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ABSTRACT: A fast and effective model for the computation of solar energy potential in complex shading 

environments is presented. Accurate calculation and identification of solar energy potential profiles is demonstrated 

over large areas. Calculation time is exceptionally fast, even on an average specification PC (typically under 1 min 

per 1 km2). Problems with commonly used low-resolution sky domes that can lead to irradiance calculation errors of 

~5% are identified. Ideal placements are easily visually identified from resultant irradiance/irradiation profile images. 

Image processing techniques for spatially distributed optimization problems are described and an example of energy 

value optimization is presented by means of individual dwelling demand separation & comparison. 
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1 MOTIVATION 

 

The deployment of rooftop photovoltaic (PV) systems 

has seen rapid expansion in recent years, vastly 

exceeding predictions. The UK scenario is presented for 

reference in Figure 1 [1]. Almost all of these systems are 

grid connected, supplying electricity to the national grid 

when not consuming it on site. There is no definable 

pattern to the geographic distribution of these 

installations and information on the vast majority of these 

systems is not documented, yet alone accessible. 

 

Figure 1: UK PV Deployment from 2010 to 2016 by Capacity 
[1] 

 

Figure 2: UK PV Deployment from 2010 to 2016 by Count [1] 

In built up areas especially, optimisation of the 

deployment of PV is a non-trivial task. Shading can have 

a depredatory effect on system performance and, with 

residential installations in particular, system owners are 

often ill equipped to identify performance issues. 

Furthermore, at the system design or fault identification 

stages, the person time involved in the assessment of 

installation conditions by surveying is often prohibitively 

expensive, particularly for large scale applications. 

Figure 3 demonstrates a relevant issue of note. A 

citywide set of approximately 2000 PV system 

installations in Nottingham, UK, show performances 

relative to the expected mean that are negatively skewed. 

Shading and sub-optimal installation conditions are likely 

significant contributors to this skew.  

 

 

 

Example problem installations are shown in Figure 4 

and Figure 5. Unfortunately, these examples are two of 

many and represent a significant problem in rooftop 

system installations. 

Figure 3: Performance spread of installed systems in 
Nottingham, UK, as indicated by kWh/kWp values normalised 
to a 'standard' system 
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Figure 4: Building to Building Shading System Example 
(Credit: Nigel Monk, CREST) 

 

Figure 5: Shading by a Nearby Tree Example (Credit: Brian 
Goss, CREST) 

 This work presents and describes a model, 

solarscene.xyz. The purpose of this model is to automate 

the identification of optimum and poor installation 

conditions, mitigating the problems described above.  

2 MODEL DESCRIPTION 

 

2.1 Objective 

There exist a number of tools to accelerate system 

design and decision making processes. These tools do not 

typically include coherent shading analysis, but do offer a 

commonplace infographic to help designers arrive at the 

optimum installation angle for a given location. This is a 

relative energy harvest for varying installation angles, the 

equivalent as generated by solarscene.xyz is given in 

Figure 6. 

 

Figure 6: Net annual solar irradiation collection dependency on 
module orientation and inclination for Sutton Bonnington, UK, 
in 2014 

Such information offers a useful guide for choice of 

PV farm module orientation or in the identification of 

suitable roofs in situations where there is next to no light 

obstruction and data is available on roof orientation. 

However, it is rarely the case that much is known about 

roof designs and vectors for wide scale applications and 

gathering such information can be both time consuming 

and costly. Furthermore, particularly in built-up areas, 

light obstruction is commonplace. 

The key objective of this model was to generate a 

map of spatially distributed irradiation collection that can 

be used to easily identify optimum installation locations 

as well as potential problem areas. This has been 

achieved. An example of such a map compared to a 

Google Maps image of a given location is shown in 

Figure 7.  

 

 

Figure 7: Net annual solar irradiation collection for each pixel 
in a 0.25 km2 LiDAR map of Prestwich, UK, for 2014 using 
interpolated Met Office irradiation data 

A secondary objective of the model was to be 

computationally efficient and to run in little time on an 

average specification PC. This has also been achieved, 

the above map took under 10 s to generate. 

 



2.2 Model Description 

The model can be considered in three distinct stages, 

as shown in Figure 8. Input data describing the 

environment is split into mapped 3D data describing the 

terrestrial surface and meteorological data describing the 

local weather variations. These input data are processed 

and passed through to a ray trace algorithm which 

generates mapped solar energy data. Each phase is 

described separately in this section. 

 

Figure 8: Model Flowchart 

3D Environment Data 

The input 3D environment primary data is in the form 

of a map of pixel heights. Metadata map layers are also 

used for specific analysis, for example, highlighted 

regions of interest can be used to provide specific focus 

to output data. Test case data from LiDAR has been used 

here for illustration. CAD drawings of proposed building 

plans or .stl conversions are also possible. It is also 

possible to place a proposed building plan within a set of 

LiDAR (or other existing) data to construct a 

contextualised placement scenario. 

An interpolated surface is produced from the input 

LiDAR points mesh. This surface is used to form surface 

normal vectors from each pixel that are used in intensity 

correction calculations. Here, a mesh resolution of 1 m2 

was used. The mesh resolution is variable and is 

dependent on user requirements/available data. A one 

km2 example is presented in Figure 9, the region 

presented is the same as that shown in Figure 7, expanded 

is the northerly and easterly directions. 

 

Figure 9: Points to Surface Map from LiDAR – 1 km2 of 
Prestwich, UK 

A cuboidal columnar representation of the data is also 

created (Figure 10). It is this surface that is used in the 

ray trace analysis for shading profile calculation and is 

key to the computational efficiency of the simulation. 

 

Figure 10: Points to Cuboidal Columnar Map from LiDAR – 1 
km2 of Prestwich, UK 

Meteorological Data 

Input meteorological data is in the form of 

horizontally received beam and diffuse irradiation. The 

temporal resolution of this is variable, depending on user 

requirements and available data. Currently, the model 

does not use albedo irradiation as there is little data 

available for this. However, this is planned as an 

extension in future development of this model. The 

irradiance values used here have been derived by 

weighted interpolation of met office hourly irradiation 

values for nearby and neighbouring sites. 

The irradiance/irradiation (in instantaneous/ time-

extended analyses) is distributed within a hemispherical 

representation of the sky, termed a sky dome (Figure 11). 

Each segment of the sky dome is individually traced 

through the 3D environment and the contribution of its 

power/energy to each surface pixel calculated as a 

multiplication of its value, shading factor and angle of 

incidence correction. 

 

Figure 11: Net Annual Sky Dome Example with Tregenza 
Overlay 

This tool was developed at CREST for the generation 

of high resolution maps of solar energy potential for 

existing and/or proposed (building plans) locations. 

These calculated solar energy potential maps include 

global and localised shading effects. Time resolved 

output maps allow for the specific investigation of 

shading scenarios, rather than limiting the results to 

averaged values. Diffuse and beam irradiance 

components are specifically considered and the model is 

easily extended to include spectral effects. 

For ease of presentation, Figure 11 uses a common 

segmentation of the sky into 151 patches known as the 

Tregenza dome [2]. In practice, use of the Tregenza dome 

is not acceptable for energy prediction scenarios as the 

granularity of the dome, especially regarding elevation, 

causes unnatural stepped values in in-plane irradiance, as 



shown in Figure 12. These can lead to errors in calculated 

irradiance values of ~5%, 

 

Figure 12: Stepped In-plane Irradiance Artefacts from Low 
Resolution Sky Dome 

Alternative sky domes derived by similar means are 

presented in [3], although in practice any sky dome of 

suitable resolution (mitigating the artefacts shown in 

Figure 12) can be used. The relative contribution of 

diffuse irradiance can corrected for by calculating the 

relative projected area contribution of the confined 

surface by, for example, Equation 1. The selection of an 

appropraitely defined sky dome can also lead to a 

significant increase in computational efficiency in the sky 

patch location of sun position. 

 

 

Equation 1 

Where  is the solar azimuth angle and  the solar 

elevation angle (see [4] for explanation of terms) 

 

Ray Trace Method 

 

The ray trace method employed here is one 

developed at CREST, building on the work presented in 

[5-7]. Comparisons with existing methods such as [8 & 

9] are presented in [10]. The procedure is optimised for 

the specific calculations performed here. This is a marked 

advantage over using off-the-shelf solutions as any data 

beyond that required is simply not calculated here, rather 

than computed and not used. Much computational time is 

thus saved in this approach. Further to the streamlined 

computation process, the ray trace procedure here is 

divided in 16 special cases: the four major compass 

directions, the four minor compass directions and the 8 

spaces between Figure 13. The case is first identified and 

the corresponding optimised calculation procedure 

triggered in the code accordingly.  

 

Figure 13: Compass Directions Broken Into 16 Special Cases 
for Efficient Computation 

Using this method, the net annual irradiation values 

on each 1 m2 pixel in a 1 km2 region using hourly 

meteorological data distributed in a Tregenza dome can 

be calculated on an average specification PC in under 1 

min. A further optimisation advantage to this method is 

that relative map trace values for a given location and sky 

dome combination can be stored and later recalled for 

investigation of a different meteorological dataset – 

bypassing the ray trace procedure altogether – at which 

point the computational time reduces to a value that is 

primarily dependent on data drive read/write speeds. 

 

3 MODEL PERFORMANCE & UTILIZATION 

 

 3.1 Validation 

 The most visually significant validation for the key 

model objective is a comparison of model shadow 

identification with those visible from aerial photography. 

Here, for clarity, the 0.25 km2 image of Figure 7 is used. 

Figure 14 shows the shading pattern produced by the 

model. It can be seen that the resultant shadows are 

extremely well aligned. The corresponding sun position 

used in this instantaneous test case is shown in Figure 15. 

 

Figure 14: Intensity Map Produced by solarscene.xyz Showing 
Matching Shadow Profiles (see Figure 7) 



.  

Figure 15: Depiction of the Sun Position used in the 
Generation of Figure 14 

It is these instantaneous profiles that are integrated in 

order to obtain the primary model objective – irradiation 

maps, as shown in Figure 7. 

 3.2 Model Utilization 

 With further processing of the images generated by 

the model or the use and analysis of related spatially 

distributed information, the model can be further 

developed as a tool for optimization problems. Two 

example model developments that are currently being 

explored are shown below. 

 

Automated Identification of Optimum Installation 

Locations – Preliminary Investigation 

  

 It can clearly be seen from Figure 7 that certain areas 

are significantly brighter than others. If the image is 

generated in greyscale then the brightness of each pixel is 

directly related to an annual irradiation value. Thus this 

lends itself particularly well to an image processing for 

analysis. 

 Figure 16 shows the process of taking a given 

location, generating a greyscale irradiation map, applying 

a threshold brightness filter to extract pixels above 700 

W/m2 and then applying a morphological filter (2 m*4 m 

rectangle) to determine a space suitable for solar panel 

installation. This process will be further developed and 

published in future work. 

 

 

Figure 16: Image Processing for Optimum Installation Location 
Determination - Preliminary Example 

 

Relative Value by Dynamic Assignment – Preliminary 

Investigation 

 

 The irradiation map presented in Figure 7 is useful in 

the context of optimization or energy harvest. However, 

the reality of energy value is dynamic. For example, peak 

generation time of south facing residential rooftop PV 

systems at 12:00 is mostly wasteful. A simple 

investigation of energy value optimization is shown 

below. Figure 17 shows normalized energy harvest for a 

given location, with only rooftop pixels shown for a 200 

m by 200 m area in Nottingham, UK. 

 

Figure 17: Normalised Irradiation Harvest on Nottingham 
Rooftops 

Data separating each individual dwelling was then 

obtained and 5 realistic energy usage profiles were 

generated using [11]. These profiles are shown in Figure 

18. 

 

Figure 18: 5 Different Example Energy Demand Profiles  

The simulation was then rerun, randomly assigning 

one of the 5 demand profiles to each of the dwellings 

above and producing a normalised map of energy value 

per pixel (see Figure 19). The resultant map is 

significantly different to Figure 17. This will be 

investigated further and published in future work. 



 

Figure 19: Normalised Energy Value on Nottingham Rooftops 

 

4 CONCLUSIONS 

 

 A Fast and Effective Approach to Modelling PV 

Potential in Complex Shading Environments has 

been Developed and Presented. 

 Accurate Pixel by Pixel Irradiance and Irradiation 

Maps Are Calculated by the Model 

 Key mistakes in existing models have been Identified 

(Can Lead to ~5% Irradiance Calculation Error) 

 The Automated Identification of Optimum 

Installation Conditions has been Demonstrated 

 The Identification of Potential Problem Areas and 

System Underperformance due to Shading has been 

Demonstrated 

 

There will be much further development of this model. 

Some opportunities for development have been identified 

here alongside preliminary investigations, though there 

are many more possibilities for useful model expansion 

and utilization. solarscene.xyz will be made publically 

available later in the year. The authors welcome 

collaborative works and feedback. 
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