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Abstract

Spectral theory is the study of Mark Kac’s famous question [K], “can one hear the

shape of a drum?” That is, can we determine the geometrical or topological properties

of a manifold by using its Laplace Spectrum? In recent years, the problem has been

extended to include the study of Riemannian orbifolds within the same context. In

this thesis, on the one hand, we answer Kac’s question in the negative for orbifolds

that are spherical space forms of dimension higher than eight. On the other hand,

for the three-dimensional and four-dimensional cases, we answer Kac’s question in

the affirmative for orbifold lens spaces, which are spherical space forms with cyclic

fundamental groups.

We also show that the isotropy types and the topology of the singularities of

Riemannian orbifolds are not determined by the Laplace spectrum. This is done in a

joint work with E. Stanhope and D. Webb by using P. Berard’s generalization of T.

Sunada’s theorem to obtain isospectral orbifolds.

Finally, we construct a technique to get examples of orbifold lens spaces that are

not isospectral, but have the same asymptotic expansion of the heat kernel. There are

several examples of such pairs in the manifold setting, but to the author’s knowledge,

the examples developed in this thesis are among the first such examples in the orbifold

setting.
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Chapter 1

Introduction

Many years ago, Mark Kac [K] posed a model inverse problem which has attracted

the attention and energy of many mathematicians: Do the Dirichlet eigenvalues of a

bounded domain determine its geometry, or, more famously, Can one hear the shape

of a drum? Exercising their penchant for generalization,mathematicians recast the

question in a mathematically natural setting: Does the eigenvalue spectrum of the

Laplacian on a compact Riemannian manifold M (with suitable boundary conditions

if ∂M 6= ∅) determine its geometry? Kac’s original question was answered in the neg-

ative in 1992 by Gordon, Webb and Wolpert [GWW] who constructed examples of

non-isometric isospectral plane domains. We call two compact Riemannian manifolds

M1 and M2 isospectral if the Laplacians on functions have the same eigenvalue spec-

trum, and define the isospectral set of M to be the set of all Riemannian manifolds

for which the spectrum of the Laplacian on functions equals that of M . As pointed

out, geometry is not in general a spectral invariant. The first example of nonisometric

isospectral manifolds was found in 1964 by John Milnor, who exhibited two distinct

but isospectral 16-dimensional manifolds. This was followed by the construction in
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the 1980s and 1990s of many different examples of nonisometric but isospectral man-

ifolds. Among these are discrete families of isospectral manifolds, continuous families

of isospectral manifolds, isospectral plane domains, and even isospectral conformally

equivalent manifolds. In general, there are three known methods to construct or

discover these examples of nonisometric isospectral manifolds:

(1) Explicit Construction: Examples constructed by explicit computations include

isospectral at manifolds with surprising spectral properties ([MR], [MR2], [MR3]),

the first examples [Sz1] of isospectral manifolds with boundary having differ-

ent local geometry(these partially motivated and were later reinterpreted by

the torus action method below) and the first examples of pairs of isospectral

metrics on balls and spheres [Sz2].

(2) Representation-Theoretic Construction: Representation theoretic methods, es-

pecially the celebrated Sunada technique [Su], have provided the most system-

atic and widely used methods for constructing isospectral manifolds with the

same local, but different global, geometry.

(3) Torus Actions : This method generally produces isospectral manifolds with dif-

ferent local geometry.

For a more complete overview of these methods see [Go].

The problem is to characterize the isospectral set of a given Riemannian manifold

M . There are two natural approaches to this problem. First, one can form spectral

invariants such as the heat trace, the wave trace, or the determinant of the Laplacian

and compute them geometrically in order to obtain geometric invariants of the spec-

trum: this approach has its roots in Selberg’s trace formula for a compact surface

[Se] and its natural expression in such key developments as Duistermaat-Guillemin
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trace formula [DG] and the computation of heat invariants by Gilkey and others (see,

for example, [G1]). A second and complementary approach is to use techniques of

group theory or Lie theory to construct families of manifolds with the same spectrum

but distinct geometry. A key development in this approach was the celebrated pa-

per of Sunada [Su] in which he showed how to reduce the construction of isospectral

manifolds to an exercise in group theory.

To any compact Riemannian manifold (M, g) (with or without boundary), we can

associate a second-order partial differential operator, the Laplace operator ∆, defined

by ∆ (f) = div(grad(f)) for f ∈ L2(M, g). Sometimes it is also written as ∆g if

we want to emphasize which metric the Laplace operator is associated with. The

set of eigenvalues of ∆ (the spectrum of ∆, or of M),which we will write as spec(∆)

or spec(M, g), then forms a discrete sequence λ0 ≤ λ1 ≤.... For simplicity, we will

assume that M is a closed connected Riemannian manifold; this will, for example

imply that the smallest eigenvalue, λ0, occurs with multiplicity 1. Note that the

Laplacian also acts on p-forms in addition to functions via the definition ∆ = -(dδ

+ δd), where δ is the adjoint of d with respect to the Riemannian structure on the

manifold. This aspect of the Laplacian will not be treated in this thesis, the focus

being the ordinary Laplacian acting on functions or 0-forms. With that in mind,

there are two broad questions that are at the heart of spectral geometry:

i What can we say about the spectrum of M given the geometry?

ii What can we say about the geometry of M given the spectrum?

The former is the direct problem while the latter is the inverse problem . We can also

generalize these problems for spaces that have singular points.

A smooth n-dimensional orbifold is a topological space that is locally modeled on

an orbit space of Rn under the action of a finite group of diffeomorphisms. Riemannian
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orbifolds are spaces that are locally modelled on quotients of Riemannian manifolds

by finite groups of isometries. An orbifold is good if it is a global quotient of a closed

manifold by a finite group. Otherwise, it is a bad orbifold. Orbifolds have wide

applicability, for example, in the study of 3-manifolds and in string theory [ALR],

[DHVW]. In Chapter 2, which will have all the background material, we will formally

define the notion of a Riemannian orbifold and review the fundamental ideas necessary

for studying orbifold geometry. We will also define the Laplace Beltrami operator on

an orbifold and state some of the results from the spectral theory of manifolds that

carry over to the orbifold setting.

The tools of spectral geometry can be transferred to the setting of Riemannian

orbifolds by using their well-behaved local structure (see [Ch], [S1] and [S2]). As in

the manifold setting, the spectrum of the Laplace operator of a compact Riemannian

orbifold is a sequence 0 ≤ λ1 ≤ λ2 ≤ λ3... ↑ ∞, where each eigenvalue is repeated

according to its finite multiplicity. We say that two orbifolds are isospectral if their

Laplace spectra agree.

The literature on inverse spectral problems on orbifolds is less developed than that

for manifolds. Examples of isospectral orbifolds include pairs with boundary ([BW]

and [BCDS]); isospectral flat 2-orbifolds ([DR]); arbitrarily large finite families of

isospectral orbifolds ([BSW]); isospectral orbifolds with different maximal isotropy

orders ([RSW]); isospectral deformation of metrics on an orbifold quotient of a nil-

manifold ([PS1]); and isospectral orbifold lens spaces ([Ba]).

Orbifolds began appearing sporadically in the spectral theory literature in the

early 1990s and have received more concentrated attention in the last few years. Farsi

[F] showed that the spectrum of an orbifold determines its volume by proving that

Weyl’s asymptotic formula holds for orbifolds. Dryden and Strohmaier [DS] showed

that, for a compact and negatively curved two-dimensional orbifold,the Laplace spec-
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trum determines both the length spectrum and the orders of the singular points and

vice versa; on the other hand, Doyle and Rossetti [DR] gave(disconnected) examples

of isospectral flat two-dimensional orbifolds with different length spectra and orders

of singular points.

For Riemannian manifolds, the asymptotic expansion of the heat kernel can be

used to relate the geometry of the manifold to its spectrum. From the so-called heat

invariants appearing in the asymptotic expansion, one can tell the dimension, the

volume, and various quantities involving the curvature of the manifold. In the case of

a good Riemannian orbifold (i.e., an orbifold arising as the orbit space of a manifold

under the action of a discrete group of isometries), Donnelly [D] proved the existence

of the heat kernel and constructed the asymptotic expansion for the heat trace. In

[DGGW], Dryden, Gordon, Greenwald, Webb and Zhu generalized Donnelly’s work to

the case of general compact orbifolds. We will discuss the results in [D] and [DGGW]

in Chapter 6 in more detail.

A very interesting question in the spectral geometry of orbifolds is how much one

can hear about the structure of the singular set. For example, we can ask about

the isotropy types of the singular strata. As noted before, on the positive side, Dry-

den, Gordon, Greenwald and Webb [DGGW] have shown that the Laplace spectrum

determines the number and type of singularities in two-dimensional orbifolds with

positive Euler characteristic. In [RSW] Rossetti, Schueth and Weilandt constructed

pairs of compact Riemannian orbifolds which are isospectral for the Laplace operator

on functions such that the maximal isotropy order of singular points in one of the

orbifolds is higher than in the other. In one type of examples, isospectrality is shown

to arise from a version of the Sunada Theorem [Su] which also implies isospectrality

on p-forms; here the orbifolds are quotients of certain compact normal homogeneous

spaces. In another type of examples, the orbifolds are quotients of Euclidean R3 and
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are shown to be isospectral on functions using dimension formulas for the eigenspaces

developed in [MR]. In the latter type of examples the orbifolds are not isospectral on

1-forms. Along the way the authors also gave several additional examples of isospec-

tral orbifolds which do not have maximal isotropy groups of different size but other

interesting properties.

In addition, Stanhope [S2] proved the following result for orbifold singular sets:

Theorem 1.0.1. Only finitely many isotropy types may arise in a family of isospectral

orbifolds whose members have a uniform lower bound on Ricci curvature.

However, the author along with Stanhope and Webb [BSW] constructed arbitrarily

large (finite) families of isospectral orbifolds with different isotropy types, showing

that Theorem 1.0.1 is not true in general. Indeed, we construct arbitrarily large fam-

ilies of isospectral orbifolds with different isotropy types: given an odd prime P and

an integer m ≥ 1, we constructed an (m+ 1)-element family of isospectral (P 3m− 1)-

dimensional orbifolds, each with points of distinct isotropy. The orbifolds in these

families are quotients of the round sphere by properly discontinuous orthogonal ac-

tions. The author’s contribution was to construct an example to show that that some

topological properties of the singular set of an orbifold are not spectrally determined.

Chapter 3 of this thesis will contain this result.

A related question is whether a manifold could be isospectral to an orbifold with

non-trivial isotropy. In [GR], Gordon and Rossetti showed that whenever two isospec-

tral good orbifolds share a common Riemannian cover, their respective singular sets

are either both trivial or both non-trivial. This means that a good orbifold with

non-trivial isotropy could not be isospectral to a manifold that shares the same Rie-

mannian cover.
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In the study of inverse isospectral problem, spherical space forms provide a rich

and important set of orbifolds with interesting results. For the 2-dimensional case,

it is known [DGGW] that the spectrum determines the spherical orbifolds of con-

stant curvature R > 0. In [L], Lauret found examples in dimensions 5 through 8 of

orbifold lens spaces (spherical orbifold spaces with cyclic fundamental groups) that

are isospectral but not isometric. For dimension 9 and higher, the author proved the

existence of isospectral orbifold lens spaces that are non-isometric [Ba]. Chapters 4 of

this thesis will contain this result as a corollary to Theorem 4.5.5. We will conclude

Chapter 4 with an example demonstrating the results.

For 3-dimensional manifold lens spaces Ikeda and Yamamoto (see [I1], [IY] and

[Y])proved that the spectrum determines the lens space. In [I2], Ikeda further proved

that for general 3-dimensional manifold spherical space forms, the spectrum deter-

mines the space form. In the manifold case, it is also known that even dimensional

spherical space forms are only the canonical sphere and the real projective space. For

orbifold spherical space forms this is not the case. In this thesis we limit our study to

orbifold spherical space forms where the fundamental group is cyclic, i.e. the space

forms are lens spaces. In Chapter 5 of this thesis we will develop our proofs for two

of our main results:

Theorem 5.1.1 Two three-dimensional isospectral orbifold lens spaces are isometric.

Theorem 5.2.1 Two four-dimensional isospectral orbifold lens spaces are isometric.

The above two results will complete the classification of the inverse spectral problem

on orbifold lens spaces in all dimensions.

As mentioned earlier, a major tool in determining the things that can be heard is

the asymptotic expansion of the heat kernel. It is known that two isospectral mani-

folds(or orbifolds) will have the same asymptotic expansion of the trace of the heat

kernel. The converse, however, is not true. There are many examples of pairs of non-

7



isospectral manifolds having the same finite cover which have the same asymptotic

expansion of the trace of the heat kernel. For example, the asymptotic expansion of

the trace of the heat kernel for a flat 2-dimensional torus T and a Klein bottle K are

given by
√
V olT
4πt

and
√
V olK
4πt

, respectively. That means if the two manifolds have the

same volume they will have the same asymptotic expansion even when they are not

isospectral [RS]. To the author’s knowledge, no such examples are known for orb-

ifolds. In Chapter 6, we will use techniques developed by [D] and [DGGW] to prove

a result that will allow us to create examples of orbifold lens spaces that are not

isospectral, but have the same asymptotic expansion of the trace of the heat kernel.
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Chapter 2

Orbifolds

An orbifold is a generalization of a manifold which is locally modelled on Rn modulo

the action of a finite group. This allows orbifolds to possess singular sets. With this

generalization many of the mathematical tools used in the study of manifolds can be

defined for the study of orbifolds as well. In this chapter we will define some of these

tools that will be needed throughout this thesis. The definitions we use are the ones

used by Stanhope [S1] and E. Dryden, C. Gordon, S. Greenwald, D. Webb and Zhu

in [DGGW].

2.1 Smooth Orbifolds

Definition 2.1.1. Let X be a Hausdorff topological space. For an open set U in X,

an orbifold coordinate chart over U is a triple (U, Ũ/Γ, π) such that:

1. Ũ is a connected open subset of Rn,

2. Γ is a finite group of diffeomorphisms acting effectively on Ũ , possibly with fixed

point sets, and
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3. π : Ũ → U is a continuous map which induces a homeomorphism φ between

Ũ/Γ and U , for which φ ◦ π ◦ γ = φ ◦ π for all γ ∈ Γ.

Next we define the concept of an embedding between orbifold charts. We as-

sume that U and U ′ are open subsets of a Hausdorff space X. Let (U, Ũ/Γ, π) and

(U ′, Ũ ′/Γ′, π′) be charts over U and U ′, respectively.

Definition 2.1.2. An embedding between orbifold charts is an injection

λ : (U, Ũ/Γ, π) ↪→ (U ′, Ũ ′/Γ′, π′)

that consists of an open embedding

λ̃ : Ũ ↪→ Ũ ′

and an injective homomorphism f : Γ ↪→ Γ′, such that the following diagram com-

mutes:

Ũ λ̃ //

π
��

Ũ ′

π′
��

Ũ/Γ

φ

��

Ũ ′/Γ′

φ′

��
U λ // U ′

and the embedding is equivariant with respect to f, that is, for all γ ∈ Γ and x ∈ Ũ ,

λ̃(γ(x)) = f(γ)(λ̃(x)).

Definition 2.1.3. A smooth orbifold (X,A) consists of a Hausdorff topological space

X together with an atlas of charts A satisfying the following conditions:

1. For any pair of charts (U, Ũ/Γ, π) and (U ′, Ũ ′/Γ′, π′) in A with U ⊂ U ′ there

exists an embedding λ : (U, Ũ/Γ, π) ↪→ (U ′, Ũ ′/Γ′, π′).
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2. The open sets U ⊂ X for which there exists a chart (U, Ũ/Γ, π) in A form a

basis of open sets in X.

For the remainder of this thesis we will denote an orbifold (X,A) simply by O.

Definition 2.1.4. Let O be an orbifold and x be a point in O. Let (U, Ũ/Γ, π) be a

coordinate chart about x, and let x̃ be a point in Ũ such that π(x̃) = x. Let ΓUx̃ denote

the isotropy group of x̃ under the action of Γ. It can be shown that ΓUx̃ is independent

of both the choice of lift and the choice of chart [Br]. Therefore, ΓUx̃ can be denoted

by Γx. We call Γx the isotropy group of x.

Definition 2.1.5. Let O be an orbifold. A point x ∈ O is said to be singular if Γx is

non-trivial.

We will denote the set of all singular points in O by ΣO.

Note that the definition of an orbifold is a generalization of the definition of a

V-manifold introduced by I. Satake [Sat]. A V-manifold is an orbifold that requires

the singular set to have co-dimension ≥ 2.

We say that an orbifold is good if it is the orbit space of a manifold M under the

smooth action of a discrete group Γ. Otherwise, it is said to be bad. A good orbifold

O is denoted by M/Γ. We note that every point in an orbifold has a neighborhood

that is a good orbifold. Further, any manifold can be viewed as a good orbifold for

which all points have trivial isotropy.

Example 2.1.6. The order 4 cyclic group generated by
(

0 1
−1 0

)
acts on R2 by 90 ◦

rotations leaving the origin fixed. If we denote this group by G, then R2/G gives us

a cone. This is an example of a good orbifold.

Example 2.1.7. Not all orbifolds are good. The Zn-teardrop is an example of a

bad orbifold. Topologically it is homeomorphic to S2, and its singular set consists of
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an isolated cone point, which is locally homeomorphic to R2/Zn, where Zn acts by

rotations. It has been shown that the Zn-teardrop cannot be covered by a manifold

(see [Sc]).

Note: Henceforth, we will assume that the underlying space X of an orbifold O is

always a second countable topological space.

2.2 Riemannian Orbifolds

A Riemannian structure on an orbifold is an assignment of a Riemannian metric on

the orbifold. Just like in the manifold case, this is done by obtaining Riemannian

metrics locally on coordinate charts, and then patching them up via a partition of

unity.

Definition 2.2.1. A map f : O → R is called a smooth function on O if on each

chart (U, Ũ/Γ, π), its lift f̃ = f ◦ π is a smooth function on Ũ .

Definition 2.2.2. Let {Uα} be a locally finite covering of an orbifold O that is subor-

dinate to the orbifolds’s covering of coordinate charts, i.e. Uα’s are coordinate charts

with associated groups Γα’s. Let {Vα} be an open covering of O such that each Vα

has compact closure, and V α ⊂ Uα. We define Γα-invariant functions on each Ũα as

follows:

λ̃α =
1

|Γα|
∑
γα∈Γα

λ̃ ◦ γα

where λ̃ is a function on Ũα. λ̃α is assumed to be positive on Ṽα and vanishes off of

Vα. λ̃α’s define functions λα’s on O which are positive on Vα and zero elsewhere. We

obtain a partition of unity by setting µα = λα
Σλα

.

Definition 2.2.3. Let (U, Ũ/Γ, π) be a coordinate chart for an orbifold O.
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1. Given a tensor field w̃ on Ũ and γ ∈ Γ, we get a new tensor field w̃γ = γ∗(w̃)

on Ũ . We obtain a Γ-invariant tensor field on Ũ defined as:

w̃Γ =
1

|Γ|
∑
γ∈Γ

w̃γ.

Such a Γ-invariant tensor field on Ũ gives a tensor field w on U .

We obtain a tensor field on O by patching together local tensor fields on charts

using a partition of unity.

2. We define a smooth tensor field on the orbifold O to be one that lifts to smooth

tensor fields of the same type in all local covers.

Definition 2.2.4. Let O be an orbifold. A Riemannian Structure on O is an assign-

ment to each orbifold chart (U, Ũ/Γ, π) of a Γ-invariant Riemannian metric gŨ on Ũ

satisfying the compatibility condition that each embedding λ appearing in Definition

2.1.3 is isometric. Every orbifold admits Riemannian structures.

If O = M/Γ is a good orbifold, we can obtain a Riemannian metric on O by

specifying a Riemannian metric on M that is invariant under the action of Γ. Thus,

locally Riemannian orbifolds look like the quotient of a Riemannian manifold by a

finite group of isometries.

It is also known that by suitably choosing the coordinate charts of an orbifold we

can assume that the local group actions are by finite subgroups of O(n) (see [S1]).

2.3 Spectral Geometry on Orbifolds

Let O be a Riemannian orbifold and let f be a smooth function on O. By definition,

the lift of f on each chart (U, Ũ/Γ, π) is a smooth function f̃ = π∗f on Ũ . Let gij
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denote the Γ-invariant metric on Ũ given by the Riemannian structure on O and let

e =
√
det(gij). Let ∆̃ denote the Laplacian on Ũ . On Ũ , ∆̃f̃ is given in the usual

way as

∆̃f̃ =
n∑

i,j=1

1

e
· ∂
∂x̃i

(gij
∂f

∂x̃j
e).

We define the Laplacian on U by

∆̃f̃ = ∆f ◦ π.

That is, on local charts, the Laplacian acts on f by simply acting on its lift f̃ on

the local cover. We say that λ is an eigenvalue of ∆ if ∆f = λf for some non-zero

function f on O.

The following results about the eigenvalues of a Riemannian orbifold are known

(see [Ch]).

Theorem 2.3.1. Let O be a closed Riemannian orbifold.

1. The set of eigenvalues consists of an infinite sequence

0 ≤ λ̄1 < λ̄2 < λ̄3 . . . ↑ ∞.

2. Each eigenvalue λ̄i has finite multiplicity. We write 0 ≤ λ̄1 ≤ λ̄2 ≤ λ̄3 < . . . ↑ ∞

where each eigenvalue is repeated according to its multiplicity.

3. There exists an orthogonal basis of L2(O) (the space of square-integrable func-

tions on O) composed of smooth eigenfunctions φ1, φ2, φ3 . . . where

∆φi = λ̄iφi.
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Note: For background information on orientability and integration on an orbifold,

see [S1].

The spectrum of the Laplacian on O, denoted by Spec(O), is defined by the

sequence 0 ≤ λ1 ≤ λ2 ≤ λ3 . . . ↑ ∞ in Theorem 2.3.1.

Definition 2.3.2. Two compact connected Riemannian orbifolds O1 and O2 are said

to be isospectral to each other if Spec(O1) = Spec(O2).
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Chapter 3

Orbifold Isotropy Types

An interesting question in the spectral geometry of orbifolds is whether one can have

isospectral orbifolds whose singularities have different isotropy types. On the positive

side, E. Dryden, C. Gordon, S. Greenwald and D. Webb [DGGW] have shown that the

Laplace spectrum determines the number and type of singularities in two-dimensional

orbifolds with positive Euler characteristic. The definition of Euler characteristic is

taken as follows [T]:

Definition 3.0.3. When an orbifold O has a cell-division of XO such that each open

cell is in the same stratum of the singular locus (i.e., the group associated to the

interior points of a cell is constant), then the Euler characteristic χ(O) is defined by

the formula

χ(O) =
∑
ci

(−1)dim(ci) 1

|Γ(ci)|
,

where ci ranges over cells and |Γ(ci)| is the order of the group Γ(ci) associated to each

cell.

As is clear from this definition, the Euler characteristic is not always an integer. In

addition, Stanhope [S2] proved the following result:
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Theorem 3.0.1. Only finitely many isotropy types may arise in a family of isospectral

orbifolds whose members have a uniform lower bound on Ricci curvature.

In this chapter we construct arbitrarily large (finite) families of isospectral orb-

ifolds with different isotropy types, showing that the former result is not true in

general. This work is an exposition of the author’s joint publication with E.Stanhope

and D.Webb [BSW] in 2006. The author’s contribution is the construction of the

example in Section 3.3.

Given an odd prime P and an integer m ≥ 1, we construct an (m + 1)-element

family of isospectral (P 3m − 1)-dimensional orbifolds, each with points of distinct

isotropy. The orbifolds in these families are quotients of the round sphere by properly

discontinuous orthogonal actions. By studying a related example, we see in Section 3.3

that some topological properties of the singular set of an orbifold are not spectrally

determined.

3.1 Sunada’s Theorem

Most known examples of isospectral, non-isometric manifolds are constructed using

a group-theoretic method of Sunada [Su]. A generalization of Sunada’s Theorem due

to Bérard allows the use of the Sunada technique to obtain isospectral orbifolds. In

this section we briefly review the algebraic background for Sunada’s Theorem and

provide some examples. We then state Bérard’s version of Sunada’s Theorem, used

in the next section to construct our isospectral families of orbifolds.

Definition 3.1.1. Two subgroups Γ1 and Γ2 of a finite group G are said to be

almost conjugate if each G-conjugacy class [g]G intersects Γ1 and Γ2 in the same

number of elements.

17



Remark 3.1.2. The condition that subgroups Γ1 and Γ2 of a finite group G be al-

most conjugate is equivalent to requiring that the representations of G induced from

the trivial one-dimensional representations of Γ1 and Γ2 (these induced representa-

tions are just the linear permutation representations of G determined by Γ1 and Γ2)

be equivalent as linear representations of G, i.e., that (1Γ1) ↑GΓ1
∼= (1Γ2) ↑GΓ2

. This fact

follows easily from the formula for the character of an induced representation (see

[K0] or [CF], page 362). Thus the use of Sunada’s method to produce examples of

isospectral manifolds that are not isometric is based upon the existence of permutation

representations that are inequivalent as G-sets but nevertheless give rise to equivalent

linear representations of G. The existence of almost conjugate but not conjugate sub-

groups was first used by Gassman [Ga] to construct nonisomorphic algebraic number

fields with the same zeta function.

Example 3.1.3. [Br] Let p be an odd prime, and let G be the symmetric group on

p3 letters. Let E = Zp ×Zp ×Zp be the p-elementary group of order p3, and let H be

the Heisenberg group over the field Zp:

H =

{1 c a
0 1 b
0 0 1

 : a, b, c ∈ Zp

}

the unique nonabelian group of order p3 in which every nonidentity element has order

p. View H and E as subgroups of G via the natural action of each group on itself

by left-multiplication. Then E and H are almost conjugate in G, as follows from the

fact that two permutations are conjugate in the symmetric group if they have the same

cycle structure. These groups are not isomorphic, as E is abelian while H is not.

Example 3.1.4. [Br] Let m ≥ 1, let G be the symmetric group on p3m letters, and

let {Hi}0≤i≤m be the collection of subgroups of G defined as follows. Let H denote
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the mod-p Heisenberg group, E the abelian p-elementary group E = Zp × Zp × Zp.

Let Hi = H i × Em−i, where H i is the product of i copies of H and Ej is the product

of j copies of E. As in Example 3.1.3, the subgroups Hi of G are pairwise almost

conjugate. They are pairwise nonisomorphic: the center of Hi is a Zp-vector space of

dimension i+ 3(m− i) = 3m− 2i, since the center of H is Zp.

With these examples in mind we now state Bérard’s generalized version of Sunada’s

Theorem. In Sunada’s original statement of this theorem, the actions by Γ1 and Γ2

were required to be fixed point free.

Theorem 3.1.5. [B] Let H1 and H2 be almost conjugate subgroups of a finite group

G. Let (M, g) be a compact Riemannian manifold on which G acts faithfully on the

left by isometries. Then the orbit spaces H1\M and H2\M are isospectral as orbifolds:

spec(H1\M, g) = spec(H2\M, g).

3.2 Construction

We turn now to the construction of isospectral orbifolds with different isotropy types.

We show that given an odd prime number p and an integer m ≥ 1 there exists an

(m+1)-element family of isospectral (p3m−1)-dimensional orbifolds each containing a

point of isotropy type found in no other orbifold family. We construct these families

by arranging for the groups from Example 3.1.4 to act isometrically on the round

sphere, and then applying Theorem 3.1.5.

Let En denote the vector space Rn together with the standard Euclidean inner

product, and let {e0, e1, . . . , en−1} be the standard orthonormal basis for En. Also,

let Sn denote the n-dimensional unit sphere. The symmetric group G on p3m letters

from Example 3.1.4 acts orthogonally on the Euclidean space Ep3m by permuting the
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elements e0, e1, . . . , ep3m−1 of the standard basis. Restricting this action to the unit

sphere Sp
3m−1, G acts on Sp

3m−1 by isometries. By Theorem 3.1.5 we conclude that

the orbit spaces are isospectral as orbifolds:

spec(H0\Sp
3m−1) = spec(H1\Sp

3m−1) = · · · = spec(Hm\Sp
3m−1).

Because each group Hi fixes the two unit vectors ± 1√
p3m

(1, 1, . . . , 1) ∈ Ep3m , the

corresponding points in the orbifold Hi\Sp
3m−1 have full isotropy G. Since the groups

Hi are pairwise nonisomorphic, it follows that each orbifold in our isospectral family

has a pair of points with isotropy type not found in any other member of the family.

Finally, note that because these orbifolds all have constant sectional curvature equal

to one, they satisfy the bound on Ricci curvature needed for Theorem 3.0.1; thus

Theorem 3.0.1 cannot be improved from a finiteness assertion to a bound.

3.3 An Example

In this section we show that in a pair of isospectral orbifolds, the underlying topo-

logical spaces of the singular strata may differ. Thus the topological nature of the

singular strata is not spectrally determined.

We examine the nature of the singular set in a specific example. Consider the

algebraic setting of Example 3.1.3 with p = 3; thus G is the symmetric group S27 of all

permutations of the set {0, 1, . . . , 26}, H0 is the abelian group Z3×Z3×Z3, and H1 is

the mod-3 Heisenberg group. The groups H0 and H1 are the only groups of order 27 all

of whose nonidentity elements have order three (see [DF], page 183). The group G acts

orthogonally on the Euclidean space E27 of dimension 27 by permuting the standard

orthonormal basis vectors e0, e1, . . . , e26, hence G acts on the unit sphere S26 ⊆ R27.
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Then the quotient orbifolds O0 = H0\S26 and O1 = H1\S26 are isospectral, by

Theorem 3.1.5. Let ∆± = ± 1√
27

(1, 1, . . . , 1) ∈ S26 ⊆ E27, the “poles” left fixed by the

entire symmetric group.

For i = 0 or 1, the only nontrivial proper subgroups of Hi are isomorphic either to

Z3 or to Z3 × Z3, so the only possible nontrivial isotropy types are Z3, Z3 × Z3, and

the full group Hi. A point of the orbifold Oi is nonsingular if its isotropy group is

trivial. The points whose isotropy is Z3 will be called mild singularities; those points

with isotropy Z3 × Z3 will be called moderate singularities, while those points whose

isotropy is the full group Hi (the poles ∆±) will be called wild singularities. For

e = 0, 1, 2, 3, let O(e)
i = {x ∈ Oi : #Γx = 3e}, the set of points in Oi whose isotropy

groups have order 3e; thus O(0)
i is the set of nonsingular points, while O(3)

i is the set

of wild singularities. We will be interested in the sets O(2)
i of moderate singularities;

specifically, we will show that O(2)
0 and O(2)

1 are not homeomorphic, so the underlying

topological space of the moderate singular stratum is not spectrally determined.

We begin by considering the singular strata O(1)
i in the orbifolds Oi (i = 0, 1)

consisting of the mild singular points; such singular points are represented by points

in the sphere S26 fixed by a single nonidentity element h ∈ Hi; that is, their isotropy

group is the cyclic group 〈h〉 = {1, h, h−1} ∼= Z3.

For the sake of brevity, we adopt the following notation for elements of the groups

H0 and H1. An element of H0 = Z3×Z3×Z3 is a triple (a, b, c) of elements a, b, c ∈ Zp;

we view the element h = (a, b, c) as the ternary representation of an integer ng

satisfying 0 ≤ ng < 27, and we denote g by the integer ng. Thus, for example,

the element (1, 1, 2) is denoted by 14. Similarly, it is easily checked that the mod-

3 Heisenberg group H1 is isomorphic to the unique nontrivial semidirect product

(Z3 × Z3) oα Z3, where the action α : Z3 → Aut(Z3 × Z3) ∼= GL2(Z3) of Z3 on

Z3 × Z3 is given by
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α(c) =

[
1 c
0 1

]
.

Thus the multiplication in H1, consistent with matrix multiplication, is given by

([
a
b

]
, c

)([
a′

b′

]
, c′
)

=

([
a+ a′ + cb′

b+ b′

]
, c+ c′

)
.

As in the case of H0, the element g =

([
a
b

]
, c

)
∈ H1 is denoted by the integer ng

(where 0 ≤ ng < 27) whose ternary representation is (a, b, c).

It is easy to compute the left-translation actions of H0 and H1 upon themselves as

permutations of {0, 1, . . . , 26}. For example, the element g = (0, 1, 1) ∈ H1, denoted

by 4 according to our convention above, corresponds to the permutation

(0 4 17)(1 5 15)(2 3 16)(6 19 23)(7 20 21)(8 18 22)(9 13 26)(10 14 24)(11 12 25) (3.1)

in the symmetric group S27. We will denote the fixed-point set for the Hi action on

the sphere S26 of the element g ∈ Hi by
∑g

i . For example, in the case of the element

g = (0, 1, 1) ∈ H1 considered above, it is clear that the fixed point set is the collection

of unit vectors (x0, x1, . . . , x26) ∈ E27 satisfying the conditions

x0 = x4 = x17, x1 = x5 = x15, x2 = x3 = x16, . . . , x11 = x12 = x25

imposed by the requirement that the vector be invariant under the permutation whose

cycle decomposition was written out above in (3.1). For simplicity, we denote this

fixed point set with the same notation as the cycle decomposition of g; thus

∑4
1 = [0 4 17][1 5 15][2 3 16][6 19 23][7 20 21][8 18 22][9 13 26][10 14 24][11 12 25]
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Also,
∑4

1 =
∑17

1 , since the elements 4 = (0, 1, 1) and 17 = (1, 2, 2) are inverses in H1.

As another example of our notation

[0 1 2 9 10 11 18 19 20][3 4 5 12 13 14 21 22 23][6 7 8 15 16 17 24 25 26]

denotes the set of unit vectors (x0, x1, . . . , x26) ∈ E27 satisfying the conditions

x0 = x1 = x2 = x9 = x10 = x11 = x18 = x19 = x20,

x3 = x4 = x5 = x12 = x13 = x14 = x21 = x22 = x23

and

x6 = x7 = x8 = x15 = x16 = x17 = x24 = x25 = x26.

There are twenty-six nonidentity elements of H0 or H1; each has the same fixed-point

set as its inverse. Thus there are thirteen fixed-point sets to consider for each group.

Each fixed-point set in E27 is a nine-dimensional linear subspace; thus the fixed-point

sets in the sphere S26 are eight-dimensional, since the extra constraint that the vector

be of unit length is also imposed.

Consider first the group H0 = Z3 × Z3 × Z3. It is straightforward to compute

the thirteen fixed-point sets
∑j

0 of nontrivial elements j ∈ H0, that is, the points

in the unit sphere S26 representing singular points of the quotient orbifold O0 whose

isotropy is nontrivial. They are given by
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∑1
0 = [0 1 2][3 4 5][6 7 8][9 10 11][12 13 14][15 16 17][18 19 20][21 22 23][24 25 26],∑3
0 = [0 3 6][1 4 7][2 5 8][9 12 15][10 13 16][11 14 17][18 21 24][19 22 25][20 23 26],∑4
0 = [0 4 8][1 5 6][2 3 7][9 13 27][10 14 15][11 12 16][18 22 26][19 23 24][20 21 25],∑5
0 = [0 5 7][1 3 8][2 4 6][9 14 16][10 12 17][11 13 15][18 23 25][19 21 26][20 22 24],∑9
0 = [0 9 18][1 10 19][2 11 20][3 12 21][4 13 22][5 14 23][6 15 24][7 16 25][8 17 26],∑10

0 = [0 10 20][1 11 18][2 9 19][3 13 23][4 14 21][5 12 22][6 16 26][7 17 24][8 15 25],∑11
0 = [0 11 19][1 9 20][2 10 18][3 14 22][4 12 23][5 13 21][6 17 25][7 15 26][8 16 24],∑12
0 = [0 12 24][1 13 25][2 14 26][3 15 18][4 16 19][5 17 20][6 9 21][7 10 22][8 11 23],∑13
0 = [0 13 26][1 14 24][2 12 25][3 16 20][4 17 18][5 15 19][6 10 23][7 11 21][8 9 22],∑14
0 = [0 14 25][1 12 26][2 13 24][3 17 19][4 15 20][5 16 18][6 11 22][7 9 23][8 10 21],∑15
0 = [0 15 21][1 16 22][2 17 23][3 9 24][4 10 25][5 11 26][6 12 18][7 13 19][8 14 20],∑16
0 = [0 16 23][1 17 21][2 15 22][3 10 26][4 11 24][5 9 25][6 13 20][7 14 18][8 12 19],∑17
0 = [0 17 22][1 15 23][2 16 21][3 11 25][4 9 26][5 10 24][6 14 19][7 12 20][8 13 18]. (3.2)

Since the fixed point set of a group element coincides with that of its inverse, we

also have
∑2

0 =
∑1

0,
∑6

0 =
∑3

0,
∑8

0 =
∑4

0,
∑7

0 =
∑5

0,
∑18

0 =
∑9

0,
∑20

0 =
∑10

0 ,∑19
0 =

∑11
0 ,
∑24

0 =
∑12

0 ,
∑26

0 =
∑13

0 ,
∑25

0 =
∑14

0 ,
∑21

0 =
∑15

0 ,
∑23

0 =
∑16

0 , and∑22
0 =

∑17
0 .

Now consider the group H1. We next compute the thirteen fixed-point sets
∑j

1

of nontrivial group elements j ∈ H1, that is, the points in the unit sphere S26 repre-

senting singular points of the quotient orbifold O1 whose isotropy is nontrivial; they

are given by
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∑1
1 = [0 1 2][3 13 23][4 14 21][5 12 22][6 25 17][7 26 15][8 24 16][9 10 11][18 19 20],∑3
1 = [0 3 6][1 4 7][2 5 8][9 12 15][10 13 16][11 14 17][18 21 24][19 22 25][20 23 26],∑4
1 = [0 4 17][1 5 15][2 3 16][6 19 23][7 20 21][8 18 22][9 13 26][10 14 24][11 12 25],∑5
1 = [0 5 25][1 3 26][2 4 24][6 11 13][7 9 14][8 10 12][15 20 22][16 18 23][17 19 21],∑7
1 = [0 7 23][1 8 21][2 6 22][3 10 17][4 11 15][5 9 16][12 19 26][13 20 24][14 18 25],∑8
1 = [0 8 13][1 6 14][2 7 12][3 20 25][4 18 26][5 19 24][9 17 22][10 15 23][11 16 21],∑9
1 = [0 9 18][1 10 19][2 11 20][3 12 21][4 13 22][5 14 23][6 15 24][7 16 25][8 17 26],∑10

1 = [0 10 20][1 11 18][2 9 19][3 22 14][4 23 12][5 21 13][6 7 8][15 16 17][24 25 26],∑11
1 = [0 11 19][1 9 20][2 10 18][3 5 4][6 26 16][7 24 17][8 25 15][12 14 13][21 23 22],∑12
1 = [0 12 24][1 13 25][2 14 26][3 15 18][4 16 19][5 17 20][6 9 21][7 10 22][8 11 23],∑14
1 = [0 14 16][1 12 17][2 13 15][3 8 19][4 6 20][5 7 18][9 23 25][10 21 26][11 22 24],∑15
1 = [0 15 21][1 16 22][2 17 23][3 9 24][4 10 25][5 11 26][6 12 18][7 13 19][8 14 20],∑22
1 = [0 22 26][1 23 24][2 21 25][3 7 11][4 8 9][5 6 10][12 16 20][13 17 18][14 15 19]. (3.3)

Also,
∑2

1 =
∑1

1,
∑6

1 =
∑3

1,
∑17

1 =
∑4

1,
∑25

1 =
∑5

1,
∑23

1 =
∑7

1,
∑13

1 =
∑8

1,∑18
1 =

∑9
1,
∑20

1 =
∑10

1 ,
∑19

1 =
∑11

1 ,
∑24

1 =
∑12

1 ,
∑16

1 =
∑14

1 ,
∑21

1 =
∑15

1 , and∑26
1 =

∑22
1 .

Next, we consider points in the sphere S26 having isotropy Z3 × Z3 for the Hi-

action. Let
∑j,k

i denote the intersection of sets
∑j

i and
∑k

i . It is easy to see that

the points of S26 of isotropy type Z3 × Z3 for the Hi-action are just the points

of ⋃
j,k∈Hi,<j>6=<k>

(
∑j,k

i −{∆±}).

Indeed, let x denote such a point. Then x is not one of the poles (which have fully

isotropy Hi), and it is fixed by two elements j, k ∈ Hi that generate distinct cyclic

subgroups 〈j〉 6= 〈k〉 ⊆ Hi, so manifestly x ∈
∑j,k

i , i.e.,
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x ∈
⋃

j,k∈Hi,<j>6=<k>

(
∑j,k

i −{∆±}).

Conversely, any point of

⋃
j,k∈Hi,<j>6=<k>

(
∑j,k

i −{∆±})

has isotropy 〈j, k〉 (for some j, k ∈ Hi) properly larger than Z3 but properly contained

in Hi, so the only possibility for its isotropy is Z3×Z3. Thus, the points in the sphere

S26 having isotropy Z3 × Z3 for the Hi-action are readily determined by computing

the pairwise intersections
∑j,k

i =
∑j

i ∩
∑k

i of the above fixed-point sets, discarding

the poles, and taking the union.

We begin with the case of H0. As is clear from (3.4) below, each double intersec-

tion
∑j,k

0 is given by twenty-four independent linear conditions on the twenty-seven

components x0, x1, . . . , x26, together with the condition that (x0, x1, . . . , x26) be a unit

vector; thus each
∑j,k

0 is the intersection of a three-dimensional linear subspace of

R27 with the unit sphere S26, hence is a 2-sphere; in particular, each
∑j,k

0 −{∆±}

is a 2-sphere with a pair of antipodal points removed, and hence is connected. The

thirteen distinct double intersections
∑j,k

0 are easily computed; they are given by
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∑1,3
0 = [0 1 2 3 4 5 6 7 8][9 10 11 12 13 14 15 16 17][18 19 20 21 22 23 24 25 26],∑1,9
0 = [0 1 2 9 10 11 18 19 20][3 4 5 12 13 14 21 22 23][6 7 8 15 16 17 24 2526],∑1,12

0 = [0 1 2 12 13 14 24 25 26][3 4 5 15 16 17 18 19 20][6 7 8 9 10 11 21 22 23],∑1,15
0 = [0 1 2 15 16 17 21 22 23][3 4 5 9 10 11 24 25 26][6 7 8 12 13 14 18 19 20],∑3,9
0 = [0 3 6 9 12 15 18 21 24][1 4 7 10 13 16 19 22 25][2 5 8 11 14 17 20 23 26],∑3,10

0 = [0 3 6 10 13 16 20 23 26][1 4 7 11 14 17 18 21 24][2 5 8 9 12 15 19 22 25],∑3,11
0 = [0 3 6 11 14 17 19 22 25][1 4 7 9 12 15 20 23 26][2 5 8 10 13 16 18 21 24],∑4,9
0 = [0 4 8 9 13 17 18 22 26][1 5 6 10 14 15 19 23 24][2 3 7 11 12 16 20 21 25],∑4,10

0 = [0 4 8 10 14 15 20 21 25][1 5 6 11 12 16 18 22 26][2 3 7 9 13 17 19 23 24],∑4,11
0 = [0 4 8 11 12 16 19 23 24][1 5 6 9 13 17 20 21 25][2 3 7 10 14 15 18 22 26],∑5,9
0 = [0 5 7 9 14 16 18 23 25][1 3 8 10 12 17 19 21 26][2 4 6 11 13 15 20 22 24],∑5,10

0 = [0 5 7 10 12 17 20 22 24][1 3 8 11 13 15 18 23 25][2 4 6 9 14 16 19 21 26],∑5,11
0 = [0 5 7 11 13 15 19 21 26][1 3 8 9 14 16 20 22 24][2 4 6 10 12 17 18 23 25]. (3.4)

Next, we compute the locus of points whose isotropy under the H1 action is

Z3 × Z3; as above, this is easily carried out by computing the pairwise intersections∑j,k
1 =

∑j
1 ∩
∑k

1 of the above fixed-point sets. In this case, most of the pairs of

fixed-point sets intersect only in the poles; i.e., for most pairs j, k ∈ H1, we have∑j,k
1 = {∆±} = {± 1√

27
(1, 1, . . . , 1)}. There are only four larger double intersections,

given by

∑1,9
1 = [0 1 2 9 10 11 18 19 20][3 4 5 12 13 14 21 22 23][6 7 8 15 16 17 24 25 26],∑3,9
1 = [0 3 6 9 12 15 18 21 24][1 4 7 10 13 16 19 22 25][2 5 8 11 14 17 20 23 26],∑4,8
1 = [0 4 8 9 13 17 18 22 26][1 5 6 10 14 15 19 23 24][2 3 7 11 12 16 20 21 25],∑5,7
1 = [0 5 7 9 14 16 18 23 25][1 3 8 10 12 17 19 21 26][2 4 6 11 13 15 20 22 24]. (3.5)

In both the cases, i = 0 and i = 1, it is easily verified that two distinct double

intersections intersect only in the poles:
∑j,k

i ∩
∑r,s

i = {∆±} unless
∑j,k

i =
∑r,s

i .
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For i = 0, 1 recall that O(2)
i denotes the set of moderate singular points in Oi, i.e.,

those whose isotropy is isomorphic to Z3 × Z3. Thus, by 3.4 and 3.5, O(2)
i is the set

of points in Oi with a representative in the set

S
(2)
i :=

⋃
j,k∈Hi,<j>6=<k>

(
∑j,k

i −{∆±}) ⊆ S26.

As noted above, S
(2)
i is the disjoint union of subsets of S26, each homeomorphic to

a 2-sphere with a pair of antipodal points removed. Now (3.4) shows that S
(2)
0 has

thirteen connected components, while (3.5) shows that S
(2)
1 has only four connected

components.

We now consider whether two different components
∑j,k

i −{∆±} and
∑r,s

i −{∆±}

of the set of points S
(2)
i ⊆ S26 might be identified via the Hi-action and hence might

represent the same connected component of the moderate singular stratum O(2)
i in

the quotient orbifold Oi. For i = 0, this cannot occur. Indeed, if this were so, some

group element g ∈ H0 would carry
∑j,k

i −{∆±} to
∑r,s

i −{∆±}, so their isotropy

groups 〈j, k〉 and 〈r, s〉 would be conjugate in H0; however, since H0 is abelian, all

conjugations are trivial so this is impossible. Thus, O(2)
0 has exactly thirteen con-

nected components. However, O(2)
1 has at most four connected components, since

S
(2)
1 has only four connected components.

Thus the sets O(2)
0 and O(2)

1 of moderate singular points have different numbers

of connected components in the two orbifolds O0 and O1, so one cannot hear the

underlying topology of the set of points of a given isotropy type.
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Chapter 4

Orbifold Lens Spaces

In this chapter we will generalize the idea of manifold lens spaces to orbifold lens

spaces. Note that lens spaces are special cases of spherical space forms, which are

connected complete Riemannian manifolds of positive constant sectional curvature 1.

An n-dimensional spherical space form can be written as Sn/G where G is a finite

subgroup of the orthogonal group O(n+ 1). In fact, the definition of spherical space

forms can be generalized to allow G to have fixed points making Sn/G an orbifold.

Manifold lens spaces are spherical space forms where the n-dimensional sphere Sn of

constant curvature 1 is acted upon by a cyclic group of fixed point free isometries

on Sn. We will generalize this notion to orbifolds by allowing the cyclic group of

isometries to have fixed points.

Our goal in this chapter is to construct examples of isospectral orbifold lens spaces

that are not isometric. The results in this chapter are an exposition of the author’s

work published in 2011[Ba].

29



4.1 Orbifold Lens Spaces Generating Functions

In this section we will reproduce the background work developed by Ikeda in [I1] and

[I2] for manifold spherical space forms. We will note that with slight modifications

the results are valid for orbifold spherical space forms. This is the background work

we will need to develop our results for orbifold lens spaces.

We will first consider general 2n− 1 dimensional lens spaces. Let q be a positive

integer. Set

q0 =


q−1

2
if q is odd,

q
2

if q is even.

Throughout this chapter we assume that q0 ≥ 4.

For n ≤ q0, let p1, . . . , pn be n integers. Note, if g.c.d.(p1, . . . , pn, q) 6= 1, we can

divide all the p′is and q by this gcd to get a case where the gcd = 1. So, without loss

of generality, we can assume g.c.d.(p1, . . . , pn, q) = 1. We denote by g the orthogonal

matrix given by

g =


R(p1/q) 0

. . .

0 R(pn/q)

 ,

where R(θ) =

 cos 2πθ sin 2πθ

− sin 2πθ cos 2πθ

. Then g generates a cyclic subgroup G =

{
gl
}q
l=1

of order q of the special orthogonal group SO(2n) since det g = 1. Note

that g has eigenvalues γp1 , γ−p1 ,γp2 , γ−p2 ,..., γpn , γ−pn , where γ is a primitive q-th

root of unity. We define the lens space L(q : p1, . . . , pn) as follows:

L(q : p1, . . . , pn) = S2n−1/G.
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Note that if gcd(pi, q) = 1 ∀i, L(q : p1, . . . , pn) is a smooth manifold; Ikeda and

Yamamoto have answered Kac’s question in the affirmative for 3-dimensional manifold

lens spaces ([IY], [Y]). To get an orbifold in this setting with non-trivial singularities,

we must have gcd(pi, q) > 1 for some i. In such a case L(q : p1, . . . , pn) is a good

smooth orbifold with S2n−1 as its covering manifold. Let π be the covering projection

of S2n−1 onto S2n−1/G

π : S2n−1 → S2n−1/G.

Since the round metric of constant curvature one on S2n−1 is G-invariant, it induces a

Riemannian metric on S2n−1/G. Henceforth, the term ”lens space” will refer to this

generalized definition. Ikeda proved the following result for manifold spherical space

forms. We note that the proof doesn’t require the groups to be fixed-point free, and

reproduce the result for orbifold spherical space forms:

Lemma 4.1.1. Let Sn/G and Sn/G′ be spherical space forms for any integer n ≥ 2.

Then Sn/G is isometric to Sn/G′ if and only if G is conjugate to G′ in O(n+ 1).

Proof. If φ is an isometry of Sn/G onto Sn/G′, then there exists an isometry φ̃ of Sn

onto itself which covers φ since Sn is the universal cover for spherical space forms. Now

φ̃ is an element of O(n+ 1) and it gives a conjugation between G and G′. Conversely,

if φ̃ ∈ O(n + 1) such that φ̃Gφ̃−1 = G′, then φ̃ induces an isometry φ of Sn/G onto

Sn/G′ so that φπ(x) = π′(φ̃x) for any x ∈ Sn where π and π′ are projections maps

from Sn onto Sn/G and Sn/G′ respectively.

Note that if we have a lens space S2n−1/G = L(q : p1, . . . , pn), with G =< g >,

permuting the pi’s doesn’t change the underlying group G; similarly, if we multiply all

the pi’s by some number ±l where gcd(l, q) = 1, that simply means we have mapped

the generator g to the generator gl, and so we still have the same group G. Also note

31



that if two lens spaces S2n−1/G = L(q : p1, . . . , pn) and S2n−1/G′ = L(q : s1, . . . , sn)

are isometric, then by the above lemma G and G′ must be conjugate. So, the lift of

the isometry on S2n−1 maps a generator, g of G to a generator g′l of G′. This means

that the eigenvalues of g and g′l are the same, which means that each pi is equivalent

to some lsj or −lsj (mod q). These facts give us the following corollary for lemma

4.1.1

Corollary 4.1.2. Let L = L(q : p1, . . . , pn) and L′ = L(q : s1, . . . , sn) be lens spaces.

Then L is isometric to L′ if and only if there is a number l coprime with q and there

are numbers ei ∈ {−1, 1} such that (p1, . . . , pn) is a permutation of (e1ls1, . . . , enlsn)

(mod q).

Assume we have a spherical space form Sm/G for any integer m ≥ 2. For any f ∈

C∞(Sm/G), we define the Lapacian on the spherical space form as ∆̃(π∗f) = π∗(∆f).

We now construct the spectral generating function associated with the Laplacian on

S2n−1/G analogous to the construction in the manifold case (see [I1], [I2] and [IY]).

Let ∆̃, ∆ and ∆0 denote the Laplacians of S2n−1, S2n−1/G and R2n, respectively.

Definition 4.1.3. For any non-negative real number λ, we define the eigenspaces Ẽλ

and Eλ as follows:

Ẽλ =
{
f ∈ C∞(S2n−1)

∆̃f = λf
}
,

Eλ =
{
f ∈ C∞(S2n−1/G)

∆f = λf
}
.

The following lemma follows from the definitions of ∆ and smooth function.

Lemma 4.1.4. (i) For any f ∈ C∞(S2n−1/G), we have ∆̃(π∗f) = π∗(∆f).

(ii) For any G-invariant function F on S2n−1, there exists a unique function f ∈

C∞(Sn/G) such that F = π∗f .
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Proof. The natural projection π : S2n−1 → S2n−1/G induces the injective map π∗ :

C∞(S2n−1/G)→ C∞(S2n−1). Now (i) follows from the definition of the Laplacian on

an orbifold as defined in Section 2.3. Also, since F is G-invariant it lies in the image

of π∗(C∞(S2n−1/G)). We define f = (π∗)−1(F ). This proves (ii).

Corollary 4.1.5. Let
(
Ẽλ
)
G

be the space of all G-invariant functions of Ẽλ. Then

dim(Eλ) = dim(Ẽ)G.

Proof. By the above lemma, we can see that if f ∈ Eλ, then there exists a unique F ∈

Ẽλ such that F is G-invariant and F = π∗f . Conversely, for any G-invariant eigen-

function F ∈ Ẽλ, there exists a unique eigenfunction f ∈ Eλ such that F = π∗f . Both

of these facts follow from the above lemma and the fact that π∗ : C∞(S2n−1/G) →

C∞(S2n−1) is an injection.

Now these facts imply that there is a one-to-one correspondence between functions

in Eλ and functions in
(
Ẽλ
)
G

. Therefore, dim(Eλ) = dim
(
Ẽλ
)
G

.

Let ∆0 be the Laplacian on R2n with respect to the flat Kähler metric. Set

r2 =
∑2n

i=1 x
2
i , where (x1, x2, . . . , x2n) is the standard coordinate system on R2n. For

k ≥ 0, let P k denote the space of complex valued homogeneous polynomials of degree

k on R2n. Let Hk be the subspace of P k consisting of harmonic polynomials on R2n,

Hk =
{
f ∈ P k

∆0f = 0
}
.

Each orthogonal transformation of R2n canonically induces a linear isomorphism of

P k.

Proposition 4.1.6. The space Hk is O(2n)-invariant, and P k has the direct sum

decomposition: P k = Hk ⊕ r2P k−2.
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The injection map i : S2n−1 → R2n induces a linear map i∗ : C∞(R2n)→ C∞(S2n−1).

We denote i∗(Hk) by Hk.

Proposition 4.1.7. Hk is an eigenspace of ∆̃ on S2n−1 with eigenvalue k(k+2n−2)

and
∑∞

k=0Hk is dense in C∞(S2n−1) in the uniform convergence topology. Moreover,

Hk is isomorphic to Hk. That is, i∗ : Hk '−→ Hk.

For proofs of these propositions, see [BGM].

Now Corollary 4.1.5 and Proposition 4.1.7 imply that if we denote by Hk
G be the

space of all G-invariant functions in Hk, then

dimEk(k+2n−2) = dimHk
G.

Moreover, for any integer k such that dimHk
G 6= 0, λ̄k = k(k+2n−2) is an eigenvalue

of ∆ on S2n−1/G with multiplicity equal to dimHk
G, and no other eigenvalues appear

in the spectrum of ∆.

Definition 4.1.8. Let O be a closed compact Riemannian orbifold with the Laplace

spectrum, 0 ≤ λ̄1 < λ̄2 < λ̄3 . . . ↑ ∞. For each λ̄k, let the eigenspace be

Eλ̄k =
{
f ∈ C∞(O)

∆f = λ̄kf
}
.

We define the spectrum generating function associated to the spectrum of the Laplacian

on O as

FO(z) =
∞∑
k=0

(
dimEλ̄k

)
zk.

In terms of spherical space forms, the definition becomes

Definition 4.1.9. The generating function FG(z) associated to the spectrum of the

Laplacian on Sn/G is the generating function associated to the infinite sequence
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{
dimHk

G

}∞
k=0

, i.e.,

FG(z) =
∞∑
k=0

(
dimHk

G

)
zk.

By Corollary 4.1.5, Proposition 4.1.7 and subsequent discussion, we know that the

generating function determines the spectrum of Sn/G. This fact gives us the following

proposition:

Proposition 4.1.10. Let Sn/G and Sn/G′ be two spherical space forms. Let FG(z)

and FG′(z) be their respective spectrum generating functions. Then Sn/G is isospectral

to Sn/G′ if and only if FG(z) = FG′(z).

Our first goal is to find an alternative expression for FG(z) that will allow us to

compare FG(z) and FG′(z).

If G is a finite subgroup of O(2n) with orientation preserving action on S2n−1 then

G is a subgroup of SO(2n). In the following we will consider orientation-preserving

group actions.

The following theorem, proved for manifold spherical space forms in [I1] and [I2],

holds true for the orbifold spherical space forms as well.

Theorem 4.1.11. Let G be a finite subgroup of SO(2n), and let S2n−1/G be a

spherical space form with spectrum generating function FG(z). Then, on the domain{
z ∈ C

 |z| < 1
}

, FG(z) converges to the function

FG(z) =
1

|G|
∑
g∈G

1− z2

det(I2n − gz)
.

where |G| denotes the order of G and I2n is the 2n× 2n identity matrix.

Proof. We reproduce the proof from [I1] and [I2] here to show that the hypothesis

that G acts freely is not used. Let χk and χ̃k be the characters of the natural
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representations of SO(2n) on Hk and P k, respectively. Then we have (see [FH], pp.

10-18)

dimHk
G =

1

|G|
∑
g∈G

χk(g). (4.1)

By Proposition 4.1.6, we get

χk(g) = χ̃k(g)− χ̃k−2(g), (4.2)

where we put χ̃−t = 0 for t > 0.

If an element g ∈ SO(2n) is conjugate to an element g′ ∈ SO(2n) in O(2n), then

χ̃k(g
′) = χ̃k(g), k ≥ 0. (4.3)

Let g be an element in G of order q. Set γ = e2πi/q and let γp1 , γ̄p1 , ..., γpn , γ̄pn be the

eigenvalues of g, then g is conjugate to the element

g′ =


R(p1/q) 0

. . .

0 R(pn/q)


in SO(2n).

Let (x1, y1, x2, y2, . . . , xn, yn) be the standard Euclidean coordinates on R2n. Set

zj = xj + iyj, where i =
√
−1 (j = 1, 2, . . . n). Then we can view the space P k

having a basis consisting of all monomials of the form

zI · z̄J = (z1)i1 · · · (zn)in · (z̄1)j1 · · · (z̄n)jn ,
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where i1, . . . , in, j1, . . . , jn ≥ 0 and i1 + · · ·+ in + j1 + · · · jn = k. We denote i1 + · · ·+

in + j1 + · · · jn = k by In + Jn = k. Then for any monomial zI · z̄J , we will have

g′
(
zI · z̄J

)
= γi1p1+···+inpn−j1p1−···−jnpn

(
zI · z̄J

)
.

So,

χ̃k(g
′) =

∑
In+Jn=k

γi1p1+···+inpn−j1p1−···−jnpn . (4.4)

Then,

FG(z) =
∞∑
k=0

(
dimHk

G

)
zk

=
∞∑
k=0

1

|G|
∑
g∈G

χk(g)zk by (4.2)

=
1

|G|
∑
g∈G

∞∑
k=0

χk(g)zk

=
1

|G|
∑
g∈G

∞∑
k=0

(χ̃k(g)− χ̃k−2(g)) zk by (4.3)

=
(1− z2)

|G|
∑
g∈G

∞∑
k=0

χ̃k(g)zk

=
(1− z2)

|G|
∑
g∈G

∞∑
k=0

χ̃k(g
′)zk
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=
(1− z2)

|G|
∑
g∈G

∞∑
k=0

( ∑
In+Jn=k

γi1p1+···+inpn−j1p1−···−jnpn
)
zk by (4.2)

=
(1− z2)

|G|
∑
g∈G

∞∑
k=0

∑
In+Jn=k

(γp1z)i1 · · · (γpnz)in
(
γ−p1z

)j1 · · · (γ−pnz)jn
=

(1− z2)

|G|
∑
g∈G

n∏
i=1

(
1 + γpiz + γ2piz2 + · · ·

) (
1 + γ−piz + γ−2piz2 + · · ·

)
.

On the domain
{
z ∈ C

|z| < 1
}

, the power series

(
1 + γpiz + γ2piz2 + · · ·

)
converges to 1

(1−γpiz) . So, the product

n∏
i=1

(
1 + γpiz + γ2piz2 + · · ·

) (
1 + γ−piz + γ−2piz2 + · · ·

)
converges to

1∏n
i=1(1− γpiz)(1− γ−piz)

.

Now if we denote by E(g) to be the set of eigenvalues of g, then we write

FG(z) =
(1− z2)

|G|
∑
g∈G

1∏
γ∈E(g)(1− γz)

=
(1− z2)

|G|
∑
g∈G

1

det(I2n − gz)
.

We denote the generating function for a lens space L = L(q : p1, . . . , pn) by Fq(z :
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p1, ..., pn).

Corollary 4.1.12. Let L(q : p1, . . . , pn) be a lens space and Fq(z : p1, . . . , pn) the

generating function associated to the spectrum of L(q : p1, . . . , pn). Then, on the

domain
{
z ∈ C

 |z| < 1
}

,

Fq(z : p1, . . . , pn) =
1

q

q∑
l=1

1− z2∏n
i=1(z − γpil)(z − γ−pil)

,

where γ is a primitive q-th root of unity.

Proof. In the notation of the Theorem 4.1.11, we get

dimHk
G =

1

|G|
∑
g∈G

χk(g) =
1

q

q∑
l=1

χk(g
l). (4.5)

So

Fq(z : p1, . . . , pn) =
(1− z2)

|G|
∑
g∈G

1∏n
i=1(1− γpiz)(1− γ−piz)

=
(1− z2)

q

q∑
l=1

1∏n
i=1(z − γpil)(z − γ−pil)

,

since multiplying through by 1 = (−γ−pil)(−γpil) gives

(1− γpilz)(1− γ−pilz) = (z − γ−pil)(z − γpil).

Remark: By the Theorem 4.1.11 and unique analytic continuation, we can con-

sider the generating function to be a meromorphic function on the whole complex

plane C with poles on the unit circle S1 = {z ∈ C | |z| = 1}.

From this remark we have,

Corollary 4.1.13. Let S2n−1/G and S2n−1/G′ be two spherical space forms. If there

is a one to one mapping φ of G onto G′ such that the set E(g) = the set E(φ(g)),∀g ∈
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G, then S2n−1/G is isospectral to S2n−1/G′.

Proof. The proof follows from the fact that

∏
γ∈E(g)

(1− γz) =
∏

γ∈E(g)

(z − γ) = det(I2n − gz).

Corollary 4.1.14. Let S2n−1/G and S2n−1/G′ be two isospectral spherical space

forms. Then |G| = |G′|.

Proof. FG(z) can be considered as a meromorphic function on the whole complex

plane. FG(z) has a pole of order 2n−1 at z = 1. Note that γpil = 1 iff pil ≡ 1(mod q).

Since gcd(p1, p2, ..., pn; q) = 1, this is only true for all pi at once for l = q. In particular,

this implies that for this corollary to hold, we don’t need to have a manifold quotient,

nor is this required in the proof of Theorem 4.1.11.

We take lim
z→1

(1− z)2n−1FG(z)

= lim
z→1

(1− z)2n−1 1

|G|
∑
g∈G

(1− z2)∏
γ∈E(g)(1− γz)

=
1

|G|
lim
z→1

(1− z)2n
∑
g∈G

(1 + z)∏
γ∈E(g)(1− γz)

=
1

|G|
lim
z→1

(1 + z)
∑
g∈G

(1− z)2n∏
γ∈E(g)(1− γz)

=
2

|G|
(0 + 0 + · · ·+ 0︸ ︷︷ ︸

2n−1 times

+1) =
2

|G|
.

Since the spaces are isospectral, this implies that

lim
z→1

(1− z)2n−1FG(z) = lim
z→1

(1− z)2n−1FG′(z),
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which gives |G| = |G′|.

4.2 Formulation of Generating Function

In order to use the generating function to find isospectral non-isometric lens spaces,

we need to formulate it in ways that are useful for certain types of lens spaces. The

formulation of the generating functions used by Ikeda ([I1]) for manifold lens spaces

needs to be changed to allow for singular points when we are dealing with orbifold

lens spaces. In this section we will develop forms of the generation function that will

be used to find isospectral pairs of non-isometric orbifold lens spaces.

4.2.1 Preliminaries

Let q be a positive integer that is not prime. Set

q0 =


q−1

2
if q is odd,

q
2

if q is even.

Throughout this chapter we assume that q0 ≥ 4.

For any positive integer n with 2 ≤ n ≤ q0 − 2, we denote by Ĩ(q, n) the set of

n-tuples (p1, . . . , pn) of integers. We define a subset Ĩ0(q, n) of Ĩ(q, n) as follows:

Ĩ0(q, n) ={
(p1, . . . , pn) ∈ Ĩ(q, n)

pi 6≡ ±pj (mod q), 1 ≤ i < j ≤ n, g.c.d.(p1, . . . , pn, q) = 1
}
.

We introduce an equivalence relation in Ĩ(q, n) as follows: (p1, . . . , pn) is equivalent

to (s1, . . . , sn) if and only if there is a number l prime to q and there are numbers
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ei ∈ {−1, 1} such that (p1, . . . , pn) is a permutation of (e1ls1, . . . , enlsn) (mod q). This

equivalence relation also defines an equivalence relation on Ĩ0(q, n).

We set I(q, n) = Ĩ(q, n)/ ∼ and I0(q, n) = Ĩ0(q, n)/ ∼. Let k = q0 − n. We define

a map w of I0(q, n) into I0(q, k) as follows: For any element (p1, . . . , pn) ∈ Ĩ0(q, n),

we choose an element (q1, . . . , qk) ∈ Ĩ0(q, k) such that the set of integers

{
p1,−p1, . . . , pn,−pn, q1,−q1, . . . , qk,−qk

}

forms a complete set of incongruent residues (mod q). Then we define

w([p1, . . . , pn]) = [q1, . . . , qk].

Suppose there is another set (s1, . . . , sk) ∈ Ĩ0(q, k) such that the set of integers

{
p1,−p1, . . . , pn,−pn, s1,−s1, . . . , sk,−sk

}

forms a complete set of incongruent residues (mod q). Suppose there is no l prime to q

such that (q1, . . . , qk) is congruent to a permutation of (le1s1, . . . , leksk) (mod q). That

means that for any given l prime to q, there is at least one qi which is incongruent to

lejsj (mod q) for j = 1, 2, . . . , k and ej ∈ {−1, 1}. This would mean that the number

of incongruent residues (mod q) is greater than q. This is not possible. Therefore

(s1, . . . , sk) must be equivalent to (q1, . . . , qk). Therefore, w is well-defined.

With similar arguments, it is easy to see that w is one-to-one and onto. Assume

w([p1, . . . , pn]) = w([r1, . . . , rn]) = [q1, . . . , qk].
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This means that

{p1,−p1, . . . , pn,−pn, q1,−q1, . . . , qk,−qk}

and

{r1,−r1, . . . , rn,−rn, q1,−q1, . . . , qk,−qk}

are both complete sets of incongruent residues (mod q).

If there is no l prime to q such that (p1, . . . , pn) is congruent to a permuta-

tion of (le1r1, . . . , lenrn) (mod q), where ei ∈ {−1, 1}, then that would mean that

there are more than q incongruent residues (mod q). This is not possible. Therefore,

[p1, . . . , pn] = [r1, . . . , rn], and w is one-to-one.

Now, given a [q1, . . . , qk] ∈ I0(q, k), there are exactly k of the {q1,−q1, . . . , qk,−qk}

(mod q) that are less than or equal to q0. Now since q0 = n + k, we can choose the

other n integers to be p1, . . . , pn so that the set

{
p1,−p1, . . . , pn,−pn, q1,−q1, . . . , qk,−qk

}

forms a complete set of incongruent residues (mod q). Thus, we can have [p1, . . . , pn] ∈

I0(q, n) that maps onto [q1, . . . , qk]. So w is onto. This gives us a bijection

w : I0(q, n)
∼−→ I0(q, k). (4.6)

The following proposition is similar to a result in [I1]:

Proposition 4.2.1. Let I0(q, n) be as above. Then,

|I0(q, n)| ≥ 1

q0

(
q0

n

)
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where (
q0

n

)
=


1 if q0n = 0,

q0!
n!(q0−n)!

otherwise.

Proof. Let I0(q, n) be as above. Consider a subset Ĩ ′0(q, n) of Ĩ0(q, n) as follows:

Ĩ ′0(q, n) =
{

(p1, . . . , pn) ∈ Ĩ0(q, n)
at least one of the pi is co-prime to q

}
.

It is easy to see that the equivalence relation on Ĩ0(q, n) induces an equivalence relation

on Ĩ ′0(q, n). Since we eliminate classes where none of the pi’s is co-prime to q, we get

|I0(q, n)| ≥ |I ′0(q, n)|,

where I ′0(q, n) = Ĩ ′0(q, n)/ ∼. Now consider a subset Ĩ ′′0 (q, n) of Ĩ ′0(q, n) as follows:

Ĩ ′′0 (q, n) =
{

(p1, . . . , pn) ∈ Ĩ ′0(q, n)
1 = p1 < · · · < pn ≤ q0

}
.

Then it is easy to see that any element of Ĩ ′0(q, n) has an equivalent element in Ĩ ′′0 (q, n).

On the other hand, for any equivalence class in I ′0(q, n), the number of elements in

Ĩ ′′0 (q, n) which belong to that class is at most n. Hence we have:

|I0(q, n)| ≥ |I ′0(q, n)| ≥ 1

n

Ĩ ′′0 (q, n)
 =

1

n

(
q0 − 1

n− 1

)
=

1

q0

(
q0

n

)
.

This proves the proposition.

Lemma 4.2.2. Let q = pm or q = p1 · p2, where p, p1, p2 are primes. Let D be the

set of all non-zero integers mod q that are not co-prime to q. Then |D| is even if q is

odd and |D| is odd if q is even.
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Proof. For q = pm:

If q is odd, then p is an odd prime. q
p

= pm−1 which is an odd number. Therefore

the number of elements in D, (pm−1 − 1) is even.

If q is even, then p = 2. q
p

= 2m−1 is even. So the number of elements in D,

(2m−1 − 1), is odd.

For q = p1 · p2. (p1 6= p2):

If q is odd, then both p1 and p2 are odd primes. The number of elements in D is

( q
p1

+ q
p2
− 2) = (p2 + p1 − 2) which is even since p1 + p2 is even.

If q is even, then one of the pi’s is 2 and the other is an odd prime. Assume p1 = 2.

So, the number of elements in D is ( q
p1

+ q
p2
− 2) = (p2 + p1 − 2) = (p2 + 2− 2) = p2,

which is odd.

This proves the lemma.

We will say that |D| = 2r if |D| is even; and |D| = 2r − 1 if |D| is odd, where r

is some positive integer. It is easy to see that if |D| is even, then exactly r members

of D are less than q0. If |D| is odd, then r− 1 members of D are strictly less than q0

and one member of D is equal to q0 (recall that for even q, we set q0 = q/2, and for

odd q, we set q0 = (q − 1)/2).

With these results we now obtain a better lower bound for |I0(q, n)|.

Proposition 4.2.3. Let I0(q, n) , I ′0(q, n), Ĩ ′0(q, n) and Ĩ ′′0 (q, n) be as in Proposi-

tion 4.2.1. Let k = q0 − n. Then

|I0(q, n)| ≥
r∑
t=u

1

n− t

(
q0 − 1− r
n− 1− t

)(
r

t

)
,

where u = r − k if r > k and u = 0 if r ≤ k, and r is as defined above.
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Proof. The number of ways in which we can assign values to the pi’s in

(1 = p1, p2, . . . , pn) ∈ Ĩ ′′0 (q, n)

such that t of the pi’s are not co-prime to q is

(
q0 − 1− r
n− 1− t

)(
r

t

)
.

On the other hand for any equivalence class in I ′0(q, n) with t of the pi’s not being

co-prime to q, the number of elements which belong to that class is at most n− t. So

the number of such possible classes is at least

1

n− t

(
q0 − 1− r
n− 1− t

)(
r

t

)
.

Now if r > k, this would mean that n > q0−r, or n−1 > q0−1−r. This means that

t cannot take any values less than r− k, since that would mean that we are choosing

(n− 1− t), a number larger than (q0− 1− r) from q0− 1− r and that is not possible.

So, the smallest value for t in this case can be r − k.

On the other hand, if r ≤ k, then n ≤ q0 − r, or n− 1 ≤ q0 − 1− r. This means

that it is possible for us to choose n-tuples in Ĩ ′′0 (q, n) with all values being co-prime

to q. Thus, the smallest value for t would be 0 in this case.

It is obvious that the maximum value t can take is r since (1, p2, . . . , pn) cannot

have more than r values that are not co-prime to q. Now, adding up all the degrees

for different values of t we get

|I0(q, n)| ≥ |I ′0(q.n)| ≥
r∑
t=u

1

n− t

(
q0 − 1− r
n− 1− t

)(
r

t

)
,
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where u = 0 if r ≤ k and u = r − k if r > k.

This proves the proposition.

Definition 4.2.4. (i) Let q be a positive integer and γ a primitive q-th root of 1.

We denote by Q(γ) the q-th cyclotomic field over the rational number field Q

and denote by Φq(z) the q-th cyclotomic polynomial

Φq(z) =

q−1∑
t=0

zt.

Let A be the set of residues mod q that are co-prime to q. We define a map ψq,k

of I0(q, k) into Q(γ)[z] as follows:

For any equivalence class in I0(q, k), we take an element (q1, . . . , qk) of Ĩ0(q, k)

which belongs to that class. We define

ψq,k([q1, . . . , qk])(z) =
∑
l∈A

k∏
i=1

(z − γqil)(z − γ−qil).

This polynomial in Q(γ)[z] is independent of the choice of elements which belong

to the class [q1, . . . , qk]. Therefore, the map is well-defined.

(ii) Given q = pm, we define

Bj =
{
x ∈ Z+ : pj | x, pj+1 - x

}
.

We define the maps α
(j)
q,k of I0(q, k) into Q(γ)[z] as follows:

For any equivalence class in I0(q, k), we take an element (q1, . . . , qk) of Ĩ0(q, k)
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which belongs to that class. We define

α
(j)
q,k([q1, . . . , qk])(z) =

∑
l∈Bj

k∏
i=1

(z − γqil)(z − γ−qil).

These polynomials are also independent of the choice of the elements which

belong to the class [q1, . . . , qk]. Therefore the maps are well defined.

(iii) Now assume q = p1 · p2. We define the following sets of numbers that are not

co-prime to q.

B =
{
xp1

x = 1, 2, . . . , (p2 − 1)
}

and C =
{
xp2

x = 1, 2, . . . , (p1 − 1)
}
.

We define maps αq,k and βq,k as follows:

For any equivalence class in I0(q, k), we take an element (q1, . . . , qk) of Ĩ0(q, k)

which belongs to that class. We define

αq,k([q1. . . . , qk])(z) =
∑
l∈B

k∏
i=1

(z − γqil)(z − γ−qil)

and

βq,k([q1. . . . , qk])(z) =
∑
l∈C

k∏
i=1

(z − γqil)(z − γ−qil).

These polynomials in Q(γ)[z] are again independent of the choice of the elements

which belong to [q1. . . . , qk]; so these maps are also well defined.

Since (z − γqil)(z − γ−qil) = (γqilz − 1)(γ−qilz − 1), the following proposition is

easy to see.
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Proposition 4.2.5. If we put

ψq,k([q1, . . . , qk])(z) =
2k∑
i=0

(−1)i aiz
2k−i,

α
(j)
q,k([q1, . . . , qk])(z) =

2k∑
i=0

(−1)i bi,jz
2k−i,

αq,k([q1, . . . , qk])(z) =
2k∑
i=0

(−1)i biz
2k−i,

βq,k([q1, . . . , qk])(z) =
2k∑
i=0

(−1)i ciz
2k−i,

then we have

1. ai = a2k−i, bi,j = b(2k−i),j, bi = b2k−i and ci = c2k−i.

2. a0 = |A|, b0,j = |Bj|, b0 = |B| and c0 = |C|.

4.2.2 Generating Functions and Isospectrality

Now let L̃(q, n) be the family of all (2n−1)-dimensional lens spaces with fundamental

groups of order q, and let L̃0(q, n) be the subfamily of L̃(q, n) defined by:

L̃0(q, n) =
{
L(q : p1, . . . , pn) ∈ L̃(q, n)

pi 6≡ ±pj (mod q), 1 ≤ i < j ≤ n
}
.

The set of isometry classes of L̃(q, n) is denoted by L(q, n), and the set of isometry

classes of L̃0(q, n) is denoted by L0(q, n).

By Proposition 4.1.2, the map

L(q : p1, . . . , pn) 7→ (p1, . . . , pn)

of L̃0(q, n)
[
resp. L̃(q, n)

]
onto Ĩ0(q, n)

[
resp. Ĩ(q, n)

]
induces a one-to-one map be-
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tween L0(q, n) and I0(q, n)
[
resp. L(q, n) and I(q, n)

]
.

The above fact, together with Proposition 4.2.3, gives us the following:

Proposition 4.2.6. Retaining the notations as above, we get

|L0(q, n)| ≥
r∑
t=u

1

n− t

(
q0 − 1− r
n− 1− t

)(
r

t

)
,

where u = r − k if r > k, and u = 0 if r ≤ k; r is the number of residues(modq) that

are not co-prime to q and are less than or equal to q0.

Note that by Proposition 4.2.1, we also get that

|L0(q, n)| ≥ 1

q0

(
q0

n

)
.

Next, we will re-formulate the generating function Fq(z : p1, . . . , pn) in a form that

will help us find isospectral pairs that are non-isometric (see Proposition 2.2.12 in

[Ba]).

Proposition 4.2.7. Let L(q : p1, . . . , pn) be a lens space belonging to L̃0(q, n), k =

q0 − n, and let w be the map of I0(q, n) onto I0(q, k) defined in section 4.2.1. Then

(i) If q = Pm, where P is a prime, we have

Fq(z : p1, . . . , pn) =
1

q

{
(1− z2)

(1− z)2n
+
ψq,k(w([p1, . . . , pn]))(z)(1− z2)

Φq(z)
+

m−1∑
j=1

α
(j)
q,k(w([p1, . . . , pn]))(z)(1− z2)

(ΦPm−j(z))P j(1− z)P j−1

}
.
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(ii) If q = P1 · P2, where P1 and P2 are primes, we have

Fq(z : p1, . . . , pn) =
1

q

{
(1− z2)

(1− z)2n
+
ψq,k(w([p1, . . . , pn]))(z)(1− z2)

Φq(z)

+
αq,k(w([p1, . . . , pn]))(z)(1− z2)

(ΦP2(z))P1(1− z)P1−1

+
βq,k(w([p1, . . . , pn]))(z)(1− z2)

(ΦP1(z))P2(1− z)P2−1

}
,

where ψq,k, α
(j)
q,k, αq,k and βq,k are as defined in definition 4.2.4 and Φt(z) =

∑t−1
v=0 z

v.

Proof. We choose integers q1, . . . , qk such that the set of integers

{p1,−p1, . . . , pn,−pn, q1,−q1, . . . , qk,−qk}

forms a complete set of residues mod q.

(i) We write

Fq(z : p1, . . . , pn) =
1

q

[∑
l∈A

(1− z2)∏n
i=1(z − γpil)(z − γ−pil)

+
m−1∑
j=1

∑
l∈Bj

(1− z2)∏n
i=1(z − γpil)(z − γ−pil)

}
.

Now, for any l ∈ A, we have

1∏n
i=1(z − γpil)(z − γ−pil)

=

∏k
i=1(z − γqil)(z − γ−qil)

Φq(z)
.

For l ∈ Bj, we have

1∏n
i=1(z − γpil)(z − γ−pil)

=

∏k
i=1(z − γqil)(z − γ−qil)

(ΦPm−j(z))P j(1− z)P j−1
.
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Now, (i) follows from these facts.

(ii) We write

Fq(z : p1, . . . , pn) =
1

q

[∑
l∈A

(1− z2)∏n
i=1(z − γpil)(z − γ−pil)

+
∑
l∈B

(1− z2)∏n
i=1(z − γpil)(z − γ−pil)

+
∑
l∈C

(1− z2)∏n
i=1(z − γpil)(z − γ−pil)

]
.

Again, for l ∈ A,

1∏n
i=1(z − γpil)(z − γ−pil)

=

∏k
i=1(z − γqil)(z − γ−qil)

Φq(z)
.

For l ∈ B, we have

1∏n
i=1(z − γpil)(z − γ−pil)

=

∏k
i=1(z − γqil)(z − γ−qil)

(ΦP2(z))P1(1− z)P1−1
.

For l ∈ C, we have

1∏n
i=1(z − γpil)(z − γ−pil)

=

∏k
i=1(z − γqil)(z − γ−qil)

(ΦP1(z))P2(1− z)P2−1
.

Now, (ii) follows from these facts.

From Proposition 4.1.10 and Proposition 4.2.7, we get the following proposition

Proposition 4.2.8. Let L = L(q : p1, . . . , pn) and L′ = L(q : s1, . . . , sn) be lens

spaces belonging to L̃0(q, n). Let k = q0 − n.
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(i) If q = Pm, then L is isospectral to L′ if

ψq,k(w([p1, . . . , pn])) = ψq,k(w([s1, . . . , sn]))

and α
(j)
q,k(w([p1, . . . , pn])) = α

(j)
q,k(w([s1, . . . , sn]))

for j = 1, . . . ,m− 1.

(ii) If q = P1 · P2, then L is isospectral to L′ if

ψq,k(w([p1, . . . , pn])) = ψq,k(w([s1, . . . , sn])),

αq,k(w([p1, . . . , pn])) = αq,k(w([s1, . . . , sn]))

and βq,k(w([p1, . . . , pn])) = βq,k(w([s1, . . . , sn]))

By applying Proposition 4.2.6 and Proposition 4.2.8 we will obtain our main The-

orem 4.3.5 in this chapter for odd-dimensional lens spaces. Next, in Theorem 4.4.5 we

will extend the results to obtain even-dimensional pairs of lens spaces corresponding

to every pair of odd-dimensional lens spaces.

4.3 Odd-Dimensional Lens Spaces

From the results in the previous sections we get the following diagrams:

For q = Pm,

L0(q, n)
∼−→ I0(q, n)

∼−→
w
I0(q, k) −−→

τ
(m)
q,k

Qm(γ)[z], (4.7)

where τ
(m)
q,k = (ψq,k, α

(1)
q,k, . . . , α

(m−1)
q,k ), and Qm(γ)[z] denotes m copies of the field of

rational polynomials Q(γ)[z].
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For q = P1 · P2,

L0(q, n)
∼−→ I0(q, n)

∼−→
w
I0(q, k) −−→

S(3)q,k

Q3(γ)[z], (4.8)

where S(3)
q,k = (ψq,k, αq,k, βq,k).

Now, from Proposition 4.2.8, if τ
(m)
q,k [resp. S(3)

q,k ] is not one-to-one, then we will

have non-isometric lens spaces having the same generating function. This would give

us our desired results.

The following two propositions will give us the possible number of expressions for

τ
(m)
q,k and S(3)

q,k for the case when k = 2. But before we get to the propositions, we first

calculate the values for the required coefficients of ψq,2, α
(j)
q,2, αq,2 and βq,2.

Recall from Proposition 4.2.5 that if we set

ψq,k([q1, . . . , qk])(z) =
2k∑
i=0

(−1)i aiz
2k−i,

α
(j)
q,k([q1, . . . , qk])(z) =

2k∑
i=0

(−1)i bi,jz
2k−i,

αq,k([q1, . . . , qk])(z) =
2k∑
i=0

(−1)i biz
2k−i,

βq,k([q1, . . . , qk])(z) =
2k∑
i=0

(−1)i ciz
2k−i

then we will have ai = a2k−i, bi,j = b(2k−i),j, bi = b2k−i and ci = c2k−i. We will also

have a0 = |A|, b0,j = |Bj|, b0 = |B| and c0 = |C|.
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Recall also that,

ψq,k([q1, . . . , qk])(z) =
∑
l∈A

k∏
i=1

(z − γqil)(z − γ−qil),

α
(j)
q,k([q1, . . . , qk])(z) =

∑
l∈Bj

k∏
i=1

(z − γqil)(z − γ−qil),

αq,k([q1, . . . , qk])(z) =
∑
l∈B

k∏
i=1

(z − γqil)(z − γ−qil),

βq,k([q1, . . . , qk])(z) =
∑
l∈C

k∏
i=1

(z − γqil)(z − γ−qil),

where

A =
{
x (mod q) : (x, q) = 1

}
,

Bj =
{
x ∈ Z+ : pj | x, pj+1 - x

}
,

B =
{
xp1 : x = 1, . . . , (p2 − 1)

}
,

C =
{
xp2 : x = 1, . . . , (p1 − 1)}

From these definitions we can calculate the values of the various coefficients of ψq,k,

α
(j)
q,k, αq,k and βq,k.

First we will find coefficients for z and z2 for any given k, and from that we can

find the values for when k = 2.

From the definitions of ψq,k([q1, . . . , qk]) it is easy to see that

a1 =
k∑
i=1

∑
l∈A

γqil +
k∑
i=1

∑
l∈A

γ−qil = 2
k∑
i=1

∑
l∈A

γqil.
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Similarly,

b1,j = 2
k∑
i=1

∑
l∈Bj

γqil,

b1 = 2
k∑
i=1

∑
l∈B

γqil,

c1 = 2
k∑
i=1

∑
l∈C

γqil.

Also,

a2 =
∑
l∈A

[
k +

∑
1≤i<t≤k

γ(qi+qt)l +
∑

1≤i<t≤k

γ−(qi+qt)l +
∑

1≤i<t≤k

γ(qi−qt)l +
∑

1≤i<t≤k

γ−(qi−qt)l
]

= k |A|+ 2
∑
l∈A

∑
1≤i<t≤k

γ(qi+qt)l + 2
∑
l∈A

∑
1≤i<t≤k

γ(qi−qt)l.

Similarly,

b2,j = k |Bj|+ 2
∑
l∈Bj

∑
1≤i<t≤k

γ(qi+qt)l + 2
∑
l∈Bj

∑
1≤i<t≤k

γ(qi−qt)l,

b2 = k |B|+ 2
∑
l∈B

∑
1≤i<t≤k

γ(qi+qt)l + 2
∑
l∈B

∑
1≤i<t≤k

γ(qi−qt)l,

c2 = k |C|+ 2
∑
l∈C

∑
1≤i<t≤k

γ(qi+qt)l + 2
∑
l∈C

∑
1≤i<t≤k

γ(qi−qt)l,

where |A|, |Bj|, |B| and |C| are cardinalities of A, Bj, B and C, respectively.

In a similar fashion we can find values of coefficients of higher powers of z when

k > 2. These coefficients will contain terms that include higher sums and differences

of the various qi’s in the powers of γ.

We notice that the values of a1, b1,j, b1 and c1 are dependent upon where the

various qi belong - in A, Bi,j, B or C. Similarly, a2, b2,j, b2 and c2 are dependent
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upon where the various qi + qt and qi − qt belong - in A, Bi,j, B or C. The same

would be true for coefficients of higher powers of z for k > 2. That is, the coefficients

always depend upon where the various sums and differences of the various qi’s reside.

Therefore, we conclude that the maps τ
(m)
q,k and S(3)

q,k as defined in (4.7) and (4.8) are

dependent on where the various qi’s and their higher order sums and differences reside

(we assume that q and k are fixed). This means that the number of τ
(m)
q,k [resp. S(3)

q,k ]

we will get will depend on the number of cases we will get for various qi’s as well as

various higher sums and differences of the various qi’s belonging to A or Bj’s [resp.

A, B or C].

At the end of this chapter we will look at an example where we will actually

calculate the values of the various coefficients shown above. Here we will prove two

propositions (see Proposition 3.1.2 and Proposition 3.1.3 respectively in [Ba]) that

will give us upper bounds on the number of expressions for τ
(j)
q,k and S(3)

q,k , respectively,

where k = 2.

Proposition 4.3.1. Let p be an odd prime and let q = pm where m is an integer

greater than 1. Let q0 = q−1
2

. Let k = 2 and n = q0 − 2. Then the number of

expressions that τ
(j)
q,2 can have is at most m2.

Proof. We will find the number of τ
(j)
q,2 by considering the following cases:

Case 1: q1, q2 ∈ Bj (j = 1, 2, . . . , (m− 1)), where Bj =
{
x ∈ Z+ : pj | x, pj+1 - x

}
.

We will consider all of the possibilities one by one, i.e., q1, q2 ∈ B1, then q1, q2 ∈

B2, and so on. When q1, q2 ∈ B1, then we have the following possibilities for
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q1 + q2 and q1 − q2:

q1 + q2 ∈ B1 and q1 − q2 ∈ B1

or q1 + q2 ∈ B1 and q1 − q2 ∈ B2 (or vice versa)

or q1 + q2 ∈ B1 and q1 − q2 ∈ B3 (or vice versa)

...

or q1 + q2 ∈ B1 and q1 − q2 ∈ Bm−1 (or vice versa)

This means that there are at most (m− 1) different possibilities for τ
(j)
q,2 .

Now when q1, q2 ∈ B2, we will get the following (m− 2) different possibilities:

q1 + q2 ∈ B2 and q1 − q2 ∈ B2

or q1 + q2 ∈ B2 and q1 − q2 ∈ B3 (or vice versa)

or q1 + q2 ∈ B2 and q1 − q2 ∈ B4 (or vice versa)

...

or q1 + q2 ∈ B2 and q1 − q2 ∈ Bm−1 (or vice versa)

Note that the case where q1 + q2 ∈ B2 and q1 − q2 ∈ B1 will not occur since B1

contains only multiples of p whereas B2 contains multiples of p2. So, whereas it

is possible that one of q1 + q2 or q1 − q2 is xpr, r > 2, neither q1 + q2 or q1 − q2

will ever be a multiple like xp, where x 6= pt for any t. The same reasoning will

apply when we consider other Bj’s.

So, now we have (m − 2) different possibilities for τ
(j)
q,2 . Proceeding in this

manner for the remaining Bj’s one by one we will get one less equation than

the previous time, until we get to the case where q1, q2 ∈ B(m−1). Here there is
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only one possibility that q1± q2 ∈ B(m−1). So τ
(j)
q,2 will have one equation at the

most.

Now adding all the possibilities for τ
(j)
q,2 we get

(m− 1) + (m− 2) + · · ·+ 3 + 2 + 1 =
m(m− 1)

2
expressions

at the most.

Case 2: q1 ∈ Bj and q2 ∈ Bt, Bj 6= Bt.

Notice that if j < t, then q1 ± q2 will always belong to Bj. To see this, assume

q1 ∈ Bj and q2 ∈ Bt. Then q1 = xpj and q2 = ypt for some x and y.

⇒ q1 ± q2 = xpj ± ypt = xpj ± yprpj (where r + j = t)

= (x± ypr) · pj ∈ Bj since x± ypr 6= ps for any numbers.

So, we again view all the possibilities starting with q1 ∈ B1 and q2 ∈ Bj (j =

2, 3, . . . , (m−1)) (or vice versa) q1±q2 ∈ B1 always. This would give us (m−2)

possible expressions for τ
(j)
q,2 .

Next we consider the case where q1 ∈ B2 and q2 ∈ Bj (j = 3, 4, . . . , (m− 1)).

This will give us (m−3) possibilities for τ
(j)
q,2 . We keep proceeding in this manner

until we reach the case where q1 ∈ B(m−2) and q2 ∈ B(m−1), where we get just

one possibility. Now adding all these we get a maximum number of possible

expressions for τ
(j)
q,2 in this case:

(m− 2) + (m− 3) + · · ·+ 3 + 2 + 1 =
(m− 1)(m− 2)

2
.

Case 3: q1 ∈ Bj and q2 ∈ A, or vice versa.
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Here we note that q1 ± q2 always belongs to A. Therefore, in this case we will

get (m−1) possible expressions for τ
(j)
q,2 , one each for the case where q1 ∈ A and

q2 ∈ Bj (j = 1, 2, . . . , (m− 1)), or vice versa.

Case 4: q1, q2 ∈ A.

We will get 1 possible equation if q1 ± q2 ∈ A. Then we will get 1 possible

equation each for the case when q1 + q2 ∈ A and q1 − q2 ∈ Bj (or vice versa)

for j = 1, 2, . . . , (m − 1). There are no other possibilities in this case. So the

maximum number of possible expressions for τ
(j)
q,2 in this case will be m−1+1 =

m.

Case 1 though Case 4 are the only possible cases that occur for k = 2. Adding

up the numbers of all possible expressions for τ
(j)
q,2 from each case we get the

maximum number of possible expressions that τ
(j)
q,2 can have:

m(m− 1)

2
+

(m− 1)(m− 2)

2
+ (m− 1) +m

=
m2 −m+m2 − 3m+ 2 + 2m− 2 + 2m

2
=

2m2

2
= m2.

Proposition 4.3.2. Let q = p1 ·p2, where p1, p2 are distinct odd primes. Let q0 = q−1
2

.

Let k = 2 and n = q0−2. Then the number of possible expressions for S(3)
q,2 is at most

11.

Proof. As in the previous proposition, we prove this result by considering all the

possible cases for q1 and q2 (where q1 ± q2 is not congruent to 0(mod q)).

Case 1 q1, q2 ∈ B (or q1, q2 ∈ C), where B =
{
xp1

x = 1, . . . , (p2 − 1)
}

and C ={
xp2

x = 1, . . . , (p1 − 1)
}

.
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Then q1± q2 ∈ B (or q1± q2 ∈ C, respectively). There are no other possibilities

for this case.

Case 2: q1 ∈ B and q2 ∈ C (or vice versa).

We have just one possible equation in this case, when q1 ± q2 ∈ A.

Case 3: q1 ∈ A, q2 ∈ B or q1 ∈ A, q2 ∈ C (or vice versa).

We will get one equation each when q1 ± q2 ∈ A. Then we will get one possible

equation for the case when q1 ∈ A, q2 ∈ B, and q1 + q2 ∈ A, q1 − q2 ∈ C, (or

vice versa).

We will get one more possible equation for the case when q1 ∈ A, q2 ∈ C, and

q1 + q2 ∈ A, q1 − q2 ∈ B (or vice versa).

So, in this case we get a possible 4 expressions for S(3)
q,2 .

Case 4: q1, q2 ∈ A.

We will get one possible equation where q1 ± q2 ∈ A. We get another possible

equation where q1 + q2 ∈ A and q1 − q2 ∈ B (or vice versa). We get a third

possible equation where q1 + q2 ∈ A and q1 − q2 ∈ C (or vice versa). We get a

fourth possible equation where q1 + q2 ∈ B and q1 − q2 ∈ C (or vice versa).

So, we get a total of 4 possible expressions for S(3)
q,2 in this case.

Case 1 through Case 4 are the only possible cases than can occur for k = 2.

Adding up the number of all possible expressions for S(3)
q,2 from each case we get the

maximum number of possible expressions for S(3)
q,2 :

2 + 1 + 4 + 4 = 11.
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It is important to note that in the above propositions the number of possible

expressions is the maximum number of expressions that can happen. It is possible

that for a given q = pm or q = p1 · p2 not all the expressions will occur. We will see

this in an example later.

We now prove two similar propositions (see Proposition 3.1.4 and Proposition

3.1.5 respectively in [Ba]) for even q of the form 2m and 2p, where m is a positive

integer and p is a prime.

Proposition 4.3.3. Let q = 2m where m ≥ 3. Let q0 = q
2
, i.e., q0 = 2m−1. Let k = 2

and n = q0− 2. Then the number of possible expressions that τ
(j)
q,2 can have is at most

(m− 1)2.

Proof. We proceed as in the previous propositions.

Case 1: q1, q2 ∈ Bj (j = 1, 2, . . . , (m− 3)), where Bj =
{
x ∈ Z+ : 2j | x, 2j+1 - x

}
.

We first note that the cases where q1, q2 ∈ Bm−2 or Bm−1 will not occur: Bm−1

has only one element, namely 2m−1; Bm−2 has just two elements, 2m−2 and

3 · 2m−2, so if we were to take these two elements and add them we would get

2m, which violates our definition of I0(q, 2) and L0(q, 2).

Now when q1, q2 ∈ Bj, then one of the q1 + q2 or q1− q2 will belong to Bj+1 and

the other will belong to Bt for t > j + 1.

To see this assume q1, q2 ∈ Bj. Since Bj only contains powers of 2j with odd

coefficients, we can assume that q1 = (2u − 1)2j and q2 = (2v − 1)2j for some

numbers u, v.

Now q1 + q2 = (u+v−1)2j+1 and q1− q2 = (u−v)2j+1. If one of the (u+v−1)

or (u− v) is odd then we know that one of the q1 + q2 or q1 − q2 will belong to

Bj+1. Assume both are even, i.e., u + v − 1 = 2x and u− v = 2y. Adding the
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two equations we get (2u− 1) = 2(x+ y). This is not possible since the number

on the left is odd and the number on the right is even. Therefore one of them

is odd.

A similar argument shows that both u+v−1 and u−v cannot be odd. Therefore

one of them is even. Which means that one of the q1 + q2 or q1 − q2 belongs to

Bt for t > j + 1 since it gets at least one extra power of 2.

Now, starting with q1, q2 ∈ B1, we get (m−3) possible expressions for τ
(j)
q,2 where

we get one equation each for q1 + q2 (alt. q1− q2) in B2 and q1− q2 (alt. q1 + q2)

in Bt for t = 3, 4, . . . ,m− 1.

Then considering q1, q2 ∈ B2, we get (m− 4) possible expressions for τ
(j)
q,2 where

we get one equation each for q1 + q2 ∈ B3 (alt. q1 − q2 ∈ B3) and q1 − q2 ∈ Bt

(alt. q1 + q2 ∈ Bt). Continuing in this manner until we get to the point where

q1, q2 ∈ Bm−3, where we get just one equation such that q1 + q2 ∈ Bm−2 (alt.

q1 − q2 ∈ Bm−2) and q1 − q2 ∈ Bm−1 (alt. q1 + q2 ∈ Bm−1).

So, in this case, the total number of possible expressions for τ
(j)
q,2 are:

(m− 3) + (m− 4) + · · ·+ 3 + 2 + 1 =
(m− 2)(m− 3)

2
.

Case 2: q1 ∈ Bj and q2 ∈ Bt, where Bj 6= Bt.

We can assume that j < t. This would mean that q1 ± q2 ∈ Bj always. So, as

in Case 2 of Proposition 4.3.1, we get that the total number of expressions for

τ
(j)
q,2 will be (m−1)(m−2)

2
.

Case 3: q1 ∈ Bj and q2 ∈ A (or vice versa).

We notice that q1 ± q2 ∈ A always. So, just like in Case 3 of Proposition 4.3.1,

we will get that the total number of possible expressions for τ
(j)
q,2 will be (m−1).
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Case 4: q1, q2 ∈ A.

In this case one of q1 + q2 or q1− q2 will belong to B1 and the other will belong

to one of the Bj for j > 1.

To see this, assume q1 = 2u − 1 and q2 = 2v − 1 for some numbers u and v.

Thus, q1 + q2 = 2(u + v − 1), which is even, and q1 − q2 = 2(u − v), which is

even.

As in the argument for Case 1 above, we get that exactly one of the u + v − 1

and u− v is odd and the other is even. Since B1 contains odd multiples of 2 ,

we will get that one of the q1 + q2 or q1− q2 will be in B1. Since one of u+ v− 1

and u − v is even one of the q1 + q2 or q1 − q2 will get at least one additional

power of 2, which would mean that it belongs to a Bt where t > 1.

Therefore, for this case we will get (m − 2) possible expressions for τ
(j)
q,2 , one

each for the case when q1 + q2 ∈ B1 (alt. q1 − q2 ∈ B1) and q1 − q2 ∈ Bt (alt.

q1 + q2 ∈ Bt) for t = 2, 3, . . . ,m− 1.

Now, adding up all the possible expressions from the four cases above we get the

maximum number of possible expressions for τ
(j)
q,2 :

(m− 2)(m− 3)

2
+

(m− 1)(m− 2)

2
+ (m− 1) + (m− 2)

=
m2 − 5m+ 6 +m2 − 3m+ 2 + 2m− 2 + 2m− 4

2

= m2 − 2m+ 1 = (m− 1)2.

Our next proposition gives us the maximum number of expressions for S(3)
q,2 when

q = 2p for some prime p.
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Proposition 4.3.4. Let q = 2p where p is an odd prime. Let q0 = q
2

= p. Let k = 2

and n = q0 − 2. Then the number of possible expressions for S(3)
q,2 is at most 6.

Proof. As before we will analyze the different possible cases. Note that in this situa-

tion we have B =
{

2, 4, 6, . . . , 2(p− 1)
}

and C = {p}.

Case 1: q1, q2 ∈ B. We will have q1 ± q2 ∈ B always.

Notice that in this case q1, q2 cannot belong to C since C has only one element.

So we get 1 possible equation in this case for S(3)
q,2 .

Case 2: q1 ∈ B, q2 ∈ C. In this case q1 ± q2 ∈ A always.

So, we get 1 possible equation in this case for S(3)
q,2 .

Case 3: q1 ∈ A, q2 ∈ B or q1 ∈ A, q2 ∈ C.

When q1 ∈ A and q2 ∈ C, then q1 ± q2 ∈ B always. So, we get 1 possible

equation for S(3)
q,2 . When q1 ∈ A, q2 ∈ B, we will get 1 possible equation for

the situation when q1 ± q2 ∈ A. We will get another possible equation for S(3)
q,2

where q1 + q2 ∈ A (alt. q1 − q2 ∈ A) and q1 − q2 ∈ C (alt. q1 + q2 ∈ C).

So, there are a total of 3 possible expressions for S(3)
q,2 in this case.

Case 4: q1, q2 ∈ A. Then q1 ± q2 ∈ B always.

So, we get 1 possible equation for this case.

Now, adding up all the possible expressions from the above four cases we get the

maximum number of possible expressions for S(3)
q,2 to be 1 + 1 + 3 + 1 = 6.

With these four propositions, we are now ready for our first main theorem (see

Theorem 3.1.6 in [Ba]).
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Theorem 4.3.5. (i) Let p ≥ 5 (alt. p ≥ 3) be an odd prime and let m ≥ 2 (alt.

m ≥ 3) be any positive integer. Let q = pm. Then there exist at least two (q − 6)-

dimensional orbifold lens spaces - with non-trivial singular sets and with fundamental

groups of order pm - which are isospectral but not isometric.

(ii) Let p1, p2 be odd primes such that q = p1 ·p2 ≥ 33. Then there exists at least two

(q−6)-dimensional orbifold lens spaces - with non-trivial singular sets and with

fundamental groups of order p1 · p2 - which are isospectral but not isometric.

(iii) Let q = 2m where m ≥ 6 be any positive integer. Then there exist at least two

(q−5)-dimensional orbifold lens spaces - with non-trivial singular sets and with

fundamental groups of order 2m - which are isospectral but not isometric.

(iv) Let q = 2p, where p ≥ 7 is an odd prime. Then there exist at least two (q −

5)-dimensional orbifold lens spaces - with non-trivial singular sets and with

fundamental groups of order 2p - which are isospectral but not isometric.

Proof. We first recall from Proposition 4.2.6 that

|L0(q, n)| ≥
r∑

t=r−2

1

n− t

(
q0 − 1− r
n− 1− t

)(
r

t

)

for k = 2 and r > 2. This means that for k = 2 and r > 2 we have,
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|L0(q, n)| ≥ 1

n− (r − 2)

(
q0 − r − 1

n− 1− (r − 2)

)(
r

r − 2

)
+

1

n− (r − 1)

(
q0 − r − 1

(n− 1)− (r − 1)

)(
r

r − 1

)
+

1

n− r

(
q0 − r − 1

n− r − 1

)(
r

r

)
=

1

q0 − 2− r + 2

(
q0 − r − 1

q0 − 2− 1− r + 2

)(
r

r − 2

)
+

1

q0 − 2− r + 1

(
q0 − r − 1

q0 − 2− 1− r + 1

)(
r

r − 1

)
+

1

q0 − 2− r

(
q0 − r − 1

q0 − 2− r − 1

)
since n = q0 − 2

=
1

q0 − r

(
q0 − r − 1

q0 − r − 1

)(
r

r − 2

)
+

1

q0 − r − 1

(
q0 − r − 1

q0 − r − 2

)(
r

r − 1

)
+

1

q0 − r − 2

(
q0 − r − 1

q0 − r − 3

)(
r

r

)
=

1

q0 − r
· 1 · r(r − 1)

2
+

1

(q0 − r − 1)
· (q0 − r − 1) · r

+
1

(q0 − r − 2)
· (q0 − r − 1)(q0 − r − 2)

2
· 1

=
r(r − 1)

2(q0 − r)
+ r +

(q0 − r − 1)

2
.

(4.9)

Since

|L0(q, n)| ≥ r(r − 1)

2(q0 − r)
+ r +

(q0 − r − 1)

2

for k = 2 and r > 2, it is sufficient for us to show that (4.9) is greater than the

number of possible expressions in each case to establish the existence of isospectral

pairs for non-isometric lens spaces.

(i) For q = pm, we have a total of m2 possible expressions for τ
(j)
q,2 from Proposi-

tion 4.3.1. So, we will have isospectrality when (4.9) is greater than or equal to
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m2 + 1. That is

r(r − 1)

2(q0 − r)
+ r +

(q0 − r − 1)

2
≥ m2 + 1

⇒ r(r − 1) + 2r(q0 − r) + (q0 − r)(q0 − r − 1) ≥ 2(q0 − r)(m2 + 1)

⇒ r2 − r + (q0 − r)[2r + q0 − r − 1− 2m2 − 2] ≥ 0

⇒ (r2 − r) + (q0 − r)[q0 + r − 2m2 − 3] ≥ 0

⇒ r2 − r + q2
0 + q0r − q02m2 − 3q0 − q0r − r2 + 2m2r + 3r ≥ 0

⇒ q0(q0 − 2m2 − 3) + 2r(m2 + 1) ≥ 0

⇒ − q0[(2m2 + 3)− q0] ≥ −2r(m2 + 1)

⇒ q0[(2m2 + 3)− q0] ≤ 2r(m2 + 1). (4.10)

So for any given m, we can choose p big enough so that 2m2 + 3 ≤ q0. This

would guarantee isospectrality. We can calculate r by r = (p
m−1−1

2
) in this case.

Now if p ≥ 5, q0 ≥ 5m−1
2

> 2m2 + 3 for all m ≥ 2. This is easy to see since

5m > 4m2 + 7 for m ≥ 2 as the left hand side grows exponentially greater than

the right hand side. So, for all p ≥ 5 and all m ≥ 2, (4.10) will be true and we

will get isospectral pairs of dimension (q − 6) = 2n − 1. Now for q = 3m, we

have 3m > 4m2 + 7 for m ≥ 4. So we will have isospectrality. We check cases

m = 2 and m = 3.

When m = 2, q = 9, r = 1, q0 = 4. So L.H.S. of (4.10) gives 4[2(4) + 3 − 4] =

4(7) = 28 and R.H.S. of (4.10) gives 2(1)(4 + 1) = 10. So the sufficiency

condition is not satisfied.

When m = 3, q = 27, r = 4, q0 = 13. L.H.S. of (4.10) gives 13[2(9) + 3− 13] =

13[8] = 104 and R.H.S. of (4.10) gives 2(4)[9+1] = 8(10) = 80. So the sufficiency

condition is not satisfied.
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However, when we check individually all the possible expressions for these cases

we realize that they are less than m2.

For q = 32, the only two expressions are for the cases when q1 ∈ A, q2 ∈ B1,

q1 ± q2 ∈ A, and q1, q2 ∈ A, q1 + q2 ∈ A, q1 − q2 ∈ B1. No other possible

expressions exist.

However, there are only two classes in L0(q, n), i.e.,|L0(q, n)| = 2. The two

classes are

[1, 2] =
{

(p1, p2) ∈ L̃0(q, 2)
p1, p2 ∈ A

}
,

[1, 3] =
{

(p1, p2) ∈ L̃0(q, 2)
p1 ∈ A, p2 ∈ B1 (alt. p1 ∈ B1, p2 ∈ A)

}
,

where n = 2, A = {1, 2, 4, 5, 7, 8} and B1 = {3, 6}. Therefore, we do not obtain

isospectral pairs.

For q = 33, there are 7 expressions (instead of 32 = 9 possible expressions). The

case where q1, q2, q1± q2 ∈ B1 and the case where q1, q2 ∈ B2 do not occur. This

gives us 2 less expressions than the estimated number of 9. But the number of

classes is greater than or equal to

4(4− 1)

2(13− 4)
+ 4 +

13− 4− 1

2
=

2

3
+ 4 + 4 = 8

2

3
> 7 (from 4.9).

This means we will have non-isometric isospectral lens spaces. This gives us

our result that for p ≥ 3 and m ≥ 3, we will get isospectral pairs that are

non-isometric.

(ii) For q = p1 · p2, r = p1+p2−2
2

.
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From (4.9) and Proposition 4.3.2 we get the following sufficiency condition:

r(r − 1)

2(q0 − r)
+ r +

(q0 − r − 1)

2
≥ 12

⇒ q0(25− q0) ≤ 24r (4.11)

From this we get that for q0 ≥ 25, we will always find non-isometric, isospectral

lens spaces because (4.11) will always be satisfied. We now check for cases where

q = 2q0 + 1 < 51.

For q < 51, and q = p1 · p2 with p1, p2 being odd primes, there are only the

following possibilities:

(a) q = 3 · 7 = 21; B = {3, 6, 9, 12, 15, 18}, C = {7, 14}.

In this case we have 9 instead of 11 possible expressions. The case where

q1, q2 ∈ C = {7, 14} is not possible, and the case where q1, q2 ∈ A and

q1± q2 ∈ A is also not possible since then q2 ≡ −q1(mod q). Therefore, we

get 2 less expressions. Now for isospectrality we use (4.9):

4(4− 1)

2(10− 4)
+ 4 +

(10− 4− 1)

2
= 7

1

2
,

which is not greater than 9. So the isospectrality condition is not met.

(b) q = 3 · 5 = 15. In this case we have 7 instead of 11 expressions. Here

B = {3, 6, 9, 12} and C = {5, 10}. In this case, the following cases do not

occur: q1, q2 ∈ C; q1 ∈ A, q2 ∈ C, q1±q2 ∈ A; q1, q2, q1±q2 ∈ A; q1, q2 ∈ A,

q1 + q2 ∈ A, q1 − q2 ∈ C. So we get 4 less expressions than 11. To check

for isospectrality we use (4.9) and get 3(3−1)
2(7−3)

+ 3 + (7−3−1)
2

= 51
4
, which is

less than 7. So the isospectrality condition is not satisfied.

70



For (a) and (b) it can be easily shown that |L0(q, n)| is equal to 9 and 7

respectively. This means that there are no isospectral pairs in these cases.

(c) q = 3 · 11 = 33. B = {3, 6, 9, 12, 15, 18, 21, 24, 27, 30} and C = {11, 22}.

Here q0 = 16 and r = 6. We check for isospectrality using (4.11):

q0(25− q0) = 16(25− 16) = 144

24r = 24(6) = 144

So (4.11) is satisfied.

(d) q = 5 · 7 = 35, B = {5, 10, 15, 20, 25, 30} and C = {7, 14, 21, 28}.

Here q0 = 17 and r = 5. Using (4.11) we get

q0(25− q0) = 17(25− 17) = 138

24r = 24(5) = 120

So (4.11) is not satisfied. However, we notice that in this case the actual

number of expressions is 10 instead of 11. So, we use (4.9) to check for

isospectrality. Plugging in r = 5 and q0 = 17 into (4.9) we get

5(4)

2(12)
+ 5 +

11

2
= 11

1

3
> 10

This implies that S(3)
q,2 is not one-one and therefore, we will have non-

isometric isospectral lens spaces in this case.

(e) Finally, we check q = 3 · 13 = 39.
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Here q0 = 19 and r = 7. Using (4.11) we see

q0(25− q0) = 19(25− 19) = 114

24r = 24(7) = 168

So (4.11) is satisfied and we will have isospectral pairs in this case.

(a)-(e) are all the cases of q = p1 · p2 < 51, where p1, p2 are odd primes.

Combining these results with the fact that for q ≥ 51, (4.11) will always

be satisfied, we prove (iii).

(iii) Let q = 2m. We use Proposition 4.3.3 and (4.9) to get a sufficiency condition

for isospectrality:

r(r − 1)

2(q0 − r)
+ r +

(q0 − r − 1)

2
≥ (m− 1)2 + 1

Here q0 = 2m

2
= 2m−1 and 2r = 2m−1. Therefore, q0 = 2r in this case. Simplify-

ing the above inequality, we get

q0[(2m2 − 4m+ 5)− q0] ≤ 2r(m2 − 2m+ 2).

But since q0 = 2r, we get

(m2 − 2m+ 3) ≤ q0

If m ≥ 6, then m2 − 2m + 3 < 2m−1. Further, the right hand side grows

exponentially bigger than the left hand side as m grows. For m = 3, 4 and 5,

the actual number of expressions for τ
(j)
q,2 are 4, 9 and 16 respectively. Further, it

72



can be easily shown that for m = 3, 4 and 5, |L0(q, n)| is 4, 9 and 16 respectively.

Therefore, for m = 3, 4 and 5 we do not get isospectrality. This gives us (iii).

(iv) Using Proposition 4.3.4 and (4.9) we get the sufficiency condition for isospec-

trality for q = 2p, where p is an odd prime ≥ 7. Note that in this case q0 = q
2

= p

and r = q+2
4

. Now for isospectrality we should have

r(r − 1)

2(q0 − r)
+ r +

(q0 − r − 1)

2
≥ 7

⇒ q0(15− q0) ≤ 14r

⇒ p(15− p) ≤ 7(p+ 1)

⇒ 0 ≤ p2 − 8p+ 7

or (p− 1)(p− 7) ≥ 0 (4.12)

Since (4.12) is positive whenever p ≥ 7, we will have isospectrality. When

q = 2 · 5 = 10, then |L0(q, n)| = 6 = number of expressions for S(3)
q,2 . So, we do

not get isospectral pairs when p = 5. This proves (iv).

4.4 Even Dimensional Lens Spaces

Recall that in the manifold case, the only even dimensional spherical space forms are

the sphere S2n and the real projective space P 2n(R), and these two are not isospectral

(see [I2]).

Recall that lens spaces are spherical space forms where the acting group, G, is

a finite cyclic group. Since we allow G to have fixed points, we are not limited to
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the sphere and the real projective space. We will see that given two odd-dimensional

isospectral non-isometric orbifold lens spaces as in Section 4.3, we can modify our

construction slightly to get isospectral non-isometric pairs of even dimensional orbifold

lens spaces.

Let L = L(q : p1, . . . , pn) = S2n−1/G and L′ = [L(q : s1, . . . , sn) = S2n−1/G′ be

two isospectral non-isometric orbifold lens spaces as obtained in the previous section,

where G = 〈g〉, G′ = 〈g′〉

g =


R(p1/q) 0

. . .

0 R(pn/q)


and

g′ =


R(s1/q) 0

. . .

0 R(sn/q)


We define

g̃1+ =



R(p1/q) 0
. . .

R(pn/q)

0 1


and

g̃′1+ =



R(s1/q) 0
. . .

R(sn/q)

0 1
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where g̃1+ and g̃′1+ are extensions of g and g′ to orthogonal transformations ofO(2n+1)

by adding a 1 in the (2n+ 1, 2n+ 1) entries of g and g′ respectively. Let G̃1+ = 〈g̃1+〉

and G̃′1+ = 〈g̃′1+〉. Then G̃1+ and G̃′1+ are cyclic groups of order q. We define lens

spaces L̃1+ = S2n/G̃1+ and L̃′1+ = S2n/G̃′1+. We denote L̃1+ = L(q : p1, . . . , pn, 0) and

L̃′1+ = L(q : s1, . . . , sn, 0). We now prove a proposition similar to Proposition 4.1.2.

Proposition 4.4.1. Let L̃1+ and L̃′1+ be as defined above. Then L̃1+ is isometric to

L̃′1+ iff there is a number l coprime with q and there are numbers ei ∈ {−1, 1} such

that (p1, . . . , pn) is a permutation of (els1, . . . , elsn) mod q.

Proof. Let L̃1+ and L̃′1+ be isometric. Now any isometry of L̃1+ and L̃′1+ lifts to an

orthogonal transformation that conjugates G̃1+ and G̃′1+.

(⇒) If g̃1+ is a generator of G̃1+, then the orthogonal transformation will take g̃1+

to a generator g̃′l1+ of G̃′1+. The eigenvalues of g̃1+ and g̃′1+ are the same and the

eigenvalue 1 is mapped to the eigenvalue 1 of g̃′l1+. For the remaining eigenvalues,

each pi is equivalent to some lsj or lsj modulo q. Thus, (p1, . . . , pn) is a permutation

of (le1s1, . . . , lensn) (mod q), where ei ∈ {−1, 1} for i = 1, . . . , n.

Conversely, let (p1, . . . , pn) be a permutation of (le1s1, . . . , lensn) (mod q). By

Proposition 4.1.2, we know that L and L′ are isometric. Let φ be an isometry between

L and L′. This isometry lifts to φ̃, an isometry of S2n−1 onto itself. φ̃ is an orthogonal

transformation that conjugates G and G′. This orthogonal transformation can be

extended to an orthogonal transformation of O(2n) by adding a 1 in the (2n+1, 2n+1)

entry. This is an isometry of S2n which induces an isometry of L̃1+ onto L̃′1+

The following lemma follows directly from this proposition.

Lemma 4.4.2. Let L, L′, L̃1+ and L̃′1+ be as defined above. Then L is isometric to

L′ iff L̃1+ is isometric to L̃′1+.
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Now let L̃1+
0 (q, n, 0) be the family of all 2n-dimensional orbifold lens spaces that are

obtained in the manner described above. Let L1+
0 (q, n, 0) denote the set of isometry

classes of L̃1+
0 (q, n, 0).

Then from 4.7 and 4.8 we get the following diagrams:

For q = pm

L1+
0 (q, n, 0)

∼−→ L0(q, n)
∼−→ I0(q, n)

∼−→
w
I0(q, k) −−→

τ
(m)
q,k

Qm(γ)[z] (4.13)

and for q = p1 · p2

L1+
0 (q, n, 0)

∼−→ L0(q, n)
∼−→ I0(q, n)

∼−→
w
I0(q, k) −−→

S(3)q,k

Q3(γ)[z] (4.14)

where τ
(m)
q,k and S(3)

q,k are as defined for 4.7 and 4.8 respectively. Now we can view

R2n+1 as a subspace of Cn+1, where

R2n+1 =
{

(x1, y1, . . . , xn, yn, xn+1, 0) ∈ Cn+1, zi = xi +
√
−1yi

for i = 1, . . . , n and zn+1 = xn+1

}

Theorem 4.4.3. Let

L̃1+ = L(q : p1, . . . , pn, 0) ∈ L1+
0 (q, n, 0)

and let Fq(z : p1, . . . , pn, 0) be the generating function associated with the spectrum of

L̃1+. Then on the domain
{
z ∈ C

 |z| < 1
}

,

Fq(z : p1, . . . , pn, 0) =
1

q

q∑
l=1

(1 + z)∏n
i=1(z − γpil)(z − γ−pil)
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Proof. Recall the definitions of ∆0, r2, P k, Hk, Hk and Hk
G from Section 4.1. We

extend the definitions for R2n+1. That is, let ∆0 be the Laplacian on R2n+1 with

respect to the Flat Riemannian metric; r2 =
∑2n+1

i=1 x2
i , where (x1, . . . , x2n+1) is the

standard coordinate system on R2n+1; for k ≥ 0, P k is the space of complex valued

homogenous polynomials of degree k in R2n+1; Hk is the subspace of P k consisting

of harmonic polynomials on R2n+1; Hk is the image of i∗ : C∞(R2n+1) −→ C∞(S2n)

where i : S2n −→ R2n+1 is the natural injection; andHk
G̃

is the space of all G̃-invariant

functions of Hk.

Then from Proposition 4.1.6 and Proposition 4.1.7, we get that Hk is O(2n+ 1)-

invariant; P k has the direct sum decomposition P k = Hk⊕r2P k−2; Hk is an eigenspace

of ∆̃ on S2n with eigenvalue k(k+2n−1);
∑∞

k=0Hk is dense in C∞(S2n) in the uniform

convergence topology and Hk is isomorphic to Hk.

Using this,along with the results implied by Corollary 4.1.5 and Proposition 4.1.7,

where dimEk(k+2n−1) = dimHk
G̃1+

, we get

Fq(z : p1, . . . , pn, 0) =
∞∑
k=0

(dimHk
G̃1+

)zk.

Now G̃1+ is contained in SO(2n+ 1).

Let χk and χ̃k be the characters of the natural representations of SO(2n + 1) on

Hk and P k respectively. Then

dimHk
G̃1+

=
1∣∣∣G̃1+

∣∣∣
∑
g̃1+∈G̃

χk(g̃1+) =
1

q

q∑
l=1

χk(g̃
l
1+) (4.15)

Proposition 4.1.6 gives

χk(g̃
l
1+) = χ̃k(g̃

l
1+)− χ̃k−2(g̃l1+) (4.16)
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where χ̃t = 0 for t > 0.

We can view the space P k as having a basis consisting of all monomials of the

form

zI · z̄J · ztn+1 = (z1)i1 · · · (zn)in · (z̄j11 ) · · · (z̄jnn ) · (zn+1)t (4.17)

where zi = xi +
√
−1yi for i = 1, . . . , n and zn+1 = xn+1 with (x1, y1, . . . , xn, yn, xn+1)

being the standard euclidean coordinates on R2n+1; and i1, . . . , in, j1, . . . , jn, t ≥ 0

such that i1 + · · ·+ in + j1 + · · ·+ jn + t = k (denoted by In + Jn + t = k). Now g̃l1+

has eigenvalues γp1l, γ̄p1l, . . . , γpnl, γ̄pnl, 1, where γ = e2πi/q is a primitive q-th root of

unity. So, for any monomial zI · z̄J · ztn+1

g̃l1+(zI · z̄J · ztn+1) = γi1p1l+···+inpnl−j1p1l−···−jnpnl(zI · z̄J · ztn+1)

⇒ Fq(z : p1, . . . , pn, 0) =
∞∑
k=0

(dimHk
G̃1+

)zk

=
1

q

∞∑
k=0

q∑
l=1

χk(g̃
l
1+)zk by (4.15)

=
1

q

q∑
l=1

∞∑
k=0

(χ̃k(g̃
l
1+)− χ̃k−2(g̃l1+))zk by (4.16)

=
(1− z2)

q

q∑
l=1

∞∑
k=0

χ̃k(g̃
l
1+)zk

=
(1− z2)

q

q∑
l=1

∞∑
k=0

∑
In+Jn+t=k

γi1p1l+···+inpnl−j1p1l−···−jnpnlzk

=
(1− z2)

q

q∑
l=1

∞∑
k=0

∑
In+Jn+t=k

(γp1lz)i1 · · · (γpnlz)in(γ−p1lz)j1 · · · (γ−pnlz)jn(z)t

=
(1− z2)

q

q∑
l=1

n∏
i=1

(
∞∑
k=0

(γpilz)
k
)(
∞∑
k=0

(γ−pilz)
k
)(
∞∑
k=0

zk).
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On the domain
{
z ∈ C

 |z| < 1
}

, the power series

n∏
i=1

(1 + γpilz + γ2pilz2 + · · · )(1 + γ−pilz + γ−2pilz2 + · · · )(1 + z + z2 + · · · )

converges to

1∏n
i=1(1− γpilz)(1− γ−pilz)(1− z)

So,

Fq(z : p1, . . . , pn, 0) =
(1 + z)

q

q∑
l=1

1∏n
i=1(z − γpil)(z − γ−pil)

Corollary 4.4.4. When L(q : p1, . . . , pn) and L(q : s1, . . . , sn) have the same gen-

erating function, then L(q : p1, . . . , pn, 0) and L(q : s1, . . . , sn, 0) also have the same

generating function

Proof. This follows from the fact that

Fq(z : p1, . . . , pn, 0) =
1

(1− z)
Fq(z : p1, . . . , pn)

.

The above corollary shows that just like the generating function Fq(z : p1, . . . , pn),

the new generating function Fq(z : p1, . . . , pn, 0) is dependent on τ
(j)
q,k [resp. S(3)

q,k ] for

q = Pm [resp. q = P1 · P2]. Therefore, for every pair of isospectral, non-isometric

odd-dimensional orbifold lens spaces that we obtained in the previous section, we will

have a corresponding pair of isospectral, non-isometric even-dimensional orbifold lens

spaces. Thus we have the following theorem.

Theorem 4.4.5. (i) Let P ≥ 5 (alt. P ≥ 3) be an odd prime and let m ≥ 2 (alt. m ≥
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3) be and positive integer. Let q = Pm. Then there exist at least two (q − 5)-

dimensional orbifold lens spaces - with non-trivial singular sets and with fundamental

groups of order Pm - which are isospectral but not isometric.

(ii) Let P1, P2 be odd primes such that q = P1 ·P2 ≥ 33. Then there exist at least two

(q−5)-dimensional orbifold lens spaces - with non-trivial singular sets and with

fundamental groups of order P1 · P2 - which are isospectral but not isometric.

(iii) Let q = 2m where m ≥ 6 be any positive integer. Then there exist at least two

(q−4)-dimensional orbifold lens spaces - with non-trivial singular sets and with

fundamental groups of order 2m - which are isospectral but no isometric.

(iv) Let q = 2P , where P ≥ 7 is an odd prime. Then there exist at least two

(q−4)-dimensional orbifold lens spaces - with non-trivial singular sets and with

fundamental groups of order 2P - which are isospectral but not isometric.

4.5 Lens Spaces for General Integers

The techniques used in Section 4.4 can be further generalized to generate infinitely

many families of pairs of isospectral non-isometric orbifold lens spaces of any dimen-

sion greater than 8.

Let L = L(q : p1, . . . , pn) = S2n−1/G and

L′ = L(q : s1, . . . , sn) = S2n−1/G′
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be two isospectral non-isometric orbifold lens spaces as obtained in Section 4.3 where

G = 〈g〉, G′ = 〈g′〉.

g =


R(p1/q) 0

. . .

0 R(pn/q)


and

g′ =


R(s1/q) 0

. . .

0 R(sn/q)


We define

g̃W+ =



R(p1/q) 0
. . .

R(pn/q)

0 IW


and

g̃′W+ =



R(s1/q) 0
. . .

R(sn/q)

0 IW



where IW is the W ×W identity matrix for some integer W . We can define G̃W+

= 〈g̃W+〉 and G̃′W+ = 〈g̃′W+〉. Then G̃W+ and G̃′W+ are cyclic groups of order q. We

define lens spaces L̃W+ = S2n+W−1/G̃W+ and L̃′W+ = S2n+W−1/G̃′W+. Then, like

Proposition 4.4.1 and Lemma 4.4.2, we get:

Proposition 4.5.1. Let L̃W+ and L̃′W+ be as defined above. Then L̃W+ is isometric

to L̃′W+ iff there is a number l coprime with q and there are numbers ei ∈ {−1, 1}
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such that (p1, . . . , pn) is a permutation of (e1ls1, . . . , enlsn) (mod q).

Lemma 4.5.2. Let L, L′, L̃W+ and L̃′W+ be as defined above. Then L is isometric

to L′ iff L̃W+ is isometric to L̃′W+.

Similar to Theorem 4.4.3, we get the following theorem (see Theorem 3.2.3 in

[Ba]):

Theorem 4.5.3. Let L̃W+
0 (q, n, 0) be the family of all (2n+W − 1)-dimensional orb-

ifold lens spaces with fundamental groups of order q that are obtained in the manner

described above. Let L̃W+ ∈ LW+
0 (q, n, 0) (where LW+

0 (q, n, 0) denotes the set of isom-

etry classes of L̃W+
0 (q, n, 0)). Let FW+

q (z : p1, . . . , pn, 0) be the generating function

associated to the spectrum of L̃W+. Then on the domain
{
z ∈ C

 |z| < 1
}

,

FW+
q (z : p1, . . . , pn, 0) =

(1 + z)

(1− z)W−1
· 1

q

q∑
l=1

1∏n
i=1(z − γpil)(z − γ−pil)

Proof. The proof of this result is similar to the proof of Theorem 4.4.3. The definitions

for ∆0, r2, P k, Hk, Hk and Hk
G are analogous for R2n+W .

If W is even, then expression (4.17) for our present case becomes (for monomials

forming a basis for P k):

zI · z̄J = (z1)i1 · · · (zn+v)
in+v · (z̄1)j1 · · · (z̄n+v)

jn+v ,

where W = 2v and where In+v + Jn+v = i1 + · · · + in+v + j1 + · · · + jn+v = k and

i1, . . . , in+v, j1, . . . , jn+v ≥ 0. Then,

g̃lW+(zI · z̄J) = γi1p1l+···+inpnl−j1p1l−···−jnpnl(zI · z̄J).
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If W is odd, (say W = 2u+ 1), then we get for basis of P k

zI · z̄J · ztn+2u+1 = (z1)i1 · · · (zn+u)
in+u · (z̄1)j1 · · · (z̄n+u)

jn+u · (zn+2u+1)t,

where zn+2u+1 = xn+W where (x1, y1, . . . , xn+W−1, yn+W−1, xn+W ) is the standard eu-

clidean coordinate system on R2n+W with zi = xi + iyi for i = 1, 2, . . . , n + W − 1,

and i1, . . . , in+u, j1, . . . , jn+u, t ≥ 0 and i1 + · · · + in+u + j1 + · · · + jn+u + t = k =

In+u + Jn+u + t. So, in that case

g̃lW+(zI · z̄J · zn+2u+1) = γi1p1l+···+inpnl−j1p1l−···−jnpnl(zI · z̄J · zn+2u+1).

So, for W even case, we will get

FW+
q (z : p1, . . . , pn, 0) =

1

q

∞∑
k=0

q∑
l=1

χk(g̃
l
W+)zk

=
(1− z2)

q

q∑
l=1

∞∑
k=0

χ̃k(g̃
l
W+)zk

=
(1− z2)

q

q∑
l=1

∞∑
k=0

∑
In+v+Jn+v=k

γi1p1l+···+inpnl−j1p1l−···−jnpnlzk

=
(1− z2)

q

q∑
l=1

∞∑
k=0

∑
In+v+Jn+v=k

(γp1lz)i1 · · · (γpnlz)in(γ−p1lz)j1 · · ·

(γ−pnlz)jn · zin+1+···+in+v+jn+1+···+jn+v
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=
(1− z2)

q

q∑
l=1

n∏
i=1

(
∞∑
k=0

(γpilz)
k
)(
∞∑
k=0

(γ−pilz)
k
)(
∞∑
k=0

zk)W

=
(1− z2)

q

q∑
l=1

1∏n
i=1(1− γpilz)(1− γ−pilz)(1− z)W

on
{
z ∈ C

 |z| < 1
}

=
(1 + z)

(1− z)W−1
· 1

q

q∑
l=1

1∏n
i=1(z − γpil)(z − γ−pil)

For W odd case, we get by similar calculations,

FW+
q (z : p1, . . . , pn) =

(1− z2)

q

q∑
l=1

∞∑
k=0

∑
In+u+Jn+u+t=k

γi1p1l+···+inpnl−j1p1l−···−jnpnlzk

=
(1− z2)

q

q∑
l=1

∞∑
k=0

∑
In+u+Jn+u+t=k

(γp1lz)i1 · · · (γpnlz)in(γ−p1lz)j1 · · ·

(γ−pnlz)jn · zin+1+···+in+u+jn+1+···+jn+u+t

=
(1− z2)

q

q∑
l=1

n∏
i=1

(
∞∑
k=0

(γpilz)
k
)(
∞∑
k=0

(γ−pilz)
k
)(
∞∑
k=0

zk)W

=
(1− z2)

q

q∑
l=1

1∏n
i=1(1− γpilz)(1− γ−pilz)(1− z)W

on
{
z ∈ C

 |z| < 1
}

=
(1 + z)

(1− z)W−1
· 1

q

q∑
l=1

1∏n
i=1(z − γpil)(z − γ−pil)

as before.

Corollary 4.5.4. When L(q : p1, . . . , pn) and L(q : s1, . . . , sn) have the same gener-

ating function, then L̃W+ and L̃′W+ (as defined above) also have the same generating

function
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Proof. This follows from the fact that

Fq
W+(z : p1, . . . , pn, 0) =

1

(1− z)W
Fq(z : p1, . . . , pn)

.

The above results give us the following theorem and corollary (see Theorem 3.2.5 and

Corollary 3.2.6 in [Ba]).

Theorem 4.5.5. (i) Let P ≥ 5 (alt. P ≥ 3) be any odd prime and let m ≥ 2 (alt.

m ≥ 3) be any positive integer. Let q = Pm. Then there exist at least two (q+W−6)-

dimensional orbifold lens spaces - with non-trivial singular sets and with fundamental

groups of order Pm - which are isospectral but not isometric.

(ii) Let P1, P2 be two odd primes such that q = P1 · P2 ≥ 33. Then there exist at

least two (q+W −6)-dimensional orbifold lens spaces - with non-trivial singular

sets and with fundamental groups of order P1 ·P2 - which are isospectral but not

isometric.

(iii) Let q = 2m where m ≥ 6 is any positive integer. Then there exist at least two

(q+W −5)-dimensional orbifold lens spaces - with non-trivial singular sets and

with fundamental groups of order 2m - which are isospectral but not isometric.

(iv) Let q = 2P , where P ≥ 7 is an odd prime. Then there exist at least two

(q+W −5)-dimensional orbifold lens spaces - with non-trivial singular sets and

with fundamental groups of order 2P - which are isospectral but not isometric.

Corollary 4.5.6. (i) Let x ≥ 19 be any integer. Then there exist at least two x-

dimensional orbifold lens spaces - with non-trivial singular sets and with fundamental

groups of order 25 - which are isospectral but not isometric.
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(ii) Let x ≥ 27 be any integer. Then there exist at least two x-dimensional orbifold

lens spaces - with non-trivial singular sets and with fundamental group of order

33 - which are isospectral but not isometric.

(iii) Let x ≥ 59 be any integer. Then there exist at least two x dimensional orbifold

lens spaces - with non-trivial singular sets and with fundamental group of order

64 - which are isospectral but not isometric.

(iv) Let x ≥ 9 be any integer. Then there exist at least two x dimensional orbifold

lens spaces - with non-trivial singular sets and with fundamental group of order

14 - which are isospectral but not isometric.

Proof. (i) Let q = 25 and W ∈ {0, 1, 2, 3, . . .} in (i) of the theorem.

(ii) Let q = 33 and W ∈ {0, 1, 2, 3, . . .} in (ii) of the theorem.

(iii) Let q = 64 and W ∈ {0, 1, 2, 3, . . .} in (iii) of the theorem.

(iv) Let q = 14 and W ∈ {0, 1, 2, 3, . . .} in (iv) of the theorem.

4.6 An Example

In [Ba] we showed several examples of isospectral non-isometric orbifold lens spaces.

Here we just show one example to demonstrate how the construction works.

Example 4.6.1. Let q = 52 = 25, q0 = q−1
2

= 12, n = 10, k = 2,

A = {1, 2, 3, 4, 6, 7, 8, 9, 11, 12, 13, 14, 16, 17, 18, 19, 21, 22, 23, 24}, B1 = {5, 10, 15, 20}.

Let w([p1, . . . , p10]) = [q1, q2]. Let γ = e2πi/25 and λ = e2πi/5. a0 = |A| = 20,

b0,1 = |B1| = 4.
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Now,

∑
l∈A

γl = −1− (γ5 + γ10 + γ15 + γ20) = −1− (λ1 + λ2 + λ3 + λ4) = −1− (−1) = 0,

∑
l∈B1

γl = γ5 + γ10 + γ15 + γ20 = λ1 + λ2 + λ3 + λ4 = −1,

∑
l∈A

λl = 5(λ1 + λ2 + λ3 + λ4) = 5(−1) = −5,

∑
l∈B1

λl = λ5 + λ10 + λ15 + λ20 = 4.

Note that for q = P 2, we will always have (using similar calculations as above):

∑
l∈A

γl = 0 ,
∑
l∈B1

γl = −1 ,
∑
l∈A

λl = −P and
∑
l∈B1

λl = (P − 1). (4.18)

Case 1: q1, q2 ∈ B1 and q1 ± q2 ∈ B1.

a1 = 4
∑
l∈A

λl (since q1, q2 ∈ B1)

= 4(−5) = −20.

b1,1 = 4
∑
l∈B1

λl = 4(4) = 16.

a2 = 2(20) + 4
∑
l∈A

λl (since q1 ± q2 ∈ B1)

= 40 + 4(−5) = 40− 20 = 20.

b2,1 = 2(4) + 4
∑
l∈B1

λl = 8 + 4(4) = 24.

So,

87



ψ25,2([q1, q2])(z) = 20z4 + 20z3 + 20z2 + 20z + 20,

α
(1)
25,2([q1, q2])(z) = 4z4 − 16z3 + 24z2 − 16z + 4.

This corresponds to the case where

[p1, . . . , p10] = [1, 2, 3, 4, 6, 7, 8, 9, 11, 12],

which corresponds to a manifold lens spaces.

Case 2: Since there is only one B1 this case does not occur.

Case 3: q1 ∈ B1 and q2 ∈ A (alt. q1 ∈ A, q2 ∈ B1). q1 ± q2 ∈ A always.

In this case a0 = 20, b0,1 = 4.

a1 = 2
∑
l∈A

λl + 2
∑
l∈A

γl (since q1,−q1 ∈ B1 and q2,−q2 ∈ A)

= 2(−5) + 2(0) = −10.

b1,1 = 2
∑
l∈B1

λl + 2
∑
l∈B1

γl = 2(4) + 2(−1) = 8− 2 = 6.

a2 = 2(20) + 4
∑
l∈A

γl (since q1 ± q2 ∈ A)

= 40 + 4(0) = 40.

b2,1 = 2(4) + 4
∑
l∈B1

γl = 8 + 4(−1) = 4.
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So,

ψ25,2([q1, q2])(z) = 20z4 + 10z3 + 40z2 + 10z + 20

α
(1)
25,2([q1, q2])(z) = 4z4 − 6z3 + 4z2 − 6z + 4

corresponding to [p1, . . . , p10] = [1, 2, 3, 4, 5, 6, 7, 8, 9, 11]

and to [s1, . . . , s10] = [1, 2, 3, 4, 6, 7, 8, 9, 10, 11]

and [p1, . . . , p10] 6= [s1, . . . , s10].

So, we get two isospectral non-isometric orbifolds:

L1 = L(25 : 1, 2, 3, 4, 5, 6, 7, 8, 9, 11)

and

L2 = L(25 : 1, 2, 3, 4, 6, 7, 8, 9, 10, 11).

We denote by
∑

i the singular set of Li.

Then
∑

1 =
{

(0, 0, . . . , x9, x10, 0, 0, . . . , 0) ∈ S19
x2

9 + x2
10 = 1

}
and

∑
2 =

{
(0, 0, . . . , x17, x18, 0, 0) ∈ S19

x2
17 + x2

18 = 1
}

with isotropy groups

〈g5
1〉 and 〈g5

2〉, where

g5
1 =


R(5p1/25) 0

. . .

0 R(5p10/25)

 =


R(p1/5) 0

. . .

0 R(p10/5)
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and

g5
2 =


R(s1/5) 0

. . .

0 R(s10/5)


where g1 and g2 are generators of G1 and G2, respectively with L1 = S19/G1

and L2 = S19/G2.
∑

1 and
∑

2 are homeomorphic to S1. We denote the two

isotropy groups by H1 = 〈g5
1〉 and H2 = 〈g5

2〉.

Case 4: (a) q1, q2 ∈ A and q1 ± q2 ∈ A. So,

a1 = 4
∑
l∈A

γl = 4(0) = 0,

b1,1 = 4
∑
l∈B1

γl = 4(−1) = −4,

a2 = 2(20) + 4
∑
l∈A

γl = 40 + 4(0) = 40,

b2,1 = 2(4) + 4
∑
l∈B1

γl = 8 + 4(−1) = 4.

So,

ψ25,2([q1, q2])(z) = 20z4 + 40z2 + 20,

α
(1)
25,2([q1, q2])(z) = 4z4 + 4z3 + 4z2 + 4z + 4.
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corresponding to

L3 = L(25 : 1, 2, 3, 4, 5, 6, 7, 8, 9, 10) = S19/G3, where G3 = 〈g3〉,

L4 = L(25 : 1, 2, 3, 4, 5, 6, 7, 8, 10, 11) = S19/G4, where G4 = 〈g4〉,

and

L5 = L(25 : 1, 2, 3, 4, 5, 6, 7, 10, 11, 12) = S19/G5, where G5 = 〈g5〉.

The isotropy groups for L3, L4 and L5 are 〈g5
3〉, 〈g5

4〉 and 〈g5
5〉, respectively.

∑
3,∑

4 and
∑

5 are all homeomorphic to S3. So, here we get 3 isospectral orbifold

lens spaces that are non-isometric.

(b) q1, q2 ∈ A and q1 + q2 ∈ B1, q1 − q2 ∈ A (alt. q1 + q2 ∈ A, q1 − q2 ∈ B1).

And a1 = 0, b1,1 = −4 as in (a).

a2 = 2(20) + 2
∑
l∈A

γl + 2
∑
l∈A

λl

= 40 + 2(0) + 2(−5) = 40− 10 = 30,

b2,1 = 2(4) + 2
∑
l∈B1

γl + 2
∑
l∈B1

λl

= 8 + 2(−1) + 2(4) = 8− 2 + 8 = 14.

So,

ψ25,2([q1, q2])(z) = 20z4 + 30z2 + 20,

α
(1)
25,2([q1, q2])(z) = 4z4 + 4z3 + 14z2 + 4z + 4
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corresponding to

L6 = L(25 : 1, 2, 3, 4, 5, 6, 7, 9, 10, 11) = S19/G6, where G6 = 〈g6〉

and L7 = L(25 : 1, 2, 3, 4, 5, 6, 7, 8, 10, 11) = S19/G7, where G7 = 〈g7〉

Then, again,
∑

6 and
∑

7 are homeomorphic to S3, and L6 and L7 have isotropy

groups 〈g5
6〉 and 〈g5

7〉.
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Chapter 5

3-Dimensional and 4-Dimensional

Lens Spaces

Recall that in Chapter 1 we stated the results of [DGGW], which showed that all

2-dimensional orbifold spherical space forms are determined by their spectrum, and

[L], which showed examples in dimensions 5, 6, 7, and 8 of pairs of isospectral orbifold

lens spaces that are not isometric. Then, in Chapter 4 of this thesis, we proved our

results for higher dimensional lens spaces and showed that for every dimension greater

than 8 there exist pairs of isospectral non-isometric orbifold lens spaces (Corollary

4.5.6). In this chapter, we will study orbifold lens spaces in dimensions 3 and 4, and

prove (Theorem 5.1.1 and Theorem 5.2.1 respectively) that in these two dimensions,

the spectrum determines the geometry of an orbifold lens space. Then in Theorem

5.3.6, we will prove that an orbifold lens space cannot be isospectral to a spherical

space form with non-cyclic fundamental group. The results in this and the following

chapter have not been published yet.
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5.1 3-Dimensional Orbifold Lens Spaces

For 3-dimensional manifold lens spaces, it is known that if two lens spaces are isospec-

tral then they are also isometric ([IY] and [Y]). We will generalize this result to the

orbifold case.

Using the notation adopted in the previous chapter, we write the two isospectral

lens spaces as L1 = L(q : p1, p2) and L2 = L(q : s1, s2). Now there are only five

possibilities:

Case 1 Both L1 and L2 are manifolds. In this case gcd(pi, q) = 1 = gcd(si, q) for

i = 1, 2.

Case 2 One of the two lens spaces, say L1 is a manifold, while the other, L2 is an orbifold

with non-trivial isotropy groups. This means that gcd(p1, q) = gcd(p2, q) = 1,

while at least one of s1 or s2 is not coprime to q.

Case 3 Both L1 and L2 are orbifolds with non-trivial isotropy groups so that exacly

one of p1 or p2 is coprime to q and exactly one of s1 or s2 is coprime to q.

Case 4 Both L1 and L2 are orbifolds with non-trivial isotropy groups, but in one case,

say for L1, exactly one of p1 or p2 is coprime to q, while for the other lens space,

L2 neither s1 nor s2 is coprime to q.

Case 5 None of p1, p2, s1 and s2 is coprime to q.

With these five cases in mind, we will prove our main theorem:

Theorem 5.1.1. Given two 3-dimensional lens spaces L1 = L(q : p1, p2) and L2 =

L(q : s1, s2). If L1 is isospectral to L2, then the two lens spaces are isometric.

Proof. We will consider each case separately:
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Case 1 In this case L1 and L2 are both manifolds. Ikeda and Yamamoto proved this

case (see [IY] and [Y]).

Case 2 We know that whenever two isospectral good orbifolds share a common Rie-

mannian cover, their respective singular sets are either both trivial or both

non-trivial [GR]. Therefore, for orbifold lens spaces we can’t have a situation

where two lens spaces are isospectral, but one has a trivial singular set while

the other has a non-trivial singular set. So this case is not possible.

Case 3 By multiplying the entries of L1 and L2 by appropriate numbers coprime to q

we can rewrite L1 = L(q : 1, x) and L2 = L(q : 1, y), where x and y are not

coprime to q. Let F1(z) [resp. F2(z)] be the generating function associated to

the spectrum of L1 [resp.L2]. Let γ be a primitive q-th root of unity.

Then

lim
z→γ

(z − γ)F1(z) = lim
z→γ

(z − γ)F2(z).

Now,

lim
z→γ

(z − γ)F1(z)

= lim
z→γ

1

q

q∑
l=1

(z − γ)(1− z2)

(1− γlz)(1− γ−lz)(1− γxlz)(1− γ−xlz)

=
2

q(1− γ−x+1)(1− γx+1)
.

The last equality follows from the fact that the solution to the congruence

l + 1 ≡ 0(mod q) [resp. −l + 1 ≡ 0(mod q)] is l = q − 1 [resp. l = 1],

and that the congruences xl + 1 ≡ 0(mod q) and −xl + 1 ≡ 0(mod q) have no

solutions since x is not coprime to q.
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Since

lim
z→γ

(z − γ)F1(z) = lim
z→γ

(z − γ)F2(z),

we get

2

q(1− γ−x+1)(1− γx+1)
=

2

q(1− γ−y+1)(1− γy+1)
,

=⇒ 1

[1− (γ−x+1 + γx+1) + γ2]
=

1

[1− (γ−y+1 + γy+1) + γ2]
,

=⇒ (γ−x+1 + γx+1) = (γ−y+1 + γy+1).

Since γ 6= 0, we get

(γ−x + γx) = (γ−y + γy),

=⇒ (
1

γx
+ γx) = (

1

γy
+ γy),

=⇒ (
1 + γ2x

γx
) = (

1 + γ2y

γy
),

=⇒ (γy + γ2x+y) = (γx + γx+2y),

=⇒ (γy − γx+2y) = (γx − γ2x+y),

=⇒ γy(1− γx+y) = γx(1− γx+y),

=⇒ (γy − γx)(1− γx+y) = 0,

=⇒ (γy − γx) = 0 or (1− γx+y) = 0,

=⇒ x ≡ y(mod q) or x ≡ −y(mod q).

In either case, by Corollary 4.1.2 we get that L1 and L2 are isometric.

Case 4 By multiplying the entries of L1 by appropriate numbers coprime to q we can

rewrite L1 = L(q : 1, x), where x is not coprime to q, and L2 = L(q : s1, s2),
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where s1 and s2 are not coprime to q. Let F1(z) [resp. F2(z)] be the generating

function associated to the spectrum of L1 [resp.L2].

Then

lim
z→γ

(z − γ)F1(z) = lim
z→γ

(z − γ)F2(z).

Now,

lim
z→γ

(z − γ)F1(z)

= lim
z→γ

1

q

q∑
l=1

(z − γ)(1− z2)

(1− γlz)(1− γ−lz)(1− γxlz)(1− γ−xlz)

=
2

q(1− γ−x+1)(1− γx+1)
.

Since

lim
z→γ

(z − γ)F1(z) = lim
z→γ

(z − γ)F2(z),

we get

2

q(1− γ−x+1)(1− γx+1)

= lim
z→γ

1

q

q∑
l=1

(z − γ)(1− z2)

(1− γs1lz)(1− γ−s1lz)(1− γs2lz)(1− γ−s2lz)
.

But the congruences s1l+1 ≡ 0(mod q), −s1l+1 ≡ 0(mod q), s2l+1 ≡ 0(mod q)

and −s2l + 1 ≡ 0(mod q), have no solutions since s1 and s2 are not coprime to

q. So the above equation becomes

2

q(1− γ−x+1)(1− γx+1)
= 0,

which is a contradiction. So this case is not possible.
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Case 5 This is the hardest of all the cases. We will need to prove a few lemmas to

prove this case. Let L1 = L(q : ax, by) and L2 = L(q : cu, dv) be the two

isospectral lens spaces with fundamental group of order q. Here gcd(ax, q) = x,

gcd(by, q) = y, gcd(cu, q) = u and gcd(dv, q) = v. By multiplying the entries of

L1 and L2 by appropriate numbers coprime to q we can rewrite L1 = L(q : x, py)

and L2 = L(q : u, sv). We will also assume that gcd(x, py) = 1 = gcd(u, sv)

because if say gcd(x, py) = e > 0, then we could divide x, py and q by e and

get a lens space with fundamental group of order q/e instead of q, which is a

contradiction.

We will need two lemmas to prove the theorem for Case 5:

Lemma 5.1.2. Suppose L1 = L(q : x, py) and L2 = L(q : u, sv) are two isospectral

lens orbifolds where gcd(x, q) = x, gcd(py, q) = y, gcd(u, q) = u and gcd(sv, q) = v.

Then either u = x and v = y, or u = y and v = x.

Note: If u = x and v = y, then L1 = L(q : x, py) and L2 = L(q : x, sy); if

u = y and v = x, then L1 = L(q : x, py) and L2 = L(q : y, sx) = L(q : s−1y, x) =

L(q : x, s−1y). In either case, this implies that we can write L1 = L(q : x, py) and

L2 = L(q : x, s′y) where s′ = s or s′ = s−1.

We now prove the lemma:

Proof. We denote q/x = q
x

and q/y = q
y
. Then

lim
z→γx

(z − γx)F1(z) = lim
z→γx

1

q

q∑
l=1

(z − γx)(1− z2)

(1− γxlz)(1− γ−xlz)(1− γpylz)(1− γ−pylz)

Note that the only non-zero terms in this limit will be the ones where xl + x ≡

0(mod q) or −xl + x ≡ 0(mod q), which gives l = tq/x − 1 or l = tq/x + 1 for

t ∈ {1, ..., x}. Also note that for such a t, we have
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1

(1− γpy(tq/x−1)+x)(1− γ−py(tq/x−1)+x)
=

1

(1− γpy[(x−t)q/x+1]+x)(1− γ−py[(x−t)q/x+1]+x)
.

These two facts give

0 6= 2

q

x∑
t=1

1

(1− γpy(tq/x−1)+x)(1− γ−py(tq/x−1)+x)
= lim

z→γx
(z − γx)F1(z).

Since

lim
z→γx

(z − γx)F1(z) = lim
z→γx

(z − γx)F2(z),

we get

0 6= 2

q

x∑
t=1

1

(1− γpy(tq/x−1)+x)(1− γ−py(tq/x−1)+x)
= lim

z→γx
(z − γx)F2(z)

= lim
z→γx

1

q

q∑
l=1

(z − γx)(1− z2)

(1− γulz)(1− γ−ulz)(1− γsvlz)(1− γ−svlz)
.

So there must be an l such that

ul + x ≡ 0(mod q),

or

−ul + x ≡ 0(mod q),

or

svl + x ≡ 0(mod q),
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or

−svl + x ≡ 0(mod q).

Recall that u|q. Then ul + x ≡ 0(mod q) or −ul + x ≡ 0(mod q) imply that u|x.

Similarly, since v|q, we can show that if svl + x ≡ 0(mod q) or −svl + x ≡ 0(mod q)

then v|x. So either u|x or v|x.

Now by multiplying the elements of L1 by an appropriate number we can rewrite

L1 = L(q : y, p′x). Then applying the same argument as above where we swap the

roles of x and y, we get either u|y or v|y.

Suppose u|x. Then since gcd(x, y) = 1 we can’t have u|y. Similarly, if v|x, then

we can’t have v|y. Therefore, either u|x and v|y, or v|x and u|y since if u or v divide

both, then it contradicts gcs(q, x, py) = 1.

We can swap the roles of L1 and L2 and repeat the above arguments again to get

either x|u and y|v, or y|u and x|v.

If u|x and v|y, and at the same time x|v and y|u, then x|y, which contradicts the

fact that gcd(q, x, y) = 1. So, the only possibilities are:

i. u|x, v|y, x|u and y|v. This means x = u and y = v.

ii. v|x, u|y, x|v and y|u. This means x = v and y = u.

REMARK: From now on, we can write the two lens spaces as L1 = L(q : x, py)

and L2 = L(q : x, sy). Further, If q is odd, we can also assume that both s and p

are odd since if one of them, say p, is even then we can replace the lens space with

L(q : x, (q− p)y) which is isometric to L1 and the coefficient q− p is odd. Also, if q is

even, then both x and py (resp.sy) can’t be even simultaneously since gcd(x, py)(resp.

sy); from now on, without loss of generality, if q is even we will assume that x is even
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and py (resp. sy) is odd since if py (resp. sy) is even and x is odd, then we can

multiply the entries of the lens spaces by an appropriate number to re-write it as

L1 = L(q : y, p′x) (resp. L2 = L(q : y, s′x)).

Lemma 5.1.3. Suppose, q is an integer. Given two isospectral lens spaces L1 = L(q :

x, py) and L2 = L(q : x, sy) as above. Suppose gcd(py+x, q) = d1, gcd(py−x, q) = e1,

gcd(sy + x, q) = d2, and gcd(sy − x, q) = e2. Then

(i) gcd(d1, e1) = 1 = gcd(d2, e2).

(ii) Either d1 = d2 and e1 = e2, OR d1 = e2 and e1 = d2

Note We will use this lemma in our proof showing the conjugation map between

the cyclic groups defining L1 and L2.

Proof. (i) Suppose d = gcd(d1, e1). So d|(py+x) and d|(py−x). This means d|2py

and d|2x. But, gcd(x, py) = 1. That means d = 1 or d = 2. Now, if q is even,

then x is even and py is odd, that means py+x and py−x are both odd. So, d

must be odd, and hence d = 1. If q is odd, then since d divides q, which is odd,

d can’t be even; so again d = 1. Using a similar argument we can also prove

that gcd(d2, e2) = 1.

(ii) We first suppose that d1 = e1 = 1. Suppose F1(z) and F2(z) are the respective

generating functions associated to L1 and L2. Then, if d2 > 1, F2(z) will have

a pole of order 2 at γxq/d2 and we get

lim
z→γxq/d2

(z − γxq/d2)2F2(z) =
2

q(1− γ−q(sy−x)/d2)
,

since the only non-zero terms will be for l = q
d2

and l = q − q
d2

.
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Since

lim
z→γxq/d2

(z − γxq/d2)2F2(z) = lim
z→γxq/d2

(z − γxq/d2)2F1(z),

we get

2

q(1− γ−q(sy−x)/d2)
= 0,

which is a contradiction. Therefore, d2 = 1. With a similar argument we can

show that e2 = 1.

Now assume d1 > 1. Then, as in the above case, F1(z) will have a pole of order

2 at γxq/d1 , and we get

lim
z→γxq/d1

(z − γxq/d1)2F1(z) =
2

q(1− γ−q(py−x)/d1)
,

Since F2(z) = F1(z), F2(z) also has a pole of order 2 at γxq/d1 . This means that

either (sy+x) q
d1
≡ 0(mod q) or (sy−x) q

d1
≡ 0(mod q). This means that either

d1 divides d2 or d1 divides e2.

Suppose d1 divides d2. Now, since d2 ≥ d1 > 1, we can apply the same argument

as above and get that either d2 divides d1 or d2 divides e1. If d2 divides d1, then

d1 = d1. If, d2 divides e1, that means d1 divides e1. But this contradicts

(i)above. Therefore, d1 = d2 in this case.

If e1 = 1 and e2 > 1 then applying a similar argument as above, we can show

that either e2 divides d1 or e2 divides e1. But if e2 divides d1, that means e2

divides d2, which again contradicts (i). So, e2 must divide e1, and we get a

contradiction for e2 > 1.

If e1 > 1, then applying the same argument as before, we can show that either
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e1 divides d2 or e1 divides e2. Again, if e1 divides d2, then e1 divides d1, and

we get a contradiction. So we must have that e1 divides e2. Now reversing the

argument as before we can show that e2 divides e1, and therefore e2 = e1

If, on the other hand, d1 divides e2, then we can apply the same arguments as

before to show that d1 = e2 and e1 = d2.

This completes the proof of the lemma.

NOTE If we are in the situation where gcd(py + x, q) = gcd(sy − x, q) and

gcd(py − x, q) = gcd(sy + x, q), then, writing the second lens space as L2 = L(q :

x,−sy) = L(q : x, s′y), we can ensure that gcd(py + x, q) = gcd(s′y + x, q) and

gcd(py − x, q) = gcd(s′y − x, q). Therefore, without loss of generality, from now on,

we will always assume that gcd(py + x, q) = gcd(sy + x, q) and gcd(py − x, q) =

gcd(sy − x, q).

5.1.1 Finite Subgroups of SO(4)

We now have two isospectral lens spaces L1 = L(q : x, py) and L2 = L(q : x, sy)

where the respective cyclic groups are G and G′. We will now show that these two

groups are conjugate to each other and that, according to Lemma 4.1.1, will prove

that L1 and L2 are isometric. In order to do this we will use the classification of

finite subgroups of SO(4) in [MS]. It is convenient to use the relationship of SO(4)

to quaternions for this.

Recall that the quaternion algebra H is given by [MS]

H = {a+ bi+ cj + dk | a, b, c, d ∈ R, i2 = j2 = k2 = −1, ij = k = −ji}

:= {z1 + z2j | z1, z2 ∈ C}.
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As usual the ‘conjugate’ of a quaternion q = a+ bi+ cj + dk is q̄ = a− bi− cj − dk,

and its ‘real part’ is Re(q) = a. It is then easy to check that

|q|2 = qq̄ = q̄q = a2 + b2 + c2 + d2.

Any non-zero quaternion has a two-sided multiplicative inverse given by q−1 = q̄/|q|2.

We will consider the 3-sphere as the set of unit quaternions (the quaternions of length

1) as follows:

S3 = {a+ bi+ cj + dk | a2 + b2 + c2 + d2 = 1} = {z1 + z2j | |z1|2 + |z2|2 = 1}

The product in H induces a group structure on S3. For each pair (p, q) of elements

of S3, the function

Φp,q : H→ H

with Φp,q(h) = phq−1 leaves invariant the length of quaternions. We can, therefore,

define a homomorphism of groups:

Φ : S3 × S3 → SO(4)

such that Φ(p, q) = Φp,q.

The homomorphism Φ is surjective with kernel of {(1, 1), (−1,−1)}. The ho-

momorphism Φ gives a 1-1 correspondence between finite subgroups of SO(4) and

finite subgroups of S3 × S3 containing the kernel of Φ. Moreover two subgroups are

conjugated in SO(4) iff the corresponding groups in S3 × S3 are conjugated [MS].

So to prove that two finite subgroups of SO(4) are conjugate, we prove that the

corresponding subgroups of S3 × S3 are conjugate.
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Let G be a finite subgroup of S3 × S3. For i = 1, 2, we denote by

πi : S3 × S3 → S3

the two projections. We use the following notations as used in [MS]:

L = π1(G),

LK = π1((S3 × {1}) ∩G),

R = π2(G),

RK = π2(({1} × S3) ∩G).

The projections π1 and π2 induce isomorphisms (see [MS] and [DV]) given respectively

by

π̄1 : G/(LK ×RK)→ L/LK

and

π̄2 : G/(LK ×RK)→ R/RK .

From these we get an isomorphism

φG : L/LK → R/RK

such that φG = π̄2 ◦ π̄−1
1 .

Conversely, given two finite subgroups L and R of S3, with two normal subgroups

LK and RK such that there exists an isomorphism φ : L/LK → R/RK , we can define
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a subgroup G of S3 × S3 such that

L = π1(G),

LK = π1((S3 × {1}) ∩G),

R = π2(G),

RK = π2(({1} × S3) ∩G).

and φ = φG. As a result, the subgroups of S3 × S3 can be uniquely identified by

5-tuples (L,LK , R,RK , φ) [MS].

For classifying subgroups of S3 × S3 upto conjugation, Du Val [DV], Mecchia and

Seppi [MS] used the following result:

Proposition 5.1.4. Let G and G′ two subgroups of S3 × S3 described respectively by

(L,LK , R,RK , φ) and (L′, L′K , R
′, R′K , φ

′). The groups G and G′ are conjugated in

S3 × S3 if and only if there exist two inner automorphisms, α and β, of S3 such that

α(L) = L′, β(R) = R′, α(LK) = L′K, β(RK) = R′K and φ = β̄−1φ′ᾱ, where ᾱ and β̄

are the maps induced by α and β on the factors L/LK and R/RK.

Up to conjugation the finite cyclic subgroups of S3 are the following:

Cn = {cos(
2απ

n
) + i sin(

2απ

n
) | α = 0, ..., n− 1}

and up to conjugation the cyclic subgroups of S3 × S3 containing (−1,−1) are [MS]:

Type 1: (C2mr, C2m, C2nr, C2n, φs), with gcd(s, r) = 1 and

φs : C2mr/C2m → C2nr/C2n
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given by φs(e
iπ/mrC2m) = eisπ/nrC2n. In this case |Φ(G)| = 2mnr.

Type 2: (Cmr, Cm, Cnr, Cn, φs), with gcd(s, r) = 1 = gcd(2, n) = gcd(2,m), gcd(2, r) = 2

and

φs : Cmr/Cm → Cnr/Cn

given by φs(e
i2π/mrCm) = ei2sπ/nrCn. In this case |Φ(G)| = mnr/2.

Coming back to the proof of our main theorem, we let the isometry group acting

on L1 be denoted by G =< g >, where

g =



cos 2xπ
q

sin 2xπ
q

0 0

− sin 2xπ
q

cos 2xπ
q

0 0

0 0 cos 2pyπ
q

sin 2pyπ
q

0 0 − sin 2pyπ
q

cos 2pyπ
q



.

Similarly, the isometry group acting on L2 is denoted by G′ =< g′ >, where

g′ =



cos 2xπ
q

sin 2xπ
q

0 0

− sin 2xπ
q

cos 2xπ
q

0 0

0 0 cos 2syπ
q

sin 2syπ
q

0 0 − sin 2syπ
q

cos 2syπ
q



.

Using the definition of the homomorphism Φ, we can calculate the pre-images of
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the two generators g and g′ in S3×S3; they are (e−
i2π(x+py)

2q , e
i2π(x−py)

2q ) and (e−
i2π(x+sy)

2q , e
i2π(x−sy)

2q )

respectively.

In order to prove our result we first have to show that the pre-images of the two

groups, G and G’ can’t lie in the two different types described above.

For odd q it is easy to see since in that case both pre-images will be of Type 2,

since Type 1 are the groups that, under the image on Φ have order 2mnr, which is

even and can’t be equal to q.

Now suppose q is even. We first notice that by the definition of the subgroups L,

LK , R, and RK for the cyclic subgroups of S3×S3, we get that for G, the order of LK

is gcd((py− x), q) and the order of RK is gcd((py+ x), q). Similarly, for G′, the order

of LK is gcd((sy − x), q) and the order of RK is gcd((sy + x), q). We denote Φ−1G

and Φ−1G′ by (L,LK , R,RK , φs) and (L′, L′K , R
′, R′K , φs′) respectively. Now, from

Lemma 5.1.3 and our subsequent note, we know that gcd(py + x, q) = gcd(sy + x, q)

and gcd(py − x, q) = gcd(sy − x, q). So, |LK | = |L′K | and |RK | = |R′K |. Now it is

obvious that Φ−1G and Φ−1G′ are of the same Type.

I: q is odd. If gcd(py + x, q) = gcd(sy + x, q) = d1 and gcd(py − x, q) = gcd(sy −

x, 1) = d2. We will denote q/di by qi. In this case, the two subgroups will corre-

spond to the subgroups (C2q1 , Cd2 , C2q2 , Cd1 , φt) (where t ≡ (py−x)w(mod 2q2)

for some number w coprime to 2q2) and (C2q1 , Cd2 , C2q2 , Cd1 , φt′) (where t′ ≡

(sy − x)w′(mod 2q2) for some number w′ coprime to 2q2). We now need to

find inner-automorphisms α and β according to Proposition 5.1.4 such that the

following diagram commutes:

C2q1/Cd2 C2q2/Cd1

C2q1/Cd2 C2q2/Cd1

φt

ᾱ

φt′

β̄−1
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We need to find inner-automorphisms of α and β of S3 such that α(e
i2π
2q1 ) = e

i2π
2q1

and β(e
i2πt
2q2 ) = e

i2πt′
2q2 . The definition of α is obvious as we can define α = Id,

which conjugates every element to itself.

Now, to define β we recall some facts from the identification of the quaternions

with the euclidean 4-space or R4. Recall that any quaternion q = a+bi+cj+dk

can be written as q = (a, V ) where the pure quaternion V = bi + cj + dk can

be identified with the point (b, c, d) of the subspace R3 of R4. It is also known

that any conjugation in the quaternions is equivalent to a rotation in R3. We

notice that the points ei2πt/2q2 and ei2πt
′/2q2 lie on the same unit circle in the

complex plane C as 2q2 roots of unity. So, we can view these points in R3

as (cos 2πt/2q2, sin 2πt/2q2, 0) and (cos 2πt′/2q2, sin 2πt′/2q2, 0). This means

that we can find a rotation of R3 that maps (cos 2πt/2q2, sin 2πt/2q2, 0) to

(cos 2πt′/2q2, sin 2πt′/2q2, 0). From the above facts about quaternions, we know

that such a rotation will be a conjugation in the quaternions and hence an

inner-automorphism in S3. Indeed, if we now view (cos 2πt/2q2, sin 2πt/2q2, 0)

and (cos 2πt′/2q2, sin 2πt′/2q2, 0) as pure-quaternions and write them as 0 +

cos 2πt/2q2i + sin 2πt/2q2j + 0k and 0 + cos 2πt′/2q2i + sin 2πt′/2q2j + 0k, re-

spectively, then it is easy to see that the unit quaternion cos 2π(t′ − t)/4q2 +

0i + 0j + sin 2π(t′ − t)/4q2k conjugates 0 + cos 2πt/2q2i + sin 2πt/2q2j + 0k to

0 + cos 2πt′/2q2i+ sin 2πt′/2q2j + 0k.

Now, by Proposition 5.1.4, we have the two groups G and G′ as conjugates in

SO(4) and therefore, the corresponding orbifold lens spaces are isometric.

II: q is even, x is even, and py (resp. sy) is odd: In this case again the two groups

will of of Type 2, and the proof will go exactly as it did for I above.

III: q is even, x is odd, and py (resp. sy) is odd: In this case, the two groups will
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be of Type 1, and with slight modifications it can be shown that the proof will

go exactly as it did for I and II.

This completes our proof for Case 5.

5.2 4 Dimensional Orbifold Lens Spaces

It is known that in the manifold case, even dimensional spherical space forms are only

the sphere and the real projective spaces [I2]. It is also known that the sphere Sn is

not isospectral to the real projective space P n(R) [BGM].

In the orbifold case, there are many even dimensional spherical space forms with

fixed points. We will focus on the 4-dimensional orbifold lens spaces. In [L], Lauret

has classified cyclic subgroups of SO(2n + 1) up to conjugation. According to this

classification, any cyclic subgroup G of SO(2n+1) is represented by G =< γ > where

γ = diag(R(2πp1
q

), ..., R(2πpn
q

), 1) and R(θ) =

 cos θ sin θ

− sin θ cos θ

.

Suppose n = 2. Let

g̃1 =


R(p1/q) 0

R(p2/q)

0 1


and

g̃2 =


R(s1/q) 0

R(s2/q)

0 1

 .

Suppose there are 4-dimensional orbifold lens spaces O1 = S4/G̃1 and O2 = S4/G̃2,
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where G̃1 =< g̃1 > and G̃2 =< g̃2 >.

Theorem 5.2.1. Given O1, O2, G̃1 and G̃2 as above. If O1 and O2 are isospectral

then they are isometric.

Proof. From Theorem 4.4.3 we know that on the domain
{
z ∈ C

 |z| < 1
}

, the

spectrum generating functions of O1 and O2, respectively, are,

Fq(z : p1, p2, 0) =
1

q

q∑
l=1

(1 + z)∏2
i=1(z − γpil)(z − γ−pil)

and

Fq(z : s1, s2, 0) =
1

q

q∑
l=1

(1 + z)∏2
i=1(z − γsil)(z − γ−sil)

.

Notice that Fq(z : p1, p2) = (1 − z)Fq(z : p1, p2, 0) and Fq(z : s1, s2) = (1 −

z)Fq(z : s1, s2, 0), where Fq(z : p1, p2) and Fq(z : s1, s2) are respectively the spectrum

generating functions for the 3-dimensional orbifold lens spaces L1 = L(q : p1, p2) and

L2 = L(q : s1, s2). This means that if O1 and O2 are isospectral then L1 and L2 are

also isospectral.

Now, from Theorem 5.1.1, we know that L1 and L2 are isometric. By Lemma

4.4.2 we know that L1 is isometric to L2 iff O1 is isometric to O2. This proves the

theorem.

5.2.1 Some Higher Dimensional Orbifold Lens Spaces

We can generalize the above results to obtain pairs of higher dimensional orbifold lens

spaces which may be distinguished by their spectra. In Chapter 4 we saw examples
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of orbifold lens spaces in dimensions 9 and higher. Also, in [L] there exist examples of

orbifold lens spaces in dimensions 5 through 8 where the spectrum doesn’t determine

the orbifold. We will now prove some results to demonstrate that in every dimension

there exist pairs of orbifold lens spaces where the spectrum does determine the lens

space.

We first prove that for all odd dimensions ≥ 5, there exist pairs of orbifold lens

spaces that may be distinguished by their spectra. Suppose n ≥ 3. Let

g̃1 =


R(p1/q) 0

R(p2/q)

0 I2n−4


and

g̃2 =


R(s1/q) 0

R(s2/q)

0 I2n−4

 ,

where I2n−4 is the 2n− 4 by 2n− 4 identity matrix.

Suppose there are m = 2n− 1-dimensional orbifold lens spaces O1 = Sm/G̃1 and

O2 = Sm/G̃2, where G̃1 =< g̃1 > and G̃2 =< g̃2 >.

Proposition 5.2.2. All distinct orbifolds of the form O1 and O2 as defined above

have distinct spectra.

Proof. From Theorem 4.5.3 we know that on the domain
{
z ∈ C

 |z| < 1
}

, the

spectrum generating functions of O1 and O2, respectively, are,

F 2n−4
q (z : p1, p2, 0) =

(1 + z)

(1− z)2n−5
· 1

q

q∑
l=1

1∏2
i=1(z − γpil)(z − γ−pil)
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and

F 2n−4
q (z : s1, s2, 0) =

(1 + z)

(1− z)2n−5
· 1

q

q∑
l=1

1∏2
i=1(z − γsil)(z − γ−sil)

.

We note that Fq(z : p1, p2) = (1 − z)2n−4F 2n−4
q (z : p1, p2, 0) and Fq(z : s1, s2) =

(1 − z)2n−4F 2n−4
q (z : s1, s2, 0), where Fq(z : p1, p2) and Fq(z : s1, s2) are respectively

the spectrum generating functions for the 3-dimensional orbifold lens spaces L1 =

L(q : p1, p2) and L2 = L(q : s1, s2). This means that if O1 and O2 are isospectral then

L1 and L2 are also isospectral.

Now, from Theorem 5.1.1, we know that L1 and L2 are isometric. By Lemma

4.5.2 we know that L1 is isometric to L2 iff O1 is isometric to O2. This proves the

theorem.

We now prove that for all even dimensions ≥ 6, there exist pairs of orbifold lens

spaces that may be distinguished by their spectra.

Suppose n ≥ 3. Let

g̃1 =


R(p1/q) 0

R(p2/q)

0 I2n−3


and

g̃2 =


R(s1/q) 0

R(s2/q)

0 I2n−3

 ,

where I2n−3 is the 2n− 3 by 2n− 3 identity matrix.
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Suppose there are m = 2n-dimensional orbifold lens spaces O1 = Sm/G̃1 and

O2 = Sm/G̃2, where G̃1 =< g̃1 > and G̃2 =< g̃2 >.

Proposition 5.2.3. All distinct orbifolds of the form O1 and O2 as defined above

have distinct spectra.

Proof. From Theorem 4.5.3 we know that on the domain
{
z ∈ C

 |z| < 1
}

, the

spectrum generating functions of O1 and O2, respectively, are,

F 2n−3
q (z : p1, p2, 0) =

(1 + z)

(1− z)2n−4
· 1

q

q∑
l=1

1∏2
i=1(z − γpil)(z − γ−pil)

and

F 2n−3
q (z : s1, s2, 0) =

(1 + z)

(1− z)2n−4
· 1

q

q∑
l=1

1∏2
i=1(z − γsil)(z − γ−sil)

.

As before, we note that Fq(z : p1, p2) = (1 − z)2n−3F 2n−3
q (z : p1, p2, 0) and Fq(z :

s1, s2) = (1 − z)2n−3F 2n−3
q (z : s1, s2, 0), where Fq(z : p1, p2) and Fq(z : s1, s2) are

respectively the spectrum generating functions for the 3-dimensional orbifold lens

spaces L1 = L(q : p1, p2) and L2 = L(q : s1, s2). This means that if O1 and O2 are

isospectral then L1 and L2 are also isospectral.

Now, from Theorem 5.1.1, we know that L1 and L2 are isometric. By Lemma

4.5.2 we know that L1 is isometric to L2 iff O1 is isometric to O2. This proves the

theorem.
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5.3 Lens Spaces and Other Spherical Space Forms

One question still remains: Is an orbifold lens space ever isospectral to an orbifold

spherical space form which has non-cyclic fundamental group?

Our final result in this chapter is to prove that an orbifold lens space cannot be

isospectral to a general spherical space form with non-cyclic fundamental group. We

will use some results from [I2] noting that in some cases his assumption that the

acting group is fixed-point free is not used in certain proofs, and therefore, the results

hold true for orbifolds.

Definition 5.3.1. Let G be finite group, and let Gk be the subset of G consisting of

all elements of order k in G. Let σ(G) denote the set consisting of orders of elements

in G. Then we have

G = ∪k∈σ(G)Gk (disjoint union)

The following lemma is proved in [I2] for fixed-point free subgroups of SO(2n), but

we note that the proof doesn’t require this condition and reproduce the proof from

[I2].

Lemma 5.3.2. Let G be a finite subgroup of SO(2n) (n ≥ 2). Then the subset Gk is

divided into the disjoint union of subsets C1
k , ..., C

ik
k such that each Ct

k(t = 1, 2, ..., ik)

consists of all generic elements of some cyclic subgroup of order k in G.

Proof. For any g ∈ Gk, we denote by Ag the cyclic subgroup of G generated by g.

Now, for g, g′ ∈ Gk the cyclic group Ag ∩ Ag′ is of order k if and only if Ag = Ag′ .

Now the lemma follows from this observation immediately.

We now state another lemma (see [I2] for proof) that will be used to prove our

result.
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Lemma 5.3.3. Let g be an element in SO(2n) (n ≥ 2) and of order q (q ≥ 3).

Set γ = e2π
√
−1/q. Assume g has eigenvalues γ, γ−1, γp1, γ−p1,..., γpk , γ−pk with

multiplicities l, l, i1, i1, ..., ik, ik, respectively, where p1, ..., pk are integers prime to q

with pi 6≡ ±pj(modq) (for 1 ≤ i < j ≤ k), p 6≡ ±l(modq) (for i = 1, , k) and

l+i1+...+ik = n. Then the Laurent expansion of the meromorphic function 1−z2
det (12n−gz)

at z = γ is

1

(z − γ)l
(
√
−1)n+lγl

2n−l(1− γ2)n−1

k∏
j=1

{cot
π

q
(pj + 1)− cot

π

q
(pj − 1)}ij + lower order terms.

The following proposition is proved by Ikeda for a group G that acts freely. How-

ever, we note that the proposition is true even if G does not act freely since the proof

does not use the property that G acts freely.

Proposition 5.3.4. Let G be a finite subgroup of SO(2n) (n ≥ 2), and let k ∈ σ(G).

We define a positive integer k0 by

k0 = 2n− 1 if k = 1 or 2,

= maxg∈Gk{max. of multiplicities of eigenvalues of g} if k ≥ 3.

Then the generating function FG(z) has a pole of order k0 at any primitive k-th root

of 1.

Proof. At z = 1, we notice that for g = I2n ∈ G1, we get

lim
z→1

(1− z)2n−1FG(z) =
2

|G|
,

as g has eigenvalue 1 with multiplicity 2n. So, FG(z) has a pole of order 2n − 1 at

z = 1.
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At z = −1 we notice that for g = −I2n ∈ G2, we get

lim
z→1

(1 + z)2n−1FG(z) =
2

|G|
,

as g has eigenvalue -1 with multiplicity 2n. Also, for any other g′ ∈ G2, the eigenvalue

-1 has multiplicity at most 2n. So FG(z) has a pole of order 2n− 1 at z = −1 as well.

We now assume k ≥ 3. Now let Gk, C
1
k , ..., C

ik
k be as in Lemma 5.3.2. Then we

have

|G|FG(z) =
∑
g∈Gk

1− z2

det(I2n − gz)
+

∑
g∈G−Gk

1− z2

det(I2n − gz)

=

ik∑
j=1

∑
g∈Gk

1− z2

det(I2n − gz)
+

∑
g∈G−Gk

1− z2

det(I2n − gz)

(5.1)

Set γ = e2π
√
−1/k. For any primitive k-th root γt of 1, where t is an integer prime

to k, let

ak0(t)

(z − γt)k0
+

ak0−1(t)

(z − γt)k0−1
+ ...+

a1(t)

(z − γt)

be the principal part of the Laurent expansion of FG(z) at z = γt. Then each

coefficient ai(t) is an element in the k-th cyclotomic field Q(γ) over the rational

number field Q. The automorphisms σt of Q(γ) defined by

γ → γt

transforms ai(1) to ai(t) by Equation (5.1). Hence, it is sufficient to show that the

generating function FG(z) has a pole of order k0 at z − γ, that is, to show that

ak0(1) 6= 0.

Note that if 0 < b < a < π, then cot a − cot b < 0. Now the proposition follows
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immediately from Lemma 5.3.3 and Equation (5.1).

From Proposition 5.3.4, we get

Corollary 5.3.5. Let S2n−1/G and S2n−1/G′ be two isospectral orbifold spherical space

forms. Then σ(G) = σ(G′).

We now prove our result

Theorem 5.3.6. Let S2n−1/G and S2n−1/G′ be two (orbifold) spherical space forms.

Suppose G is cyclic and G′ is not cyclic. Then S2n−1/G and S2n−1/G′ cannot be

isospectral.

Proof. By Corollary 4.1.14, we already know that if |G| 6= |G′| then S2n−1/G and

S2n−1/G′ cannot be isospectral. So let us assume that |G| = |G′| = q.

Suppose S2n−1/G and S2n−1/G′ are isospectral. If G is cyclic then it has an element

of order q. Now, by Corollary 5.3.5, G′ must also have an element of order q, but

since |G′| = q, that implies that G′ is cyclic, which is not true by assumption, and we

arrive at a contradiction. This proves the theorem.
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Chapter 6

Heat Kernel for Orbifold Lens

Spaces

In the previous chapter we used the spectrum to determine the geometry of three

and four dimensional orbifold lens spaces. It is also known that if two orbifolds

(manifolds) have the same spectrum, then their respective asymptotic expansions of

the heat kernel will also be the same. The question arises whether we can prove

the results in Chapter 5 by using the coefficients of the asymptotic expansion of the

heat kernel? In this chapter, we show that the equality of the heat coefficients for

two orbifolds is not enough to determine their geometry. In other words, we cannot

obtain the results of the previous chapter only from these coefficients.

6.1 Heat Kernel

In the mathematical study of heat conduction and diffusion, a heat kernel is the

fundamental solution to the heat equation on a specified domain with appropriate

boundary conditions. It is also one of the main tools in the study of the spectrum of
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the Laplace operator, and is thus of some auxiliary importance throughout mathe-

matical physics. The heat kernel represents the evolution of temperature in a region

whose boundary is held fixed at a particular temperature (typically zero), such that

an initial unit of heat energy is placed at a point at time t = 0.

Definition 6.1.1. Let M be a Riemannian manifold. A heat kernel, or alternatively,

a fundamental solution to the heat equation, is a function

K : (0,∞)×M ×M →M (6.1)

that satisfies

1. K(t, x, y) is C1 in t and C2 in x and y;

2. ∂K/∂t + ∆2(K) = 0, where ∆2 is the Laplacian with respect to the second

variable (i.e., the first space variable);

3. limt→0+
∫
M
K(t, x, y)f(y)dy = f(x) for any compactly supported function f on

M .

The heat kernel exists and is unique for compact Riemannian manifolds. Its impor-

tance stems from the fact that the solution to the heat equation

∂u

∂t
+ ∆(u) = 0,

u : [0,∞)×M → R,

(where ∆ is the Laplacian with respect to the second variable) with initial condition

u(0, x) = f(x) is given by

u(t, x) =

∫
M

K(t, x, y)f(y)dy. (6.2)
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If {λi} is the spectrum of M and {ζi} are the associated eigenfunctions (normalized

so that they form an orthonormal basis of L2(M)), then we can write

K(t, x, y) =
∑
i

e−λitζi(x)ζi(y).

From this, it is clear that the heat trace,

Z(t) =
∑
i

e−λit,

is a spectral invariant. The heat trace has an asymptotic expansion as t→ 0+ :

Z(t) = (4πt)dim(M)/2

∞∑
j=1

ajt
j,

where the aj are integrals over M of universal homogeneous polynomials in the cur-

vature and its covariant derivatives ([MP], see [G] or [CPR] for details). The first few

of these are

a0 = vol(M),

a1 =
1

6

∫
M

τ,

a2 =
1

360

∫
M

(5τ 2 − 2|ρ|2 − 10|R|2),

where τ =
∑dim(M)

a,b=1 Rabab is the scalar curvature, ρ =
∑dim(M)

c=1 Racbc is the Ricci

tensor, and R is the curvature tensor. The dimension, the volume, and the total

scalar curvature are thus completely determined by the spectrum. If M is a surface,

then the Gauss-Bonnet Theorem implies that the Euler characteristic of M is also a

spectral invariant.
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The importance of K(t, x, y) in studying the spectrum of ∆ derives largely from

the following theorem by Minakshisundaram [MP]:

Theorem 6.1.2. The fundamental solution of the heat equation has an asymptotic

expansion in a neighbourhood of the diagonal in M ×M :

K(t, x, y) ∼ (4πt)dim(M)/2e−r
2/4t(

∞∑
j=0

uj(x, y)tj) as t ↓ 0,

where r = d(x, y) is the Riemannian distance from x to y.

The uj(x, y) are smooth functions. Fix x and suppose y is in some normal coordi-

nate neighbourhood wi of x. Then the uj(x, y) are given recursively by

u0(x, y) = θ−1/2, (6.3)

uj(x, y) = −r−jθ−1/2

∫ r

0

θ1/2(x, ys)∆y(uj−1(x, y))sj−1ds, (6.4)

where the integration is along the geodesic ys joining x to y, and θ is defined by

dvol = θdw. It is well known that θ = (det(gij))
1/2 where gij = g(∂/∂wi, ∂/∂wj).

A more in depth study of the heat trace can yield more information. It is known

for example that if M is a closed, connected Riemannian manifold of dimension n ≤ 6,

and if M has the same spectrum as the n-sphere Sn with the standard metric (resp.

Rn), then M is in fact isometric to Sn (resp. Rn). More on this can be found in

[CPR]. There are other invariants besides those mentioned above. For generic closed

Riemannian manifolds for example, the geodesic length spectrum - the set of lengths

of closed geodesics - is a spectral invariant [C].
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6.1.1 Heat Trace Results for Orbifolds

In the case of a good Riemannian orbifold, Donnelly [D] proved the existence of the

heat kernel and also proved the following results:

Theorem 6.1.3. Let f : M → M be an isometry of a manifold M, with fixed point

set Ω. Then there is an asymptotic expansion as t ↓ 0

∑
λ

Tr(fλ
])etλ ≈

∑
N∈Ω

(4πt)−n/2
∞∑
k=0

tk
∫
N

bk(f, a)dvolN(a),

where N is a subset of Ω (and a submanifold of M), λ is an eigenvalue of ∆, fλ
] is a

linear map from λ-eigenspace to itself induced by f, and the functions bk(f, a) depend

only on the germ of f and the Riemannian metric of M near the points a ∈ N .

Theorem 6.1.4. The coefficients bk(f, a) are of the form bk(f, a) = |detB|b′k(f, a)

where b
′

k(f, a) is an invariant polynomial in the components of B = (I −A)−1 (where

A is defined in the following remarks no. 2) and the curvature tensor R and its

covariant derivatives at a. In particular,

b0(f, a) = |detB| (6.5)

b1(f, a) = |detB|(τ
6

+
1

6
ρkk +

1

3
RikshBkiBh3 +

1

3
RikthBktBhi −RkαhαBksBhs). (6.6)

We will summarise the tools used by Donnelly to prove the above results in the

following remarks:

Remarks and Notation I:

1. Suppose x is a point in a normal coordinate system on the Riemannian manifold

M. Suppose N ⊂ M is a totally geodesic submanifold and let π : (TN)⊥ → N

be the normal bundle of N . Denote by F the fiber of π : (UN)→ N such that
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π(x) = a ∈ N , then the factor ψ(x) by which the exponential map blows up the

volume, i.e. such that dvolUN(x) = ψ(x)exp ∗ (dvolM(x)) has the Taylor series

expansion

ψ(x) = 1− 1

2
Riαjαx

ixj − 1

6
Rikjkx

ixj +O(x3).

2. A denotes the endomorphism induced by f on the fiber of the normal bundle

over x ∈ N which is a connected sub-manifold of dimension n in Ω.

3. Donnelly used the fact that det(I − A) 6= 0 to make the change of variables

x̄ = x − f(x). Then using the classical Morse Lemma, he found a smooth

coordinate change so that

d(x̄+ f(x), f(x))2 =
s∑
i=1

y2
i = ||y||2.

With this change of coordinates, the Taylor series expansion for ψ(x) becomes

ψ(x) = 1− 1

2
RkαhαBksBhty

syt − 1

6
RkihiBksBhty

syt +O(y3), (6.7)

and the absolute value of the Jacobian determinant of this change of variables

has the Taylor series expansion

|J(x̄, y)| = 1 +
1

6
(RikihBksBht +RikshBkiBht +RikthBksBhi)y

syt +O(y3). (6.8)

Also, the Taylor series expansion for u0(f(x), x) is given by

u0(f(x), x) = 1 +
1

12
ρkhy

kyh +O(y3). (6.9)
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4. It is shown that

bk(f, a) =
k∑
j=0

1

j!
∆j
y(|det(B)ui(f(x), x)|J(x̄, y)|ψ(x))(0), (6.10)

where

4y =
∑ ∂2

∂y2
i

.

In [DGGW] Donnelly’s work is extended to general compact orbifolds, where the

heat invariants are expressed in a form that clarifies the asymptotic contributions of

each part of the singular set of the orbifold. We will summarise the construction used

in [DGGW] in the following remarks before stating their main theorem.

Remarks and Notation II:

1. An Orbifold O was identified with the orbit space F (O)/O(n), where F (O) -

a smooth manifold - is the orthonormal frame bundle of O and O(n) is the

orthogonal group, acting smoothly on the right and preserving the fibers. It

can be shown that the action of O(n) on the frame bundle F(O) gives rise to

a (Whitney) stratification of O. The strata are connected components of the

isotropy equivalence classes in O. The set of regular points of O intersects each

connected component O0 of O in a single stratum that constitutes an open

dense submanifold of O0. We refer to the strata of O as O-strata.

2. If (Ũ , GU , πU) is an orbifold chart on O, then it can be shown that the action

of GU on Ũ gives rise to stratifications both of Ũ and of U . These are referred

to as Ũ -strata and U -strata, respectively.

3. Let O be a Riemannian orbifold and (Ũ , GU , πU) an orbifold chart. Let Ñ be

a Ũ -stratum in Ũ . Then it can be shown that all the points in Ñ have the
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same isotropy group in GU ; this group is referred to as the isotropy group of Ñ ,

denoted Iso(Ñ).

4. Given a Ũ -stratum Ñ , denote by Isomax(Ñ) the set of all γ ∈ Iso(Ñ) such that

Ñ is open in the fixed point set Fix(γ) of γ. For γ ∈ GU , it can be shown

that each component W of the fixed point set Fix(γ) of γ (equivalently, the

fixed point set of the cyclic group generated by γ) is a manifold stratified by a

collection of Ũ -strata, and the strata in W of maximal dimension are open and

their union has full measure in W . In particular, the union of those Ũ -strata Ñ

for which γ ∈ Isomax(Ñ) has full measure in Fix(γ).

5. Let γ be an isometry of a Riemannian manifold M and let Ω(γ) denote the set of

components of the fixed point set of γ. Each element of Ω(γ) is a submanifold of

M . For each non-negative integer k, Donnelly [D] defined a real-valued function

(cited above), which we temporarily denote bk((M,γ), .), on the fixed point set

of γ. For each W ∈ Ω(γ), the restriction of bk((M,γ), .) to W is smooth. Two

key properties of the bk are:

(a) Locality. For a ∈ W , bk((M,γ), a) depends only on the germs at a of

the Riemannian metric of M and of the isometry γ. In particular, if U is a

γ-invariant neighborhood of a in M , then bk((M,γ), a) = bk((U, γ), a).

(b) Universality. If M and M ′ are Riemannian manifolds admitting the re-

spective isometries γ and γ′, and if σ : M → M ′ is an isometry satisfying

σ ◦ γ = γ′ ◦ σ, then bk((M,γ), x) = bk((M
′, γ′), σ(x)) for all x ∈ Fix(γ).

In view of the locality property, we will usually delete the explicit reference to

M and rewrite these functions as bk(γ, .), as they are written in [D].

6. Let O be an orbifold and let (Ũ , GU , πU) be an orbifold chart. Let Ñ be a
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Ũ -stratum and let γ ∈ Isomax(Ñ). Then Ñ is an open subset of a component of

Fix(γ) and thus, bk(γ, .)(= bk((Ũ , γ), .)) is smooth on Ñ for each nonnegative

integer k. Define a function bk(Ñ , .) on Ñ by

bk(Ñ , x) =
∑

γ∈Isomax(Ñ)

bk(γ, x).

Definition 6.1.5. Let O be a Riemannian orbifold and let N be an O-stratum.

(i) For each nonnegative integer k, define a real-valued function bk(N, .) by set-

ting bk(N, p) = bk(Ñ , p̃) where (Ũ , GU , πU) is any orbifold chart about p, p̃ ∈

πU
−1(p), and Ñ is the Ũ-stratum through p̃.

(ii) The Riemannian metric on O induces a Riemannian metric - and thus a volume

element - on the manifold N . Set

IN := (4πt)−dim(N)/2

∞∑
k=0

tk
∫
N

bk(N, x)dvolN(x),

where dvolN is the Riemannian volume element.

(iii) Set

I0 = (4πt)−dim(O)/2

∞∑
k=0

ak(O)tk,

where the ak(O) (which we will usually write simply as ak) are the familiar

heat invariants. In particular, a0 = vol(O), a1 = 1
6

∫
O
τ(x)dvolO(x), and so

forth. Observe that if O is finitely covered by a Riemannian manifold M (say,

O = G\M) then ak(O) = 1
|G|ak(M).

We now state the theorem that [DGGW] proved:
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Theorem 6.1.6. Let O be a Riemannian orbifold and let λ1 ≤ λ2 ≤ ... be the

spectrum of the associated Laplacian acting on smooth functions on O. The heat trace∑∞
j=1 e

−λjt of O is asymptotic as t→ 0+ to

I0 +
∑

N∈S(O)

IN
|Iso(N)|

,

where S(O) is the set of all O-strata, |Iso(N)| is the order of the isotropy at each

p ∈ N , and Iso(p) is the conjugacy class of subgroups of O(n). This asymptotic

expansion is of the form

(4πt)−dim(O)/2

∞∑
j=0

cjt
j/2

for some constants cj .

Using the above theorem, [DGGW] proved the following results for surfaces:

1. Within the class of all footballs (bad or good) and all teardrops, the spectrum

distinguishes footballs from teardrops and determines the orders of the cone

points. Roughly speaking, a pq-football is topologically homeomorphic to a

2-sphere with two isolated cone points of order p and q respectively; locally

the singular points are homeomorphic to R2/Zp and R2/Zq respectively. A p-

teardrop is topologically homeomorphic to a 2-sphere with a single cone point

of order p, which is locally homeomorphic to R2/Zp.

2. The spectrum distinguishes teardrops and footballs from triangular pillows with

positive Euler characteristic. Roughly speaking, a triangular pillow is a two

dimensional orbifold with three isolated cone points where the orbifold is locally

covered by R2, S2 or H2 and the group action is either by a cyclic group or

a dihedral group. For definitions and notation for footballs, teardrops and

triangular pillows see [Co].
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3. The spectrum distinguishes triangular pillows with positive Euler characteristic

from triangular pillows with negative Euler characteristic.

4. The spectrum distinguishes teardrops from triangular pillows with negative Eu-

ler characteristic.

5. If C is the class consisting of all closed orientable 2-orbifolds with non-negative

Euler characteristic, then the spectrum distinguishes the elements of C from

smooth oriented closed surfaces.

6. Within the class of all closed 2-orbifolds with non-negative Euler characteris-

tic, the spectrum distinguishes whether the orbifold has zero or positive Euler

characteristic.

7. Within the class of closed 2-orbifolds of constant nonzero curvature R or -R, the

spectrum determines the sign of the curvature - that is, whether the orbifold is

spherical or hyperbolic.

8. Within the class of spherical 2-orbifolds of constant curvature R > 0, the spec-

trum determines the orbifold.

It is also known [Sa] that

u2(a, a) =
1

120
{τ 2 + 2|ρ|2},

and the Taylor series expansion for u1(f(x), x) is given by

u1(f(x), x) = W +
1

2
Wky

k +
1

3
[Wkh +

1

6
Wρkh]y

kyh +O(y3),
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where W = 1
6
τ , Wk = 1

6
τ;k and

Wkh =
1

5!
{9τ;kh + 3ρkh;uu +

5

3
τρkh − 4ρkuρhu + 2ρuvRkuhv + 2RkuvwRhuvw}.

6.2 Three Dimensional Lens Spaces

We define the normal coordinates for a three-sphere as follows [Iv]: Consider a three-

sphere of radius r,

S3(r) = {(v1, v2, v3, v4) ∈ R4 : (v1)2 + (v2)2 + (v3)2 + (v4)2 = r2},

and let (R,ψ, θ, φ) be the spherical coordinates in R4 where R ∈ (0,∞), ψ ∈ [0, 2π],

θ ∈ (0, π] and φ ∈ (0, π]. These coordinates are connected with the standard coordi-

nate system (u1, u2, u3, u4) in R4 by the following equations:

u1 = R sinψ sin θ cosφ,

u2 = R sinψ sin θ sinφ,

u3 = R sinψ cos θ,

u4 = R cosψ. (6.11)

The equation of S3(r) in these coordinates is R2 = r2. The functions x1 = ψ, x2 = θ,

and x3 = φ provide an internal coordinate system on S3(r) (without one point) in

which the metric g induced on S3(r) from E3 has components gij such that
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(gij) =


r2 0

r2 sin2 ψ

0 r2 sin2 ψ sin2 θ

 .

g induces on S3(r) a Riemannian connection 5. Using the formula

Γmij =
1

2
gml[∂jgil + ∂iglj − ∂lgji],

we can calculate the Christoffel symbols, which are as follows:

Γ2
21 = Γ2

12 = cotψ, Γ3
31 = Γ3

13 = cotψ, Γ3
32 = Γ3

23 = cot θ, Γ1
22 = − sinψ cosψ,

Γ1
33 = − sinψ cosψ sin2 θ, Γ2

33 = − sin θ cos θ. All the other symbols are zero.

Now let γ : [0, 2π]→ S3(r) be a path in S3(r) such that xi◦γ = π/2 for i = 1, 2 and

x3 ◦γ = id|[0,2π]. Since cosπ/2 = cot π/2 = 0 and sinπ/2 = 1 we have Γijk|γ([0,2π]) = 0,

and consequently, if we take R = r = 1, we get gij = δji . Therefore, the coordinate

system {x1, x2, x3} and the frame {∂/∂x1, ∂/∂x2, ∂/∂x3} are normal for 5 along the

path γ.

From the Equations (6.11) it is clear that the set γ([0, 2π]) is a circle obtained by

intersecting S3(r) with the (v1, v2)−plane {v ∈ R4 : vi(p) = 0 fori ≥ 3} in R4. In fact,

we have

γ([0, 2π]) = {(v1, v2, 0, 0) ∈ R4 : v2
1 + v2

2 = r2} = S1(r)× (0, 0).

It is clear if C is a circle on S3(r) obtained by intersecting S3(r) by a 2-plane

through its origin then there are coordinates on S3(r) normal along C for the Rie-

mannian connection considered above.

We will assume r = 1. Then, using the above normal coordinate system, and the
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formulas

Ri
jlm = ∂lΓ

i
mj − ∂mΓilj + ΓkmjΓ

i
lk − ΓkljΓ

i
km,

Rabcd = gajR
j
bcd

we calculate the values of the curvature as follows:

R1212 = Rψθψθ = sin2 ψ,

R1313 = Rψφψφ = sin2 ψ sin2 θ,

R2323 = Rθφθφ = sin4 ψ sin2 θ.

All other values are zero. The values of the Ricci tensor, calculated by ρab = Rc
acb,

are as follows:

ρ11 = ρψψ = 2,

ρ22 = ρθθ = 2 sin2 ψ,

ρ33 = ρφφ = 2 sin2 ψ sin2 θ.

All other values are zero. We then calculate the scalar curvature as follows:

τ = gψψρψψ + gθθρθθ + gφφρφφ = 6.

Since τ is constant all its covariant derivatives, τ;j are zero. Using ρab;m = ∂mρab −

ρlbΓ
l
ma − ρalΓ

l
mb, we also calculate all the covariant derivatives of the Ricci tensor,

which turn out to be zero as well.

Let e1 = (1, 0, 0, 0), e2 = (0, 1, 0, 0), e3 = (0, 0, 1, 0) and e4 = (0, 0, 0, 1) be the
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standard basis in R4. We define the following two subsets:

Na =
{

(x, y, 0, 0) : x2 + y2 = 1
}
⊂ R4 and Nb =

{
(0, 0, z, w) : z2 + w2 = 1

}
⊂ R4.

The tangent space Te1S3, has basis vectors {e2, e3, e4} such that {e2} is a basis

for Te1Na and {e3, e4} is a basis for Te1N
⊥
a . Similarly, the tangent space Te4S3, has

basis vectors {e1, e2, e3} such that {e3} is a basis for Te4Nb and {e1, e2} is a basis for

Te4N
⊥
b . We will now calculate the values for b0(f, a), b1(f, a) and b2(f, a). Suppose

O = S3/G is an orbifold lens space where G =< γ > and

γ =



cos 2p̂1π
q

sin 2p̂1π
q

0 0

− sin 2p̂1π
q

cos 2p̂1π
q

0 0

0 0 cos 2p̂2π
q

sin 2p̂2π
q

0 0 − sin 2p̂2π
q

cos 2p̂2π
q



,

where p̂1 6≡ ±p̂2 (mod q). Suppose gcd(p̂1, q) = q1 and gcd(p̂2, q) = q2, so that p̂1 =

p1q1, p̂2 = p2q2 and q = α̂q1 = β̂q2. Suppose gcd(α̂, β̂) = g so that α̂ = αg, β̂ = βg

and gcd(α, β) = 1. This means we can write γ as
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γ =



cos 2p1π
αg

sin 2p1π
αg

0 0

− sin 2p1π
αg

cos 2p1π
αg

0 0

0 0 cos 2p2π
βg

sin 2p2π
βg

0 0 − sin 2p2π
βg

cos 2p2π
βg



.

Now

γα̂ =



1 0 0 0

0 1 0 0

0 0 cos 2p2πα
β

sin 2p2πα
β

0 0 − sin 2p2πα
β

cos 2p2πα
β


fixes Na, and

γβ̂ =



cos 2p1πβ
α

sin 2p1πβ
α

0 0

− sin 2p1πβ
α

cos 2p1πβ
α

0 0

0 0 1 0

0 0 0 1


fixes Nb.
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Note that since the group action is transitive and the fixed point sets are S1,

the functions bk(., .) are constant along these fixed circles. Therefore, it suffices to

consider just a single point in these fixed point sets to calculate the values of the

functions. We will choose the points e1 ∈ Na and e4 ∈ Nb to calculate the values of

functions.

We have, in the notation of the Theorem 6.1.6, Ña
∼= S1 × {(0, 0)} and Ñb

∼=

{(0, 0)} × S1.

Also, IsoNa = {1, γα̂, γ2α̂, ...γ(β−1)α̂}, |IsoNa| = β, IsoNb = {1, γβ̂, γ2β̂, ...γ(α−1)β̂}

and |IsoNb| = α.

We now use Theorem 6.1.6 to calculate the heat trace asymptotic for O using the

formula I0 +
INa
β

+
INb
α

where

I0 = (4πt)−dim(O)/2

∞∑
k=0

ak(O)tk = (4πt)−dim(O)/2

∞∑
k=0

1

|G|
ak(S3)tk

=
(4πt)−3/2

q

∞∑
k=0

√
π

4k!
tk =

(4t)−3/2

4qπ

∞∑
k=0

tk

k!
=
t−3/2

32qπ
et,

and for i ∈ a, b,

INi = (4πt)−dim(Ni)/2

∞∑
k=0

tk
∫
Ni

bk(Ni, x)dvolNi(x)

=
(πt)−1/2

2

∞∑
k=0

tk
∫
Ñi

bk(Ñi, x)dvolÑi(x), since Ñi → Ni is trivial in this case

=
(πt)−1/2

2

∞∑
k=0

tk2πbk(Ñi, x) (for any choice of x by homogeneity)

=
√
πt−1/2

∞∑
k=0

tkbk(Ñi, x) , where bk(Ñi, x) =
∑

γ∈IsomaxÑi

bk(γ, x).
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Now for a = e1 and r ∈ {1, 2, ...(β − 1)},

Aγrα̂(a) =


cos 2p2παr

β
sin 2p2παr

β

− sin 2p2παr
β

cos 2p2παr
β

 ,

I − Aγrα̂(a) =


1− cos 2p2παr

β
− sin 2p2παr

β

sin 2p2παr
β

1− cos 2p2παr
β

 ,

Bγrα̂(a) = (I − Aγrα̂(a))−1 =
1

4 sin2 p2παr
β


1− cos 2p2παr

β
− sin 2p2παr

β

sin 2p2παr
β

1− cos 2p2παr
β



=
1

2


1 − cot p2παr

β

cot p2παr
β

1

 .

So, |detBγrα̂(a)| = 1
4
(1 + cot2 p2παr

β
) = 1

4 sin2 p2παr
β

.

Similarly we can show that for b = e4 and r ∈ {1, 2, ...(α− 1)},

Bγrβ̂(b) =
1

2


1 − cot p1πβr

α

cot p1πβr
α

1

 ,

and |detBγrβ̂(b)| = 1
4
(1 + cot2 p1πβr

α
) = 1

4 sin2 p1πβr
α

.
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We will now calculate bi(Ñj, .) for i = 0, 1, 2 and j = a, b:

b0(γrα̂, a) = |detBγrα̂(a)| = 1

4
(1 + cot2 p2παr

β
) =

1

4 sin2 p2παr
β

.

So,

b0(Ña, a) =
∑

f∈IsomaxÑa

b0(f, a)

=

β−1∑
r=1

b0(γrα̂, a)

=

β−1∑
r=1

1

4
(1 + cot2 p2παr

β
)

=

β−1∑
r=1

1

4
(1 + cot2 πr

β
) , since gcd(p2α, β) = 1

=

β−1∑
r=1

1

4 sin2 πr
β

=
β2 − 1

12
, by lemma 5.4 in [DGGW].

We can similarly show that

b0(Ñb, b) =
α−1∑
r=1

1

4
(1 + cot2 πr

α
) =

α2 − 1

12
.

We will now calculate b1(Ña, a) and b1(Ñb, b). Note that for both Bγrα̂(a) and

Bγrβ̂(b), B13 = B23 = B31 = B32 = B33 = 0. Using the formula in Theorem 6.1.4, we
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get

b1(γrα̂, a) =
|det(Bγrα̂(a))|

3

{
R1212

[
2− 1

4
(cot θr − cot θr)

2 − (
1

2
+

1

2
)2 − 2((

1

4
+

1

4
)
]

+R1313

[
2− (

1

2
+ 0)2 − 2(

1

4
+ 0)− 3(

1

4
cot2 θr + 0)

]
+R2323

[
2− (

1

2
+ 0)2 − 2(

1

4
+ 0)− 3(

1

4
cot2 θr + 0)

]}
,

which gives

b1(γrα̂, a) =
1

12
(1 + cot2 θr)

{
R1313

(
2− 3

4
− 3

4
cot2 θr)

)
+R2323

(
2− 3

2
− 3

4
cot2 θr)

)}
=

1

12
(1 + cot2 θr)(R1313 +R2323)[2− 3

4
(1 + cot2 θr)]

= (R1313 +R2323)
[1

6
(1 + cot2 θr)−

1

16
(1 + cot2 θr)

2
]

= (R1313 +R2323)
[ 1

6 sin2 θr
− 1

16 sin2 θr

]
,

where θr = p2παr
β

.

So,

b1(Ña, a) =

β−1∑
r=1

b1(γrα̂, a)

=

β−1∑
r=1

(R1313 +R2323)
[ 1

6 sin2 p2παr
β

− 1

16 sin2 p2παr
β

]
= (R1313 +R2323)

[1

6

β−1∑
r=1

1

sin2 πr
β

− 1

16

β−1∑
r=1

1

sin4 πr
β

]
,

since gcd(p2α, β) = 1.
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Also,
∑β−1

r=1
1

sin2 πr
β

= β2−1
3

and
∑β−1

r=1
1

sin4 πr
β

= β4+10β2−11
45

(see [DGGW]). So we get

b1(Ña, a) = (R1313 +R2323)
(β2 − 1

18
− β4 + 10β2 − 11

720

)
= −(R1313 +R2323)

(β2 − 29)(β2 − 1)

720
.

We can similarly show that

b1(Ñb, b) = (R1313 +R2323)
(α2 − 1

18
− α4 + 10α2 − 11

720

)
= −(R1313 +R2323)

(α2 − 29)(α2 − 1)

720
.

We will now calculate b2(Ña, a) and b2(Ñb, b) using (6.10):

b2(f, c) = |det(B)|
[
u2(c, c) + ∆y(u1(f(x), x)ψ(x)|J(x̃, y)|)(0)

+
1

2
∆2
y(u0(f(x), x)ψ(x)|J(x̃, y)|)(0)

]
,

where ψ(x), |J(x̄, y)| and u0(f(x), x)are taken from (6.7), (6.8) and (6.9) respectively.

Note that

∆2
y(u0(f(x), x)ψ(x)|J(x̄, y)|)(0)

=∆2
y(1 +

1

12
ρkhy

kyh +
1

6
RikshBkiBhty

syt

+
1

6
RikthBksBhiy

syt − 1

2
RkαhαBksBhty

syt +O(y3))(0) = 0.
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We now calculate ∆y(u1(f(x), x)ψ(x)|J(x̃, y)|)(0), which is

∆y

([
W +

1

2
Wky

k +
1

3
(Wkh +

1

6
Wρkh)y

kyh +O(y3)
]

[
1− 1

6
RkihiBksBhty

syt − 1

2
RkαhαBksBhty

syt +O(y3)
]

[
1 +

1

6
(RikihBksBht +RikshBkiBht +RikthBksBhi)

])
(0),

where W = 1
6
τ , Wk = 1

6
τ;k and

Wkh =
1

5!
{9τ;kh + 3ρkh;uu +

5

3
τρkh − 4ρkuρhu + 2ρuvRkuhv + 2RkuvwRhuvw}.

For lens spaces, we have τ = 6, and all the covariant derivatives of τ and ρkh are zero.

So, in this case, we will have W = 1, Wk = 0 and

Wkh =
1

5!
{5

3
τρkh − 4ρkuρhu + 2ρuvRkuhv + 2RkuvwRhuvw}.

This gives

∆y(u1(f(x), x)ψ(x)|J(x̃, y)|)(0)

= ∆y

([
1 +

1

3
(Wkh +

1

6
ρkh)y

kyh +O(y3)
]

[
1− 1

6
RkihiBksBhty

syt − 1

2
RkαhαBksBhty

syt +O(y3)
]

[
1 +

1

6
(RikihBksBht +RikshBkiBht +RikthBksBhi)

])
(0)

= ∆y

(
1 +

1

3

{ 1

5!

[
10ρkh − 4ρkuρhu + 2ρuvRkuhv + 2RkuvwRhuvw

]
+

1

6
ρkh

}
ykyh

+
1

6
RikshBkiBhty

syt +
1

6
RikthBksBhiy

syt − 1

2
RkαhαBksBhty

syt +O(y3)
)

(0)

=
1

3

{ 1

5!

[
20ρkk − 8ρ2

kk + 4ρααRkαkα +R2
kαkα

]
+

1

3
ρkk +RikshBkiBhs +RikthBktBhi − 3RkαhαBksBhs

}
.
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So, for a = e1 and r ∈ {1, 2, ...β − 1},

b2(γrα̂, a) =|det(Bγrα̂(a))|
[ 1

120
τ 2 +

1

60
|ρ|2 +

1

18
ρkk −

1

45
ρ2
kk +

1

90
ρααRkαkα

+
1

90
R2
kαkα +

1

9
ρkk +

1

3
RikshBkiBhs +

1

3
RikthBktBhi −RkαhαBksBhs

]

gives

b2(γrα̂, a) =|det(Bγrα̂(a))|
{ 1

120
τ 2 +

1

60
|ρ|2 +

1

18
(ρ11 + ρ22 + ρ33)

− 1

90

[
2ρ2

11 + 2ρ2
22 + 2ρ2

33 − (ρ11 + ρ22)R1212 − (ρ11 + ρ33)R1313

− (ρ22 + ρ33)R2323 + 2R2
1212 + 2R2

1313 + 2R2
2323

]
− 1

3

[
R1212[(B12 +B21)2 + 2(B2

11 +B2
22)

+ (B11 +B22)2]−R1313(B2
11 +B2

12)−R2323(B2
21 +B2

22)
]}
.

We denote by Q the following expression:

{ 1

120
τ 2 +

1

60
|ρ|2 +

1

18
(ρ11 + ρ22 + ρ33)

− 1

90

[
2ρ2

11 + 2ρ2
22 + 2ρ2

33 − (ρ11 + ρ22)R1212 − (ρ11 + ρ33)R1313

− (ρ22 + ρ33)R2323 + 2R2
1212 + 2R2

1313 + 2R2
2323

]}
.

Using this, we can now write

b2(γrα̂, a) = |det(Bγrα̂(a))|
{
Q− 1

3
[2R1212 −

1

4
(1 + cot2 p2παr

β
)(R1313 +R2323)]

}
,
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and

b2(Ña, a) =

β−1∑
r=1

b2(γrα̂, a)

=

β−1∑
r=1

|det(Bγrα̂(a))|
{
Q− 1

3
[2R1212 −

1

4
(1 + cot2 p2παr

β
)(R1313 +R2323)]

}
=Q

β−1∑
r=1

1

4
(1 + cot2 p2παr

β
)− 2

3
R1212

β−1∑
r=1

1

4
(1 + cot2 p2παr

β
)

+
(R1313 +R2323)

3

β−1∑
r=1

1

16
(1 + cot2 p2παr

β
)2

=
Q

4

β−1∑
r=1

(1 + cot2 πr

β
)− 2

12
R1212

β−1∑
r=1

(1 + cot2 πr

β
)

+
(R1313 +R2323)

48

β−1∑
r=1

(1 + cot2 πr

β
)2

=
Q

4

β−1∑
r=1

1

sin2 πr
β

− 2

12
R1212

β−1∑
r=1

1

sin2 πr
β

+
(R1313 +R2323)

48

β−1∑
r=1

1

sin4 πr
β

=
3Q− 2R1212

12

(β2 − 1

3

)
+
R1313 +R2323

48

(β4 + 10β2 − 11

45

)
.

Similarly, we can show that for b = e4, for instance,

b2(Ñb, b) =
3Q− 2R1212

12

(α2 − 1

3

)
+
R1313 +R2323

48

(α4 + 10α2 − 11

45

)
.

Using Theorem 6.1.6 we now calculate the first few coefficients of the asymptotic

expansion as follows:
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I0 +
INa

|Iso(Na)|
+

INb
|Iso(Nb)|

=
t−3/2

32qπ
et +

(πt)−1/2

β

[
t0πb0(Ña, a) + t1πb1(Ña, a) + t2πb2(Ña, a) + ...

]
+

(πt)−1/2

α

[
t0πb0(Ñb, b) + t1πb1(Ñb, b) + t2πb2(Ñb, b) + ...

]
=
t−3/2

32qπ
(1 + t+

t2

2
+
t3

6
+
t4

24
+ ...) +

(b0(Ña, a)

β
+
b0(Ñb, b)

α

)√
πt−1/2

+
(b1(Ña, a)

β
+
b1(Ñb, b)

α

)√
πt1/2 +

(b2(Ña, a)

β
+
b2(Ñb, b)

α

)√
πt3/2 + ...

From this, the coefficient of t−3/2 is 1
32qπ

;

the coefficient of t−1/2 is

1

32qπ
+
b0(Ña, a)

β

√
π +

b0(Ñb, b)

α

√
π =

1

32qπ
+

√
π

12β
(β2 − 1) +

√
π

12α
(α2 − 1);

the coefficient of t1/2 is

1

64qπ
−
√
π(R1313 +R2323)[α(β2 − 29)(β2 − 1) + β(α2 − 29)(α2 − 1)]

720αβ
;

and the coefficient of t3/2 is

1

192qπ
+
√
π
{3Q− 2R1212

36

[(α2 − 1)

α
+

(β2 − 1)

β

]
+
R1313 +R2323

2160

[α4 + 10α2 − 11

α
+
β4 + 10β2 − 11

β

]}
.

The above results show that the coefficients are dependent on α, β and the curva-

ture tensor and its covariant derivatives. Since all lens spaces are finitely covered by

S3, the parts of the coefficients that consist of the curvature tensor and its covariant
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derivatives will be the same for all lens spaces. The only difference will therefore be

in the terms containing α and β. We can rewrite

b0(Ña, a) =

β−1∑
r=1

1

4
(1 + cot2 p2παr

β
) =

β−1∑
r=1

1

4
+

β−1∑
r=1

1

4
cot2 p2παr

β
,

b0(Ñb, b) =
α−1∑
r=1

1

4
(1 + cot2 p1πβr

α
) =

α−1∑
r=1

1

4
+

α−1∑
r=1

1

4
cot2 p1πβr

α
,

b1(Ña, a) =

β−1∑
r=1

(R1313 +R2323)
[1

6
(1 + cot2 p2απr

β
)− 1

16
(1 + cot2 p2απr

β
)2
]

=

β−1∑
r=1

5(R1313 +R2323)

48
+

β−1∑
r=1

(R1313 +R2323

24

)
cot2 p2απr

β

−
β−1∑
r=1

(R1313 +R2323

16

)
cot4 p2απr

β
,

b1(Ñb, b) =
α−1∑
r=1

(R1313 +R2323)
[1

6
(1 + cot2 p1βπr

α
)− 1

16
(1 + cot2 p1βπr

α
)2
]

=
α−1∑
r=1

5(R1313 +R2323)

48
+

α−1∑
r=1

(R1313 +R2323

24

)
cot2 p1βπr

α

−
α−1∑
r=1

(R1313 +R2323

16

)
cot4 p1βπr

α
,
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b2(Ña, a) =
Q

4

β−1∑
r=1

(1 + cot2 p2απr

β
)− 2

12
R1212

β−1∑
r=1

(1 + cot2 p2απr

β
)

+
(R1313 +R2323)

48

β−1∑
r=1

(1 + cot2 p2απr

β
)2

=

β−1∑
r=1

12Q− 8R1212 +R1313 +R2323

48

+

β−1∑
r=1

(6Q+ 4R1212 +R1313 +R2323

24

)
cot2 p2απr

β

+
(R1313 +R2323

48

)
cot4 p2απr

β
,

b2(Ñb, b) =
Q

4

α−1∑
r=1

(1 + cot2 p1βπr

α
)− 2

12
R1212

α−1∑
r=1

(1 + cot2 p1βπr

α
)

+
(R1313 +R2323)

48

α−1∑
r=1

(1 + cot2 p1βπr

α
)2

=
α−1∑
r=1

12Q− 8R1212 +R1313 +R2323

48

+
α−1∑
r=1

(6Q+ 4R1212 +R1313 +R2323

24

)
cot2 p1βπr

α

+
(R1313 +R2323

48

)
cot4 p1βπr

α
.

Note that each bj(Ña, a), (j = 0, 1, 2) is of the form

bj(Ña, a) =

β−1∑
r=1

Aj∑
i=1

Ca
ij(R) cotλi

p2απr

β
,

where Aj is the finite number of monomials in the powers of cot p2απr
β

, and for each

i, Ca
ij(R) are constant functions in terms of the curvature tensor and its covariant

derivatives of the covering space, i.e. the sphere. Since gcd(p2α, β) = 1, and we are
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summing over r as it ranges from 1 to β − 1, we can write

bj(Ña, a) =

β−1∑
r=1

Aj∑
i=1

Ca
ij(R) cotλi

πr

β
.

Similarly, since gcd(α, p1β) = 1, we can write

bj(Ñb, b) =
α−1∑
r=1

Aj∑
i=1

Cb
ij(R) cotλi

πr

α
.

More generally, for any k, the functions bk(γ
rα̂, a) and bk(γ

rβ̂, a) are universal

polynomials in the components of the curvature tensor, its covariant derivatives and

the elements of Bγrα̂(a) and Bγrβ̂(b) respectively. Since the elements of Bγrα̂(a) are

B11 = B22 = 1/2, B12 = −1
2

cotλi p2απr
β

and B21 = 1
2

cotλi p2απr
β

, every bk(γ
rα̂, a) will

be of the form
∑Aj

i=1C
a
ij(R) cotλi p2απr

β
. This means that for each k, we will have,

bk(Ña, a) =

β−1∑
r=1

Ak∑
i=1

Ca
ik(R) cotλi

πr

β
,

and similarly,

bk(Ñb, b) =
α−1∑
r=1

Ak∑
i=1

Cb
ik(R) cotλi

πr

α
.

This observation gives us the following lemma:

Lemma 6.2.1. Given two orbifold lens spaces O1 = S3/G1 and O2 = S3/G2, such

that G1 =< γ1 > and G2 =< γ2 > where

γ1 =


e

2p̂1πi
q 0

0 e
2p̂2πi
q
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with p̂1 6≡ ±p̂2 (mod q), gcd(p̂1, q) = q11, gcd(p̂2, q) = q21, p̂1 = p1q11, p̂2 = p2q21,

q = α̂1q11 = β̂1q21, gcd(α̂1, β̂1) = g1, α̂1 = α1g1, β̂1 = β1g1, and

γ2 =


e

2ŝ1πi
q 0

0 e
2ŝ2πi
q

 ,

with ŝ1 6≡ ±ŝ2 (mod q), gcd(ŝ1, q) = q12, gcd(ŝ2, q) = q22, ŝ1 = s1q12, ŝ2 = s2q22,

q = α̂2q12 = β̂2q22, gcd(α̂2, β̂2) = g2, α̂2 = α2g2, β̂2 = β2g2.

Then O1 = S3/G1 and O2 = S3/G2 will have the exact same asymptotic expansion of

the heat kernel if α1 = α2 and β1 = β2.

This lemma gives us a tool to find examples of 3-dimensional orbifold lens spaces

that are non-isometric (hence non-isospectral) but have the exact same asymptotic

expansion of the heat kernel.

Example 6.2.2. Suppose q = 195, and consider the two lens spaces O1 = L(195 : 3, 5)

and O2 = L(195 : 6, 35). Since there is no integer l coprime to 195 and no ei ∈ {1,−1}

such that {e1l3, e2l5} is a permutation of {6, 35}(mod q), O1 and O2 are not isometric

(and hence non-isospectral). However, in the notation of the lemma above, p̂1 = 3,

p̂2 = 5, ŝ1 = 6, ŝ2 = 35, gcd(p̂1, q) = 3 = gcd(ŝ1, q), gcd(p̂2, q) = 5 = gcd(ŝ2, q) and

q = 195 = 3× 65 = 5× 39. So, α̂1 = α̂2 = 65 and β̂1 = β̂2 = 39, with gcd(α̂i, β̂i) = 13

(for i = 1, 2) giving α1 = α2 = 5 and β1 = β2 = 3. Therefore, O1 = L(195 : 3, 5) and

O2 = L(195 : 6, 35) have the exact same asymptotic expansion.
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6.3 Four Dimensional Lens Spaces

We define the normal coordinates for a four-sphere as follows [Iv]: Consider a four-

sphere of radius r,

S4(r) = {(v1, v2, v3, v4, v5) ∈ R5 : (v1)2 + (v2)2 + (v3)2 + (v4)2 + (v5)2 = r2},

and let (R,ψ, θ, φ, t) be the spherical coordinates in R5 where R ∈ (0,∞), ψ ∈ (0, π],

θ ∈ (0, π], φ ∈ (0, π] and t ∈ [0, 2π]. These coordinates are connected with the

standard coordinate system (u1, u2, u3, u4, u5) in R5 by the following equations:

u1 = R sinψ sin θ sinφ sin t,

u2 = R sinψ sin θ sinφ cos t,

u3 = R sinψ sin θ cosφ,

u4 = R sinψ cos θ,

u5 = R cosψ. (6.12)

The equation of S4(r) in these coordinates is R2 = r2. The functions x1 = ψ, x2 = θ,

x3 = φ and x4 = t provide an internal coordinate system on S4(r) (without one point)

in which the metric g induced on S4(r) from E3 has components gij such that

(gij) =



r2 0
r2 sin2 ψ

r2 sin2 ψ sin2 θ

0 r2 sin2 ψ sin2 θ sin2 φ


.

g induces on S3(r) a Riemannian connection 5. Using the formula
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Γmij =
1

2
gml[∂jgil + ∂iglj − ∂lgji],

we can calculate the Christoffel symbols, which are as follows:

Γ2
21 = Γ2

12 = Γ3
31 = Γ3

13 = Γ4
41 = Γ4

14 = cotψ, Γ3
32 = Γ3

23 = Γ4
42 = Γ4

24 = cot θ,

Γ1
22 = − sinψ cosψ, Γ1

33 = − sinψ cosψ sin2 θ, Γ2
33 = − sin θ cos θ, Γ3

44 = − sinφ cosφ,

Γ1
44 = − sinψ cosψ sin2 θ sin2 φ, Γ2

44 = − sin θ cos θ sin2 φ, Γ4
43 = cotφ. All the other

symbols are zero.

Now let γ : [0, 2π] → S4(r) be a path in S4(r) such that xi ◦ γ = π/2 for i =

1, 2, 3 and x4 ◦ γ = id|[0,2π]. Since cosπ/2 = cot π/2 = 0 and sin π/2 = 1 we have

Γijk|γ([0,2π]) = 0, and consequently, if we take R = r = 1, we get gij = δji . Therefore,

the coordinate system {x1, x2, x3, x4} and the frame {∂/∂x1, ∂/∂x2, ∂/∂x3, ∂/∂x4} are

normal for 5 along the path γ.

From the equations (6.12) it is clear that the set γ([0, 2π]) is a circle obtained by

intersecting S4(r) with the (u1, u2)−plane {v ∈ R5 : ui(p) = 0 fori ≥ 3} in R5. In

fact, we have

γ([0, 2π]) = {(v1, v2, 0, 0, 0) ∈ R5 : v2
1 + v2

2 = r2} = S1(r)× (0, 0, 0).

It is clear if C is a circle on S4(r) obtained by intersecting S4(r) by a 2-plane

through its origin then there are coordinates on S4(r) normal along C for the Rie-

mannian connection considered above.

We will assume r = 1. Then, using the above normal coordinate system, and the

formulas

Ri
jlm = ∂lΓ

i
mj − ∂mΓilj + ΓkmjΓ

i
lk − ΓkljΓ

i
km,

Rabcd = gajR
j
bcd,
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we calculate the values of the curvature tensor as follows:

R1212 = Rψθψθ = sin2 ψ,

R1313 = Rψφψφ = sin2 ψ sin2 θ,

R1414 = Rψtψt = sin2 ψ sin2 θ sin2 φ,

R2323 = Rθφθφ = sin4 ψ sin2 θ,

R2424 = Rθtθt = sin4 ψ sin2 θ sin2 φ,

R3434 = Rφtφt = sin4 ψ sin4 θ sin2 φ.

All other values are zero. The values of the Ricci tensor, calculated by ρab = Rc
acb,

are as follows:

ρ11 = ρψψ = 3,

ρ22 = ρθθ = 3 sin2 ψ,

ρ33 = ρφφ = 3 sin2 ψ sin2 θ,

ρ44 = ρtt = 3 sin2 ψ sin2 θ sin2 φ.

All other values are zero. We then calculate the scalar curvature as follows:

τ = gψψρψψ + gθθρθθ + gφφρφφ + gttρtt = 12.

Since τ is constant all its covariant derivatives, τ;j are zero. Using ρab;m = ∂mρab −

ρlbΓ
l
ma − ρalΓ

l
mb, we also calculate all the covariant derivatives of the Ricci tensor,

which turn out to be zero as well.

Let e1 = (1, 0, 0, 0, 0), e2 = (0, 1, 0, 0, 0), e3 = (0, 0, 1, 0, 0), e4 = (0, 0, 0, 1, 0) and
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e5 = (0, 0, 0, 0, 1) be the standard basis in R5. We define the following two subsets:

Na =
{

(x, y, 0, 0, v) : x2 + y2 + v2 = 1
}
⊂ R5

and

Nb =
{

(0, 0, z, w, v) : z2 + w2 + v2 = 1
}
⊂ R5.

The tangent space Te1S4, has basis vectors {e2, e3, e4, e5} such that {e2, e5} is a

basis for Te1Na and {e3, e4} is a basis for Te1N
⊥
a . Similarly, the tangent space Te4S4,

has basis vectors {e1, e2, e3, e5} such that {e3, e5} is a basis for Te4Nb and {e1, e2} is

a basis for Te4N
⊥
b .

Suppose O = S4/G is an orbifold lens space where G =< γ > and

γ =



cos 2p̂1π
q

sin 2p̂1π
q

0 0 0

− sin 2p̂1π
q

cos 2p̂1π
q

0 0 0

0 0 cos 2p̂2π
q

sin 2p̂2π
q

0

0 0 − sin 2p̂2π
q

cos 2p̂2π
q

0

0 0 0 0 1



,

where p̂1 6≡ ±p̂2 (mod q). Suppose gcd(p̂1, q) = q1 and gcd(p̂2, q) = q2, so that p̂1 =

p1q1, p̂2 = p2q2 and q = α̂q1 = β̂q2. Suppose gcd(α̂, β̂) = g so that α̂ = αg, β̂ = βg

and gcd(α, β) = 1. This means we can write γ as
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γ =



cos 2p1π
αg

sin 2p1π
αg

0 0 0

− sin 2p1π
αg

cos 2p1π
αg

0 0 0

0 0 cos 2p2π
βg

sin 2p2π
βg

0

0 0 − sin 2p2π
βg

cos 2p2π
βg

0

0 0 0 0 1



.

Now

γα̂ =



1 0 0 0 0

0 1 0 0 0

0 0 cos 2p2πα
β

sin 2p2πα
β

0

0 0 − sin 2p2πα
β

cos 2p2πα
β

0

0 0 0 0 1
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fixes Na, and

γβ̂ =



cos 2p1πβ
α

sin 2p1πβ
α

0 0 0

− sin 2p1πβ
α

cos 2p1πβ
α

0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1


fixes Nb.

Note that since the group action is transitive and the fixed point sets are S2,

the functions bk(., .) are constant along these fixed spheres. Therefore, it suffices to

consider just a single point in these fixed point sets to calculate the values of the

functions. We will choose the points e1 ∈ Na and e4 ∈ Nb to calculate the values of

functions.

We have, in the notation of the Theorem 6.1.6, Ña
∼= S2 × {(0, 0)} and Ñb

∼=

{(0, 0)} × S2.

Also, IsoNa = {1, γα̂, γ2α̂, ...γ(β−1)α̂}, |IsoNa| = β, IsoNb = {1, γβ̂, γ2β̂, ...γ(α−1)β̂}

and |IsoNb| = α.

Now, as in the case of three-dimensional lens spaces, we have for a = e1 and
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r ∈ {1, 2, ...(β − 1)},

Aγrα̂(a) =


cos 2p2παr

β
sin 2p2παr

β

− sin 2p2παr
β

cos 2p2παr
β

 ,

I − Aγrα̂(a) =


1− cos 2p2παr

β
− sin 2p2παr

β

sin 2p2παr
β

1− cos 2p2παr
β

 ,

Bγrα̂(a) = (I − Aγrα̂(a))−1 =
1

4 sin2 p2παr
β


1− cos 2p2παr

β
− sin 2p2παr

β

sin 2p2παr
β

1− cos 2p2παr
β



=
1

2


1 − cot p2παr

β

cot p2παr
β

1

 .

So, |detBγrα̂(a)| = 1
4
(1 + cot2 p2παr

β
) = 1

4 sin2 p2παr
β

.

Similarly we can show that for b = e4 and r ∈ {1, 2, ...(α− 1)},

Bγrβ̂(b) =
1

2


1 − cot p1πβr

α

cot p1πβr
α

1

 ,

and |detBγrβ̂(b)| = 1
4
(1+cot2 p1πβr

α
) = 1

4 sin2 p1πβr
α

. Note again that for both Bγrα̂(a)
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and Bγrβ̂(b), B13 = B23 = B31 = B32 = B33 = B41 = B14 = B42 = B24 = B43 =

B34 = B44 = 0.

Recall that for any k, the functions bk(γ
rα̂, a) and bk(γ

rβ̂, a) are universal polyno-

mials in the components of the curvature tensor, its covariant derivatives and the

elements of Bγrα̂(a) and Bγrβ̂(b) respectively. Since the elements of Bγrα̂(a) are

B11 = B22 = 1/2, B12 = −1
2

cotλi p2απr
β

and B21 = 1
2

cotλi p2απr
β

, every bk(γ
rα̂, a)

will be of the form
∑Aj

i=1C
a
ij(R) cotλi p2απr

β
as in case of 3-dimensional lens spaces

before, where Aj is the finite number of monomials in the powers of cot p2απr
β

, and

for each i, Ca
ij(R) are constant functions in terms of the curvature tensor and its

covariant derivatives. This means that, just as in the case of three-dimensional lens

spaces, for each k, we will have,

bk(Ña, a) =

β−1∑
r=1

Ak∑
i=1

Ca
ik(R) cotλi

πr

β
,

and

bk(Ñb, b) =
α−1∑
r=1

Ak∑
i=1

Cb
ik(R) cotλi

πr

α
.

This observation gives us the following lemma:

Lemma 6.3.1. Given two orbifold lens spaces O1 = S4/G1 and O2 = S4/G2, such

that G1 =< γ1 > and G2 =< γ2 > where

γ1 =



e
2p̂1πi
q 0 0

0 e
2p̂2πi
q 0

0 0 1
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with p̂1 6≡ ±p̂2 (mod q), gcd(p̂1, q) = q11, gcd(p̂2, q) = q21, p̂1 = p1q11, p̂2 = p2q21,

q = α̂1q11 = β̂1q21, gcd(α̂1, β̂1) = g1, α̂1 = α1g1, β̂1 = β1g1, and

γ2 =



e
2ŝ1πi
q 0 0

0 e
2ŝ2πi
q 0

0 0 1


,

with ŝ1 6≡ ±ŝ2 (mod q), gcd(ŝ1, q) = q12, gcd(ŝ2, q) = q22, ŝ1 = s1q12, ŝ2 = s2q22,

q = α̂2q12 = β̂2q22, gcd(α̂2, β̂2) = g2, α̂2 = α2g2, β̂2 = β2g2.

Then O1 = S4/G1 and O2 = S4/G2 will have the exact same asymptotic expansion of

the heat kernel if α1 = α2 and β1 = β2.

This lemma gives us a tool to find examples of 4-dimensional orbifold lens spaces

that are non-isometric (hence non-isospectral) but have the exact same asymptotic

expansion of the heat kernel.

Example 6.3.2. Suppose q = 195, and consider the two lens spaces O1 = L̃1+ =

L(195 : 3, 5, 0) and O2 = L̃′1+ = L(195 : 6, 35, 0) (using the notation from Proposition

4.4.1). Since there is no integer l coprime to 195 and no ei ∈ {1,−1} such that

{e1l3, e2l5} is a permutation of {6, 35}(mod q), O1 and O2 are not isometric (and

hence non-isospectral). However, in the notation of the lemma above, p̂1 = 3, p̂2 = 5,

ŝ1 = 6, ŝ2 = 35, gcd(p̂1, q) = 3 = gcd(ŝ1, q), gcd(p̂2, q) = 5 = gcd(ŝ2, q) and q =

195 = 3 × 65 = 5 × 39. So, α̂1 = α̂2 = 65 and β̂1 = β̂2 = 39, with gcd(α̂i, β̂i) = 13

(for i = 1, 2) giving α1 = α2 = 5 and β1 = β2 = 3. Therefore, O1 and O2 have the

exact same asymptotic expansion.
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