dispersion curves for the two pairs of wedges. By re-zeroing the phase change at 

regular intervals, and then subsequently adding up the re-referenced phase change, 

the total phase change since the start of the scan can thus be computed but without 

the 2 phase errors that occurred previously. 

The first was found to improve significantly the quality of the spectrograms apart 

from the ‘ghost line’ structure seen in the reconstructions from two of the wedges. 

The second largely eliminated the ghost lines. A hybrid approach combining both 

methods was therefore proposed and used to analyse the data from each of the four 

wedges which was then compared with independently measured wedge thickness 

values using a micrometer. The hybrid method was found to be the most robust of all 

the techniques considered, with a clear Fourier peak at the expected frequency and 

without any spectral artefacts. 
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8.6 Figures 

 

 

Figure-8.1: Schematic illustration of the laser speckle decorrelation phenomenon. (a) 

An induced rotation on the rough surfaced sample causes the speckles to move by an 

amount u across the field of view. (b) When the speckle movement u becomes 

greater or equal to the diameter of the entrance pupil D (≥ 1), complete speckle 

decorrelation occurs causing a significant increase in the noise of the computed 

phase () and thus the measured displacement field of the sample. 
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Figure-8.2: Schematic illustration of the original re-referencing approach proposed 

by [277] to overcome the phase errors caused due to complete speckle decorrelation. 

 

Figure-8.3: Flowchart showing the modified 1-D optimization for the estimation of 

the optimum R-ratio of each of the scan sections. At the top, shown in the dashed 

box, is the procedure implemented to avoid the inclusion of data containing 

unwrapping errors while on the bottom dashed box the steps for calculating the 

optimised R-ratio are described. Note that m,n superscripts are used to denote the 

number of rows and columns of the 2-D matrices (M,N,L) respectively, with m being 

determined by the number of different R values used and n by the length of the scan 

section examined. 
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Figure-8.4: (a) Green: temporally unwrapped phase change ΔΦ𝑢
1,2(𝑡, 0) scaled by the 

optimum ratio for the 1
st
 scan segment. Red: unwrapped phase change ΔΦ𝑢

2,3(𝑡, 0) 

using the green plot. Blue: same as green but scaled by the optimum ratio for the 4
th

 

segment of the scan. (b) Same as (a) for the 4
th

 scan segment of the scan but with the 

ΔΦ𝑢
2,3(𝑡, 0) (red line) unwrapped using the blue instead of the green line. (c) Variation 

in the optimum wedge thickness ratio as a function of Wn 

 

Figure-8.5: Zoomed in regions showing the last 1000 frames: (a) of figure-8.5(a) and 

(b) of figure-8.5(b) 
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Figure-8.6: Time-frequency analysis using the short-time Fourier-transform for the 

intensity data from wedge-1 (a) and wedge-2 (b). The above spectral plots were 

produced using the spectrogram function in the MATLAB programming 

language (see section-7.2.2 for more details) after the improved optimization 

algorithm was implemented (see section-8.3.3 for more details) 

 

Figure-8.7: Same as figure-8.7 above but for (a) wedge-3 and (b) wedge-4. 
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Figure-8.8: Schematic illustrating the hypothetical and ideal, in the absence of any 

non-linearities, linear trend of the reference phase change ΔΦ𝑢
1,2(𝑡, 0) scaled by the 

optimum R-ratio: 𝑅𝑜𝑝𝑡(𝑊𝑛 = 1) where 𝑊𝑛 = 1 ∶ 𝑡 ∈ [1,4897] (shown in the black 

continuous line) and by 𝑅𝑜𝑝𝑡(𝑊𝑛 = 2) where 𝑊𝑛 = 2 ∶ 𝑡 ∈ [4897,9793](shown in 

the black dashed line). 휀𝜙 : denotes the deviation between the two phase change 

signals for this ideal scenario and provides a useful measure to ensure successful 

unwrapping via the following condition: 휀𝜙 < 𝜋 (see section-8.3.4 for more details 

on this condition and its origin). 

 

Figure-8.9: Graph showing the time instances at which updates of the frequency, at 

which the phase is evaluated, occur for c = 0.6 pixels for the four wedges. 
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Figure-8.10: Graph showing the time instances at which updates of the frequency, at 

which the phase is evaluated, occur for c = 0.45 pixels for the four wedges. 

 

Figure-8.11: Graph showing the time instances at which updates of the frequency, at 

which the phase is evaluated, occur for c = 0.05 pixels for the four wedges. 
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Figure-8.12: Case-A: c0.6 pixels. (a) Green: temporally unwrapped phase change 

ΔΦ𝑢
1,2(𝑡, 0) scaled by the optimum ratio for the 1

st
 scan segment. Red: unwrapped 

phase change ΔΦ𝑢
2,3(𝑡, 0) using the green plot. Blue: same as green but scaled by the 

optimum ratio for the 1
st
 segment of the scan. (b) Same as (a) for the 5

th
 scan 

segment but with the ΔΦ𝑢
2,3(𝑡, 0) (red line) unwrapped using the blue instead of the 

green line. (c) Variation in the optimum wedge thickness ratio as a function of Wn. 

 

Figure-8.13: Zoomed in regions showing the last 1000 frames: (a) of figure-8.12(a) 

and (b) of figure-8.12(b) 
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Figure-8.14: Time-frequency analysis using the short-time Fourier-transform for the 

intensity data from wedge-1 (a) and wedge-2 (b). The above spectral plots were 

produced using the spectrogram function in the MATLAB programming 

language of the data after the improved R-optimisation algorithm and the adaptive 

updating of the frequency at which the phase is calculated for Case-A: c0.6 pixels. 

 

Figure-8.15: Same as figure-8.14 above but for (a) wedge-3 and (b) wedge-4. 
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Figure-8.16: Case-B: c0.45 pixels. (a) Green: temporally unwrapped phase 

change ΔΦ𝑢
1,2(𝑡, 0)  scaled by the optimum ratio for the 1

st
 scan segment. Red: 

unwrapped phase change ΔΦ𝑢
2,3(𝑡, 0) using the green plot. Blue: same as green but 

scaled by the optimum ratio for the 1
st
 segment of the scan. (b) Same as (a) for the 5

th
 

scan segment but with the ΔΦ𝑢
2,3(𝑡, 0) (red line) unwrapped using the blue instead of 

the green line. (c) Variation in the optimum wedge thickness ratio as a function of 

Wn. 

 

Figure-8.17: Zoomed in regions showing the last 1000 frames: (a) of figure-8.16(a) 

and (b) of figure-8.16(b). 
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Figure-8.18: Time-frequency analysis using the short-time Fourier-transform for the 

intensity data from wedge-1 (a) and wedge-2 (b). The above spectral plots were 

produced using the spectrogram function in the MATLAB programming 

language of the data after the improved R-optimisation algorithm and the adaptive 

updating of the frequency at which the phase is calculated for Case-B: c0.45 

pixels. 

 

Figure-8.19: Same as figure-8.18 above but for (a) wedge-3 and (b) wedge-4. 
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Figure-8.20: Case-C: c0.05 pixels. (a) Green: temporally unwrapped phase 

change ΔΦ𝑢
1,2(𝑡, 0)  scaled by the optimum ratio for the 1

st
 scan segment. Red: 

unwrapped phase change ΔΦ𝑢
2,3(𝑡, 0) using the green plot. Blue: same as green but 

scaled by the optimum ratio for the 1
st
 segment of the scan. (b) Same as (a) for the 5

th
 

scan segment but with the ΔΦ𝑢
2,3(𝑡, 0) (red line) unwrapped using the blue instead of 

the green line. (c) Variation in the optimum wedge thickness ratio as a function of 

Wn. 

 

Figure-8.21: Zoomed in regions showing the last 1000 frames: (a) of figure-8.20(a) 

and (b) of figure-8.20(b). 
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Figure-8.22: Time-frequency analysis using the short-time Fourier-transform for the 

intensity data from wedge-1 (a) and wedge-2 (b). The above spectral plots were 

produced using the spectrogram function in the MATLAB programming 

language of the data after the improved R-optimisation algorithm and the adaptive 

updating of the frequency at which the phase is calculated for Case-C: c0.05 

pixels. 

 

Figure-8.23: Same as figure-8.22 above but for (a) wedge-3 and (b) wedge-4. 
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Figure-8.24: Comparison amongst the three different reference phase signals 

resulting from the scaling by three different averaged R ratios for the three cases of 

updating rates investigated (Case-A: kr = c = 0.6 pixels, Case-B: kr = c = 0.45 

pixels and Case-C: kr = c = 0.05 pixels). 

 

Figure-8.25: Plots showing the rms error between the averaged R value used to 

perform the unwrapping and the optimum R for each of the ten scan segments, for 

each of the three cases examined (a): 1
st
 unwrapping step, (b) 2

nd
 unwrapping step 

and (c) final unwrapping step. 
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Figure-8.26: Phase plots of the reference phase signal 𝑅 × ΔΦ𝑢
1,2(𝑡, 0) (black line) 

used to perform the unwrapping of ΔΦ𝑤
2,3(𝑡, 0) and the resulting unwrapped phase 

change ΔΦ𝑢
2,3(𝑡, 0) (red line) for the adaptive Fourier-peak algorithm for which the 

threshold value c = 0.05 pixels for three different sections of the data sequence 

where unwrapping errors are most likely to occur. (a) Start of the scan, (b) middle 

and (c) towards the end of the scan. 

 

Figure-8.27: Same as above but for the second unwrapping step. 
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Figure-8.28: Same as above but for the third and final step of the unwrapping 

process. 

 

Figure-8.29: Schematic illustration of the principal idea for the unwrapping 

algorithm along the sensitivity direction with an updating rate of every six data 

points. The new approach involves the updating of the resulting phase change signal 

from the synthetic wedges 
i,j

 at regular and equally spaced intervals. The last 

element of each of the previous scan sections, termed as ‘sections’ here, is shared by 

the next section (‘pivot’ or ‘re-referencing points’). This prevents gaps between the 

scaled low sensitivity phase signal, and the high sensitivity phase signal, that arise 

from the use of an average R scaling factor, from becoming large enough to cause a 

2 phase unwrapping error. 



Section #1 

Section #2 

… 

 

  

  

Pivot/Re-referencing point #1 

Pivot/Re-referencing point #2 

Frame # 

Sensitivity direction 
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Figure-8.30: Time-frequency analysis using the short-time Fourier-transform for the 

intensity data from wedge-1 (a) and wedge-2 (b). The above spectral plots were 

produced using the spectrogram function in the MATLAB programming 

language of the data after the improved R-optimisation algorithm and the 

implementation of phase unwrapping algorithm along the sensitivity axis at the 

maximum updating rate of 𝜚 = 2. 

 

Figure-8.31: Same as figure-8.30 above but for (a) wedge-3 and (b) wedge-4. 
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Figure-8.32: Time-frequency analysis using the short-time Fourier-transform for the 

intensity data from wedge-1 (a) and wedge-2 (b). The above spectral plots were 

produced using the spectrogram function in the MATLAB programming 

language of the data after the improved R-optimisation algorithm and the use of the 

hybrid approach with c = 0.05 pixels and of c = 𝜚 = 2 data points. 

 

Figure-8.33: Same as figure-8.32 above but for (a) wedge-3 and (b) wedge-4. 
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Figure-8.34: Comparison between the averaged spectrograms for the ‘adaptive’ 

(black line) and ‘constant’ (red line) frame re-referencing algorithms of the wedge 

intensity data for (a) wedge-1 and (b) wedge-2. 

 

Figure-8.35: Same as figure-8.34 above but for (a) wedge-3 and (b) wedge-4. 
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Figure-8.36: Comparison of the estimated central thickness of wedge-1 using the five 

different methods (A-E). (a) Shape of the main spectral lobe using the adaptive 

Fourier-peak updating algorithm (Method-D) and its corresponding location (black 

dotted line) compared to the location estimated by methods A to C. (b) Shape of the 

main spectral lobe using the hybrid approach (Method-E) and its corresponding 

location (blue dotted line) compared to the location estimated by methods A to D. 

Insets show the corresponding 1-D Fourier peak zoomed for clarity.  

 

Figure-8.37: Same as figure-8.36 but for the intensity data of wedge-2. Insets show 

the corresponding 1-D Fourier peak zoomed for clarity. 
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Figure-8.38: Same as figure-8.36 but for the intensity data of wedge-3. Insets show 

the corresponding 1-D Fourier peak zoomed for clarity. 

 

Figure-8.39: Same as figure-8.36 but for the intensity data of wedge-4. Insets show 

the corresponding 1-D Fourier peak zoomed for clarity. 
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Chapter-9: TPU strategy validation using simulated data 

9.1 Introduction 

As phase unwrapping errors are believed to be the main source responsible for much 

of the undesirable structure, an attempt to link those to systematic and non-

systematic errors during a wide range WSI scan using the electronically tuned CW 

Ti:Sa laser was presented earlier in chapter-7. More specifically, phase unwrapping 

errors due to (a) a small error in the value of the scaling factor R, (b) small changes 

in R with wavelength attributed at the time to different dispersion curves for the pairs 

of wedges, (c) laser-beam induced errors and (d) geometrical and material induced 

errors, were considered. 

In chpter-8 and in order to reduce the artefacts present in the Fourier reconstructions 

of the depth profile of the four wedges, two modifications to the initial TPU 

algorithm described in chapter-5 were introduced. Both approaches were of adaptive 

nature and involved the re-referencing of the phase signal at regular intervals. The 

first, was designed to account for the gradual change in the spatial frequency of the 

fringes owing to the laser induced changes in the wavelength, and required the 

continual updating of the of the spatial frequency components at which the phase was 

evaluated. The second was designed to compensate for the gradual gap that started to 

open up between the scaled low-sensitivity unwrapped phase change signal and the 

assumed to be unwrapped higher-sensitivity phase change signal. By re-zeroing the 

phase change at regular intervals, and then subsequently adding up the re-referenced 

phase change, the total phase change since the start of the scan was thus computed 

but without the 2 phase errors that occurred previously. 

The first method was found to improve significantly the quality of the spectrograms 

apart from the ‘ghost line’ structure seen in the reconstructions from two of the 

wedges, while the second largely eliminated the ghost lines. A hybrid approach 

combining both methods was, therefore, proposed and used to analyse the data from 

each of the four wedges. The hybrid method, a combination of several fixes, was 

found to be the most robust of all the techniques considered, with a clear Fourier 

peak at the expected frequency and without any spectral artefacts. 
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Naturally, the best way of validating the performance of the proposed hybrid 

approach would be the analysis of additional data sets. However, as already 

mentioned in the introductory chapter, this is not possible due to the permanent 

failure of the laser. Moreover, at the time the third data set (see section-1.4.3 and in 

particular table-1.1) was recorded, the laser behaviour had already started to show 

signs of malfunction – reduced power output and a rather curious reduction in the 

data size, suggesting the presence of much larger missing gaps. It was, therefore, 

decided not to include it in the analysis at this stage. 

In the view of this limitation, in this final chapter, the performance of the proposed 

TPU strategy is investigated by using simulated data instead. The advantage in doing 

so lies in that, simulations provide a convenient platform where the performance of 

the proposed TPU strategy can be assessed in the absence of the inevitable noise and 

other non-linearities associated with the real experimental data. More specifically, in 

section-9.2 the principle onto which the simulated data are produced is discussed. In 

section-9.3 the method the two different simulated data sets are produced is 

described. In section-9.4 a comparison of the performance of the different TPU 

strategies described in this thesis in recovering the true phase-change signal is 

discussed. Finally, in section-9.5 the importance of the proposed approach is 

highlighted by discussing the findings from the analysis of the simulations and 

comparing them to the results from the real experimental data.  

9.2 Proof of principle simulations: Theoretical aspects 

The hybrid technique presented in chapter-8 is clearly the best solution so far. To 

ensure that the proposed solution is generic enough to handle other data scans when 

the laser will eventually be fixed and that the numerous fixes incorporated in the 

hybrid approach have not evolved to solve a particularly unique set of problems with 

the restricted experimental data available, a set of simulations that closely match in 

terms of the length of the scan range, the wavelength step, the size of the region of 

interest the characteristics of the real experimental data set analysed in chapters 6,7 

and 8 under ideal conditions are described and are subsequently analysed. 
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9.2.1 Ideal tunning conditions 

The fundamental condition for any WSI scheme requires a linear and monotonically 

increasing and or decreasing wavenumber k with time t such that: 

 𝑘(𝑡) = 𝑘𝑐 + 𝛿𝑘 ∙ 𝑡,  9.1 

where kc denotes the centre wavenumber, δk is the wavenumber step between two 

successive frames and t is the frame number. Therefore, in order to maintain the 

consistency with the experimental data set analysed earlier but without the 

ambiguities caused by the Ti:Sa laser source (mode hops and missing gaps) the same 

wavelength range of 100 nm (750 nm to 850 nm) with a wavelength step of 2 pm is 

chosen for the simulated data sequence. Figure-9.1 shows the ideal tuning curves 

using equation-9.1. 

9.2.2 Recovery of true phase change: gold standard 

Once the wavelength, λ, and/or the wavenumber, k, at each time instance t are 

known, the instantaneous phase Ψj(t) owing to the front and back reflections from 

each of the four wedges (j=1,2,3,4) can be calculated such that: 

 𝛹𝑗(𝑡) = 𝑘(𝑡)𝑛𝑑𝑗{𝑓(𝜃, 𝛼) + 𝜆(𝑡) 2⁄ },  9.2 

where, t is a non-dimensional time index corresponding to a unique wavenumber k 

and is equivalent to the frame number. n is the refractive index of the medium 

(wedge material), dj is the thickness at the centre of the wedge and f(θ,α) is the term 

responsible for compensating for the wedge angle (recall section-5.2.1 and in 

particular equation-5.9). Finally, the term λ(t)/2 inside the parenthesis is included to 

account for the phase shift due to the internal reflection inside the wedges, in 

accordance to [300-302]. 

Equation-9.2 could serve as the reference signal for the comparison of the TPU 

algorithms. However, as the measurements performed involve phase-changes rather 

than absolute phase measurements, further mathematical manipulation is required. 

For this reason, the remaining of this section will focus on finding the appropriate 

mathematical expression capable of serving as the reference signal. Once this is 

achieved, the ability of the different TPU strategies to recover the true phase change 

signal can then be assessed. 
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The interferometric phase change δΨj, owing to (a) the front and back reflections of a 

transparent wedge (j) of angle α and (b) to the inter-sample change in wavenumber k 

induced by the laser, can be expressed such that: 

 𝛿𝛹𝑗(𝑡, 𝑡 − 1) =  𝛹𝑗(𝑡) − 𝛹𝑗(𝑡 − 1)  

                             = 𝑘(𝑡)𝑑𝑗{𝑓(𝜃, 𝛼) + 𝜆(𝑡) 2⁄ } − 𝑘(𝑡 − 1)𝑑𝑗{𝑓(𝜃, 𝛼) + 𝜆(𝑡 − 1) 2⁄ } 

                             = 𝑛𝑑𝑗𝑓(𝜃, 𝛼)𝛿𝑘 + 𝑛𝑑𝑗{𝑘(𝑡) 𝜆(𝑡) 2⁄ − 𝑘(𝑡 − 1) 𝜆(𝑡 − 1) 2⁄ } 

                             = 𝑛𝑑𝑗𝑓(𝜃, 𝛼)𝛿𝑘 + 𝑛𝑑𝑗{𝜋 − 𝜋}⏟      
=0

 

                               = 𝑛𝑑𝑗𝑓(𝜃, 𝛼)𝛿𝑘 9.3 

By adding the incremental phase changes δΨj over time t (using the cumsum 

function in MATLAB), and provided that f(θ,α) remains constant over the scan 

duration it follows that: 

 𝛥𝛹𝑗(𝑡, 0) = 𝑛𝑑𝑗𝛥𝑘(𝑡, 0)𝑓(𝜃, 𝛼).  9.4 

Recall that the analysis presented in this thesis is concerned with phase differences 

between successive pairs of wedges because it would be impractical to make a wedge 

thin enough to satisfy the inequality-5.16. It follows that, the synthetic-wedge phase-

change signal between a pair of wedges denoted here as j and j+1, owing to the 

incremental change in the wavenumber, δk, between two successive frames can be 

expressed using equation-9.3 such that: 

 𝛿𝛷𝑗,𝑗+1(𝑡, 𝑡 − 1) = 𝛿𝛹𝑗(𝑡, 𝑡 − 1) − 𝛿𝛹𝑗+1(𝑡, 𝑡 − 1).  9.5 

Figure-9.2 provides a visual illustration of the working principle the optical sensor is 

based on, and is repeated here for consistency and clarity reasons. As δΨj and δΨj+1 

are each wrapped onto the range -π to π, δΦ
j,j+1

 lies in the range: -2π to 2π. It is, 

therefore, convenient to wrap this onto the principal range of -π to π [208] by the 

wrapping operator (𝒲) such that: 

 𝛿𝛷𝑤
𝑗,𝑗+1(𝑡, 𝑡 − 1) = 𝒲{𝛿𝛷𝑗,𝑗+1(𝑡, 𝑡 − 1)}.  9.6 

Note that, the wrapped phase-change ( 𝛿Φ𝑤
𝑗,𝑗+1

) can be thought of as the phase signal 

produced by a wedge with a synthetic thickness: 
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 𝑑𝑠
𝑗,𝑗+1

= 𝑑𝑗 − 𝑑𝑗+1.  9.7 

Provided 𝑑𝑠
𝑗,𝑗+1

 satisfies the inequality-5.16 (note that the superscripts i,j are 

replaced here by j,j+1 with j = 1,2,3,4), the incremental wrapped phase change 

between a given pair of successive frames equals the true (unwrapped) phase change 

between those frames. Therefore, the running sum of incremental wrapped phase 

changes represents the true unwrapped phase change between the first frame and the 

current frame t: 

 𝛥𝛷𝑢
𝑗,𝑗+1(𝑡, 0) = 𝛿𝛷𝑤

𝑗,𝑗+1(1,1)
⏞        

=0

+ ∑ 𝛿𝛷𝑤
𝑗,𝑗+1(𝑡, 𝑡 − 1)𝑡

2  9.8 

Equation-9.8 above will formulate the reference, referred to henceforth as the gold 

standard, against which the performance of the different temporal phase unwrapping 

strategies in recovering the true phase change signal will be tested. Note that t = 1, 2, 

3…, total number of frames. 

9.3 Simulated wedge data sequence for a full 100 nm scan 

Having established the mathematical expression that will provide the ‘reference’ 

against which the recovered phase signals resulting from the different TPU 

algorithms will be compared, in this section a description of the simulated data sets is 

given.  

9.3.1 Wedge phase reconstruction 

In order for the simulated data set to be as close to the experimental data set as 

possible, the majority of the constants that define the dimensions of the optical 

sensor are kept the same. These are summarised in tabular form in table-9.1 below. 

Note that the wedge angle α, has been deliberately chosen to be smaller than the ~ 2 

min target value in order to match the number of fringes of the real experimental data 

and the estimated wedge angles (recall table-7.3) prior to the application of the 

square aperture correction factor (recall section-7.3.2) . 

As the central thickness, dc, and the angle, α, of each of the four wedges are known, 

the starting and final thicknesses along the wedge-direction can be determined as 

follows: 
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𝑑𝑖
𝑗
= 𝑑𝑐

𝑗
− (𝑙 2⁄ ) 𝑡𝑎𝑛 𝛼

𝑑𝑓
𝑗
= 𝑑𝑐

𝑗
+ (𝑙 2⁄ ) 𝑡𝑎𝑛 𝛼

  9.9 

Table-9.1: Tabular form of the key optical sensor parameters used for the simulated 

data set.  

 Wedge width Central thickness dc Wedge height θ  α  

Wedge-1 30 mm 714 pixels 12.8 mm 86 pixels 2 degrees 1.200 min 

Wedge-2 30 mm 714 pixels 12.6 mm 86 pixels 2 degrees 1.068 min 

Wedge-3 30 mm 714 pixels 12.0 mm 86 pixels 2 degrees 1.362 min 

Wedge-4 30 mm 714 pixels 9.60 mm 86 pixels 2 degrees 1.422 min 

 

By interpolating between the starting and final thickness values, the profile of each 

of the four wedges can be reconstructed. Once the ideal wedge profiles are 

reconstructed, the 2-D phase distribution Ψj across the wedge can be obtained by 

inserting each of the elements of the 2-D matrix describing the wedge profiles into 

equation-9.2. Figure-9.3 shows these for the first two wedges at the first frame i.e. λ 

= 750 nm and for a refractive index value of n = 1.453.  

9.3.2 Phase signal and fringe pattern reconstruction 

By repeating the process described above for all the wavelengths in the scan range of 

750 - 850 nm with a wavelength step of 2 pm and n = 1.453, the temporally 

unwrapped (due to the small difference in the central thickness between the first and 

second wedges) ‘gold standard’ phase signal can be calculated using equations 9.5, 

9.6 and 9.8. 

In previous chapters a variety of error sources that are believed to contribute to phase 

unwrapping errors have been investigated. In brief, these included the effect of 

intensity artefacts, the wedge thickness, the uncertainty in the instantaneous peak 

position, the mismatch in the refractive index dispersion curves between successive 

pairs of wedges, laser beam induced errors as well as geometrical factors such as the 

presence of angles along directions other than that of the wedge direction (refer to 

section-7.3 for more details). The latter resulted in the introduction of a correction 

factor that demonstrated a rather dramatic mismatch in the number of fringes 

amongst the four wedges and the estimated wedge angle (recall table-7.3 and table-

7.4).  
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Therefore, before proceeding with the description of the simulated fringe patterns, it 

is worth considering the effect of a mismatch amongst the wedge angles of the four 

wedges involved in the phase unwrapping procedure. To do so, consider the 

hypothetical scenario where the pair of wedges are characterised by the same 

refractive index and are also immune to dispersion such that: 

 𝑛(𝜆) = 𝑛 = 1.453, 𝜆 ∈ [750,850]𝑛𝑚  9.10 

as illustrated in figure-9.4. If the wedge angles 𝛼1, 𝛼2 are the same i.e. 𝛼1 = 𝛼2, it 

follows that: 𝑓(𝜃, 𝛼1) = 𝑓(𝜃, 𝛼2) = 𝑓(𝜃, 𝛼). Therefore, according to equation-9.5 the 

synthetic-wedge phase-change between two adjacent frames is given by: 

 𝛿𝛷1,2(𝑡, 𝑡 − 1) = 𝑛𝛿𝑘𝑓(𝜃, 𝛼){𝑑1 − 𝑑2}  9.11 

If, on the other hand, 𝛼1 = 𝛼2 then, 𝑓(𝜃, 𝛼1) ≠ 𝑓(𝜃, 𝛼2) and the expression for the 

synthetic-wedge phase-change between two adjacent frames changes to: 

 𝛿𝛷1,2(𝑡, 𝑡 − 1) = 𝑛𝛿𝑘{𝑑1𝑓(𝜃, 𝛼1) − 𝑑2𝑓(𝜃, 𝛼2)}  9.12 

Recall that the fundamental requirement for the temporal phase unwrapping 

described earlier and in chapter-5 requires that by first wrapping (equation-9.6) and 

then summing the incremental phase changes between adjacent frames (equation-

9.8), gives the correctly unwrapped phase-change signal ΔΦ𝑢
1,2(𝑡, 0). This is scaled 

by a factor R (see equation-5.19) and is then used to unwrap the higher sensitivity 

phase-change signal ΔΦ𝑤
2,3(𝑡, 0) (recall equation-5.20) and so on until the highest 

sensitivity phase-change signal ΔΦ𝑤
1,5(𝑡, 0) is unwrapped and converted to the sought 

wavenumber axis Δk. From equation-9.11 and equation-9.12 it is clear that in the 

presence of unequal wedge angles, the role of the f(θ,α) term is different. This is a 

rather important observation in that it suggests that the scaling factor R cannot be 

accurately calculated by taking the ratio of the respective central wedge thicknesses 

as suggested by equation-5.19. In order to quantify the deviations caused by this 

revelation and highlight the validity of the proposed hybrid approach, two simulated 

data sets will be processed. The first data set will be based on wedges with slightly 

unequal wedge angles (α1 ≠ α2) and the second on identical wedge angles (α1 = α2), 

as shown in table-9.2. 
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Table-9.2: Wedge angles and the corresponding number of fringes of the two 

simulated data sets analysed in this chapter. 

 Simulated data set-1: α1 ≠ α2 Simulated data set-2: α1 = α2 

 Wedge angle Number of fringes Wedge angle Number of fringes 

Wedge-1 1.200 mins 42 0.9 mins 31 

Wedge-2 1.068 mins 37 0.9 mins 31 

 

With this in mind, the ‘gold standards’ for the two different simulated data sets can 

be extracted through the use of equation-9.6 and equation-9.8. As expected, the two 

unwrapped phase change signals appear similar for the first few hundred frames but 

start to deviate from each other towards the end of the scan, with a mismatch of the 

order of 1.5 in 600 radians as illustrated in figure-9.5(a) and figure-9.5(b) 

respectively. The latter provides a useful quantitative measure of the deviation one 

should expect in the recovered phase-change signal when a mismatch in the wedge 

angle is present but in the absence of any other non-linearities. 

Having established the reference phase-change signal, the last step towards 

producing the simulated WSI data sets is that of generating the relevant fringe 

patterns for each of the wedges. Recall that in interferometry the interference signal 

is practically given by the sum of the background intensity distribution I0 and the 

modulation intensity IM multiplied by the cosine of the phase, such that [81]: 

 𝐼(𝑥, 𝑦, 𝑡) = 𝐼0(𝑥, 𝑦, 𝑡) + 𝐼𝑀(𝑥, 𝑦, 𝑡) 𝑐𝑜𝑠 𝜙(𝑥, 𝑦, 𝑡) , 9.13 

where x,y denote the pixel indices in the region of interest, t is the frame index 

corresponding to a unique wavelength (λ) or wavenumber (k) while ϕ is the phase 

shift between the reference and object waves. Therefore, by letting: 

 𝜙(𝑥, 𝑦, 𝑡) =  𝛹𝑗(𝑥, 𝑦, 𝑡)  9.14 

where Ψj is the 2-D phase distribution at each time instance t (see figure-9.3), the 

sought fringe patterns can be generated. Figure-9.6 illustrates the resulting fringe 

patterns for the two scenarios considered here i.e. unequal wedge angles (left 

column) and equal wedge angles (right column). Note that in this example and in 

order to ensure maximum fringe contrast, the background and modulation intensities 

have been set equal to 10
5
 in arbitrary units (a.u). By repeating the process described 
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in the previous section, the intensity data for all four wedges can be extracted and 

subsequently analysed 

9.4 Comparison of TPU analysis algorithms in the absence of noise 

The success of the ‘hybrid’ method that produced the best spectral peaks both in 

terms of the signal-to-noise ratio (‘ghost line’ fully suppressed) and the location 

corresponding to the thickness of each of the four wedges was the result of several 

fixes. Some of these were particularly introduced to the processing software in order 

to account for the various error sources associated with real experimental data such 

as:  

a. the missing data gaps (see section-6.3.1) owing to the laser mode-hops, 

b. the estimation and suppression of background intensity artefacts owing to the 

internal reflections inside the wedge material (see section-6.2.3), 

c. the dependency of the refractive index of the wedge material on the 

instantaneous wavelength of the source and the potential mismatch in the 

dispersion curves amongst the four wedges (see section-7.3.3), 

d. the presence of angles along directions other than the wedge direction (see 

section-7.3.2).  

The majority of the above are no longer present in the simulated data. More 

specifically (a) has been replaced by the ideal tuning curve thereby eliminating the 

presence of gaps and thus resulting in a uniformly spaced k-vector, (b) is no longer 

an issue as there are no reflections and/or the location of the illuminating beam is no 

longer a function of time in the simulated data, (c) the refractive index of the wedges 

has been arbitrarily set to a constant value of 1.453 with its dependency on 

wavelength dropped (zero dispersion condition) and finally (d) there is only one 

wedge angle ,that is, along the wedge direction which in turn resulted in vertical 

fringes (recall figure-9.6) in place of the tilted fringes in the real experimental data 

(recall figure-7.12 for example).  

As (a)-(d) constitute systematic and non-systematic errors that can all be categorised 

under the generic term ‘noise’, the remaining of this final chapter will be focused on 

the processing and analysis of data in the absence of noise. More specifically, the 

performance of the integer and non-integer phase extraction methods will be tested 
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for the two simulated data sets in recovering the true phase-change (‘gold standard’) 

by processing the intensities of the simulated fringe patterns for the first two wedges 

only i.e. wedge-1 and wedge-2. The reasons justifying the aforementioned decision 

are as follows: 

a. If any phase unwrapping errors occur during this first step, they will be 

accumulated and amplified in the next steps. 

b. It is believed that a large number of phase unwrapping errors and artificial 

wavenumber jumps have been suppressed after the implementation of the 2-D 

non-integer phase extraction method (see for example figure-6.9) 

c. To investigate the validity of the adaptive vs the constant re-referencing TPU 

approach and its difference to the unwrapping strategy along the phase 

sensitivity direction in the presence and/or absence of unequal wedge angles. 

The above aim at shedding some more light into a number of concerns that cannot at 

this stage be justified with real experimental data due to the permanent laser failure. 

First, the important question of whether the proposed ‘hybrid’ approach is in fact 

generic enough to be recommended for future WSI applications and has not evolved 

to solve the problems associated with one particular data set, will be clarified. 

Second, by testing the ability of the integer and non-integer phase extraction methods 

for equal and unequal angles will hopefully assist in understanding the rather large 

mismatch in the refractive index dispersion trend curves that was observed earlier 

(recall figure-7.15). Finally, the relevant contribution of phase unwrapping errors 

owing to the phase extraction process alone will be further clarified. 

9.4.1 Recovery of 𝚫𝚽𝒖
𝟏,𝟐 without updating the peak 

As mentioned earlier, if an error occurs in the recovered, temporally unwrapped 

phase-change signal corresponding to the first synthetic-wedge (involving the pair of 

wedge 1, 2) phase-change that is used as the reference signal to unwrap the higher 

sensitivity synthetic-wedge phase change involving the next pair of wedges (2, 3), it 

follows that the unwrapped higher sensitivity phase-change ΔΦ𝑢
2,3

will also suffer 

from the same error amplified by the scaling factor R1. This poses a major threat to 

the validity of the temporal phase unwrapping method described in chapter-5, in that 

it suggests that the reference signal is in fact not unwrapped. As a first step to 

highlight this point, the ability to recover the true phase change ΔΦ𝑢
1,2

 using the 
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integer and the non-integer phase extraction methods without updating the Fourier-

peak at which the phase is evaluated, is investigated for the two simulated data sets. 

Figure-9.7(a) illustrates the effect of not updating the frequency at which the phase 

Ψj is evaluated on the recovered phase-change signals (ΔΦ𝑖𝑛𝑡
1,2 , ΔΦ𝑛𝑜𝑛−𝑖𝑛𝑡

1,2 ) using the 

integer and non-integer phase evaluation methods for the case of unequal wedge 

angles (α1≠α2). As expected, significant deviations between the two recovered 

signals and the true phase change ΔΦ𝑔𝑠1
1,2

 start to emerge from frame t = 10,000 

onwards. These, manifest themselves as phase jumps that would be difficult to 

distinguish from the laser induced wavenumber jumps or, indeed, link them to any 

other possible physical phenomenon. Moreover, as indicated by the error plots in 

figure-9.7(b) and figure-9.7(c), even in the regions where the error function (erf) 

does not contain the jumps shown in figure-9.7(a), a curious deviation from the gold 

standard (gs1) is observed that takes the form of a linear ramp convolved with an 

oscillating component (see detail D1 in figures-9.7(b), 9.7(c)) of the order of 0.03 rad 

over a phase change of 10.8 rad for both cases. 

On the other hand, figure-9.8(a), illustrates the same comparison as in figure-9.7(a) 

but this time for the case where the wedge angle is identical for both wedges forming 

the synthetic wedge (1,2) – α1 = α2 = 0.9 mins corresponding to 31 fringes at λ = 750 

nm for both wedge-1 and wedge-2. By comparing figure-9.7(a) and figure-9.8(a), it 

becomes clear that the large phase jumps that were previously observed between the 

gold standard (gs1) and the recovered phase-change signals (see figure-9.7(a)), for 

both the integer and the non-integer methods, are no longer present for the case of 

identical wedge angles (see figure-9.8(a)). Both the recovered phase-change signals 

seem to be in good agreement with the true phase-change (gs2) with the exception of 

a downward phase jump of the order of 5 rad over a phase-change of 471.5 rad for 

the integer method and some small upward excursions occurring at frames t ~ 18470, 

30800 and 43100 for the non-integer approach that are of the order of 3, 10 and 15 

rad respectively as indicated by figure-9.8(b) and figure-9.8(c). More importantly, 

however, as it is illustrated by the error plots in both figures-9.8(b),(c) the linear 

ramp that was previously present right from the start of the scan sequence (recall 

detail D1 in figure-9.7(b) and (c)) has been suppressed (see detail D1 in both figure-

9.8(b) and (c)). Considering that the oscillating nature of the error plots illustrated in 
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detail D1 of figure-9.8(b) and (c) describes much more closely the sensitivity of 

interferometric techniques than that illustrated in D1 of figure-9.7(b) and (c), suggests 

that the linear ramp was in fact a numerical artefact owing to the mismatch in the 

wedge angles of wedge-1 and wedge-2. 

Finally, as indicated by figure-9.7 and figure-9.8 the recovery of the true phase-

change is always superior for the non-integer phase extraction method regardless of 

whether the wedge angles are identical or not, thereby highlighting its importance for 

WSI applications. Furthermore, the effect of not updating the frequency at which the 

phase is evaluated as well as the effect of the mismatch in the wedge angles is in fact 

very difficult to identify if only a few hundred frames are considered. The latter is a 

rather important observation in that it highlights the difficulties involved with 

recovering the correct temporally unwrapped phase signal over such a wide tuning 

range as that considered in this thesis.  

9.4.2 Recovery of 𝚫𝚽𝒖
𝟏,𝟐 using the constant peak updating TPU method 

In the view of the observations presented above, in this section the effect of updating 

the Fourier-peak at which the phase is extracted in recovering the correct phase-

change using the two simulated data sets (α1 ≠ α2 and α1 = α2) using the two different 

phase extraction methods is investigated. 

Following the same procedure as previously, the data set where α1 ≠ α2 is considered 

first. Figure-9.9 provides a visual comparison between the recovered phase change 

signals using the integer and non-integer methods and the corresponding true phase 

change (gs1). Additionally, in an attempt to investigate the effect of the re-

referencing, two different re-referencing rates are chosen with first at 400 frames and 

the second at 4 frames. There are four important points revealed by the plots in 

figure-9.9. First, by introducing the concept of re-referencing, the principle idea that 

was stated earlier (recall section-8.3.2 and equation-8.6) suggesting that, after several 

wavelength increments during a wavelength scan the order position of the Fourier 

peak at which the phase is evaluated needs to be updated, is confirmed. Second, all 

of the recovered phase-changes, and regardless of the type of phase extraction 

method, are free from the phase jumps that were previously observed (recall figure-

9.7(a)). Third, all four of the experimentally recovered phase changes seem to suffer 

from a deviation from the true phase change (gs1) of the order of ~1.5 rad over the 
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total phase change of ~570 rad (see detail D1 in figure-9.9). Fourth, by comparing the 

recovered phase changes for the two re-referencing rates, it becomes clear that under 

the ideal conditions considered here, it makes little if any difference whether one 

chooses a really high (4 frames) or medium (400 frames) re-referencing rate (see 

detail D2 in figure-9.9). The latter is further illustrated in figure-9.10 and its 

accompanying details D1, D2 and D3. Furthermore, the linear ramp in the error plots 

is once again confirmed for the case of unequal wedge angles. 

As a last step, the recovered phase-changes are compared against each other and 

against the corresponding gold standard (gs2) for the case of equal wedge angles in 

figure-9.11. As expected, by setting the wedge angles equal to each other, the 

majority of the discrepancies that were previously observed when α1 ≠ α2 are once 

again by and large removed. More specifically, by comparing the corresponding 

error plots for the integer and non-integer methods for the two re-referencing rates 

chosen (400 frames and 4 frames) in figure-9.12, it is clear that when α1 = α2 the 

linear ramp is removed. Moreover, the superiority of the non-integer phase extraction 

approach proposed here is once again highlighted by the fact that the discrepancies 

between the gold standard (gs2) and the integer method illustrated in figure-9.12 

(a),(b) are not present for the non-integer method as shown in figure-9.12 (c),(d). 

Interestingly, the aforementioned phase jumps occur at the same frame indices. The 

most likely reason responsible for their occurrence is attributed to the order position 

of the Fourier peak being underestimated or overestimated due to some build-in 

rounding operation (figure-9.12 (a), (b)). This is confirmed by their absence in the 

corresponding error plots for the non-integer approach in figure-9.12 (c), (d). 

9.4.3 Recovery of 𝚫𝚽𝒖
𝟏,𝟐 by updating the peak at every frame 

In this final section the effect of updating the position of the Fourier peak at which 

the phase is extracted at every frame, is investigated for the two simulated data sets 

and the two phase estimation methods (i.e. the integer and the non-integer methods). 

Although this is not quite the same as the ‘hybrid’ method (consisted of the adaptive 

peak updating TPU and the unwrapping along the phase sensitivity axis strategies – 

see chapter-8) used for the experimental data set, the fact that the peak location is 

updated at every frame can be considered similar in that it pushes the adaptive TPU 

strategy to its limit (if the re-referencing rate for the adaptive TPU method was to be 
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set to 1, the two methods become identical). The latter was not tested using the real 

experimental data due to the general noise aspects associated with the real 

experimental data. However, simulations provide the ideal platform where such 

conditions can be examined thereby, providing the necessary confidence to test 

whether there is a lower limit beyond which, the updating principle fails. 

Once again, following the same procedure as before, the case where α1 ≠ α2 is 

examined first. As illustrated in figure-9.13, and unlike the recovered phase using the 

non-integer method, the recovered phase change using the integer approach suffers 

from a large number of phase-jumps that gradually build up, starting from frame t = 

10000 onwards (see detail D1 in figure-9.13) confirming the superiority of the non-

integer approach. As expected, the error plot in figure-9.14(a) confirms this as well 

as the presence of the linear deviation. In addition to the above expected remarks, the 

error plot in figure-9.14(a) suggests that the recovered phase change signal using the 

integer method suffers from phase unwrapping errors (i.e. unresolved 2π phase 

jumps). Considering that the recovered phase change from the first pair of wedges is 

assumed to be unwrapped, this is a rather disturbing observation. To test whether this 

is the case, a simple test is performed where the error plot erf is checked for 2π 

errors. This is done by choosing an arbitrarily threshold of 𝜋 √3⁄  rad such that if: 

 𝑒𝑟𝑓(𝑡) ≥ 𝜋 √3 𝑟𝑎𝑑⁄   9.15 

the corresponding frame t is marked with an asterisk (*). The results of this simple 

test are quite relieving. As shown in detail D1 in figure-9.14(a), what initially appear 

as phase unwrapping errors are in fact the result of additive inter-frame phase jumps 

that are less than π. Apart from being reassuring, this also explains the stair-like 

shape of the error function (erf) for the integer method. On the other hand, the non-

integer approach is free from this structure, once again demonstrating the importance 

of the non-integer phase extraction algorithm as illustrated by the corresponding 

error plot in figure-9.14(b). Another interesting fact, revealed by the error function 

for the non-integer method, is that although α1 ≠ α2, the expected linear ramp is no 

longer present. This suggests that under the ideal conditions of a perfectly linear and 

free from gaps wavelength scan, the mismatch in the wedge angles can be resolved 

by simply updating the frequency at which the phase is evaluated at every frame (that 

is, provided that the non-integer method is used). 
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Last but not least, the recovered phase changes using the integer and non-integer 

algorithms with the maximum re-referencing rate are compared for the case of 

identical wedge angles. As expected, the superiority of the non-integer approach 

versus its integer contender is once again confirmed, as it is illustrated in figure-9.15. 

Moreover, by comparing figure-9.15 to figure-9.13, it can be seen that the deviation 

point between the recovered phase change signal using the integer method and the 

corresponding gold standard, is now shifted by several thousands of frames thereby 

highlighting the important effect of having equal wedge angles. The effect is further 

justified by the error plots illustrated in figure-9.16(a) and figure-9.16(b) for the 

integer and non-integer phase extraction algorithms respectively. 

As it has already been pointed out, from the comparisons presented this far, the large 

phase jumps observed in the error plots for the integer method are not to be confused 

with phase unwrapping errors. These, are in fact, the result of accumulated phase 

errors of magnitude less than π that occur between adjacent frames as illustrated by 

the zoomed region in figure-9.16(a). The most likely reason for their occurrence is 

linked to the fact that it takes several thousands of frames until the order position of 

the Fourier peak is changed when using the integer method. In simple terms, as the 

position of the peak where the phase is evaluated, is estimated as an integer number 

using the integer method, it is only after several thousands of frames that its position 

is in fact updated, even when the maximum re-referencing rate of 1 is used. It is, 

therefore, reasonable for one to expect the recovered phase-change to be significantly 

underestimated. This can be further realised by comparing the estimated 

instantaneous peak positions using the integer and non-integer 2-D Fourier peak 

position estimation algorithms. 

Figure-9.17 illustrates this point for the case of unequal wedge angles, while figure-

9.18 refers to the case where the wedge angles are set to equal each other. As it is 

clearly illustrated, the location at which the curious phase jumps were previously 

observed perfectly coincides with the location at which the order position of the peak 

changes (compare figure-9.17(b) to figure-9.14(a) and figure-9.18(b) to figure-

9.16(a) for example). On the other hand, the natural question as to why the phase 

jumps seem to not be present for the case of constant peak updating is not as straight 

forward. However, by comparing figure-9.12(a) and figure-9.12(b) to figure-9.18(a) 

and figure-9.18(b), it becomes clear that they are in fact present but are more 
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diffucult spot due to their much smaller case. The above justifies the sensitivity of 

the location of the Fourier peak and the corresponding phase. This last point further 

justifies the suspicion that the accuracy of the estimated phase is directly linked to 

the accuracy the corresponding Fourie-peak position is determined.  

9.5 Discussions and conclusions 

In this final chapter, and in the absence of additional experimental results, a set of 

simulated data that closely matched the real experimental data set analysed in 

chapters-6 to 8 were produced and subsequently analysed. There are two reasons that 

justify this decision. The first one is related to the lack of additional experimental 

data due to the permanent failure of the lase source. As a result, it is possible that the 

‘hybrid’ approach that has clearly given the best results (recall chapter-8) may have 

evolved to solve the problems associated with one particular data set, thereby 

questioning whether the technique (‘hybrid’ approach) is generic enough to be 

recommended for future WSI applications. The second one is related to the relative 

contribution of phase unwrapping errors compared to the error sources discussed 

earlier in chapter-7. As it has already been pointed out, simulations provide the ideal 

platform to test the performance of the numerous TPU strategies tested in this thesis, 

in the absence of the inevitable noise associated with the recording and analysis of 

real experimental data. 

On this note, the effect of a potential mismatch in the wedge angles of the two 

wedges forming the pair of synthetic wedges and the corresponding recovered phase 

change signals that would have otherwise been impossible to examine, was 

investigated. It was found that the number of fringes that appear across the field of 

view of each of the individual four wedges is, in fact, predominantly controlled by 

the wedge angle. Recalling the observed gradual drift that occurred between the 

recovered phase changes and the corresponding gold standard (gs1) for both the 

integer and the non-integer methods when α1 ≠ α2 with constant peak updating in 

figure-9.10, it is possible that the mismatch in the wedge angles is partially 

responsible for the variation in the optimum wedge thickness ration R observed in the 

numerous tests performed in chapter-8 – recall figures-8.4(c), 8.12(c), 8.16(c) and 

8.20(c)). Considering that the mismatch in the wedge angles had already been 

experimentally verified earlier in chapter-7 (recall table-7.3) but at the time its 
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significance had not been realised, one possible way of testing this in the future could 

be to modify equation-5.23 such that the estimation of the scaling factor R includes 

the f (θ, α) term. 

Furthermore, closer inspection of the recovered phase change signals using the 

integer and the non-integer approaches for two simulated data sets has revealed that 

the former suffers from small phase jumps of magnitude less than π that are of 

additive nature. As already pointed out, these are not to be confused with 2π phase 

jumps that are successfully dealt with by the original temporal phase unwrapping 

strategy which was described in chapter-5 and reference [20] and are not of additive 

nature. However, as the recovered phase change signal resulting from the first pair of 

wedges is amplified by the scaling factor R prior to it being used as the reference 

signal to unwrap the higher sensitivity phase change signal of the next pair, it follows 

that these phase jumps are also amplified. As a result, they can be easily 

misinterpreted as phase unwrapping errors or even artificial wavenumber jumps. This 

is most likely the reason as to why the accessing to the scan range was limited to 37 

nm in reference [21] (the integer method was used). Once again, the above would 

have been impossible to reveal using real experimental data as the small phase jumps 

are camouflaged within the high noise levels that characterise the reference signal of 

the real experimental data sets analysed in this thesis (data set-1 and data set-2 of 

table-1.1). In contrast to the recovered phase change signal obtained using the integer 

method, the corresponding non-integer one is free from these issues thereby 

highlighting its importance in PC-WSI. 

As far as the assumption of a mismatch in the refractive index of the four wedges 

comprising the optical sensor is concerned, the simulations analysed in this chapter 

have provided some important information. Most importantly, it is now much clearer 

that the large mismatch observed in the extracted refractive index trend curves (recall 

figure-7.15 and figure-7.16) is most likely produced by the mismatch in the wedge 

angles that at the time was not considered to be a significant factor. It is worth noting 

that the aforementioned observation does not invalidate the method of estimating the 

refractive index trends nor does it eliminate the possibility that there is a mismatch in 

the dispersion curves of the wedge materials but rather it rather highlights the 

importance of equal wedge angles in the hardware design of the four-wedge sensor.  
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As already pointed out, the TPU strategy concerning the unwrapping along the phase 

sensitivity direction was not employed in the simulated data sets analysed in this 

final chapter. However, as the simulations provide a convenient platform to test the 

effect of physical parameters such as ideally formed wedges with α1 ≠ α2 and α1 = α2, 

it becomes clear that the major contribution of the unwrapping along the phase 

sensitivity axis is to compensate for the mismatch between the wedge angles of the 

pair of wedges used to construct the synthetic wedge phase change signals. In other 

words, the latter constitutes a way of compensating for the gradual build-up of the 

gap observed between the true phase change signal and the recovered phase change 

signal by placing regular pivot points in places where a phase change discrepancy is 

likely to occur owing to the mismatch in the wedge angles. On this note, it is possible 

that the ‘ghost lines’ that were observed in the spectrograms during the analysis of 

the real experimental data set prior to the implementation of the temporal phase 

unwrapping along the phase sensitivity direction, was an artefact attributed to the 

mismatch between the wedge angles (predominantly between the first pair of wedges 

(recall table-7.3 and table-7.4) that was carried through the unwrapping steps). This, 

in turn, potentially explains the reason as to why the position of the aforementioned 

artefacts start to approach the main spectral lobe (line kt = 1) as the adaptive re-

referencing rate was increased. 

Recalling that the real experimental data set used to validate the performance of the 

wavenumber change sensor developed in this thesis only consisted of 400 frames, 

further highlights (a) the difficulty in accessing the full scan range and (b) the 

importance of the various fixes that were introduced to the original algorithm and 

have eventually led to the successful 1-D depth reconstructions using the full scan 

range in the absence of any reference signal i.e. the high-end wavelength meter that 

was used for the short scan proof of principle validation. 

To conclude, the above, hopefully, provides the reader with the necessary confidence 

that the proposed technique detailed earlier in chapter-8 is generic enough to be 

considered for future users of this particular WSI setup or, indeed, for other PC-WSI 

applications concerned with the processing of large scans (> 100 nm) and 

wavelength steps down to the picometers level.  
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9.6 Figures 

 

Figure-9.1: Ideal laser tuning curves: (a) linear wavenumber k as a function of frame 

index t and (b) corresponding ideal wavelength λ tuning curve as a function of frame 

index t. Note the importance of a non-linear λ(t) in order to get a linear k(t) ramp. 

 

Figure-9.2: Schematic diagram showing the working principle of the four-wedge 

optical sensor. (a) Expanded front-view of the four-wedge sensor: the black dots 

indicate where the phase Ψj is evaluated for each region of interest (dotted 

rectangles), with j = 1, 2, 3, 4 for each wedge. δΦ is the synthetic-wedge phase-

change parameter that is used to calculate the sought Δk parameter, while the 

subscripts u, w denoting whether the phase signal is unwrapped or wrapped 

respectively. (b) Expanded side-view of the sensor showing the central thickness for 

each of the four wedges. αj is the wedge angle with α1~ α2 ~ α3 ~ α4 ~ 2 min for the 

ideal case scenario. 
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Figure-9.3: 2-D phase distribution due to the wedge profile at λ = 750 nm for wedge-

1 (Top) and for wedge-2 (bottom) and for n = 1.453. Px and Py are the pixel counts 

along the x and y directions. 

 

Figure-9.4: Hypothetical scenario of a pair of wedges (W1, W2) with the same 

refractive index that are insensitive to dispersion i.e. n(λ) = n = 1.453 for all 

wavelengths in the wavelength range of 750-850 nm. α1, α2  and d1, d2 are the wedge 

angles and central thicknesses of wedge-1 and wedge-2 respectively. The black spots 

indicate the location at which the phase is evaluated. 
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Figure-9.5: (a) True temporally unwrapped phase-changes ΔΦ𝑢
1,2(𝑡, 0) for the two 

different simulated data sets. Black-line: ΔΦ𝑢
1,2(𝑡, 0) = ΔΦ𝑔𝑠1

1,2 (𝑡, 0) for the case of 

different wedge angles. Red-line: ΔΦ𝑢
1,2(𝑡, 0) = ΔΦ𝑔𝑠2

1,2 (𝑡, 0)  for the case of equal 

wedge angles. Note that gs, stands for gold standard. (b) Difference between the two 

gold standards that illustrates the deviation in the recovered unwrapped phase-change 

expected in the case of unequal angles and in the absence of any other non-

linearities. 
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Figure-9.6: Simulated fringe patterns at the starting wavelength λ = 750 nm of an 

ideal WSI scan for the four wedges. Left column (a), (c), (e), (g): for the case 

where𝛼1 ≠ 𝛼2 ≠ 𝛼3 ≠ 𝛼4 . Right column (b), (d), (f), (h): for the case where 

 𝛼1 = 𝛼2 = 𝛼3 = 𝛼4. 
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Figure-9.7: (a) Comparison of phase-change signals illustrating the detrimental effect 

on the recovered phase-change signals in the absence of re-referencing for both the 

integer and the non-integer phase extraction methods when compared to the gold 

standard with wedge angles that are slightly different from each other (α1 = 1.2 mins 

and α2 = 1.068 mins) The red line indicates the gold standard while the solid black 

and dotted black line indicate the recovered phase-change signals using the non-

integer and the integer phase extraction approaches respectively. (b) Difference 

between the gold standard (gs1) and the recovered phase change signal using the 

integer approach. (c) Difference between the gold standard (gs1) and the recovered 

phase change signal using the non-integer approach. Note that erf stands for error 

function and is expressed in units of radians, while the superscript da stands for 

different angles. 
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Figure-9.8: (a) Comparison of phase-change signals illustrating the improvement on 

the recovered phase-change signals in the absence of re-referencing for both the 

integer and the non-integer phase extraction methods when compared to the gold 

standard but with equal wedge angles this time (α1 = α2 = 0.9 mins) The red line 

indicates the gold standard (gs2) while the solid black and dotted black line indicate 

the recovered phase-change signals using the non-integer and the integer phase 

extraction approaches respectively. (b) Difference between the gold standard (gs2) 

and the recovered phase change signal using the integer approach. (c) Difference 

between the gold standard (gs2) and the recovered phase change signal using the non-

integer approach. Note that erf stands for error function and is expressed in units of 

radians, while the superscript sa stands for same angles. 
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Figure-9.9: Comparison that illustrates the effect that re-referencing (by updating the 

location at which the phase is evaluated) has on the recovered phase-change signals 

for the integer and the non-integer phase extraction methods, versus the gold 

standard (gs1) in the presence of unequal wedge angles. Two re-referencing rates 

have been chosen: at 400 frames and 4 frames. D1 and D2 denote the two zoomed 

regions. Note that all phase changes are in units of radians. 
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Figure-9.10: Error as a function of the frame index t, between the gold standard (gs1) 

for wedge angles that are slightly different from each other (α1 = 1.2 mins and α2 = 

1.068 mins) and the recovered phase-change signals using the integer and the non-

integer phase extraction approaches with regular (constant) updating of the peak at 

which the phase is evaluated. Solid black line: Difference between the gs1 and the 

recovered phase-change using the integer method and a constant re-referencing rate 

of 400 frames. Dotted black line: Difference between the gs1 and the recovered 

phase-change using the integer method and a constant re-referencing rate of 4 

frames. Solid red line: Difference between the gs1 and the recovered phase-change 

using the non-integer method and a constant re-referencing rate of 400 frames. 

Dotted red line: Difference between the gs1 and the recovered phase-change using 

the non-integer method and a constant re-referencing rate of 4 frames. D1, D2 and D3 

denote the three zoomed regions. Note that all error plots are in units of radians. 
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Figure-9.11: Comparison that illustrates the effect that re-referencing (by updating 

the location at which the phase is evaluated) has on the recovered phase-change 

signals for the integer and the non-integer phase extraction methods, versus the gold 

standard (gs2) for the case of identical wedge angles. Two re-referencing rates have 

been chosen: at 400 frames and 4 frames respectively. D1 and D2 denote the two 

zoomed regions. Note that all phase changes are in units of radians. 
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Figure-9.12: Comparison of the difference, denoted here as erf, between the gold 

standard for identical wedge angles (gs2) and the recovered phase-change signals 

using the integer and the non-integer phase extraction approaches for two re-

referencing rates (at 400 and at 4 frames respectively). Note that erf is expressed in 

radians while, the superscript sa stands for same angles.  
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Figure-9.13: Comparison that illustrates the effect that updating the Fourier peak at 

which the phase is extracted at every frame has, on the recovered phase-change 

signals for the integer and the non-integer phase extraction methods, versus the gold 

standard (gs1) for the case of unequal wedge angles. D1 and D2 denote the two 

zoomed regions. Note that all phase changes are in units of radians. 
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Figure-9.14: Corresponding error plots erf(t) (for different wedge angles), showing 

the difference between the recovered phase-change signal and the gold standard (gs1) 

using the TPU strategy where the peak at which the phase is evaluated is updated at 

every frame t. (a) Using the integer method – D1 and D2 denote the zoomed regions 

highlighted, while the asterisks (*) indicate the places where a phase jump ≥ 𝜋 √3⁄  

rad occurs between adjacent frames. (b) Using the non-integer approach. 
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Figure-9.15: Comparison that illustrates the effect that updating the Fourier peak at 

which the phase is extracted at every frame has, on the recovered phase-change 

signals for the integer and the non-integer phase extraction methods, versus the gold 

standard (gs2) for the case of identical wedge angles. D1 and D2 denote the two 

zoomed regions. Note that all phase changes are in units of radians. 
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Figure-9.16: Corresponding error plots (for identical wedge angles), erf(t), showing 

the difference between the recovered phase-change signal and the gold standard (gs2) 

using the TPU strategy where the peak at which the phase is evaluated is updated at 

every frame t. (a) Using the integer method – D1 and D2 denote the zoomed regions 

highlighted, while the asterisks (*) indicate the places where a phase jump ≥ 𝜋 √3⁄  

rad occurs between adjacent frames. (b) Using the non-integer approach. 
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Figure-9.17: Comparison of the estimated instaneous peak position kr as a function of 

the frame index t for the integer and non-integer algorithms with different wedge 

angles. (a) For wedge-1 and (b) for wedge-2. Note that kr is expressed in pixel units 

in the Fourier domain and corresponds to the instantaneous number of fringes 

appearing across the field of during the simulated, ideal 100 nm scan range. The 

superscripts 1 and 2 denote the wedge. 
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Figure-9.18: Comparison of the estimated instaneous peak position kr as a function of 

the frame index t for the integer and non-integer algorithms with same wedge angles. 

(a) For wedge-1 and (b) for wedge-2. Note that kr is expressed in pixel units in 

Fourier domain and corresponds to the instantaneous number of fringes appearing 

across the field of during the simulated ideal 100 nm scan range. The superscripts 1 

and 2 denote the wedge. 
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Summary, conclusions, discussions and future work 

Brief summary 

Optical coherence tomography (OCT) is the generic term used to encompass a wide 

range of optical techniques able to perform depth resolved measurements. Over the 

past decade, it has been extensively used to image the microstructure of biomedical 

materials with great success. Phase-contrast OCT (PC-OCT) belongs to the family of 

techniques that combine the imaging capabilities of traditional OCT with the 

measurement sensitivity of digital speckle pattern (DSPI) interferometry and its 

predecessor electronic speckle pattern interferometry (ESPI) through the imaging of 

both intensity and phase of the interference signal, thereby allowing the through-the-

thickness study of inhomogeneous structures governed by complex mechanical 

behaviour. Wavelength scanning interferometry (WSI) is one specific type of OCT 

commonly known by the term swept source OCT (SS-OCT) in which the wavelength 

of a tuneable source is scanned sequentially. The performance of OCT systems is 

determined by two critical parameters, the depth resolution and the depth range, both 

of which are linked to the tuneable laser source. In general, the wider the tuning 

range the better the depth resolution while the smaller the wavelength step the larger 

the depth range. In this work, a widely tuneable Ti:Sa with high output power is used 

which allows the construction of a multi axis, tomographic interferometer. Despite its 

wide tuning range, the tuneable source suffers from mode hops that randomize the 

recorded signal and prevent depth reconstructions. To resolve this issue, an optical 

sensor consisting of four glass wedges has been designed and integrated into the 

system. The sensor, together with the implementation of temporal phase unwrapping 

algorithms, allowed the accurate reconstruction of the wavenumber induced changes 

by the laser and has consequently led to the accessing of the full ~100 nm tuning 

range. Apart from resolving the laser-induced mode hops, the use of temporal phase 

unwrapping revealed that key issues that limit the performance of tomographic 

instruments, like dispersion and multiple reflections, can be successfully dealt with. 

The ability of the phase unwrapping strategy in resolving these issues was 

demonstrated by successfully measuring the absolute thickness of four fused silica 

glasses using real experimental data. The results were compared with independent 

micrometer measurements and showed good agreement. 
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Discussions and conclusions 

The study of depth resolved displacement fields within weakly scattering materials is 

of particular importance to study the mechanical behaviour of composite materials. 

In this work, the development of a full field, multi-axis, tomographic interferometer 

is described. At first, two important hardware devices, namely a miniature tensile 

testing device and a rotation stage, for the tomographic setup were described. These 

were designed and manufactured to induce controlled displacements of a sufficiently 

low magnitude and be small enough to fit into the multi-axis interferometer without 

obstructing any of the beams. Hardware failure of the tuneable Ti:Sa source used in 

the setup ultimately prevented the use of the aforementioned devices. However, 

preliminary experiments at a single wavelength on the cuboid calibration device 

(rotation stage), have demonstrated that the main elements of the interferometer are 

working as expected. 

Preliminary experiments on glass wedges have demonstrated that without precise 

knowledge of the wavenumber changes during the scan, the imaging of the 

interference signal of the wavelength scanning interferometer under development and 

consequently the accuracy of the phase contrast measurements is significantly 

compromised. More specifically, the experiments revealed the presence of a 

significant number of mode hops throughout the scan duration that were confirmed 

by the wavelength sensitive diode that was put in place to ensure the selection of a 

single wavelength at each time instance. These mode hops have the undesirable 

effect of causing the wavenumber to deviate significantly from the linear behaviour 

required for wavelength scanning interferometry applications. As a result, the phase 

of the recorded interference signal is randomised causing significant artefacts in the 

calculated optical thickness distribution. 

In the view of these limitations, an optical sensor, based on the recording of 

interferograms from multiple wedges was developed, which is capable of providing 

simultaneously high wavenumber resolution and immunity to the ambiguities caused 

by large wavenumber jumps. All the data required to compute a wavenumber shift 

are provided in a single image, thereby allowing dynamic wavenumber monitoring. 

In addition, loss of coherence of the laser light is detected automatically. From a 

software point of view, the analysis algorithms used for the wavenumber changes 
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monitoring are based on phase detection by a two-dimensional Fourier transform 

method followed by temporal phase unwrapping. The performance of the optical 

sensor was confirmed for a limited scan of ∼1 nm using a commercial wavemeter. A 

root mean square (rms) difference in measured wavenumber shift between the two of 

∼4 m
−1

 has been achieved, equivalent to an RMSE wavelength shift error of ∼0.4 

pm. In the light of this achievement, the ability to process the intensity data for a 

scan range 100× larger than the preliminary tests of 1 nm was investigated. It was 

found that mode hops and other nonlinearities in the scans prevent successful depth 

reconstructions by the standard approach of 1-D Fourier transformation of the image 

sequences on a pixel wise basis. A solution to this problem has been developed, 

which involves measuring wavenumber changes from the phase changes in the 

interferograms from the four wedges. The measured wavenumber changes are then 

used to resample the intensity signals on a regularly spaced wavenumber vector. 

With these improvements, depth-resolutions approaching the theoretical values are 

achievable for the full scan. Missing gaps in the data, due to upward etalon mode 

hops, have negligible effect on the depth resolution, but result in some long range 

signal leakage. Although the missing data gaps are a contributory source of the side 

lobe structure, the main cause is believed to be residual phase unwrapping errors. 

An attempt to identify as many of the potential error sources that may contribute 

towards degrading the accuracy and precision of the reconstructed wavenumber axis 

using the four-wedge optical sensor has been provided. These are: (a) residuals of 

intensity background artefacts, (b) a mismatch amongst the refractive index 

dispersion curves for the four wedges and (c) the amplifying effect that the wedge 

thickness has in the presence of such n-dispersion mismatches. Although all three 

effects are likely to play a role, residual phase unwrapping errors are still believed to 

be responsible for much of the undesirable structure in the observed spectra. 

With the above in mind, improvements to the original temporal phase unwrapping 

strategy have been introduced to account for the physical phenomena believed to 

give rise to the aforementioned phase unwrapping errors. More specifically, two 

modifications to the basic unwrapping algorithm used earlier have been introduced in 

an attempt to reduce the artefacts that were present in the Fourier reconstruction of 

the depth profile of the four wedges. Both approaches are adaptive and involve signal 
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re-referencing at regular intervals throughout the scan. The first is designed to 

compensate for the gradual change in spatial frequency of the fringes that arises from 

the changing wavelength, and requires continual updating of the spatial frequency 

components at which the phase is evaluated. The second is designed to compensate 

for the gap that starts to open up between the scaled low-sensitivity phase signal and 

the high sensitivity phase signal. This may be due to a small error in the value of R, 

or small changes in R with wavelength due to different dispersion curves for the two 

pairs of wedges. By re-zeroing the phase change at regular intervals, and then 

subsequently adding up the re-referenced phase change, the total phase change since 

the start of the scan can thus be computed but without the 2 phase errors that 

occurred previously. 

The first was found to improve significantly the quality of the spectrograms apart 

from the ‘ghost line’ structure seen in the reconstructions from two of the wedges. 

The second largely eliminated the ghost lines. A hybrid approach combining both 

methods was therefore proposed and used to analyse the data from each of the four 

wedges which was then compared with independently measured wedge thickness 

values using a micrometer. The hybrid method was found to give the most robust 

results of all the techniques considered, with a clear Fourier peak at the expected 

frequency and with significantly reduced spectral artefacts. More specifically, as far 

as the central wedge thicknesses are concerned: 

a. For wedge-1: A difference of 3.4 μm between the results of the hybrid 

approach and the independent micrometer measurements was obtained, 

equivalent to a RMSE of 46.7 μm from the target value of 12.8 mm that is 

well within the ± 0.5 mm tolerance claimed by the manufacturer. 

b. For wedge-2: A difference of 18.3 μm between the results of the hybrid 

approach and the independent micrometer measurements was obtained, 

equivalent to a RMSE of 69.8 μm from the target value of 12.6 mm that is 

well within the ± 0.5 mm tolerance claimed by the manufacturer. 

c. For wedge-3: A difference of 505.5 μm between the results of the hybrid 

approach and the independent micrometer measurements was obtained, 

equivalent to a RMSE of 311.6 μm from the target value of 12.0 mm. This 

large discrepancy is attributed to human error in reading the value measured 
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by the micrometer (see chapter-6 and in particular table-6.6) and was 

impossible to repeat as at the time the labs went through a 1.5 years 

renovation during which all equipment was inaccessible. 

d. For wedge-4: A difference of 2.6 μm between the results of the hybrid 

approach and the independent micrometer measurements was obtained, 

equivalent to a RMSE of 11.4 μm from the target value of 9.6 mm that is well 

within the ± 0.5 mm tolerance claimed by the manufacturer.  

Finally, in the lack of additional experimental data and in order to ensure that the 

proposed ‘hybrid’ approach has not evolved to solve the problems associated with 

the particular data set, a set of two simulated data sets that closely matched the 

parameters used for the real experimental data set was produced and was 

subsequently analysed. In the first data set, the wedge angles were deliberately 

chosen such that they slightly differ, while in the second these were set to be 

identical to each other. This allowed the assessment of the performance of the 

different TPU strategies under ideal scanning conditions i.e. without (a) the mode 

hops owing to the physics of the wavelength selection mechanism associated with 

Ti:Sa laser source (b) refractive index dispersion (c) any other laser induced non-

linearities such as beam drifting and/or change in the reflectivity of the wedges and 

(d) multiple reflections taking place inside the wedges. 

The analysis of the aforementioned simulated data sets revealed a number of 

important points that would have been impossible to identify otherwise. The most 

important one is related to the effect that wedge angle has on the number of fringes 

that appear across the field of view and the corresponding impact of the mismatch in 

the wedge angles between the pair of wedges used to construct the synthetic wedges 

and the recovered phase change signal. More specifically, it was found that when the 

integer phase extraction method is used in the presence of a mismatch in the wedge 

angles, a large number of artificial phase-jumps that are less than π occur between 

the recovered phase change signals and the true phase change (gold standard). 

Unlike phase unwrapping errors (2π phase jumps), these were of additive nature and 

would have been impossible to distinguish as their magnitude is comparable to the 

noise level present in the recovered phase-change signal of the real experimental data 

sets (both for the short scan data set-1 and the full scan data set-2). As this signal is 

amplified by scaling factor R, prior to it being used as the reference to unwrap the 
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higher sensitivity synthetic wedge phase-change, the aforementioned small phase-

jumps are also amplified. As a result, it is possible that during the three-step 

unwrapping process their magnitude is magnified beyond the 2π threshold, therefore, 

making it extremely difficult to distinguish them from true phase unwrapping errors 

or, in fact, the laser induced phase-jumps. This is possibly the reason as to why in the 

second publication (see reference [21]) where the integer method was used, the 

maximum scan range before the corresponding Fourier peak started to split was 

limited to 37 nm. The majority of these are, however, removed when the non-integer 

phase extraction method is employed instead, thereby, justifying its importance in 

PC-WSI applications. The reason for this is simply because the location of the 2-D 

Fourier peak where the phase Ψj is evaluated is no longer estimated as an integer but 

rather as a decimal number, highlighting the sensitivity of the technique and 

reinforcing the assumption that the position of the Fourier peak and its associated 

phase are directly linked. 

Following the analysis of the two ideal scans (α1 ≠ α2 and α1 = α2), it is now much 

clearer that the large mismatch observed in the extracted refractive index trend 

curves (recall figure-7.15 and figure-7.16) is most likely produced by the mismatch 

in the wedge angles that at the time was not considered to be a significant factor. It is 

worth noting that the aforementioned observation does not invalidate the method of 

estimating the refractive index trends nor does it eliminate the possibility that there is 

a mismatch in the dispersion curves of the wedge materials but it rather highlights 

the importance of equal wedge angles in the hardware design of the four-wedge 

sensor and of course the ability of the proposed ‘hybrid’ TPU strategy to compensate 

for the errors associated in the presence of such mismatches. 

More specifically, it should now be more clear that the phase unwrapping along the 

sensitivity axis constitutes a way of compensating for the gradual build-up of the gap 

observed between the true phase change signal and the recovered phase change 

signal by placing regular pivot points in places where a phase change discrepancy is 

likely to occur owing to the mismatch in the wedge angles. On this note, it is possible 

that the ‘ghost lines’ that were observed in the spectrograms during the analysis of 

the real experimental data set, prior to the implementation of the temporal phase 

unwrapping along the phase sensitivity direction, was an artefact associated to the 

mismatch between the wedge angles (predominantly between the first pair of wedges 
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(recall table-7.3 and table-7.4) that was carried through the various unwrapping 

steps). This, in turn, provides a possible explanation as to why the position of the 

aforementioned artefacts start to approach the main spectral lobe (line kt = 1 in figure 

-8.19 and figure-8.23) as the adaptive re-referencing rate was increased. 

Finally, recalling that the real experimental data set used to validate the performance 

of the wavenumber change sensor developed in this thesis only consisted of 400 

frames and that the simulations suggest that the aforementioned issues become 

evident much later in the scans, further highlights (a) the difficulty in accessing the 

full scan range and (b) the importance of the various fixes that were introduced to the 

original algorithm and have eventually led to the successful 1-D depth 

reconstructions using the full scan range in the absence of any reference signal i.e. 

the high-end wavelength meter that was used for the short scan proof of principle 

validation. 

Future work 

In this final section, a list of the various aspects that in the author’s opinion can offer 

improvements on the overall performance of the multi-channel PC-WSI system 

under development are presented. At first, general hardware aspects are considered. 

Second, lists of actions that have the potential to further improve the software 

developed so far are presented followed by some thoughts of how the work can 

proceed from this point onwards. Finally, the work plan for publishing the 

improvements introduced to the software so far (i.e. the work documented from and 

including chapter-6 onwards which is the outcome of the author’s work only).  

Hardware improvements 

In this section, the various possibilities that can offer improvements to the hardware 

used in the current setup are mentioned. These include hardware concerning the 

existing mechanical rigs, the laser source, the wavelength sensor and the CCDs. 

The laser source 

As far as improvements of the hardware concerning the multi-axis interferometer, the 

most obvious and critical one is the replacement of the electronically tuned CW 

Ti:Sa laser source. As it has already been mentioned, the team at M-squared Lasers 
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Ltd, have implemented several improvements to the laser cavity design that have 

removed the requirement of manual alignment of the beam each time a scan is 

performed (see ref [201] for more details). The most up-to-date models possess much 

larger tuning ranges with typical values in excess of 175nm, better wavelength 

stability owing to the combined effect of multiple BRF stages instead of the single 

BRF stage of the current model and the etalon fine selection stage. Moreover, with 

the addition of eternal reference cavity, linewidths of < 5 kHz are achievable in place 

of the < 5 MHz that the current model possesses (recall that this option was available 

at the time the laser source was purchased, however, it was traded for the set of 

etalons with the much finer FSR) – linewidth refers to a property that is directly 

linked to how close monochromatic the light emitted is. Considering the offer for 

replacing the current source with the new improved cavity design at reduced price 

due to the numerous issues with the laser source right from the start of its purchase, 

the Ti:Sa laser is the preferred option. Apart from cost, the benefit of keeping the 

Ti:Sa as the laser source for the future measurements is that the wedge material 

(optical quality fused silica) can be maintained as it is practically the less sensitive in 

dispersion within its operating tuning range. 

As an alternative to the Ti:Sa laser, the New Focus TLM-8700 is an attractive 

solution offering similar tuning range of 110 nm in the wavelength range of 835-

1630 nm with tuning speeds of 2000nm/s or greater (see ref [303]). Unlike the Ti:Sa 

laser, this particular laser source belongs to the family of external cavity diode lasers 

(ECDL) designed for metrology applications and is OEM (original manufacturer 

equipment) certified with proven reliability (> 100 million cycles tested). Its 

disadvantage is mainly the much lower output power that is in the 10 mW range. 

Although the manufacturer provides amplifiers such as the VAMP
TM

 tapered optical 

amplifiers that can increase the optical power output in excess of 2 W, these have an 

operating range that is at its best a quarter of the actual tuning range of the tunable 

laser. This leaves the erbium doped fibre amplifier (EDFA) (see ref [304]) as the 

only option for raising the power output to the required ~0.4 W. However, like all 

amplifiers, these have the undesired effect of amplifying the noise of the input signal, 

too. Finally, to the best of the author’s knowledge, there have been no reports in the 

literature of such combination being used in the OCT community. Consequently, and 
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besides its multiple drawbacks the solid state Ti:Sa is still the preferred laser for the 

multi-axis interferometer. 

CCD 

As already mentioned, the CCD is perhaps equally important as the choice of the 

laser source SS-OCT and WSI for tomographic applications. Its importance lies in 

the fact that not only does it provide the hardware for the recording of the 

interference intensity distributions but it also limits the acquisition speed. 

Considering that for reliable results in WSI synchronisation between the CCD frame 

grabber and the laser tuning speed is required, it follows that no matter how fast the 

laser frequency sweep is, it needs to be matched by the CCD, too. Furthermore, the 

bit-depth offered by the sensor is another factor that controls the accuracy with which 

the 2-D Fourier transform is represented in the Fourier spectrum, as the higher it is 

the more the grey scale levels available and thus the less QE during the digitisation 

of the recorded intensity distribution. Last but not least, the sensitivity of the sensor 

in the region the tunable laser operates also needs to be considered for optimum 

results. Moreover, the size of the sensor and the shape of the corresponding number 

of pixels is another factor that requires consideration as it is linked to the spatial 

resolution. Finally, the type of connection between the electronic devices (i.e. USB, 

Firewire or Ethernet (E) to name a few) determines the speed at which the triggering 

pulses between the PC, the laser source and the CCD are communicated. From the 

above, it becomes obvious that the choice of the CCD requires careful consideration 

of a number of parameters that are not always easy to optimize. For example, 

choosing a CCD with high frame rate of the order of 208 fps and 14 A/D bits like the 

Allied Vision Pike-032 B/C Firewire Camera with the On-Semi KAI-0340 sensor 

available from [305], comes at the expense of a reduced number of pixels and 

sensitivity in the NIR region. Another example is that of the Allied Vision Manta G-

031B/C GigE Camera with the Sony ICX618 sensor available from [306] offering 

128 fps the same bit depth, better sensitivity in the NIR but different port for data 

transferring (Gigabit Ethernet). Therefore, the Prosilica GC1380H with the Sony 

ICX285 EXview sensor CCD used in the current setup is still amongst the best 

options available in the market. 
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Wedge sensor hardware 

The four wedges comprising the wedge sensor are perhaps amongst the few 

components that if replaced have the potential of a positive impact on the 

performance of the system. As it has been already pointed out, these seem to suffer 

from dimensional manufacturing errors such as (a) the presence of angles along 

directions other than the wedge direction as it is suggested by the tilted fringe 

patterns, (b) curved edges as suggested by the curved fringes towards the edges of 

the wedges, (c) striations across the functional dimension that may be the outcome of 

crude polishing or low grade fused silica containing impurities (d) mismatch in the 

wedge angles (e) flatness issues on the faces where they have been cemented with 

each other. Therefore, it is worth investing in replacing them with ones possessing 

better dimensional accuracy, fused silica quality grade, smaller and of course 

consistent wedge angles and better flatness. The latter could perhaps be completely 

eliminated by making the entire sensor from a single piece of fused silica depending 

on how big a manufacturing challenge this may be. Finally and regardless of whether 

the sensor is replaced by a completely new one, it should be fully characterised if 

possible. This should include its measurement with traceable means like the CMM at 

the metrology lab of the Wolfson school and possibly the measurement of the 

refractive index of the four wedges at selected wavelengths that span the tuning 

range of the laser to ensure there is no mismatch in the amongst the refractive index 

dispersion characteristics. 

Software 

As far as the development of the software is concerned, one of the areas that renders 

improvement is the estimation and suppression of intensity background artefacts. 

Although a method has already been devised and described in this thesis based on the 

averaging of the intensity along the k-axis, the fact that the laser beam appears to be 

drifting across the field of view during a 100 nm scan, suggests that the method has 

not completely resolved the issue. It is believed that the issue can be possibly 

addressed better by performing the same procedure but in a piecewise manner 

instead. That is, by segmenting the scan in smaller sections as it was done for the 

estimation of the instantaneous peak position earlier in chapter-7 and then averaging 

the intensity of the recorded interference signal along the wavenumber axis. This has 

the potential of better capturing the time dependent changes that are believed to be 
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responsible for the partial suppression of the d.c component in the Fourier spectrum. 

Moreover, the rather long processing time required to analyse the wedge data 

sequence for a full 100 nm scan (approximately 6 hours to complete) constitutes 

another area of improvement. This can be easily reduced by suppressing functions 

that are computationally expensive and are of no particular use. This is particularly 

true for the procedure introduced for the estimation of the 2-D Fourier peak width for 

each of the four wedges. The aforementioned was implemented in the software in an 

attempt to investigate the assumption of different dispersion characteristics on the 

basis that the width of the 2-D Fourier peak should remain constant over the scan 

duration in the absence of n-dispersion. However, as it was shown in chapter-6 

(figure-6.3 and figure-6.5) non-integer number of fringes can give the impression 

that the width of the peak is changed. This, however, is in fact an artefact caused by 

the fact that the sampling of the Fourier spectrum lobes is still done at integer 

number of pixels (there are no decimal pixel positions in the digital world) giving the 

false impression that the peak is widened and is consequently not to be confused with 

the general principle that associates the widening of the peak to the presence of 

dispersion. By removing and/or suppressing this part of the code is expected to 

significantly improve the processing time of the data sequences by at least 2 hrs if 

not more, due to the high computational expense of temporarily storing the 2-D 

Fourier spectrum in the memory and sectioning it along the x and y directions prior to 

performing the necessary curve fitting for the estimation of its width along the x and 

y directions. 

As already demonstrated earlier in chapter-6, the effect of missing gaps is believed to 

have negligible if no contribution to the depth resolution of the system. However, it 

is believed to be responsible for much of the undesirable long range structure 

illustrated in figure-6.17. This is most likely caused by the lower sharp edges of the 

experimental window function in the places where the data are set to zero due to 

failure of the interpolation function (interp1 in the MATLAB programming) to 

recover the intensity data in places where there is insufficient information. To test 

this, the experimental function could be altered so that its lower sharp edges are 

smoothened. 

Finally, considering the success of the ‘hybrid’ TPU strategy in successfully 

analysing the entire 100 nm scan for the wedge data, its implementation for absolute 
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wavelength measurements with better accuracy than that reported in [20], is a real 

possibility that is worth investigating. 

Work plan for future publications 

The extensive literature review included in this work that is in excess of three 

hundred relevant scientific publications in established journals in the field of optics 

and in particular interferometry, have provided the necessary confidence that the 

achievements documented in this thesis are worthy of publishing.  

Immediate action 

To this end, the numerous improvements introduced to the software used for the 

analysis of the real experimental data sets that have allowed the unambiguous 

accessing of the full 100 nm scan range can be safely assumed to constitute enough 

material for at least two more publications. Considering the complex nature of the 

problem and to assist the understanding of the not at all obvious problems 

encountered when dealing with such large tuning ranges and such small wavelength 

steps, it is believed that a two-part paper intended for the Applied Optics journal 

(Noise immune temporal phase unwrapping algorithm for depth-resolved 

measurements using PC-WSI) is the best option. In brief, the first part will consist of 

a description of the simulated data sets produced and analysed in chapter-9. This will 

provide the reader with the necessary motivation with regards to the challenges 

presented while at the same time it will assist with the mathematical description of 

the complex ‘hybrid’ method – a combination of several fixes to the original 

software that would be otherwise difficult to describe to the unprepared reader. The 

second part will consist of the analysis of the real experimental data presented in 

chapters-6 to 8. 

Future 

A short letter describing the optical setup of the multi-axis interferometer with 

examples showing the imaging capabilities of the system is also possible. However, 

this will require the analysis of the second part of data set-2 referring to the micro-

fluidic device (MFD) that was used as the sample and is expected to take some time. 

Moreover, the performance of the system could be further reinforced by the 

processing of data set-3 concerning the reconstruction of the step object from speckle 
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images. Although this is still possible, there are serious concerns with the quality of 

this data set, as the laser source had already started to malfunction at the time it was 

captured. 

Finally, a short paper detailing the ability of the proposed technique to reconstruct 

the wedge profiles and the corresponding fringe patterns at each time instance is 

another real possibility addressing the ability of the proposed method to act as a 

16,000 frame phase shifting formula. 
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Appendices 

A1 Engineering drawings 

In this section of the appendix, the engineering drawings for the aluminium cube that 

host the samples to be inspected by the phase-contrast, multi-axis tomographic 

interferometer and those used for the manufacturing of the calibration artefacts are 

provided.  
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A1.1 Sample-host aluminium cube 
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A1.2 Calibration artefact setup 
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A2 CMM measurements 

Measurements of the calibration cube and the sample host cube using the coordinate 

measurement machine at the metrology lab of the Wolfson School at Loughborough 

University that is traceable to national standards. 

A2.1 Calibration artefact 

 

 

Plane Number 
Points on 

Plane 
Flatness Parallelism (//) in m Squareness (┴) in m 

PLN2 (2,3,4,5,6) 1.1m   PLN2/PLN4: 30.8 PLN2/PLN3: 6.5 

PLN3 (2,6,7,10) 1.5 m PLN3/PLN6: 2.9   PLN2/PLN5: 30.6 

PLN4 (7,8,9,10) 10.9 m PLN5/PLN7: 4.1 PLN2/PLN6: 7.0 

PLN5 (2,3,7,8) 1.1m Plane to Plane Dist.    PLN2/PLN7: 33.0 

PLN6 (3,4,11,9,8) 0.7 m PLN2/PLN4: 2.7964 mm   PLN4/PLN3: 22.8 

PLN7 (6,5,11,9,10) 1.0m PLN3/PLN6: 2.9840 mm   PLN4/PLN5: 28.0 

 PLN5/PLN7: 2.9793 mm   PLN4/PLN6: 22.6 

Point Coordinates   PLN4/PLN7: 30.3 

Point Number X (m) Y (m) Z (m) PLN3/PLN5: 4.1 

2 0 0 0 PLN5/PLN6: 2.3 

3 -2.8 2985 0 PLN6/PLN7: 1.3 

6 -2978.6 0 0 PLN3/PLN7: 3.3 

7 -41.5 -8 -2798.6  

8 -44.6 2976.3 7.9 

9 -3024.9 2975.1 -2774.9 

10 -3023 -7.9 -2774.9 

 

+Z 

+Y 

+X 

11 

10 
9 

8 7 

6 5 
4 

3 
2 
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Spatial Orientation of Cube-Edges 

Line Number On Plane Points on Line X (m) Y (m) Z (m) 

LN2 PLN2 (2,3) -1.6 1669.6 0 

LN3 PLN2 (2,7) -23 -4.4 -1554.8 

LN4 PLN2 (7,8) -43.1 1495.5 -2809.7 

LN5 PLN2 (8,3) -23.9 2980.6 -1424.5 

LN6 PLN6 (3,4) -1604.2 2984.3 0 

LN7 PLN6 (8,9) -1541.4 2975.7 -2808.7 

LN8 PLN6 (9,11) -3001.3 2979.6 -1322.2 

LN9 PLN2 (6,5) -2979.3 1436 0 

LN10 PLN4 (9,10) -3023.8 1216.3 -2784.3 

LN11 PLN3 (6,10) -3001.8 -4.2 -1452.5 

LN12 PLN2 (2,6) -1728 0 0 

LN13 PLN4 (7,10) -1663.9 -8 -1785.7 
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A2.2 Sample-host aluminium cube 
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A3 Laser operating procedure 

Description of the operating and alignment procedures for initiating the data 

capturing. 

A3.1 Verdi and SolsTi:S operating procedure 

1. Switch cameras ON inside the laser Box. 

2. Lock all doors – Both front and back doors for T.0.18 Lab 

3. Turn switch for ‘Laser in operation’ to ON. This is located behind the metal 

box and activates the interlocks. 

4. Make sure that the light outside the main door of T.0.18 is ON (Red light) 

and that the light indicators for ALL the interlocks are ON. This should 

ensure that all interlocks are working properly. 

5. Make sure that the interlock override is OFF. 

6. Make sure that the SHUTTER is closed on Verdi and that the power level is 

set to LEVEL 1 (0.5W). 

7. Insert key into key slot and switch Verdi from STANDBY to ON. 

8. Wait until all servos are locked. 

9. Open SHUTTER and switch to power LEVEL 2 (5W) – wait until all servos 

are locked. 

10. Start cameras from StreamPix in ‘FixedRate’ trigger mode – Although the 

scan has not started yet this should give an image from the Workspace 

named Cam1 (Wedges). This is an indicator that the SolsTi:S is lasing. If no 

image is received from the wedge camera this means that the laser has 

become misaligned – Refer to Alignment and Power Adjustment 

Procedures 

11. Switch trigger mode from the Adjustments tab in Hardware Properties in 

StreamPix to ‘SyncIn2’ – This will now synchronize the cameras to the 
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SolsTi:S. NOTE that the cameras will probably stop acquiring images after 

this change. This is normal. 

12. Double click on the internet explorer shortcut on the desktop. This will open 

the operating control panel for the SolsTiS. 

13. Select ‘Configure’ and then ‘Scan’. 

14. Make sure that the wavelength sensitive diode (WSD) reading is stable 

(minor fluctuations). This means that the laser is still lasing and everything 

is working properly. 

15. Adjust parameters as appropriate i.e. wavelength step, scan type, stop 

wavelength, scan frequency (Hz) etc. 

16. Start scan by pressing the START SCAN button. 

17. Check that the cameras have started to acquire images again! 

18. Press on the STOP SCAN button 

19. Start recording from StreamPix – See Recording Image Sequence 

Procedures document for more info. 

20. Restart Scan from the required wavelength 

A3.2 Alignment and power adjustment procedure of SolsTi:S 

1. Put GOGGLES ON 

2. Check everyone else in the room have their goggles ON 

3. Lock BOTH lab doors. 

4. Remove any shiny/metal object you - watches, rings, bracelets etc. 

5. Turn the power to 0.5 Watts, proceed to alignment without IR Viewer 

looking for the output green light. 

6. Move in x, and y to center the green output light on the exit aperture of the 

SolsTi:S. 
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7. Once centered (Check this carefully as damage to the internal components 

can happen if not centered carefully) turn the intensity to 5Watts and turn on 

to the IR viewer for detecting IR light emission. 

8. Look for the fluorescence halo by very small adjustments on the horizontal 

direction until suddenly a bright IR spot appears. 

9. Now turn to the Power meter for further adjustment, and moving by fine 

adjustment until the power is optimized. 
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A4 Wedge manufacturer data 
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