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Abstract

Spectral theory is the study of Mark Kac’s famous question [K], “can one hear the
shape of a drum?” That is, can we determine the geometrical or topological properties
of a manifold by using its Laplace Spectrum? In recent years, the problem has been
extended to include the study of Riemannian orbifolds within the same context. In
this thesis, on the one hand, we answer Kac’s question in the negative for orbifolds
that are spherical space forms of dimension higher than eight. On the other hand,
for the three-dimensional and four-dimensional cases, we answer Kac’s question in
the affirmative for orbifold lens spaces, which are spherical space forms with cyclic
fundamental groups.

We also show that the isotropy types and the topology of the singularities of
Riemannian orbifolds are not determined by the Laplace spectrum. This is done in a
joint work with E. Stanhope and D. Webb by using P. Berard’s generalization of T.
Sunada’s theorem to obtain isospectral orbifolds.

Finally, we construct a technique to get examples of orbifold lens spaces that are
not isospectral, but have the same asymptotic expansion of the heat kernel. There are
several examples of such pairs in the manifold setting, but to the author’s knowledge,
the examples developed in this thesis are among the first such examples in the orbifold

setting.
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Chapter 1

Introduction

Many years ago, Mark Kac [K] posed a model inverse problem which has attracted
the attention and energy of many mathematicians: Do the Dirichlet eigenvalues of a
bounded domain determine its geometry, or, more famously, Can one hear the shape
of a drum? Exercising their penchant for generalization,mathematicians recast the
question in a mathematically natural setting: Does the eigenvalue spectrum of the
Laplacian on a compact Riemannian manifold M (with suitable boundary conditions
if OM # () determine its geometry? Kac’s original question was answered in the neg-
ative in 1992 by Gordon, Webb and Wolpert [GWW]| who constructed examples of
non-isometric isospectral plane domains. We call two compact Riemannian manifolds
M and M, isospectral if the Laplacians on functions have the same eigenvalue spec-
trum, and define the isospectral set of M to be the set of all Riemannian manifolds
for which the spectrum of the Laplacian on functions equals that of M. As pointed
out, geometry is not in general a spectral invariant. The first example of nonisometric
isospectral manifolds was found in 1964 by John Milnor, who exhibited two distinct

but isospectral 16-dimensional manifolds. This was followed by the construction in



the 1980s and 1990s of many different examples of nonisometric but isospectral man-
ifolds. Among these are discrete families of isospectral manifolds, continuous families
of isospectral manifolds, isospectral plane domains, and even isospectral conformally
equivalent manifolds. In general, there are three known methods to construct or

discover these examples of nonisometric isospectral manifolds:

(1) Explicit Construction: Examples constructed by explicit computations include
isospectral at manifolds with surprising spectral properties ([MR], [MR2], [MR3]),
the first examples [Sz1] of isospectral manifolds with boundary having differ-
ent local geometry(these partially motivated and were later reinterpreted by
the torus action method below) and the first examples of pairs of isospectral

metrics on balls and spheres [Sz2].

(2) Representation-Theoretic Construction: Representation theoretic methods, es-
pecially the celebrated Sunada technique [Su], have provided the most system-
atic and widely used methods for constructing isospectral manifolds with the

same local, but different global, geometry.

(3) Torus Actions: This method generally produces isospectral manifolds with dif-

ferent local geometry.

For a more complete overview of these methods see [Go].

The problem is to characterize the isospectral set of a given Riemannian manifold
M. There are two natural approaches to this problem. First, one can form spectral
invariants such as the heat trace, the wave trace, or the determinant of the Laplacian
and compute them geometrically in order to obtain geometric invariants of the spec-
trum: this approach has its roots in Selberg’s trace formula for a compact surface

[Se] and its natural expression in such key developments as Duistermaat-Guillemin



trace formula [DG| and the computation of heat invariants by Gilkey and others (see,
for example, [G1]). A second and complementary approach is to use techniques of
group theory or Lie theory to construct families of manifolds with the same spectrum
but distinct geometry. A key development in this approach was the celebrated pa-
per of Sunada [Su| in which he showed how to reduce the construction of isospectral
manifolds to an exercise in group theory.

To any compact Riemannian manifold (M, ¢g) (with or without boundary), we can
associate a second-order partial differential operator, the Laplace operator A, defined
by A (f) = div(grad(f)) for f € L*(M,g). Sometimes it is also written as A, if
we want to emphasize which metric the Laplace operator is associated with. The
set of eigenvalues of A (the spectrum of A, or of M),which we will write as spec(A)
or spec(M, g), then forms a discrete sequence \g < A\; <.... For simplicity, we will
assume that M is a closed connected Riemannian manifold; this will, for example
imply that the smallest eigenvalue, Ay, occurs with multiplicity 1. Note that the
Laplacian also acts on p-forms in addition to functions via the definition A = -(dé
+ dd), where ¢ is the adjoint of d with respect to the Riemannian structure on the
manifold. This aspect of the Laplacian will not be treated in this thesis, the focus
being the ordinary Laplacian acting on functions or O-forms. With that in mind,

there are two broad questions that are at the heart of spectral geometry:
i What can we say about the spectrum of M given the geometry?
ii. What can we say about the geometry of M given the spectrum?

The former is the direct problem while the latter is the inverse problem . We can also
generalize these problems for spaces that have singular points.
A smooth n-dimensional orbifold is a topological space that is locally modeled on

an orbit space of R” under the action of a finite group of diffeomorphisms. Riemannian



orbifolds are spaces that are locally modelled on quotients of Riemannian manifolds
by finite groups of isometries. An orbifold is good if it is a global quotient of a closed
manifold by a finite group. Otherwise, it is a bad orbifold. Orbifolds have wide
applicability, for example, in the study of 3-manifolds and in string theory [ALR],
[DHVW]. In Chapter 2, which will have all the background material, we will formally
define the notion of a Riemannian orbifold and review the fundamental ideas necessary
for studying orbifold geometry. We will also define the Laplace Beltrami operator on
an orbifold and state some of the results from the spectral theory of manifolds that
carry over to the orbifold setting.

The tools of spectral geometry can be transferred to the setting of Riemannian
orbifolds by using their well-behaved local structure (see [Ch], [S1] and [S2]). As in
the manifold setting, the spectrum of the Laplace operator of a compact Riemannian
orbifold is a sequence 0 < A\ < Ay < Asz... T oo, where each eigenvalue is repeated
according to its finite multiplicity. We say that two orbifolds are isospectral if their
Laplace spectra agree.

The literature on inverse spectral problems on orbifolds is less developed than that
for manifolds. Examples of isospectral orbifolds include pairs with boundary ([BW]
and [BCDS)); isospectral flat 2-orbifolds ([DR]); arbitrarily large finite families of
isospectral orbifolds ([BSW]); isospectral orbifolds with different maximal isotropy
orders ([RSW]); isospectral deformation of metrics on an orbifold quotient of a nil-
manifold ([PS1]); and isospectral orbifold lens spaces ([Bal).

Orbifolds began appearing sporadically in the spectral theory literature in the
early 1990s and have received more concentrated attention in the last few years. Farsi
[F] showed that the spectrum of an orbifold determines its volume by proving that
Weyl’s asymptotic formula holds for orbifolds. Dryden and Strohmaier [DS] showed

that, for a compact and negatively curved two-dimensional orbifold,the Laplace spec-



trum determines both the length spectrum and the orders of the singular points and
vice versa; on the other hand, Doyle and Rossetti [DR] gave(disconnected) examples
of isospectral flat two-dimensional orbifolds with different length spectra and orders
of singular points.

For Riemannian manifolds, the asymptotic expansion of the heat kernel can be
used to relate the geometry of the manifold to its spectrum. From the so-called heat
invariants appearing in the asymptotic expansion, one can tell the dimension, the
volume, and various quantities involving the curvature of the manifold. In the case of
a good Riemannian orbifold (i.e., an orbifold arising as the orbit space of a manifold
under the action of a discrete group of isometries), Donnelly [D] proved the existence
of the heat kernel and constructed the asymptotic expansion for the heat trace. In
[DGGW], Dryden, Gordon, Greenwald, Webb and Zhu generalized Donnelly’s work to
the case of general compact orbifolds. We will discuss the results in [D] and [DGGW]
in Chapter 6 in more detail.

A very interesting question in the spectral geometry of orbifolds is how much one
can hear about the structure of the singular set. For example, we can ask about
the isotropy types of the singular strata. As noted before, on the positive side, Dry-
den, Gordon, Greenwald and Webb [DGGW] have shown that the Laplace spectrum
determines the number and type of singularities in two-dimensional orbifolds with
positive Euler characteristic. In [RSW] Rossetti, Schueth and Weilandt constructed
pairs of compact Riemannian orbifolds which are isospectral for the Laplace operator
on functions such that the maximal isotropy order of singular points in one of the
orbifolds is higher than in the other. In one type of examples, isospectrality is shown
to arise from a version of the Sunada Theorem [Su] which also implies isospectrality
on p-forms; here the orbifolds are quotients of certain compact normal homogeneous

spaces. In another type of examples, the orbifolds are quotients of Euclidean R? and



are shown to be isospectral on functions using dimension formulas for the eigenspaces
developed in [MR]. In the latter type of examples the orbifolds are not isospectral on
1-forms. Along the way the authors also gave several additional examples of isospec-
tral orbifolds which do not have maximal isotropy groups of different size but other
interesting properties.

In addition, Stanhope [S2]| proved the following result for orbifold singular sets:

Theorem 1.0.1. Only finitely many isotropy types may arise in a family of isospectral

orbifolds whose members have a uniform lower bound on Ricci curvature.

However, the author along with Stanhope and Webb [BSW] constructed arbitrarily
large (finite) families of isospectral orbifolds with different isotropy types, showing
that Theorem 1.0.1 is not true in general. Indeed, we construct arbitrarily large fam-
ilies of isospectral orbifolds with different isotropy types: given an odd prime P and
an integer m > 1, we constructed an (m + 1)-element family of isospectral (P3™ — 1)-
dimensional orbifolds, each with points of distinct isotropy. The orbifolds in these
families are quotients of the round sphere by properly discontinuous orthogonal ac-
tions. The author’s contribution was to construct an example to show that that some
topological properties of the singular set of an orbifold are not spectrally determined.
Chapter 3 of this thesis will contain this result.

A related question is whether a manifold could be isospectral to an orbifold with
non-trivial isotropy. In [GR], Gordon and Rossetti showed that whenever two isospec-
tral good orbifolds share a common Riemannian cover, their respective singular sets
are either both trivial or both non-trivial. This means that a good orbifold with
non-trivial isotropy could not be isospectral to a manifold that shares the same Rie-

mannian cover.



In the study of inverse isospectral problem, spherical space forms provide a rich
and important set of orbifolds with interesting results. For the 2-dimensional case,
it is known [DGGW] that the spectrum determines the spherical orbifolds of con-
stant curvature R > 0. In [L], Lauret found examples in dimensions 5 through 8 of
orbifold lens spaces (spherical orbifold spaces with cyclic fundamental groups) that
are isospectral but not isometric. For dimension 9 and higher, the author proved the
existence of isospectral orbifold lens spaces that are non-isometric [Ba]. Chapters 4 of
this thesis will contain this result as a corollary to Theorem 4.5.5. We will conclude
Chapter 4 with an example demonstrating the results.

For 3-dimensional manifold lens spaces Ikeda and Yamamoto (see [I1], [IY] and
[Y])proved that the spectrum determines the lens space. In [12], Ikeda further proved
that for general 3-dimensional manifold spherical space forms, the spectrum deter-
mines the space form. In the manifold case, it is also known that even dimensional
spherical space forms are only the canonical sphere and the real projective space. For
orbifold spherical space forms this is not the case. In this thesis we limit our study to
orbifold spherical space forms where the fundamental group is cyclic, i.e. the space
forms are lens spaces. In Chapter 5 of this thesis we will develop our proofs for two

of our main results:

Theorem 5.1.1 Two three-dimensional isospectral orbifold lens spaces are isometric.
Theorem 5.2.1 Two four-dimensional isospectral orbifold lens spaces are isometric.
The above two results will complete the classification of the inverse spectral problem
on orbifold lens spaces in all dimensions.

As mentioned earlier, a major tool in determining the things that can be heard is
the asymptotic expansion of the heat kernel. It is known that two isospectral mani-
folds(or orbifolds) will have the same asymptotic expansion of the trace of the heat

kernel. The converse, however, is not true. There are many examples of pairs of non-



isospectral manifolds having the same finite cover which have the same asymptotic
expansion of the trace of the heat kernel. For example, the asymptotic expansion of

the trace of the heat kernel for a flat 2-dimensional torus 7" and a Klein bottle K are

given by VZT:;ZT and Y Z:iK , respectively. That means if the two manifolds have the

same volume they will have the same asymptotic expansion even when they are not
isospectral [RS]. To the author’s knowledge, no such examples are known for orb-
ifolds. In Chapter 6, we will use techniques developed by [D] and [DGGW] to prove
a result that will allow us to create examples of orbifold lens spaces that are not

isospectral, but have the same asymptotic expansion of the trace of the heat kernel.



Chapter 2

Orbifolds

An orbifold is a generalization of a manifold which is locally modelled on R™ modulo
the action of a finite group. This allows orbifolds to possess singular sets. With this
generalization many of the mathematical tools used in the study of manifolds can be
defined for the study of orbifolds as well. In this chapter we will define some of these
tools that will be needed throughout this thesis. The definitions we use are the ones
used by Stanhope [S1] and E. Dryden, C. Gordon, S. Greenwald, D. Webb and Zhu
in [DGGW].

2.1 Smooth Orbifolds

Definition 2.1.1. Let X be a Hausdorff topological space. For an open set U in X,

an orbifold coordinate chart over U is a triple (U,U/T,x) such that:

1. U is a connected open subset of R,

2. T is a finite group of diffeomorphisms acting effectively on U , possibly with fixed

point sets, and



3. m:U — U is a continuous map which induces a homeomorphism ¢ between

U/T and U, for which pomoy= o for all v €T.

Next we define the concept of an embedding between orbifold charts. We as-
sume that U and U’ are open subsets of a Hausdorff space X. Let (U, U /T, m) and

(U',U’/T",7') be charts over U and U’, respectively.

Definition 2.1.2. An embedding between orbifold charts is an injection
A: (U, U/, 1) — (U, U /)T, 7

that consists of an open embedding

U= U

and an injective homomorphism f : I' < I, such that the following diagram com-

mutes:
T | T
Ujr U'r
|k
U—2 U

and the embedding is equivariant with respect to f, that is, for all y € T and x € U,

Definition 2.1.3. A smooth orbifold (X,.A) consists of a Hausdorff topological space

X together with an atlas of charts A satisfying the following conditions:

1. For any pair of charts (U,U/T,7) and (U',U')T", %) in A with U C U’ there
exists an embedding \ : (U,U /T, x) — (U, U’ /T, 7).

10



2. The open sets U C X for which there exists a chart (U,U/T,x) in A form a

basis of open sets in X.

For the remainder of this thesis we will denote an orbifold (X, .A) simply by O.

Definition 2.1.4. Let O be an orbifold and x be a point in O. Let (U,U/T, ) be a
coordinate chart about x, and let & be a point in U such that 7(Z) = z. Let TY denote
the isotropy group of & under the action of T'. It can be shown that TY is independent
of both the choice of lift and the choice of chart [Br]. Therefore, TY can be denoted

by I',. We call T, the isotropy group of x.

Definition 2.1.5. Let O be an orbifold. A point x € O is said to be singular if I', is

non-trivial.

We will denote the set of all singular points in O by X¢.

Note that the definition of an orbifold is a generalization of the definition of a
V-manifold introduced by I. Satake [Sat]. A V-manifold is an orbifold that requires
the singular set to have co-dimension > 2.

We say that an orbifold is good if it is the orbit space of a manifold M under the
smooth action of a discrete group I'. Otherwise, it is said to be bad. A good orbifold
O is denoted by M/I". We note that every point in an orbifold has a neighborhood
that is a good orbifold. Further, any manifold can be viewed as a good orbifold for

which all points have trivial isotropy.

Example 2.1.6. The order 4 cyclic group generated by (_01 (1]) acts on R? by 90°
rotations leaving the origin fived. If we denote this group by G, then R*/G gives us

a cone. This is an example of a good orbifold.

Example 2.1.7. Not all orbifolds are good. The Z,-teardrop is an example of a

bad orbifold. Topologically it is homeomorphic to S?, and its singular set consists of

11



an isolated cone point, which is locally homeomorphic to R?/Z,, where Z, acts by

rotations. It has been shown that the Z,-teardrop cannot be covered by a manifold

(see [Sc]).

Note: Henceforth, we will assume that the underlying space X of an orbifold O is

always a second countable topological space.

2.2 Riemannian Orbifolds

A Riemannian structure on an orbifold is an assignment of a Riemannian metric on
the orbifold. Just like in the manifold case, this is done by obtaining Riemannian
metrics locally on coordinate charts, and then patching them up via a partition of

unity.

Definition 2.2.1. A map f : O — R is called a smooth function on O if on each

chart (U, [7/F,7r), its lift f = fom is a smooth function on U.

Definition 2.2.2. Let {U,} be a locally finite covering of an orbifold O that is subor-
dinate to the orbifolds’s covering of coordinate charts, i.e. U, ’s are coordinate charts
with associated groups T',’s. Let {V,} be an open covering of O such that each V,,
has compact closure, and V., C U,. We define T'n-invariant functions on each (7a as

follows:

where X is a function on [7&. Ao is assumed to be positive on ‘N/a and vanishes off of

Vi Ao’ define functions A\, ’s on O which are positive on V,, and zero elsewhere. We

Ao

obtain a partition of unity by setting po = $5=.

Definition 2.2.3. Let (U,U/T, ) be a coordinate chart for an orbifold O.

12



1. Given a tensor field w on U and v €T, we get a new tensor field w7 = *(w)

on U. We obtain a T-invariant tensor field on U defined as:

N 1 N
Wb = mZuﬂ.

yerl’

Such a T'-invariant tensor field on U gwes a tensor field w on U.

We obtain a tensor field on O by patching together local tensor fields on charts

using a partition of unity.

2. We define a smooth tensor field on the orbifold O to be one that lifts to smooth

tensor fields of the same type in all local covers.

Definition 2.2.4. Let O be an orbifold. A Riemannian Structure on O is an assign-
ment to each orbifold chart (U, ﬁ/F, 7) of a I'-invariant Riemannian metric g(7 on U
satisfying the compatibility condition that each embedding A appearing in Definition

2.1.3 1s isometric. Every orbifold admits Riemannian structures.

If O = M/T' is a good orbifold, we can obtain a Riemannian metric on O by
specifying a Riemannian metric on M that is invariant under the action of I'. Thus,
locally Riemannian orbifolds look like the quotient of a Riemannian manifold by a
finite group of isometries.

It is also known that by suitably choosing the coordinate charts of an orbifold we

can assume that the local group actions are by finite subgroups of O(n) (see [S1]).

2.3 Spectral Geometry on Orbifolds

Let O be a Riemannian orbifold and let f be a smooth function on O. By definition,

the lift of f on each chart (U, (7/F,7r) is a smooth function f = 7*f on U. Let Gij

13



denote the I-invariant metric on U given by the Riemannian structure on O and let
e = \/det(g;;). Let A denote the Laplacian on U. On U, Af is given in the usual

way as

We define the Laplacian on U by

ﬁf:Afow.

That is, on local charts, the Laplacian acts on f by simply acting on its lift f on
the local cover. We say that A is an eigenvalue of A if Af = Af for some non-zero
function f on O.

The following results about the eigenvalues of a Riemannian orbifold are known

(see [Ch]).
Theorem 2.3.1. Let O be a closed Riemannian orbifold.

1. The set of eigenvalues consists of an infinite sequence

OS/_\1<5\2<5\3...TOO.

2. Fach eigenvalue \; has finite multiplicity. We write 0 < M < A<A<...Too

where each eigenvalue is repeated according to its multiplicity.

3. There exists an orthogonal basis of L?(O) (the space of square-integrable func-

tions on O) composed of smooth eigenfunctions ¢y, pa, ¢3 ... where

Ap; = Nigi.

14



Note: For background information on orientability and integration on an orbifold,

see [S1].

The spectrum of the Laplacian on O, denoted by Spec(O), is defined by the

sequence 0 < Ay < Ay < A3...7T oo in Theorem 2.3.1.

Definition 2.3.2. Two compact connected Riemannian orbifolds Oy and Os are said

to be isospectral to each other if Spec(Oy) = Spec(Os).

15



Chapter 3

Orbifold Isotropy Types

An interesting question in the spectral geometry of orbifolds is whether one can have
isospectral orbifolds whose singularities have different isotropy types. On the positive
side, E. Dryden, C. Gordon, S. Greenwald and D. Webb [DGGW] have shown that the
Laplace spectrum determines the number and type of singularities in two-dimensional
orbifolds with positive Euler characteristic. The definition of Euler characteristic is

taken as follows [T]:

Definition 3.0.3. When an orbifold O has a cell-division of Xo such that each open
cell is in the same stratum of the singular locus (i.e., the group associated to the
interior points of a cell is constant), then the Euler characteristic x(O) is defined by

the formula

_ _ 1\%m(c:) 1
X0) = 3 (1

where ¢; ranges over cells and |I'(¢;)| is the order of the group I'(¢;) associated to each

cell.

As is clear from this definition, the Euler characteristic is not always an integer. In

addition, Stanhope [S2] proved the following result:

16



Theorem 3.0.1. Only finitely many isotropy types may arise in a family of isospectral

orbifolds whose members have a uniform lower bound on Ricci curvature.

In this chapter we construct arbitrarily large (finite) families of isospectral orb-
ifolds with different isotropy types, showing that the former result is not true in
general. This work is an exposition of the author’s joint publication with E.Stanhope
and D.Webb [BSW] in 2006. The author’s contribution is the construction of the
example in Section 3.3.

Given an odd prime P and an integer m > 1, we construct an (m + 1)-element
family of isospectral (P3™ — 1)-dimensional orbifolds, each with points of distinct
isotropy. The orbifolds in these families are quotients of the round sphere by properly
discontinuous orthogonal actions. By studying a related example, we see in Section 3.3
that some topological properties of the singular set of an orbifold are not spectrally

determined.

3.1 Sunada’s Theorem

Most known examples of isospectral, non-isometric manifolds are constructed using
a group-theoretic method of Sunada [Su]. A generalization of Sunada’s Theorem due
to Bérard allows the use of the Sunada technique to obtain isospectral orbifolds. In
this section we briefly review the algebraic background for Sunada’s Theorem and
provide some examples. We then state Bérard’s version of Sunada’s Theorem, used

in the next section to construct our isospectral families of orbifolds.

Definition 3.1.1. Two subgroups I'y and I's of a finite group G are said to be

almost conjugate if each G-conjugacy class [g]g intersects T'y and Ty in the same

number of elements.

17



Remark 3.1.2. The condition that subgroups I'y and I'y of a finite group G be al-
most conjugate is equivalent to requiring that the representations of G induced from
the trivial one-dimensional representations of I'y and Ty (these induced representa-
tions are just the linear permutation representations of G determined by 'y and T'y)
be equivalent as linear representations of G, i.e., that (1r,) 1F,= (1r,) Tg’;. This fact
follows easily from the formula for the character of an induced representation (see
[KO] or [CF], page 362). Thus the use of Sunada’s method to produce examples of
1sospectral manifolds that are not isometric is based upon the existence of permutation
representations that are inequivalent as G-sets but nevertheless give rise to equivalent
linear representations of G. The existence of almost conjugate but not conjugate sub-
groups was first used by Gassman [Ga/ to construct nonisomorphic algebraic number

fields with the same zeta function.

Example 3.1.3. [Br/ Let p be an odd prime, and let G be the symmetric group on
p* letters. Let E =7, x Z, X Z, be the p-elementary group of order p*, and let H be

the Heisenberg group over the field Z,,:

1 ¢ a
H:{ 01 b :a,b,cGZp}
0 0 1

the unique nonabelian group of order p* in which every nonidentity element has order
p. View H and E as subgroups of G wia the natural action of each group on itself
by left-multiplication. Then E and H are almost conjugate in G, as follows from the
fact that two permutations are conjugate in the symmetric group if they have the same

cycle structure. These groups are not isomorphic, as E is abelian while H is not.

Example 3.1.4. [Br] Let m > 1, let G be the symmetric group on p*™ letters, and

let {H;}o<i<m be the collection of subgroups of G defined as follows. Let H denote
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the mod-p Heisenberg group, E the abelian p-elementary group E = Z, X Z, X Z,,.
Let H; = H* x E™%, where H' is the product of i copies of H and E’ is the product
of j copies of E. As in Example 3.1.3, the subgroups H; of G are pairwise almost
conjugate. They are pairwise nonisomorphic: the center of H; is a Zy-vector space of

dimension i+ 3(m — i) = 3m — 2i, since the center of H is Z,.

With these examples in mind we now state Bérard’s generalized version of Sunada’s
Theorem. In Sunada’s original statement of this theorem, the actions by I'; and I’y

were required to be fixed point free.

Theorem 3.1.5. [B] Let Hy and Hs be almost conjugate subgroups of a finite group
G. Let (M,g) be a compact Riemannian manifold on which G acts faithfully on the

left by isometries. Then the orbit spaces Hi\M and Hy\ M are isospectral as orbifolds:

spec(Hi1\M, g) = spec(H2\M, g).

3.2 Construction

We turn now to the construction of isospectral orbifolds with different isotropy types.
We show that given an odd prime number p and an integer m > 1 there exists an
(m+1)-element family of isospectral (p*™ —1)-dimensional orbifolds each containing a
point of isotropy type found in no other orbifold family. We construct these families
by arranging for the groups from Example 3.1.4 to act isometrically on the round
sphere, and then applying Theorem 3.1.5.

Let E™ denote the vector space R" together with the standard Euclidean inner
product, and let {eg,e1,...,e,_1} be the standard orthonormal basis for E". Also,
let S™ denote the n-dimensional unit sphere. The symmetric group G on p*™ letters

from Example 3.1.4 acts orthogonally on the Euclidean space EP"™ by permuting the
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elements ey, €1, ..., esm_1 of the standard basis. Restricting this action to the unit
sphere SP"" 1 G acts on S”""~! by isometries. By Theorem 3.1.5 we conclude that

the orbit spaces are isospectral as orbifolds:
spec(Ho\S”"" 1) = spec(H,\S”"" 1) = - .- = spec(H,,\S""" ).

Because each group H; fixes the two unit vectors +—2A=(1,1,...,1) € E”Sm, the

corresponding points in the orbifold ]—IZ»\SPM*1 have full isotropy G. Since the groups

H; are pairwise nonisomorphic, it follows that each orbifold in our isospectral family
has a pair of points with isotropy type not found in any other member of the family.
Finally, note that because these orbifolds all have constant sectional curvature equal
to one, they satisfy the bound on Ricci curvature needed for Theorem 3.0.1; thus

Theorem 3.0.1 cannot be improved from a finiteness assertion to a bound.

3.3 An Example

In this section we show that in a pair of isospectral orbifolds, the underlying topo-
logical spaces of the singular strata may differ. Thus the topological nature of the
singular strata is not spectrally determined.

We examine the nature of the singular set in a specific example. Consider the
algebraic setting of Example 3.1.3 with p = 3; thus G is the symmetric group Ss7 of all
permutations of the set {0,1,...,26}, Hy is the abelian group Zs x Zz X Zs, and H; is
the mod-3 Heisenberg group. The groups Hy and H; are the only groups of order 27 all
of whose nonidentity elements have order three (see [DF], page 183). The group G acts
orthogonally on the Euclidean space E? of dimension 27 by permuting the standard

orthonormal basis vectors eg, €1, . . ., €s6, hence G acts on the unit sphere S0 C R?".
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Then the quotient orbifolds Oy = Hy\S*® and O; = H;\S*® are isospectral, by
Theorem 3.1.5. Let Ay = j:\/%(l, 1,...,1) € S?*® C E%, the “poles” left fixed by the
entire symmetric group.

For ¢ = 0 or 1, the only nontrivial proper subgroups of H; are isomorphic either to
Z3 or to Z3 x Z3, so the only possible nontrivial isotropy types are Zs, Z3 x Zs3, and
the full group H;. A point of the orbifold O; is nonsingular if its isotropy group is
trivial. The points whose isotropy is Zs will be called mild singularities; those points
with isotropy Zs x Z3 will be called moderate singularities, while those points whose
isotropy is the full group H; (the poles Ay) will be called wild singularities. For
e=0,1,2,3, let (’),fe) = {x € O, : #I', = 3¢}, the set of points in O; whose isotropy
groups have order 3¢; thus OEO) is the set of nonsingular points, while 01(3) is the set
of wild singularities. We will be interested in the sets 01(2) of moderate singularities;
specifically, we will show that (982) and (9%2) are not homeomorphic, so the underlying
topological space of the moderate singular stratum is not spectrally determined.

We begin by considering the singular strata OZO) in the orbifolds O; (i = 0,1)
consisting of the mild singular points; such singular points are represented by points
in the sphere S?¢ fixed by a single nonidentity element h € H;; that is, their isotropy
group is the cyclic group (h) = {1,h,h™'} = Zs.

For the sake of brevity, we adopt the following notation for elements of the groups
Hyand Hy. An element of Hy = Z3xZ3xZ3 is a triple (a, b, ¢) of elements a, b, ¢ € Z,;
we view the element h = (a,b,c) as the ternary representation of an integer n,
satisfying 0 < n, < 27, and we denote g by the integer n,. Thus, for example,
the element (1,1,2) is denoted by 14. Similarly, it is easily checked that the mod-
3 Heisenberg group H; is isomorphic to the unique nontrivial semidirect product
(Z3 X Z3) X4 Z3, where the action « : Zs — Aut(Zs x Z3) = GLy(Z3) of Z3 on

Z3 x 73 is given by
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alc) = B ﬂ .

Thus the multiplication in H;, consistent with matrix multiplication, is given by

(B o) ()= (3] o)

As in the case of Hy, the element g = ( {Z} ,c) € H, is denoted by the integer n,
(where 0 < n, < 27) whose ternary representation is (a, b, ).

It is easy to compute the left-translation actions of Hy and H; upon themselves as
permutations of {0,1,...,26}. For example, the element g = (0,1,1) € H;, denoted

by 4 according to our convention above, corresponds to the permutation
(0417)(1515)(2316)(61923)(72021)(81822)(91326)(101424)(111225)  (3.1)

in the symmetric group Sp7. We will denote the fixed-point set for the H; action on
the sphere S?° of the element g € H; by Y 7. For example, in the case of the element
g =(0,1,1) € H; considered above, it is clear that the fixed point set is the collection

of unit vectors (zg, 1, ..., T) € E*7 satisfying the conditions
To = Ty = T17, L1 = T5 = T15, L2 = T3 = T16, - - -, L1l = T12 = L25

imposed by the requirement that the vector be invariant under the permutation whose
cycle decomposition was written out above in (3.1). For simplicity, we denote this

fixed point set with the same notation as the cycle decomposition of g; thus

S = [0417][1515)[2316][6 19 23][7 20 21][8 18 22][9 13 26][10 14 24][11 12 25]
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Also, Z;l = }7, since the elements 4 = (0,1,1) and 17 = (1, 2,2) are inverses in H;.

As another example of our notation
[01291011181920][345121314212223|[6781516 1724 25 26]
denotes the set of unit vectors (zg, 1, ..., T) € E*7 satisfying the conditions

To =] = T2 = T9g = T10 = L11 — T18 = T19 = T20,

T3 =Ty = X5 = T12 = X13 = T14 = T21 = T22 = T23

and

Te = T7 = Tg = T15 = T16 = T17 = T24 = T25 = T26-

There are twenty-six nonidentity elements of Hy or Hy; each has the same fixed-point
set as its inverse. Thus there are thirteen fixed-point sets to consider for each group.
Each fixed-point set in E?7 is a nine-dimensional linear subspace; thus the fixed-point
sets in the sphere S?0 are eight-dimensional, since the extra constraint that the vector
be of unit length is also imposed.

Consider first the group Hy = Z3 X Z3 X Z3. 1t is straightforward to compute
the thirteen fixed-point sets Zé of nontrivial elements j € Hj, that is, the points
in the unit sphere S?° representing singular points of the quotient orbifold O, whose

isotropy is nontrivial. They are given by

23



S =[012][345][678][91011][1213 14][15 16 17][18 19 20][21 22 23][24 25 26,
S — [036][147][258][91215][10 13 16][11 14 17][18 21 24][19 22 25][20 23 26],
S e =[048][156][237][91327)[10 14 15][11 12 16][18 22 26][19 23 24][20 21 25],
S = [057)[138][246][91416][1012 17][11 13 15][18 23 25][19 21 26][20 22 24],
Zo 09 18][11019][2 11 20][3 12 21][4 13 22][5 14 23][6 15 24][7 16 25][8 17 26],

[ ]
[ ]
[ ]
[ ]
[ ]
= [01020][1 11 18][2 9 19][3 13 23][4 14 21][5 12 22][6 16 26][7 17 24][8 15 25],
— [01119][1920][2 10 18][3 14 22][4 12 23][5 13 21][6 17 25][7 15 26][8 16 24],
— [01224][1 13 25][2 14 26][3 15 18][4 16 19][5 17 20][6 9 21][7 10 22][8 11 23],
— [01326][1 14 24][2 12 25[3 16 20][4 17 18][5 15 19][6 10 23][7 11 21][8 9 22],
— [01425)[11226][2 13 24][3 17 19][4 15 20][5 16 18][6 11 22][7 9 23][8 10 21],
— [01521][11622][2 17 23][39 24][4 10 25][5 11 26][6 12 18][7 13 19][8 14 20],
— [016:23][1 17 21][2 15 22][3 10 26][4 11 24][5 9 25][6 13 20][7 14 18][8 12 19],
= | Il Il Il Il ]

017 22][11523][2 16 21][3 11 25][4 9 26][5 10 24][6 14 19][7 1220][8 13 18]. (3.2)

Since the fixed point set of a group element coincides with that of its inverse, we

2 1 6 3 8 4 7 5 18 9 20 10
also have ZO = ZO? ZO = ZO? ZO = Zoa Zo = Zov 0o - ZO? 0o = 0

19 11 24 12 26 <13 25 14 21 15 23 16

0 =220:220 =2.0:220 =2200220 =220 220 =220 220 =2 »and
2 17
0 — 2.0 -

Now consider the group H;. We next compute the thirteen fixed-point sets Zjl
of nontrivial group elements j € H;, that is, the points in the unit sphere S2¢ repre-
senting singular points of the quotient orbifold O; whose isotropy is nontrivial; they

are given by
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SO = [012][31323][41421][51222][6 25 17][7 26 15][8 24 16][9 10 11][18 19 20],

Il
5% —[036][147][258][91215][10 13 16][11 14 17][18 21 24][19 22 25][20 23 26],
S = [0417][1515][2316][6 19 23][7 20 21][8 18 22][9 13 26][10 14 24][11 12 25],
S% — [0525][1326][2424][6 11 13][7 9 14][8 10 12][15 20 22][16 18 23][17 19 21,
ST = 1821][2622][31017)[4 11 15][5 9 16][12 19 26][13 20 24][14 18 25],

[ ]
[ ]
[0417] ]
[0525]] ]
[0723]] ]
21 [0813][1614][2712][32025][4 18 26][51924][9 17 22][10 15 23][11 16 21],
21 [0918][11019][21120][3 12 21][4 13 22][5 14 23][6 15 24][7 16 25][8 17 26],
= [01020][1 11 18][2919][322 14][4 23 12][5 21 13][6 7 8][15 16 17][24 25 26],
= [01119][1920][21018][354][626 16][7 24 17][825 15][12 14 13][21 23 22],
= [01224][11325][21426][3 15 18][4 16 19][5 17 20][6 9 21][7 10 22][8 11 23],
= [01416][11217][2 13 15][38 19][4 6 20][5 7 18][9 23 25][10 21 26][11 22 24],
= [01521][1 16 22][2 17 23][3924][4 10 25][5 11 26][6 12 18][7 13 19][8 14 20],
= [02226][12324][22125]|[3711][489][5610][12 16 20][13 17 18][141519]. (3.3)

2 1 6 3 17 4 25 5 23 7 13 8
Also, 21 = Zp 21 = 217 1 = Zl’ 1= Zl? 1 = 217 1 = 217

_29 20 =10 19 11 24 12 16 14 21 15 d
=202 T 2A9020 T 202 T 24024 T 2402 T 2. a0
26 =22
1 = 2.1 -

Next, we consider points in the sphere S?¢ having isotropy Zs x Zs for the H;-
action. Let 327" denote the intersection of sets 327 and ¥, It is easy to see that
the points of S?6 of isotropy type Zs x Zs for the H;-action are just the points
of

U & -{a.

Jk€H; , <j>#<k>

Indeed, let x denote such a point. Then x is not one of the poles (which have fully
isotropy H;), and it is fixed by two elements j, k € H; that generate distinct cyclic

subgroups (j) # (k) C H;, so manifestly z € 327% i.e.,
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e U A,

g k€EH; <j>#<k>

Conversely, any point of

U (27 —{AL))

Jk€H; ,<j>#<k>
has isotropy (j, k) (for some j, k € H;) properly larger than Z3 but properly contained
in H;, so the only possibility for its isotropy is Zs x Zs3. Thus, the points in the sphere
S% having isotropy Zs x Zs for the H;-action are readily determined by computing
the pairwise intersections 3 7% = 37N S°F of the above fixed-point sets, discarding
the poles, and taking the union.

We begin with the case of Hy. As is clear from (3.4) below, each double intersec-
tion Zék is given by twenty-four independent linear conditions on the twenty-seven
components g, 1, . . ., a6, together with the condition that (zg, x1, ..., z) be a unit
vector; thus each Zf)k is the intersection of a three-dimensional linear subspace of
R?" with the unit sphere S?¢, hence is a 2-sphere; in particular, each Zék —{AL}
is a 2-sphere with a pair of antipodal points removed, and hence is connected. The

thirteen distinct double intersections Zék are easily computed; they are given by
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P = 012345678][91011121314151617][18 19 20 21 22 23 24 25 26],
9 =[01291011181920][345121314212223][6781516 1724 2526,

112

115

310

311

410

411

510

511

]
]
—[012121314242526][345151617181920][6789 10 11 212223],
—[012151617212223][34591011242526][6 781213141819 20],
— (036912151821 24][147101316192225][25811 14 17 20 23 26],
—[036101316202326][147111417182124][25891215192225],
—[036111417192225][14791215202326][2581013 1618 21 24],
— [04891317182226][156101415192324][23 71112162021 25],
— (0481014152021 25][156111216182226][23 7913171923 24],
—[048111216192324][15691317202125][2371014 151822 26],
— (057914161823 25][138101217192126][246 1113152022 24],
—[057101217202224][13811 13151823 25][246 914 1619 21 26],
— (0571113151921 26][13891416202224][246 101217 1823 25].

(3.4)

Next, we compute the locus of points whose isotropy under the H; action is

Z3 X Z3; as above, this is easily carried out by computing the pairwise intersections

SR = S7A S of the above fixed-point sets. In this case, most of the pairs of

fixed-point sets intersect only in the poles; i.e., for most pairs j,k € H;, we have

SR = (ALY} = {:I:\/Lﬁ(l, 1,...,1)}. There are only four larger double intersections,

given by

?=1[01291011181920][345121314212223][6 781516 17 24 25 26],
?=[03691215182124][147101316192225][25811 1417202326
® =104891317182226
" =[05791416182325][138101217192126][246 11 13152022 24].

156101415192324]|237111216202125

Il Il ]
Il Il J
Il Il )
Il Il ]

(3.5)

In both the cases, i = 0 and ¢ = 1, it is easily verified that two distinct double

intersections intersect only in the poles: Efk N> 7° ={AL} unless ka =

27

8

S
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For ¢ = 0, 1 recall that (92(2) denotes the set of moderate singular points in O;, i.e.,
those whose isotropy is isomorphic to Z3 x Zs. Thus, by 3.4 and 3.5, (952) is the set

of points in O; with a representative in the set

s?= U (ZF-{acs®
Jk€H; , <j>#<k>
As noted above, ng) is the disjoint union of subsets of S?¢, each homeomorphic to
a 2-sphere with a pair of antipodal points removed. Now (3.4) shows that S((]Q) has
thirteen connected components, while (3.5) shows that ng) has only four connected
components.

We now consider whether two different components 7 — {A,} and S7° — {AL}
of the set of points S§2) C S?6 might be identified via the H;-action and hence might
represent the same connected component of the moderate singular stratum (’)1(2) in
the quotient orbifold O;. For ¢ = 0, this cannot occur. Indeed, if this were so, some

7,8

group element g € H, would carry Zik —{ALi} to >

)

{AL}, so their isotropy
groups (j, k) and (r, s) would be conjugate in Hy; however, since Hy is abelian, all
conjugations are trivial so this is impossible. Thus, (9(()2) has exactly thirteen con-
nected components. However, (99) has at most four connected components, since
SSQ) has only four connected components.

Thus the sets (’)(()2) and (9%2) of moderate singular points have different numbers

of connected components in the two orbifolds Oy and Oy, so one cannot hear the

underlying topology of the set of points of a given isotropy type.
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Chapter 4

Orbifold Lens Spaces

In this chapter we will generalize the idea of manifold lens spaces to orbifold lens
spaces. Note that lens spaces are special cases of spherical space forms, which are
connected complete Riemannian manifolds of positive constant sectional curvature 1.
An n-dimensional spherical space form can be written as S"/G where G is a finite
subgroup of the orthogonal group O(n + 1). In fact, the definition of spherical space
forms can be generalized to allow G to have fixed points making S™/G an orbifold.
Manifold lens spaces are spherical space forms where the n-dimensional sphere S™ of
constant curvature 1 is acted upon by a cyclic group of fixed point free isometries
on S™. We will generalize this notion to orbifolds by allowing the cyclic group of
isometries to have fixed points.

Our goal in this chapter is to construct examples of isospectral orbifold lens spaces
that are not isometric. The results in this chapter are an exposition of the author’s

work published in 2011[Ba].
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4.1 Orbifold Lens Spaces Generating Functions

In this section we will reproduce the background work developed by Tkeda in [I1] and
[I2] for manifold spherical space forms. We will note that with slight modifications
the results are valid for orbifold spherical space forms. This is the background work
we will need to develop our results for orbifold lens spaces.

We will first consider general 2n — 1 dimensional lens spaces. Let ¢ be a positive

integer. Set

L if ¢ is odd,
do =
if ¢ is even.

N

Throughout this chapter we assume that g, > 4.

For n < qq, let p1,...,p, be n integers. Note, if g.c.d.(p1,...,Pn,q) # 1, we can
divide all the p.s and ¢ by this ged to get a case where the ged = 1. So, without loss
of generality, we can assume g.c.d.(p1, ..., pn,q) = 1. We denote by g the orthogonal

matrix given by

R(p1/0) 0

0 R(pn/q)

cos 2w  sin2mf
where R(f) = . Then ¢ generates a cyclic subgroup G =

—sin27w8 cos 276

{ gl}lqzl of order ¢ of the special orthogonal group SO(2n) since detg = 1. Note
that g has eigenvalues AP1| y7PL AP2 ~7P2  APn ~7Pr ywhere 7 is a primitive ¢-th

root of unity. We define the lens space L(q : p1,...,pn) as follows:

L(qg:pi,...,pn) = SQn*l/G.
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Note that if ged(p;,q) = 1 Vi, L(q : p1,...,ps) is a smooth manifold; Tkeda and
Yamamoto have answered Kac’s question in the affirmative for 3-dimensional manifold
lens spaces ([IY], [Y]). To get an orbifold in this setting with non-trivial singularities,
we must have ged(p;,q) > 1 for some i. In such a case L(q : p1,...,p,) is a good
smooth orbifold with S?"~! as its covering manifold. Let 7 be the covering projection
of $?"~! onto S*"~1/G

R S R X

Since the round metric of constant curvature one on S?"~! is G-invariant, it induces a
Riemannian metric on S?"~1/G. Henceforth, the term ”lens space” will refer to this

generalized definition. Ikeda proved the following result for manifold spherical space

forms. We note that the proof doesn’t require the groups to be fixed-point free, and

reproduce the result for orbifold spherical space forms:

Lemma 4.1.1. Let S"/G and S™/G" be spherical space forms for any integer n > 2.

Then S™/G is isometric to S™/G" if and only if G is conjugate to G' in O(n + 1).

Proof. If ¢ is an isometry of S*/G onto S" /G, then there exists an isometry ¢ of S”
onto itself which covers ¢ since S™ is the universal cover for spherical space forms. Now

¢ is an element of O(n+ 1) and it gives a conjugation between G and G’. Conversely,
if ¢ € O(n + 1) such that #Go~' = &, then ¢ induces an isometry ¢ of S™/G onto
S"/G’ so that ¢m(x) = 7'(¢x) for any = € S* where m and 7’ are projections maps

from S™ onto S”/G and S™/G’ respectively. O

Note that if we have a lens space S*"~'/G = L(q : p1,...,pn), with G =< g >,
permuting the p;’s doesn’t change the underlying group G; similarly, if we multiply all
the p;’s by some number 4/ where ged(l, q) = 1, that simply means we have mapped

the generator g to the generator g', and so we still have the same group G. Also note
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that if two lens spaces S**'/G = L(q : p1,...,pn) and S*"1/G' = L(q : s1,...,5n)
are isometric, then by the above lemma G and G’ must be conjugate. So, the lift of
the isometry on S?"~! maps a generator, g of G to a generator ¢’ of G’. This means
that the eigenvalues of g and ¢’ ! are the same, which means that each p; is equivalent

to some ls; or —ls; (mod ¢). These facts give us the following corollary for lemma

4.1.1

Corollary 4.1.2. Let L=L(q:p1,...,pn) and L' = L(q : s1,...,s,) be lens spaces.
Then L is isometric to L' if and only if there is a number [ coprime with q and there
are numbers e; € {—1,1} such that (p1,...,pn) i a permutation of (e1lsy,. .., enls,)

(mod q).

Assume we have a spherical space form S™ /G for any integer m > 2. For any f €
C>®(S™/@), we define the Lapacian on the spherical space form as A(7* f) = 7 (Af).
We now construct the spectral generating function associated with the Laplacian on
S?n~1 /G analogous to the construction in the manifold case (see [I1], [I2] and [IY]).

Let A, A and Ay denote the Laplacians of $2"~1, §2"~1/G and R?", respectively.

Definition 4.1.3. For any non-negative real number X, we define the eigenspaces E,\

and Ey as follows:

Ey={f e Cx(S™ )| Af = Af},
Ex={feC=(S"/G)[Af =Af}.

The following lemma follows from the definitions of A and smooth function.
Lemma 4.1.4. (i) For any f € C®(S*1/G), we have A(x*f) = 7*(Af).

ii) For any G-invariant function F on S?"~', there exists a unique function f €
Yy

C>*(S"/G) such that F = *f.
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Proof. The natural projection 7 : S?*~1 — §?"~1 /@G induces the injective map 7* :
C>(5?=1/G) — C*°(S*"~1). Now (i) follows from the definition of the Laplacian on
an orbifold as defined in Section 2.3. Also, since F' is G-invariant it lies in the image

of T (C>(S?"71/G)). We define f = (7*)~!(F). This proves (ii). O

Corollary 4.1.5. Let (E,\)G be the space of all G-invariant functions of E,\. Then

dim(E,) = dim(E)g.

Proof. By the above lemma, we can see that if f € F), then there exists a unique F' €
E\ such that F is G-invariant and F = 7* f. Conversely, for any G-invariant eigen-
function F' € E,\, there exists a unique eigenfunction f € F) such that F' = 7* f. Both
of these facts follow from the above lemma and the fact that 7* : C®°(5?*"71/G) —
C°°(S?"~1) is an injection.

Now these facts imply that there is a one-to-one correspondence between functions

in £y and functions in (E)\)G. Therefore, dim(E)) = dim (E)‘)G' O

Let Ay be the Laplacian on R?* with respect to the flat Kahler metric. Set
r? = 21221 x?, where (z1,Zs,...,T2,) is the standard coordinate system on R**. For

k > 0, let P* denote the space of complex valued homogeneous polynomials of degree

k on R*". Let H* be the subspace of P* consisting of harmonic polynomials on R?",
H* ={fePF|Af =0}

Each orthogonal transformation of R** canonically induces a linear isomorphism of
P*,
Proposition 4.1.6. The space H* is O(2n)-invariant, and P* has the direct sum

decomposition: P* = H* @ r2P+2.
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The injection map i : S**~! — R*" induces a linear map * : C®°(R*") — C(5%*1).

We denote i*(H*) by H*.

Proposition 4.1.7. H* is an eigenspace ofﬁ on S?"=1 with eigenvalue k(k+2n —2)
and Y o  H* is dense in C>(S*1) in the uniform convergence topology. Moreover,

HE is isomorphic to H*. That is, i*: H* — HF*.

For proofs of these propositions, see [BGM].
Now Corollary 4.1.5 and Proposition 4.1.7 imply that if we denote by H% be the

space of all G-invariant functions in ¥, then
dim Ey 1209y = dim HE,.

Moreover, for any integer k such that dim H% # 0, A, = k(k+2n—2) is an eigenvalue
of A on §*"~! /G with multiplicity equal to dim H%, and no other eigenvalues appear

in the spectrum of A.

Definition 4.1.8. Let O be a closed compact Riemannian orbifold with the Laplace

spectrum, 0 < A\j < Ao < Ag... 7T 00. For each N\, let the eigenspace be

Es, ={fe€C™O)|Af=NS}.

We define the spectrum generating function associated to the spectrum of the Laplacian

on O as
Z d1m EAk
k=0

In terms of spherical space forms, the definition becomes

Definition 4.1.9. The generating function Fg(z) associated to the spectrum of the

Laplacian on S™/G is the generating function associated to the infinite sequence
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{dlmH }k 0 e
Z dim M)z
k=0

By Corollary 4.1.5, Proposition 4.1.7 and subsequent discussion, we know that the
generating function determines the spectrum of S”/G. This fact gives us the following

proposition:

Proposition 4.1.10. Let S"/G and S"/G’ be two spherical space forms. Let Fg(z)
and Fei(2) be their respective spectrum generating functions. Then S" /G is isospectral

to S"/G" if and only if Fo(z) = Fer(2).

Our first goal is to find an alternative expression for Fg(z) that will allow us to
compare Fg(z) and Fgi(2).

If G is a finite subgroup of O(2n) with orientation preserving action on S**~! then
G is a subgroup of SO(2n). In the following we will consider orientation-preserving
group actions.

The following theorem, proved for manifold spherical space forms in [I1] and [I2],

holds true for the orbifold spherical space forms as well.

Theorem 4.1.11. Let G be a finite subgroup of SO(2n), and let S**71/G be a
spherical space form with spectrum generating function Fg(z). Then, on the domain

{z e C| |z| <1}, Fa(z) converges to the function

1—22
Fol2) ]G\ Z det(Ion — g2)°
where |G| denotes the order of G and I, is the 2n x 2n identity matriz.

Proof. We reproduce the proof from [I1] and [I2] here to show that the hypothesis

that G acts freely is not used. Let x; and X be the characters of the natural
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representations of SO(2n) on H* and P*, respectively. Then we have (see [FH], pp.

10-18)
) k 1
dim Hey = — > xk(9)- (4.1)
Gl 2=
By Proposition 4.1.6, we get
Xi(9) = Xi(9) — Xu—2(9), (4.2)

where we put y_; = 0 for ¢t > 0.

If an element g € SO(2n) is conjugate to an element ¢’ € SO(2n) in O(2n), then

xk(9) = x(g9), k > 0. (4.3)

Let g be an element in G of order q. Set v = >/ and let yP*, 71, ..., vP» 3P be the

eigenvalues of g, then g is conjugate to the element

R(p1/4) 0

0 R(pn/q)

in SO(2n).
Let (21,91, 22, Y2, - - -, Tn, Yn) be the standard Euclidean coordinates on R*". Set
zj = x; + iyj, where i = /=1 (j = 1,2,...n). Then we can view the space P"

having a basis consisting of all monomials of the form

5] (Zl)il o (Znyn . (zl)jl ... (5n)jn’
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where i1, ..., 0, J1,. .., Jn = 0and 43 +-- -+ 0, + 751 + -+ - 4, = k. We denote iy +--- +

in+ g1+ jn =k by I, + J, = k. Then for any monomial 2! - 27, we will have

q (ZI ) 5‘]) L (ZI . gJ) )

So,
)Zk(g/) _ Z ,Yi1p1+~-+inpn—j1p1—-~~—jnpn. (4,4)
In+Jn=Fk
Then,
Fg(z) = Z (dim M) 2*
k=0
= Z @ Z Xk(g)z by (42)
k=0 geG
1 oo
= Tel ZZ Xk(9)2"
9€G k=0
1 = . .
= g1 22 2 (Rul9) — Xe-al9) 2" by (43)
9€G k=0
1—22 = .
= ( Tel ) Z Xi(9)z"
geG k=0
1—22 = .
- ] IS et
geG k=0
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_ 1|—Gyf Zf: Z ,Yllp1+ “+inpn lel_"'_ann)Zk by (42)

g€G k=0 In+Jn=k

LT et ) e ()

g€G k=0 In+Jn=Fk

1_ n
- |G|Z Y IO +Pe ) (L Py ™2 4.
geqG i=1

On the domain {z € C||z| < 1}, the power series
(L+ APz 4922+ )

converges to . So, the product

[JA+r7 2477224 ) Ly Pz )
i=1

converges to
1

[Iis, (T =Pi2) (1 —y7Piz)

Now if we denote by E(g) to be the set of eigenvalues of g, then we write

(1— 2% 1 1 — 22
|G| gze; H'yeE(g)(l —7z) z; [2n

We denote the generating function for a lens space L = L(q : p1,...,pn) by Fy(z
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P1, apn)

Corollary 4.1.12. Let L(q : p1,...,pn) be a lens space and F,(z : p1,...,pn) the
generating function associated to the spectrum of L(q : p1,...,pn). Then, on the
domain {z € C | |2| < 1},

q
1—2?

1
F(zzpla"'upn = - n N
q 7 2= TG

zlz_fypZ

where v is a primitive g-th root of unity.

Proof. In the notation of the Theorem 4.1.11, we get

. 1¢
dim HE, = Z Xk (g =y Z xk(9"). (4.5)
=1

gEG
So
l—z 1
F(Z P1, 7pn
'S
B (1—z2) d 1
¢ 2 TGz -y Pl

since multiplying through by 1 = (—v77il)(—~Pil) gives

(1 —Plz)(1 = y7Plz) = (2 — 7P (2 — 7P). O
Remark: By the Theorem 4.1.11 and unique analytic continuation, we can con-

sider the generating function to be a meromorphic function on the whole complex

plane C with poles on the unit circle S! = {z € C | |z| = 1}.

From this remark we have,

Corollary 4.1.13. Let S*"7' /G and S*~' /G’ be two spherical space forms. If there

is a one to one mapping ¢ of G onto G’ such that the set E(g) = the set E(¢(g)),Vg €
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G, then S*"1/G is isospectral to S*" 1 /G'.

Proof. The proof follows from the fact that

[T G=v2)= ]] (=) = det(fan — g2).

vEE(9) YEE(9)

]

Corollary 4.1.14. Let S*7'/G and S*'/G' be two isospectral spherical space

forms. Then |G| = |G'|.

Proof. Fg(z) can be considered as a meromorphic function on the whole complex
plane. Fg(2) has a pole of order 2n—1 at z = 1. Note that 47 = 1 iff p;/ = 1(mod q).
Since ged(p1, pa, -, Pn; q) = 1, thisis only true for all p; at once for [ = ¢. In particular,
this implies that for this corollary to hold, we don’t need to have a manifold quotient,

nor is this required in the proof of Theorem 4.1.11.

We take lirq (1—2)*""1Fg(2)
z—

. 1 (1-2%)
=lim (1 — 2)*"' —
z—1 |G| geG H’yGE(g)(l - ryz)
1 1
= —lim (1 — 2)* (1+2)
‘G| z—1 geG HVEE(g)(l - 72’/)
I (1—2z)*
=—lim(1+ z)
G| =1 vec [T ened—72)

= 2(0+0+ +0+U——2
G| ~——— G|

2n—1 times

Since the spaces are isospectral, this implies that

lim(1 — 2)*" 'Fg(2) = lim(1 — 2)** ' Fa(2),

z—1 z—1
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which gives |G| = |G’]. O

4.2 Formulation of Generating Function

In order to use the generating function to find isospectral non-isometric lens spaces,
we need to formulate it in ways that are useful for certain types of lens spaces. The
formulation of the generating functions used by Ikeda ([I1]) for manifold lens spaces
needs to be changed to allow for singular points when we are dealing with orbifold
lens spaces. In this section we will develop forms of the generation function that will

be used to find isospectral pairs of non-isometric orbifold lens spaces.

4.2.1 Preliminaries

Let ¢ be a positive integer that is not prime. Set

1 if ¢ is odd,

do
2 if ¢ is even.
Throughout this chapter we assume that ¢y > 4.
For any positive integer n with 2 < n < g9 — 2, we denote by f(q, n) the set of

n-tuples (p1,...,p,) of integers. We define a subset fg(q, n) of f(q, n) as follows:

[O(Q, n) =

{(pl,...,pn) € f(q,n) pi £pj(modq),1 <i<j<mn,gcd(pr,-...Pnq) = 1}.

We introduce an equivalence relation in I(q,n) as follows: (pi,...,p,) is equivalent

to (s1,...,8,) if and only if there is a number [ prime to ¢ and there are numbers
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e; € {—1,1} such that (py,...,p,) is a permutation of (e;lsy,...,eyls,) (mod g). This
equivalence relation also defines an equivalence relation on ﬁ)(q, n).

We set I(g,n) = I(g,n)/ ~ and Iy(q,n) = Io(q,n)/ ~. Let k = gy — n. We define
a map w of Iy(q,n) into I(q, k) as follows: For any element (py,...,p,) € INO(q,n),

we choose an element (qq,...,q) € E)(q, k) such that the set of integers

{pla —P1,--3sPny —Pn,q1, —q1,---,4k, _q}c}

forms a complete set of incongruent residues (mod ¢). Then we define

w([p1, .- pal) = a1, - il

Suppose there is another set (sq,...,8%) € i)(q, k) such that the set of integers

{p17 —P1,---3,Pny —Pn,S1, —S1,..., Sk, _Sk}

forms a complete set of incongruent residues (mod ¢). Suppose there is no [ prime to ¢
such that (¢, ..., qx) is congruent to a permutation of (leysy, ..., legsy) (mod q). That
means that for any given [ prime to ¢, there is at least one ¢; which is incongruent to
lejsj (modgq) for j =1,2,...,k and e¢; € {—1,1}. This would mean that the number
of incongruent residues (mod gq) is greater than ¢. This is not possible. Therefore
(s1,...,8;) must be equivalent to (qi, ..., qx). Therefore, w is well-defined.

With similar arguments, it is easy to see that w is one-to-one and onto. Assume

w([p1, .- oal) =w(ry, .oy ra]) = g1, - -5 qr)-
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This means that

{pb —P1y--3sPny —Pn>q1, —q1, - - - s Gk, _CIk:}

and

{Th Ty 3Ty —Tnyq1, —q1, .- -, 4k, _q}c}

are both complete sets of incongruent residues (mod g).

If there is no [ prime to ¢ such that (pi,...,p,) is congruent to a permuta-
tion of (leyry,...,le,r,) (modq), where e; € {—1,1}, then that would mean that
there are more than ¢ incongruent residues (mod ¢). This is not possible. Therefore,
D1,y Pn) = [r1,...,70], and w is one-to-one.

Now, given a [q1, . .., qx] € Io(q, k), there are exactly k of the {q1, —q1, ..., @&, — a1}
(mod ¢) that are less than or equal to gy. Now since gy = n + k, we can choose the

other n integers to be py,...,p, so that the set

{ph —P1y-+3sPns = Pn,q1, —q1, - -, 4k, —Qk}

forms a complete set of incongruent residues (mod ¢). Thus, we can have [p,...,p,] €
Iy(g,n) that maps onto [qi, ..., qx]. So w is onto. This gives us a bijection
w: Io(g,n) — Io(q, k). (4.6)

The following proposition is similar to a result in [I1]:

Proposition 4.2.1. Let Iy(q,n) be as above. Then,

1 CIO)
Iy(g,n)| > —
gl = o ("

43



where

o) 1 if qon = 0,
o)

i .
—20__ otherwise.
n!(go—n)!

Proof. Let Io(g,n) be as above. Consider a subset I/(q,n) of Iy(g,n) as follows:
fé(q, n) = {(pl, .y Pn) € E](q, n) | at least one of the p; is co-prime to q}.

It is easy to see that the equivalence relation on %(q, n) induces an equivalence relation

on ]V(’)(q, n). Since we eliminate classes where none of the p;’s is co-prime to ¢, we get

[1o(g, )| = [I(g, )],

where I)(q,n) = I/(q,n)/ ~. Now consider a subset I7(¢,n) of I}(¢,n) as follows:

Z/J/<Q7n) = {(plaapn) € Z/](qvn) 1 =P < e <pn S QO}

Then it is easy to see that any element of Z’](q, n) has an equivalent element in 7(’]’ (q,n).
On the other hand, for any equivalence class in [(g,n), the number of elements in

1"(q,n) which belong to that class is at most n. Hence we have:

)| = 130,01 =+ TyGam) | = (71 ) = (™)

n\n—1 Go \ 1
This proves the proposition. O

Lemma 4.2.2. Let ¢ = p™ or q = py - p2, where p,py,p2 are primes. Let D be the
set of all non-zero integers mod q that are not co-prime to q. Then |D| is even if q is

odd and |D| is odd if q is even.
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Proof. For ¢ = p™:

If ¢ is odd, then p is an odd prime. 1% = p™~! which is an odd number. Therefore
the number of elements in D, (p™~! — 1) is even.

If ¢ is even, then p = 2. % = 2™ is even. So the number of elements in D,
(2m=1 — 1), is odd.

For ¢ = p1 - pa. (p1 # p2):

If ¢ is odd, then both p; and py are odd primes. The number of elements in D is
(pi1 + p% —2) = (p2 + p1 — 2) which is even since p; + ps is even.

If ¢ is even, then one of the p;’s is 2 and the other is an odd prime. Assume p; = 2.
So, the number of elements in D is (5 + -1 —2) = (po +p1 = 2) = (p2 + 2 — 2) = pa,

which is odd.

This proves the lemma. O

We will say that |D| = 2r if |D| is even; and |D| = 2r — 1 if |D| is odd, where r
is some positive integer. It is easy to see that if |D| is even, then exactly r members
of D are less than ¢q. If |D| is odd, then r — 1 members of D are strictly less than ¢
and one member of D is equal to gy (recall that for even ¢, we set gy = ¢/2, and for
odd ¢, we set qo = (¢ — 1)/2).

With these results we now obtain a better lower bound for |Iy(g, n)]|.

Proposition 4.2.3. Let Iy(q,n) , I)(g,n), fé(q,n) and fé’(q,n) be as in Proposi-

tion 4.2.1. Let k = qo—n. Then

a2 (M),

t=u

where w =1 —k ifr >k andu =20 ifr <k, and r is as defined above.
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Proof. The number of ways in which we can assign values to the p;’s in

(]— =P1,P2,- . 7pn) € ](/],(Qan)

such that ¢ of the p;’s are not co-prime to ¢ is

G—1—1r\/(r
n—1—t/)\t)
On the other hand for any equivalence class in Ij(¢g,n) with ¢ of the p;’s not being

co-prime to ¢, the number of elements which belong to that class is at most n —t. So

the number of such possible classes is at least

=02)()

n—t\n—1—t/)\t)

Now if r > k, this would mean that n > gy —r, or n—1 > gy — 1 —r. This means that
t cannot take any values less than r — k, since that would mean that we are choosing
(n—1—1t), a number larger than (go — 1 —r) from gy — 1 —r and that is not possible.
So, the smallest value for ¢ in this case can be r — k.

On the other hand, if r < k, thenn < gy —1r,orn —1 < gy — 1 — r. This means
that it is possible for us to choose n-tuples in E’)’ (¢, n) with all values being co-prime
to g. Thus, the smallest value for ¢ would be 0 in this case.

It is obvious that the maximum value ¢ can take is r since (1,pa,...,p,) cannot

have more than r values that are not co-prime to q. Now, adding up all the degrees

for different values of ¢ we get

LORIETAOIED Sr et G |

r
t=u
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whereu =0ifr<kandu=r—Fkifr > k.

This proves the proposition. ]

Definition 4.2.4. (i) Let q be a positive integer and v a primitive g-th root of 1.

(ii)

We denote by Q(v) the q-th cyclotomic field over the rational number field Q

and denote by ®,(z) the q-th cyclotomic polynomial

Let A be the set of residues mod q that are co-prime to q. We define a map 4,
of In(q, k) into Q(v)[z] as follows:

For any equivalence class in Io(q, k), we take an element (q1,...,qx) of i)(q, k)

which belongs to that class. We define

Yokl -, au])(2) = Z H(Z — ) (2 =M.

leA i=1

This polynomial in Q(v)[z] is independent of the choice of elements which belong

to the class [qu, ..., qx|. Therefore, the map is well-defined.

Given ¢ = p™, we define

Bj:{x€Z+:p7|x,pj+1)(x}.

We define the maps aé{,)ﬁ of In(q, k) into Q(v)[z] as follows:

For any equivalence class in Iy(q, k), we take an element (q1,...,qx) of _To(q, k)
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which belongs to that class. We define

a‘(JJv")quh s r])(2) = Z H(Z — fyqil)(z _ fyfqil).

leB; i=1

These polynomials are also independent of the choice of the elements which

belong to the class [qi, ..., qk|. Therefore the maps are well defined.

(iii) Now assume q = py - p2. We define the following sets of numbers that are not

co-prime to q.
B:{xp1|x:1,2,...,(p2—1)} andC’:{xp2|x:172,...,(p1—1)}.

We define maps g and By as follows:

For any equivalence class in Iy(q, k), we take an element (q1,...,qx) of fo(q, k)

which belongs to that class. We define

agil - al)(2) =D [J(z ===

leB =1

and

Bowl[ar - a)(2) = D [z =)z =)

leC i=1
These polynomials in Q()|z] are again independent of the choice of the elements

which belong to [q1. ..., qx|; so these maps are also well defined.

Since (z — 4% (z — 4y~ %!) = (y%l2 — 1)(y~ %'z — 1), the following proposition is

easy to see.
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Proposition 4.2.5. If we put

Yor(lqrs -, q])(2) = Z(—l)i a; 2"
o (v, - ax)(2) = D (=1) b2,
agr(lar, - a)(z) = Z(—l)i bz,

51],]6([(]1’ s >qk])(z) = Z(_l)z CiZQk_ia
then we have

1. a; = ag—i, bij = bk—i),j, bi = ba—; and ¢; = cop—;.

2. ag = |A|, bDJ‘ = |Bj’, bo = |B‘ and Co = |C|

4.2.2 Generating Functions and Isospectrality

Now let £(g,n) be the family of all (2n— 1)-dimensional lens spaces with fundamental

groups of order ¢, and let Eg(q, n) be the subfamily of E(q, n) defined by:

Lo(q,n) = {L(qg:p1,...,pn) € L(g,n) | pi # £p; (mod ¢q),1 <i < j<n}.

The set of isometry classes of /j(q, n) is denoted by L(g,n), and the set of isometry
classes of Eg(q, n) is denoted by Lo(g,n).

By Proposition 4.1.2, the map

L(q:p17"'7pn)H(p17"'7pn)

of Eo(q, n) [resp. Z(q,n)} onto fo(q,n) [resp. f(q,n)} induces a one-to-one map be-
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tween Lo(q,n) and Io(g,n) [resp. L(g,n) and I(g,n)].

The above fact, together with Proposition 4.2.3, gives us the following:

Proposition 4.2.6. Retaining the notations as above, we get

1 Go—1—1r\/[r
t\n—-1—-t/\t)’

where u =1 —k ifr >k, and u =0 if r < k; r is the number of residues(modq) that

Lolg,m) 2 Y -
t=u

are not co-prime to q and are less than or equal to qq.

Note that by Proposition 4.2.1, we also get that

1 (qo
> — .
Lolam)] > (n)

Next, we will re-formulate the generating function F,(z : py,...,p,) in a form that
will help us find isospectral pairs that are non-isometric (see Proposition 2.2.12 in

[Ba]).

Proposition 4.2.7. Let L(q : p1,...,pn) be a lens space belonging to Eg(q,n), k=

go — m, and let w be the map of Io(q,n) onto Iy(q, k) defined in section 4.2.1. Then

(i) If ¢ = P™, where P is a prime, we have

D) = + +

q|(1—2z)m <I>q(Z)
m—1 a 1,.--,pn]))(z)(1 _22>}.

([p

F(sph.. _1{ (=2 grlw(lpr,.. ., p))(2)(1 = 22)

Jj=1
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(ii) If g = Py - Py, where Py and Py are primes, we have

Fy(z:p1,. - pn) = é{ ((11_—5)21 4 Yar(w(pr, 'é;?(?g))(z)(l —2?)

agr(w(lpr, - pa]))(2) (1 — 27)
(®p, (2))1(1 = 2)"t

ﬁq,k(w([pl, <o ,pn]))(z)(l — Z2>
B e &

+

+

where Vg1, o l(],)w agk and By are as defined in definition 4.2.4 and ®4(2) = ZZ;B 2v.

Proof. We choose integers q1, ..., qr such that the set of integers

{ph —P1,---3sPny, = Pn,4q1, =41, - - -, Gk, _Qk}

forms a complete set of residues mod q.

(i) We write

. 1 k)
Fo(z:prooopn) = ; [T, (z = 7t)(z —y77il)

. - (1-22)
j=1 I€B; IT=(z =7 (z —yrit) [

Now, for any [ € A, we have

1 G-
TG =0 =) B, -
For | € Bj, we have
1 _ Hk ( fyqz )(Z v q,l)
TG G =7 @pa)P (1= )P
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Now, (i) follows from these facts.

(ii) We write

(1—2?) (1—2?)
t o =) T A TG = =) |

leB leC i=1

Again, for [ € A,

1 I N [ e ).
[[2i(z =) (z —y77) Dy(2) '
For [ € B, we have
1 I Y e Gt .

[Tz =z =) (@p(2))P (1 —2)P !

For [ € C', we have

! — [T (2 — %) (2 — y~d)
H?:1<Z - ’ypil)<z - /y_pil) <(I)P1 (Z))P2(1 - Z)Pz—l :

Now, (i) follows from these facts.

From Proposition 4.1.10 and Proposition 4.2.7, we get the following proposition

Proposition 4.2.8. Let L = L(q : p1,...,pn) and L' = L(q : $1,...,8,) be lens

spaces belonging to Eo(q, n). Let k = gy — n.
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(i) If ¢ = P™, then L is isospectral to L if

Yar(w(lpr, -, pnl)) = Ygr(w([s1, . .., sn]))

and a9\ (w((pr,...,pa))) = al)(w([s1,. ... 5,]))
forg=1,....m—1.
(ii) If g = Py - Py, then L is isospectral to L' if
wq,k(w([plu ce >pn])) = wq,k(w([sb SRR Sn]))ﬂ

agr(w([pr, -5 pal)) = agr(w((si;. . sa))

and Bar(w([p1, - -5 pnl)) = Bor(w([s1, .- -, sa]))

By applying Proposition 4.2.6 and Proposition 4.2.8 we will obtain our main The-
orem 4.3.5 in this chapter for odd-dimensional lens spaces. Next, in Theorem 4.4.5 we
will extend the results to obtain even-dimensional pairs of lens spaces corresponding

to every pair of odd-dimensional lens spaces.

4.3 0Odd-Dimensional Lens Spaces

From the results in the previous sections we get the following diagrams:

For ¢ = P™,
Tq,k
where Tq(g;‘) = (Y, ag,z, o ,agz_l)), and Q™ (7v)[z] denotes m copies of the field of

rational polynomials Q()[z].
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Forq= P, - P,

Lo(g.n) = Io(g.n) = Io(q. k) - Q*(V)[, (4.8)

where Sé?,z = (Vg k> Vgl B ke)-

Now, from Proposition 4.2.8, if T(jz) [

Wk resp. 8;3,2] is not one-to-one, then we will

have non-isometric lens spaces having the same generating function. This would give
us our desired results.

The following two propositions will give us the possible number of expressions for
Tq(jz) and S é?’k) for the case when k = 2. But before we get to the propositions, we first

calculate the values for the required coefficients of 1, o, aé{%, Qg2 and ;9.

Recall from Proposition 4.2.5 that if we set

2k

qu,k([Ql, cee >qk])(z) = Z(_l)z az_ZQk—i’

=0

2k
0O(lar,- - ) () = D (=1 by,

=0

aq,k([Ql, ce >qk])(z) = Z<_1)Z biz2k_ia

Barllar, - a])(2) = Z(_1>z’ e

then we will have a; = A9k—j, bi,j = b(2kz—z‘),j, bz = bgk_i and Ci = Cof—q- We will also

have ag = ‘A’, bO,j = ‘Bj', bo = ‘B’ and Co — |C‘
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Recall also that,

(z =78 (z — 474,

—

Yorllar, - a])(2) =

™
N
-
[
N

(J

D (lar.. - a])(2) 2 — 48 (z — %),

Il
;?r

Q
A
<

(z — 78 (z — 774,

Il

aq,k([qh s 7Qk])(z)

m
Ss!
-~
Il
-

(z =78 (z — 474,

|

Berllar, - a])(2)

N
m
Q
-
Il
—

where

A={z (modq): (z,q) =1},
Bj={xcZ*:p |z, fu},
B:{xpljx:]_,...,(pQ_l)}v

C:{xpgzle,...,(pl—l)}

From these definitions we can calculate the values of the various coefficients of 1, s,

(47)
ok Vg and S

e
First we will find coefficients for z and 22 for any given k, and from that we can
find the values for when k = 2.

From the definitions of 9, x([q1, - - ., qx]) it is easy to see that

k k k
DL HREED PR

1=1 l€A i=1 l€eA i=1 leA
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Similarly,

k
bl,j =2 Z Z ’Yqila

i=1 I€B,
k

by =2 Z Z ’Yqil7
i=1 leB
k

=2 Z Z it
i=1 1eC

Also,

GQZZ[k+ Z ,y(%-HIt)l_f_ Z ,y—(Qz'-‘rqz)l_'_ Z ,7(!11'—%)1_’_ Z ,y_(Qi—Qt)l]

leA 1<i<t<k 1<i<t<k 1<i<t<k 1<i<t<k
=k ‘A’ +2 E E V(Qi+€h)l + 92 E E fy(%*%)l_
leA 1<i<t<k leA 1<i<t<k
Similarly,

b2,j =k |B]| +2 Z Z ,y(qz'-HZt)l +2 Z Z ry(‘h'_qt)l’

leB; 1<i<t<k leB; 1<i<t<k

b =k[Bl+2) Y qarelp23 N7 gl
leB 1<i<t<k leB 1<i<t<k

¢, =kI|C|+2 Z Z 7(qz'Jrqz)l 49 Z Z ,y(‘Ii—Qt)l7
leC 1<i<t<k leC 1<i<t<k

where |A|, |B;|, |B| and |C] are cardinalities of A, B;, B and C, respectively.

In a similar fashion we can find values of coefficients of higher powers of z when
k > 2. These coefficients will contain terms that include higher sums and differences
of the various ¢;’s in the powers of ~.

We notice that the values of a;, by;, by and ¢; are dependent upon where the

various ¢; belong - in A, B;;, B or C. Similarly, as, by ;, by and c; are dependent
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upon where the various ¢; + ¢, and ¢; — ¢, belong - in A, B, ;, B or C. The same
would be true for coefficients of higher powers of z for £ > 2. That is, the coefficients
always depend upon where the various sums and differences of the various ¢;’s reside.
Therefore, we conclude that the maps Tq(j;:) and Sq(?,z as defined in (4.7) and (4.8) are
dependent on where the various ¢;’s and their higher order sums and differences reside
(we assume that ¢ and k are fixed). This means that the number of Tq(jz) [resp. Ségk)]
we will get will depend on the number of cases we will get for various ¢;’s as well as
various higher sums and differences of the various ¢;’s belonging to A or B;’s [resp.
A, B or C].

At the end of this chapter we will look at an example where we will actually
calculate the values of the various coefficients shown above. Here we will prove two
propositions (see Proposition 3.1.2 and Proposition 3.1.3 respectively in [Ba]) that

will give us upper bounds on the number of expressions for Téfk’ and S respectively,

q,k>

where k = 2.

Proposition 4.3.1. Let p be an odd prime and let ¢ = p™ where m is an integer

greater than 1. Let g9 = . Let k = 2 and n = gy — 2. Then the number of

3
expressions that Tq(JQ) can have is at most m>.

Proof. We will find the number of Tq(Q by considering the following cases:

Case I: q1,¢2 € B; (j=1,2,...,(m—1)), where B; = {z € ZT : p/ | z,p™ { z}.
We will consider all of the possibilities one by one, i.e., ¢1, g2 € By, then ¢, ¢ €

Bsy, and so on. When ¢y, ¢2 € B, then we have the following possibilities for
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@1+ q2 and q1 — @o:

¢1+q € Byand ¢t — ¢ € By

or g1 +¢q2 € By and ¢1 — q2 € By (or vice versa)
or qi + ¢z € By and ¢1 — g2 € B (or vice versa)
or qi + ¢z € By and ¢1 — ¢2 € By (or vice versa)

This means that there are at most (m — 1) different possibilities for Tq(g .

Now when ¢1,¢s € By, we will get the following (m — 2) different possibilities:

¢1+q2 € Byand 1 — q2 € By

or g1+ q2 € By and ¢1 — q2 € B3 (or vice versa)
or g1+ q2 € By and ¢1 — q2 € By (or vice versa)
or g1 +q2 € By and ¢1 — q2 € By (or vice versa)

Note that the case where ¢; 4+ g2 € By and ¢; — ¢ € By will not occur since By
contains only multiples of p whereas B, contains multiples of p?. So, whereas it
is possible that one of q; + g2 or ¢ — ¢o is xp”, r > 2, neither ¢; + g2 or ¢ — ¢
will ever be a multiple like zp, where = # p' for any ¢. The same reasoning will
apply when we consider other B;’s.

So, now we have (m — 2) different possibilities for 7532) Proceeding in this

manner for the remaining B;’s one by one we will get one less equation than

the previous time, until we get to the case where ¢, g2 € B(,,—1). Here there is
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Case 2:

Case 3:

only one possibility that ¢; &= q2 € B(n—1). So Tq(g will have one equation at the

most.

Now adding all the possibilities for rq(Q we get

m(m — 1)

(m—1)+(m—-2)+---+3+2+1= expressions

at the most.

q1 € B] and g2 € Bta B] 7£ Bt.
Notice that if j < ¢, then ¢; £ ¢» will always belong to B;. To see this, assume

q1 € B; and ¢z € B;. Then ¢; = zp’ and ¢, = yp' for some z and y.

=g tq=ay’ yp' =ap £ypp (where r + j =t)

= (z+yp")-p’ € B; since x = yp" # p® for any numbers.

So, we again view all the possibilities starting with ¢; € By and ¢ € B; (j =
2,3,...,(m—1)) (or vice versa) q; =¢2 € By always. This would give us (m —2)
©)

possible expressions for 7.7

Next we consider the case where ¢; € By and ¢o € B; (j =3,4,...,(m —1)).
This will give us (m—3) possibilities for Tq(]Q) We keep proceeding in this manner
until we reach the case where q; € B(,,—2) and q2 € B(;,—1), where we get just
one possibility. Now adding all these we get a maximum number of possible

expressions for 74

.2 1n this case:

(m—=2)+(m—=3)+---+34+2+1= (m—1)2(m_2)‘

¢1 € Bj and ¢» € A, or vice versa.
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Case 4:

Proposition 4.3.2. Let ¢ = py-po, where py, po are distinct odd primes. Let qo = &=

Here we note that ¢; £+ ¢» always belongs to A. Therefore, in this case we will

get (m —1) possible expressions for 79

.2, one each for the case where ¢; € A and

©@€eB; (j=12,...,(m—1)), or vice versa.

q,q2 € A.

We will get 1 possible equation if g + g2 € A. Then we will get 1 possible
equation each for the case when ¢; + ¢ € A and ¢; — ¢2 € B; (or vice versa)
for j = 1,2,...,(m — 1). There are no other possibilities in this case. So the
maximum number of possible expressions for Tq(g in this case willbem—1+1 =

m.

Case 1 though Case 4 are the only possible cases that occur for £ = 2. Adding

up the numbers of all possible expressions for Tq(fé) from each case we get the

maximum number of possible expressions that 7'(1(]2) can have:

m(m — 1) N (m—1)(m —2)

5 5 +(m—1)+m
m*—m+m?—3m+2+2m—2+2m 2m? N
2 2
0
q—1

5 -

Let k =2 and n = qo— 2. Then the number of possible expressions for 85’2) 1S at most

11.

Proof. As in the previous proposition, we prove this result by considering all the

possible cases for ¢; and ¢o (where ¢; & ¢ is not congruent to 0(mod q)).

Case 1

¢1,92 € B (or q1,q2 € C), where B = {:cpl‘:c =1,...,(ps — 1)} and C =
{zp2|z=1,....(m—1)}.
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Case 2:

Case 3:

Case 4:

Then ¢; + g2 € B (or ¢1 £¢2 € C, respectively). There are no other possibilities

for this case.

q1 € B and ¢; € C (or vice versa).

We have just one possible equation in this case, when ¢; & ¢» € A.

1 €A, qo € Bor g1 € A g € C (or vice versa).

We will get one equation each when ¢; + ¢, € A. Then we will get one possible
equation for the case when ¢; € A,qp € B, and ¢1 + ¢ € A,q1 — ¢ € C, (or
vice versa).

We will get one more possible equation for the case when ¢; € A, ¢ € C, and
G +q €A ¢ — g € B (or vice versa).

So, in this case we get a possible 4 expressions for S;?Q) .

q,q € A

We will get one possible equation where ¢; + ¢ € A. We get another possible
equation where ¢; + ¢2 € A and ¢; — g2 € B (or vice versa). We get a third
possible equation where ¢; + g2 € A and ¢; — g2 € C (or vice versa). We get a
fourth possible equation where ¢; + g» € B and ¢ — g2 € C' (or vice versa).

So, we get a total of 4 possible expressions for sz) in this case.

Case 1 through Case 4 are the only possible cases than can occur for k = 2.

Adding up the number of all possible expressions for S;?Q) from each case we get the

. . : 3
maximum number of possible expressions for 8(52) :

2+1+4+4=11.
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It is important to note that in the above propositions the number of possible
expressions is the mazimum number of expressions that can happen. It is possible
that for a given ¢ = p™ or ¢ = p; - p2 not all the expressions will occur. We will see
this in an example later.

We now prove two similar propositions (see Proposition 3.1.4 and Proposition
3.1.5 respectively in [Bal]) for even ¢ of the form 2™ and 2p, where m is a positive

integer and p is a prime.

Proposition 4.3.3. Let ¢ = 2™ where m > 3. Let qo = %, i.e., qo =2"""'. Letk =2

and n = gy — 2. Then the number of possible expressions that TQ(Q can have is at most

(m —1)2.
Proof. We proceed as in the previous propositions.

Case 1: ¢, € B; (j=1,2,...,(m—3)), where B; = {z € Z+ : 20 | 2, 2"} { z }.

We first note that the cases where ¢, q2 € B,,,_2 or B,,_1 will not occur: B,,_1

2m=2 and

has only one element, namely 2™~ !; B,,_» has just two elements,
3-2m72 50 if we were to take these two elements and add them we would get

2™ which violates our definition of Iy(q,2) and Ly(q, 2).

Now when ¢, ¢» € Bj;, then one of the ¢; + g2 or ¢; — g2 will belong to Bj;, and

the other will belong to B; for t > j + 1.

To see this assume ¢1,¢2 € B;. Since B; only contains powers of 2/ with odd
coefficients, we can assume that ¢ = (2u — 1)27 and ¢y = (2v — 1)27 for some
numbers u, v.

Now q1 + ¢ = (u+v—1)2"" and ¢; — g = (u—v)27"1. If one of the (u+v—1)
or (u —v) is odd then we know that one of the ¢; + g2 or ¢; — g2 will belong to

Bjy1. Assume both are even, i.e., u +v —1 = 2z and u — v = 2y. Adding the
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Case 2:

Case 3:

two equations we get (2u — 1) = 2(z +y). This is not possible since the number
on the left is odd and the number on the right is even. Therefore one of them

is odd.

A similar argument shows that both u+wv—1 and u—v cannot be odd. Therefore
one of them is even. Which means that one of the ¢; + ¢ or ¢1 — g2 belongs to
B, for t > j + 1 since it gets at least one extra power of 2.

Now, starting with ¢, g2 € By, we get (m—3) possible expressions for Tq(fg where
we get one equation each for ¢; +¢o (alt. g1 —¢2) in By and ¢ — g2 (alt. ¢+ ¢2)
in B, fort=3,4,...,m— 1.

Then considering q;, g2 € By, we get (m — 4) possible expressions for Tq(Q where
we get one equation each for ¢; + ¢2 € Bs (alt. ¢ — g2 € B3) and ¢; — q2 € By
(alt. ¢1 + ¢2 € B;). Continuing in this manner until we get to the point where
¢1,q2 € Bp_3, where we get just one equation such that ¢; + ¢» € B,,_» (alt.
@1 — @2 € Byp) and 1 — q2 € By (alt. 1 + @2 € Byyy).

()

So, in this case, the total number of possible expressions for 7,5 are:

(m —2)(m —3)
5 )

(m—=3)+(m—-4)+---+3+2+1=

¢ € Bj and ¢ € By, where B; # B;.
We can assume that j < t. This would mean that ¢; & ¢ € B; always. So, as

in Case 2 of Proposition 4.3.1, we get that the total number of expressions for

Tq(’jQ) will be —(m_l);m_m.

¢1 € B; and ¢ € A (or vice versa).
We notice that ¢; + g2 € A always. So, just like in Case 3 of Proposition 4.3.1,

we will get that the total number of possible expressions for Tq(g will be (m—1).
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Case 4: q1,q2 € A.
In this case one of ¢; + ¢o or g1 — g2 will belong to By and the other will belong

to one of the B; for j > 1.

To see this, assume ¢; = 2u — 1 and ¢ = 2v — 1 for some numbers u and v.
Thus, ¢1 + g2 = 2(u + v — 1), which is even, and ¢; — ¢ = 2(u — v), which is

even.

As in the argument for Case 1 above, we get that exactly one of the u + v — 1
and u — v is odd and the other is even. Since By contains odd multiples of 2 |
we will get that one of the ¢ + g2 or ¢ — ¢o will be in B;. Since one of u+v —1
and v — v is even one of the ¢; + g2 or ¢ — ¢ will get at least one additional

power of 2, which would mean that it belongs to a B; where ¢ > 1.

Therefore, for this case we will get (m — 2) possible expressions for 74

22, one

each for the case when ¢; + ¢o € By (alt. ¢ — ¢2 € By) and ¢; — ¢2 € B; (alt.

G +q €By) fort=2,3,....,m—1.

Now, adding up all the possible expressions from the four cases above we get the
maximum number of possible expressions for Tq(g ,

(m—2)2(m—3)+(m_1)2(m_2>+(m—1)+(m_2)

_m2—5m+6+m2—3m+2+2m—2+2m—4
N 2

=m*—2m+1=(m—1)>

]

ol . . . 3
Our next proposition gives us the maximum number of expressions for Sq(Q) when

q = 2p for some prime p.
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Proposition 4.3.4. Let g = 2p where p is an odd prime. Let qo = 4 = p. Let k =2

and n = qo — 2. Then the number of possible expressions for Sé?z) 15 at most 6.

Proof. As before we will analyze the different possible cases. Note that in this situa-

tion we have B = {2,4,6, L 2(p— 1)} and C = {p}.

Case 1: q1,q2 € B. We will have ¢; 4+ ¢g» € B always.
Notice that in this case ¢, g2 cannot belong to C' since C' has only one element.

So we get 1 possible equation in this case for 85?2) .

Case 2: q; € B,qs € C. In this case ¢; £+ ¢3 € A always.

So, we get 1 possible equation in this case for sz) )

Case3: € A, gge Borqu € A,qu € C.
When ¢; € A and ¢ € C, then ¢; = ¢o € B always. So, we get 1 possible
equation for 85?2). When ¢; € A, g2 € B, we will get 1 possible equation for
the situation when ¢; + ¢» € A. We will get another possible equation for 8(5732)

where ¢; + ¢ € A (alt. 1 — ¢ € A) and ¢1 — q2 € C (alt. ¢1 + ¢ € C).

So, there are a total of 3 possible expressions for Sé?’z) in this case.

Case 4: q1,qo € A. Then ¢; + ¢o € B always.

So, we get 1 possible equation for this case.

Now, adding up all the possible expressions from the above four cases we get the

maximum number of possible expressions for Séfg tobel+1+3+4+1=6. O

With these four propositions, we are now ready for our first main theorem (see

Theorem 3.1.6 in [Bal).
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Theorem 4.3.5. (i) Let p > 5 (alt. p > 3) be an odd prime and let m > 2 (alt.
m > 3) be any positive integer. Let ¢ = p™. Then there exist at least two (¢ — 6)-
dimensional orbifold lens spaces - with non-trivial singular sets and with fundamental

groups of order p™ - which are isospectral but not isometric.

(ii) Let p1,ps be odd primes such that ¢ = py-py > 33. Then there exists at least two
(¢ — 6)-dimensional orbifold lens spaces - with non-trivial singular sets and with

fundamental groups of order py - po - which are isospectral but not isometric.

(iii) Let g = 2™ where m > 6 be any positive integer. Then there exist at least two
(¢ —5)-dimensional orbifold lens spaces - with non-trivial singular sets and with

fundamental groups of order 2™ - which are isospectral but not isometric.

(iv) Let ¢ = 2p, where p > 7 is an odd prime. Then there exist at least two (q —
5)-dimensional orbifold lens spaces - with non-trivial singular sets and with

fundamental groups of order 2p - which are isospectral but not isometric.

Proof. We first recall from Proposition 4.2.6 that

T

DIIED S e [

t=r—2

for k =2 and r > 2. This means that for k£ = 2 and r > 2 we have,
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1Lo(g,n)| > ﬁ <n 301__T(;_1 2)) <r i 2)
e ) (D) () 0)
- (]()—2;—7“%—2((]0 —q;:::olﬂw) (Ti2)

n 1 qG—r—1 r
Gg—2—r+1\gp—-2-1—r+1/\r—1

1 0 1 ]. .
I — o —
+ : ( L9 1) since n = qp — 2

1 g —1—1 r . 1 g —1r—1 r
Cqgo—r\g-—-r—1)\r—2 g—r—1\g—r—2)\r—1
1 —r—1
L Qo — T r
Go—T—2\q—1—-3/\r

_qol_r-1.r(r2_1)+(q0_i_l).(qo_r_l)'r
—{—(q0_1r_2)_<QO—T—1)2(qO_T_2)'1
_%H%W.
(4.9)
Since
[Lo(g,n)| E%Jﬂww

for kK = 2 and r > 2, it is sufficient for us to show that (4.9) is greater than the
number of possible expressions in each case to establish the existence of isospectral

pairs for non-isometric lens spaces.

(i) For ¢ = p™, we have a total of m? possible expressions for Tq(g from Proposi-

tion 4.3.1. So, we will have isospectrality when (4.9) is greater than or equal to
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m? + 1. That is

27“((;“0—_170)) Ly o —2?" it B
= r(r—1)+2r(g—7) + (g0 —7)(q — 7 = 1) > 2(qo — r)(m* + 1)
= P —r+(@p—-r)2r+tqp-—r—1-2m*>-2>0
= (P =r)+(p—")g+r—2m*—3]>0
= 7’2—7"+q8+q07“—q02m2—3q0—q07’—7"2+2m27‘+37’20
= qolqo — 2m?* — 3) + 2r(m* + 1)>0
= —ql@m*+3) — @] > —2r(m* +1)
= [(2m* +3) — q] < 2r(m* +1). (4.10)

So for any given m, we can choose p big enough so that 2m? 4+ 3 < ¢o. This

prT -1
2

would guarantee isospectrality. We can calculate r by r = ( ) in this case.

Now if p > 5, g9 > &2’1 > 2m? 4 3 for all m > 2. This is easy to see since
5™ > 4m? + 7 for m > 2 as the left hand side grows exponentially greater than
the right hand side. So, for all p > 5 and all m > 2, (4.10) will be true and we
will get isospectral pairs of dimension (¢ — 6) = 2n — 1. Now for ¢ = 3™, we

have 3™ > 4m? + 7 for m > 4. So we will have isospectrality. We check cases
m =2 and m = 3.

When m =2,¢=9,r=1, ¢go = 4. So L.H.S. of (4.10) gives 4[2(4) +3 — 4] =
4(7) = 28 and R.H.S. of (4.10) gives 2(1)(4 + 1) = 10. So the sufficiency
condition is not satisfied.

When m =3, ¢ =27, r =4, qo = 13. L.H.S. of (4.10) gives 13[2(9) +3 — 13] =
13[8] = 104 and R.H.S. of (4.10) gives 2(4)[9+1] = 8(10) = 80. So the sufficiency

condition is not satisfied.
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However, when we check individually all the possible expressions for these cases

we realize that they are less than m?.

For ¢ = 32, the only two expressions are for the cases when ¢, € A, ¢ € By,
g1 Eq € A and q1,q0 € A, g1 + ¢ € A, ¢1 — ¢ € B;. No other possible

expressions exist.

However, there are only two classes in Ly(q,n), i.e.,|Lo(g,n)] = 2. The two

classes are

[1,2] = {(p1,p2) S Eo(q72) ’p1,p2 € A},

[1,3] = {(pl,pg) € Zo((],?) ’pl < A,pg € By (alt. p1 € Bl,pg € A)},

where n =2, A ={1,2,4,5,7,8} and B; = {3,6}. Therefore, we do not obtain

isospectral pairs.

For ¢ = 33, there are 7 expressions (instead of 3% = 9 possible expressions). The
case where ¢1, 2, ¢1 £¢2 € By and the case where ¢, g € By do not occur. This
gives us 2 less expressions than the estimated number of 9. But the number of

classes is greater than or equal to

4(4—1) 13-4-1 2 2
—— 4t ———=-+4+4=8->7 f 4.9).
2013 = 1) +4+ 5 3-1— + 3 (from 4.9)

This means we will have non-isometric isospectral lens spaces. This gives us
our result that for p > 3 and m > 3, we will get isospectral pairs that are

non-isometric.

—2
r = pitp2—2

(H) For q=Pp1- D2, 2
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From (4.9) and Proposition 4.3.2 we get the following sufficiency condition:

-1 L e
2(qo — 1) 2
= qo(25 — qo) < 24r (4.11)

From this we get that for ¢y > 25, we will always find non-isometric, isospectral

lens spaces because (4.11) will always be satisfied. We now check for cases where

q=2q0+1<51.

For ¢ < 51, and ¢ = p; - po with pi, pe being odd primes, there are only the

following possibilities:

(a)

g=3-7=21; B={3,6,9,12,15,18}, C = {7, 14}.

In this case we have 9 instead of 11 possible expressions. The case where
1,92 € C = {7,14} is not possible, and the case where ¢;,¢q2 € A and
¢1 g2 € A is also not possible since then g; = —¢;(mod ¢). Therefore, we

get 2 less expressions. Now for isospectrality we use (4.9):

A(4 - 1) 10-4-1) _1
i A IO S AR, o
d0—4) T o

which is not greater than 9. So the isospectrality condition is not met.

q = 3-5 = 15. In this case we have 7 instead of 11 expressions. Here
B =1{3,6,9,12} and C' = {5,10}. In this case, the following cases do not
oceur: q1, 2 €C; 1 € A, € C, it q2 € A; g1, @2, 1 £ @2 € A5 q1, 2 € A,

G+ q €A g —q € C. So we get 4 less expressions than 11. To check

3(3—1)
2(7—3)

+3 4+ U270 = 51 which is

for isospectrality we use (4.9) and get

less than 7. So the isospectrality condition is not satisfied.
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(e)

For (a) and (b) it can be easily shown that |£y(g,n)| is equal to 9 and 7

respectively. This means that there are no isospectral pairs in these cases.

qg=3-11 =33 B =1{3,6,9,12,15,18,21,24,27,30} and C = {11,22}.

Here gy = 16 and r = 6. We check for isospectrality using (4.11):

q0(25 — qo) = 16(25 — 16) = 144

24r = 24(6) = 144

So (4.11) is satisfied.

¢=5-7=35 B={510,15,20,25 30} and C = {7,14,21,28}.

Here gy = 17 and r = 5. Using (4.11) we get

qo(25 — qo) = 17(25 — 17) = 138

247 = 24(5) = 120

So (4.11) is not satisfied. However, we notice that in this case the actual
number of expressions is 10 instead of 11. So, we use (4.9) to check for

isospectrality. Plugging in » =5 and ¢ = 17 into (4.9) we get

5(4) +5+ = —111 > 10
2(12) 2 3

This implies that 85?2) is not one-one and therefore, we will have non-

isometric isospectral lens spaces in this case.

Finally, we check ¢ =3 - 13 = 39.
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Here o = 19 and » = 7. Using (4.11) we see

q0(25 — qo) = 19(25 — 19) = 114

24r = 24(7) = 168

So (4.11) is satisfied and we will have isospectral pairs in this case.
(a)-(e) are all the cases of ¢ = py - p» < 51, where py, py are odd primes.

Combining these results with the fact that for ¢ > 51, (4.11) will always

be satisfied, we prove (iii).

(iii) Let ¢ = 2™. We use Proposition 4.3.3 and (4.9) to get a sufficiency condition

for isospectrality:

r(r—1) . (o —r—1) 1)
—2(q0—7“)+ L e > ( 1)°+1

Here go = 2= = 2™~! and 2r = 2™, Therefore, ¢y = 2r in this case. Simplify-

ing the above inequality, we get
Ql(2m?* —4m +5) — qo] < 2r(m?* — 2m + 2).
But since gy = 2r, we get
(m?* —2m + 3) < qo
If m > 6, then m? — 2m + 3 < 2™7!. Further, the right hand side grows

exponentially bigger than the left hand side as m grows. For m = 3, 4 and 5,

the actual number of expressions for Tq(g are 4, 9 and 16 respectively. Further, it
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can be easily shown that for m = 3, 4 and 5, |£y(g, n)]| is 4, 9 and 16 respectively.

Therefore, for m = 3, 4 and 5 we do not get isospectrality. This gives us (iii).

(iv) Using Proposition 4.3.4 and (4.9) we get the sufficiency condition for isospec-
trality for ¢ = 2p, where p is an odd prime > 7. Note that in this case go = £ = p

and r = %. Now for isospectrality we should have

=1 -1

2(qo — 1) 2 -

= qo(15 —qo) < 14r
= p(l6—p) <T7(p+1)

= 0<p*—8p+7
or(p—1)(p—T7)>0 (4.12)

Since (4.12) is positive whenever p > 7, we will have isospectrality. When
q=2-5=10, then |Ly(g,n)| = 6 = number of expressions for 8(5’32). So, we do

not get isospectral pairs when p = 5. This proves (iv).

4.4 Even Dimensional Lens Spaces

Recall that in the manifold case, the only even dimensional spherical space forms are
the sphere S?* and the real projective space P**(R), and these two are not isospectral
(see [12]).

Recall that lens spaces are spherical space forms where the acting group, G, is

a finite cyclic group. Since we allow G to have fixed points, we are not limited to
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the sphere and the real projective space. We will see that given two odd-dimensional
isospectral non-isometric orbifold lens spaces as in Section 4.3, we can modify our
construction slightly to get isospectral non-isometric pairs of even dimensional orbifold
lens spaces.

Let L =L(q:pi,....,pn) = S*1/Gand L' = [L(q : s1,...,8,) = S*™71/G be
two isospectral non-isometric orbifold lens spaces as obtained in the previous section,

where G = (g), G' = (¢')

R(p1/q) 0

g = )
0 R(pn/q)
and
R(s1/q) 0
g = :
0 R(s,/q)
We define
R(p/q) 0
§1+ -
R(pn/q)
0 |
and
R(s1/q) 0
gi-s— =

R(sn/q)
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where g, and g, are extensions of g and ¢’ to orthogonal transformations of O(2n+1)
by adding a 1 in the (2n4 1,2n+ 1) entries of g and ¢’ respectively. Let Gy = (1)
and G + = (914)- Then Gy and G + are cyclic groups of order q. We define lens
spaces Ly, = S?"/Gyy and L = S?* /G, . Wedenote L1, = L(q: p1, ..., pn,0) and

E/1+ =L(q:s1,...,5,,0). We now prove a proposition similar to Proposition 4.1.2.

Proposition 4.4.1. Let L,, and E’H be as defined above. Then L, is isometric to
I:’H iff there is a number I coprime with q and there are numbers e; € {—1,1} such

that (p1,...,pn) 18 a permutation of (elsy, ..., els,) mod q.

Proof. Let Ly, and [2’1 + be isometric. Now any isometry of L. and I/1 4 lifts to an
orthogonal transformation that conjugates Gy, and G’l 4

(=) If g1y is a generator of Gy, then the orthogonal transformation will take §;
to a generator g, of a +. The eigenvalues of g4 and gj, are the same and the
eigenvalue 1 is mapped to the eigenvalue 1 of g{ . For the remaining eigenvalues,
each p; is equivalent to some Is; or [s; modulo ¢. Thus, (p1,...,p,) is a permutation
of (leysy, ..., leysy,) (mod q), where e; € {—1,1} fori=1,... n.

Conversely, let (p1,...,p,) be a permutation of (leysy,...,le,s,) (mod ¢). By
Proposition 4.1.2, we know that L and L’ are isometric. Let ¢ be an isometry between
L and L. This isometry lifts to ¢, an isometry of $2"~! onto itself. ¢ is an orthogonal
transformation that conjugates G and G’. This orthogonal transformation can be
extended to an orthogonal transformation of O(2n) by adding a 1 in the (2n+1, 2n+1)

entry. This is an isometry of S2" which induces an isometry of L4 onto I~/1 n m
The following lemma follows directly from this proposition.
Lemma 4.4.2. Let L, L', Li; and l~}’1+ be as defined above. Then L is isometric to

L' iff L1, is isometric to L.

5



Now let £~(1)+(q, n,0) be the family of all 2n-dimensional orbifold lens spaces that are
obtained in the manner described above. Let £;(g,n,0) denote the set of isometry
classes of L1 (q,n,0).

Then from 4.7 and 4.8 we get the following diagrams:

For ¢ =p™

Ly"(g,n,0) = Lo(g,n) = To(q,n) = Io(q, k) (—?> Q" (7)[#] (4.13)
and for ¢ = py - po

L£5"(q:1,0) = Lo(g.n) = Io(g,n) = Io(q. k) ;? Q*(7)[#] (4.14)

where TQ(S;L) and ka) are as defined for 4.7 and 4.8 respectively. Now we can view

R?"*! as a subspace of C"!, where

R2"H — {(xl,yl, e Ty Yy Ty, 0) € C'T 2 = 1y + /1y,

fori=1,...,nand 2,4, = an}
Theorem 4.4.3. Let
I~J1+ = L(q P15 Pn, 0) € ‘C(1)+(Q>n> 0)

and let Fy(z : p1,...,pn,0) be the generating function associated with the spectrum of
Lyiy. Then on the domain {zeC| || <1},
1< (1+2)

F,(z:p1,...,pn,0) = — — - _
! q 12_1: [T (z =) (z =77
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Proof. Recall the definitions of Ag, r?, P*, H* H* and H% from Section 4.1. We
extend the definitions for R?"*!. That is, let Ay be the Laplacian on R?>"*! with
respect to the Flat Riemannian metric; r? = Zf:fl xz, where (x1,...,29,.1) is the
standard coordinate system on R?"*!; for k > 0, P* is the space of complex valued
homogenous polynomials of degree k in R?"*!; H* is the subspace of P* consisting
of harmonic polynomials on R**1; H* is the image of i* : C®(R*" 1) — C>=(S5?")
where i : S?" — R?"*! is the natural injection; and H’é is the space of all G-invariant
functions of H*.

Then from Proposition 4.1.6 and Proposition 4.1.7, we get that H* is O(2n + 1)-
invariant; P* has the direct sum decomposition P¥ = H*@®r2P*=2; {* is an eigenspace
of A on 5% with ecigenvalue k(k+2n—1); > ey HE is dense in C*°(S?") in the uniform
convergence topology and H* is isomorphic to HF.

Using this,along with the results implied by Corollary 4.1.5 and Proposition 4.1.7,

where dim Ej(;42,—1) = dim HEH, we get

o
F(z:p1,...,pn,0) Z dlm’Hk )2".
k=0

Now G, is contained in SO(2n + 1).
Let xx and xx be the characters of the natural representations of SO(2n + 1) on

H* and P* respectively. Then

, 1
dimHf, Z Xk(G1+) ZXk (914) (4.15)

Proposition 4.1.6 gives

Xk(ng-) = )Zk(§l1+) - )~Ck—2(§i+) (4-16)
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where y; = 0 for ¢t > 0.

We can view the space P* as having a basis consisting of all monomials of the

form
L= @) () () () () (117)
F AR A A 2 Zn z z Zntl .
where z; = x; ++/—1y; fori = 1,... ,nand 2,11 = Tpy1 With (T, y1, ..., Tny Yn, Trs1)
being the standard euclidean coordinates on R**™'; and i1,...,%n, J1,. -3 n,t > 0

such that ¢y + -+ 44, +j1 + -+ jn +t = k (denoted by I, + J, +t = k). Nowng
has eigenvalues 1!, APl APel APl 1 wwhere 4 = €2™/9 is a primitive g-th root of

unity. So, for any monomial 27 - z7- 2 |

I zJ _t

~1 . . — ~lpiltetinpol=jipil—-—jnpnl I  zJ  _t
91+(Z z Zn+1) =7 e "Prt(z

Z Zn+1>

= Fq(z D1y 7pn70) = Z(dimH%H)Zk

== > (@) by (4.15)

k by (4.16)

Il
|
7
>
ES
—~
Q

[
+
N—
|
>
B
L
Y
N}l
el
+
N—
S~—
N
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On the domain {z € C| |z| < 1}, the power series

n

[T+ 42 )y Pl P2 (L2427 )
=1

converges to
1

[Io (T =7t2) (1 = y7iz)(1 - 2)

So,

(1+2) < 1
Fz:p1,...,pn,0) = — _
! ;HZ ((z =Pl (z — i)

]

Corollary 4.4.4. When L(q : p1,...,pn) and L(q : s1,...,8,) have the same gen-
erating function, then L(q : p1,...,pn,0) and L(q : s1,...,5,,0) also have the same

generating function

Proof. This follows from the fact that

Fq(23p1a'-->pn:0): (1-2) Fq(z:pla"'apn)

]

The above corollary shows that just like the generating function F,(z : p1,...,pn),

the new generating function Fy(z : p1,...,ps,0) is dependent on T(]) [

resp. S ] for
q = P™ [resp. ¢ = Py - P5]. Therefore, for every pair of isospectral, non-isometric
odd-dimensional orbifold lens spaces that we obtained in the previous section, we will

have a corresponding pair of isospectral, non-isometric even-dimensional orbifold lens

spaces. Thus we have the following theorem.

Theorem 4.4.5. (i) Let P > 5 (alt. P > 3) be an odd prime and let m > 2 (alt. m >
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3) be and positive integer. Let ¢ = P™. Then there exist at least two (¢ — 5)-
dimensional orbifold lens spaces - with non-trivial singular sets and with fundamental

groups of order P™ - which are isospectral but not isometric.

(ii) Let Py, Py be odd primes such that g = Py- Py > 33. Then there exist at least two
(q—5)-dimensional orbifold lens spaces - with non-trivial singular sets and with

fundamental groups of order Py - Py - which are isospectral but not isometric.

(11i) Let ¢ = 2™ where m > 6 be any positive integer. Then there exist at least two
(¢ —4)-dimensional orbifold lens spaces - with non-trivial singular sets and with

fundamental groups of order 2™ - which are isospectral but no isometric.

(iv) Let ¢ = 2P, where P > T is an odd prime. Then there exist at least two
(q—4)-dimensional orbifold lens spaces - with non-trivial singular sets and with

fundamental groups of order 2P - which are isospectral but not isometric.

4.5 Lens Spaces for General Integers

The techniques used in Section 4.4 can be further generalized to generate infinitely
many families of pairs of isospectral non-isometric orbifold lens spaces of any dimen-

sion greater than 8.

Let L=L(qg:py,...,pn) =8""1/G and

L'=L(qg:s1,...,8,)=85""1¢
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be two isospectral non-isometric orbifold lens spaces as obtained in Section 4.3 where

R(p1/a) 0

g= )
0 R(pn/q)
and
R(s1/q) 0
g = :
0 R(s,/q)
We define
R /q) 0
gws =
R(pn/q)
0 I
and
R(s1/q) 0
§/W+ =

R(sn/q)

0 Iy

where [y is the W x W identity matrix for some integer W. We can define éw+
= (Gw,) and Gy + = (Giy4)- Then Gw and GYy 4 are cyclic groups of order ¢. We
define lens spaces Lyy = S?"W=1/Gy, and Lj,, = S*W-1/Gi, . Then, like

Proposition 4.4.1 and Lemma 4.4.2, we get:

Proposition 4.5.1. Let Ly, and I~/W+ be as defined above. Then iw+ 1S 1sometric

to i{y+ iff there is a number | coprime with g and there are numbers e; € {—1,1}
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such that (py,...,pn) is a permutation of (e1lsy, ..., eyls,) (mod q).

Lemma 4.5.2. Let L, L', Ly, and IN/{,VJF be as defined above. Then L is isometric

to L' iff Ly is isometric to ZNLQ/VJF

Similar to Theorem 4.4.3, we get the following theorem (see Theorem 3.2.3 in

[Ba]):

Theorem 4.5.3. Let LI+ (g, n,0) be the family of all (2n+W —1)-dimensional orb-
ifold lens spaces with fundamental groups of order q that are obtained in the manner
described above. Let Ly, € LY (g,n,0) (where LY (g,n,0) denotes the set of isom-
etry classes of Zg”(q,n,O)). Let FqW+(z : P1,---5Dn,0) be the generating function

associated to the spectrum of Ly . Then on the domain {zeC| | <1},

1+z
FqVVJr(Z:plw"apnyO)_( ’ ZH

i1 (2 — 7”1 N(z —y=ril)

Proof. The proof of this result is similar to the proof of Theorem 4.4.3. The definitions
for Ag, 72, P*, H*, H* and H, are analogous for R?"W.
If W is even, then expression (4.17) for our present case becomes (for monomials

forming a basis for P*):
28 = () ) G P

where W = 2v and where I,,,, + Joio = 01+ -+ ipso +J1+ -+ Jnio = k and

Uy e e e slntoy J1y - -5 Jnio = 0. Then,

g%/V-i-(ZI . EJ) _ ,yi1p1l+~-+inpnl—j1pll—'“—jnpnl(ZI . gj).
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If W is odd, (say W = 2u + 1), then we get for basis of P*

2z Z7t’L+2u+1 = (Zl)i1 T (Zn-i-u)inﬂ : (21>j1 T (En-i—u)jnﬂ ' (zn+2u+1)t»
where 2, 19,11 = Tpow Where (T1, Y1, .., Tpaw—1, Yniw—1, Tnaw) is the standard eu-
clidean coordinate system on R**W with z; = o; +iy; for i = 1,2,...,n+ W — 1,
and i1, . intas s e s oty £ > 0 a0 g A - A g 1 bt At = k=
Lyiw + Juiy +t. So, in that case

Pl tinpal—ipil=s—gupal (1 5

g%/V-&—( t.z. 2n+2u+1) = : zn+2u+1)~

So, for W even case, we will get

F (2 p1, ., pn, 0) ZZX’“ ()2

kOll

0 S S )

=1 k=0

(1-=2%) ZZ DD s e U

=1 k=0 In4v+JIntv=k

(-2 )P DD DI Gl R Gl R Oy

q I=1 k=0 Inyo+Jnio=k

(,y*pnlz)jn . Zin+1+"'+in+1;+jn+l+"'+jn+u
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(]. — 22) 1
- cC <1
g = ILL (1 —riz)(l =y riz) (1= 2)W on {z€C| 2| <1}

(42 1 g 1
(1= g Z [T=:(z = yPit) (2 — y~Pil)

For W odd case, we get by similar calculations,

[/‘/J,» ( ) E § E P - Pnt—J31p1l—"— D
q ( * li 17 AR 7ji'n,) ’7 1pP1 ‘71 1 'j Z

q =1 k=0 Ih4y+JIntutt=Fk

S 3D DD DN G NS ECR B

q 1=1 k=0 Inyu+tdniutt=k
(,y*pnl/z)jn . Zin-l»l+"'+in+u+jn+l+"'+jn+u+t
(1—22) P are pil N\F = —pil K - W
= IO (") O (v ) ) (> =)
q I=1 i=1 k=0 k=0 k=0
1—22) & 1
i CEr) _ o {zeC|lz]<1}

¢ ST -y i) - 2)

1 1< 1
= & - — Z = : : as before.
— 11

]

Corollary 4.5.4. When L(q : p1,...,pn) and L(q : s1,...,s,) have the same gener-
ating function, then Ly and l~L’W+ (as defined above) also have the same generating

function
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Proof. This follows from the fact that

1
FQW+(Z:p17'-'7pnaO):mFQ(Z:plw-'vpn)

O

The above results give us the following theorem and corollary (see Theorem 3.2.5 and

Corollary 3.2.6 in [Ba]).

Theorem 4.5.5. (i) Let P > 5 (alt. P > 3) be any odd prime and let m > 2 (alt.
m > 3) be any positive integer. Let ¢ = P™. Then there exist at least two (q+W —6)-
dimensional orbifold lens spaces - with non-trivial singular sets and with fundamental

groups of order P™ - which are isospectral but not isometric.

(ii) Let Py, Py be two odd primes such that ¢ = Py - Py > 33. Then there exist at
least two (q+W —6)-dimensional orbifold lens spaces - with non-trivial singular
sets and with fundamental groups of order Py - Py - which are isospectral but not

1sometric.

(i1i) Let ¢ = 2™ where m > 6 is any positive integer. Then there exist at least two
(q+ W —5)-dimensional orbifold lens spaces - with non-trivial singular sets and

with fundamental groups of order 2™ - which are isospectral but not isometric.

(iv) Let ¢ = 2P, where P > T is an odd prime. Then there exist at least two
(g +W —5)-dimensional orbifold lens spaces - with non-trivial singular sets and

with fundamental groups of order 2P - which are isospectral but not isometric.

Corollary 4.5.6. (i) Let x > 19 be any integer. Then there exist at least two x-
dimensional orbifold lens spaces - with non-trivial singular sets and with fundamental

groups of order 25 - which are isospectral but not isometric.
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(i) Let x > 27 be any integer. Then there exist at least two z-dimensional orbifold
lens spaces - with non-trivial singular sets and with fundamental group of order

33 - which are isospectral but not isometric.

(iii) Let x > 59 be any integer. Then there exist at least two x dimensional orbifold
lens spaces - with non-trivial singular sets and with fundamental group of order

64 - which are isospectral but not isometric.

(iv) Let x > 9 be any integer. Then there exist at least two x dimensional orbifold
lens spaces - with non-trivial singular sets and with fundamental group of order

14 - which are isospectral but not isometric.
Proof. (i) Let ¢ =25 and W € {0,1,2,3,...} in (i) of the theorem.
(ii)) Let ¢ =33 and W € {0,1,2,3,...} in (¢i) of the theorem.
(iii) Let ¢ =64 and W € {0,1,2,3,...} in (i) of the theorem.

(iv) Let ¢ =14 and W € {0,1,2,3,...} in (iv) of the theorem.

4.6 An Example

In [Ba] we showed several examples of isospectral non-isometric orbifold lens spaces.

Here we just show one example to demonstrate how the construction works.

Example 4.6.1. Let ¢ = 5% = 25, ¢y = ‘I;QI =12, n=10, k =2,
A=1{1,2,3,4,6,7,8,9,11,12,13, 14, 16, 17, 18,19, 21,22, 23,24}, B, = {5,10, 15, 20}.
Let w([py,...,pw0)) = a1, @]. Let v = e¥/* and X\ = €™/, ay = |A| = 20,
bos = |By| = 4.
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Now,

DA =P T = - W NN ) = 1 (1) =0,

leA

P e e D e
leB;

DN =B+ N AN = 5(-1) = -5,

leA

Z)\l:)\5+)\10+)\15+)\20:4'

leB;

Note that for ¢ = P?, we will always have (using similar calculations as above):

(4.18)

Y =03y =1, N=-Pad Y N=(P-1).

leA leBy leA leBy

Case 1: q1,q2 € By and q1 + ¢ € By.

ay = 42)\l (since q1,q2 € By)

leA
= 4(—5) = —20.
bia=4) N =4(4) =16.
1B,
as = 2(20) + 42 M (since ¢ £ q2 € By)

leA

= 40 4 4(—5) = 40 — 20 = 20.

bon =2(4) +4) N =8+4(4) =24,
leB1

So,
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Was (g1, @2])(2) = 202% + 202% + 2022 4 202 4 20,

alty (g1, @) (2) = 421 — 162° + 242% — 162 + 4.

This corresponds to the case where
[pla s 7p10] = []—7 27 37 4a 67 77 87 9a ]-17 12]7

which corresponds to a manifold lens spaces.
Case 2: Since there is only one By this case does not occur.

Case 3: q1 € By and ¢ € A (alt. ¢ € A,q2 € By). ¢1 £ ¢ € A always.

In this case ag = 20, by, = 4.

a; =23 N4+2Y 2" (since i, —q1 € By and g2, —q> € A)
leA leA

— 2(=5) + 2(0) = —10.

bi=2 N+42) 4/ =2(4)+2(-1)=8-2=6.

leB) leB)
as = 2(20) + 4271 (since ¢ £ q2 € A)
leA
— 40 + 4(0) = 40.
bog =2(4)+4) o =8+4(-1) =4
leB;
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So,

Uos (g1, @2])(2) = 202% + 102% + 4022 4 10z 4 20
g (a1, @2))(2) = 42" — 62° +42° — 62 4+ 4
corresponding to [p1,...,p10) =[1,2,3,4,5,6,7,8,9,11]
and to  [s1,...,s10] =1[1,2,3,4,6,7,8,9,10, 11]

(md [pl,...,plo]%[81,...,810].

So, we get two isospectral non-isometric orbifolds:
Ly =10(25:1,2,3,4,5,6,7,8,9,11)

and

Ly =1L(25:1,2,3,4,6,7,8,9,10,11).

We denote by . the singular set of L;.
Then Y-, = {(0,0,...,29,210,0,0,...,0) € S|z} + 2}, = 1}

and ), = {(0,0, .., T17,218,0,0) € S1° ‘ i+ 1l = 1} with isotropy groups

<9§> and <g§>, where

R(5p1/25) 0 R(p1/5) 0

0 R(5p10/25) 0 R(p10/5)
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and

R(s1/5) 0

0 R(810/5)

where g1 and go are generators of Gy and Gy, respectively with L, = S¥ /G,

and Ly = SY¥/Gy. Y, and Y, are homeomorphic to S*. We denote the two

isotropy groups by Hy = (g}) and Hy = (g3).

Case 4: (a) q1,q2 € A and ¢1 £ q2 € A. So,

a =4 4 =4(0)=0,

leA

az = 2(20) +4) "' =40+ 4(0) = 40,

leA

bog=2(4)+4) A =8+4(-1) =4.

leBy

So,

Vo5 2([q1, 42)) (2) = 2021 + 4022 + 20,

syt qo]) (2) = 421+ 42° + 427 + 42 + 4.
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corresponding to

Ls=1(25:1,2,3,4,5,6,7,8,9,10) = S /G35, where G3 = (g3),

Ly=1(25:1,2,3,4,5,6,7,8,10,11) = S¥ /Gy, where G4 = {g4),

Ls=L(25:1,2,3,4,5,6,7,10,11,12) = S*/Gs, where G5 = (gs).

The isotropy groups for Lz, Ly and Ls are (g3), (g3) and (g2), respectively. y .,
>4 and > are all homeomorphic to S®. So, here we get 3 isospectral orbifold

lens spaces that are non-isometric.

b) i, € Aand 1+ q € B, g —q2 € A (alt. 1 +q2 € A, 1 — 2 € By).

And a; =0, by = —4 as in (a).

az =2(20)+2) A +2) N

leA leA

=40 4 2(0) + 2(—5) = 40 — 10 = 30,

bog =2(4)+2) A 4+2) N

leBy leB1

—842(—1)+2(4) =8 —2+8=14.
So,

Yas2([q1, g2))(2) = 20z* + 3022 + 20,

O‘é?,Q([Qla @) (2) = A28 + 42 4+ 1422 + 42+ 4
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corresponding to

L¢=L(25:1,2,3,4,5,6,7,9,10,11) = SY/G¢, where Gg = {gs)

and Ly = L(25:1,2,3,4,5,6,7,8,10,11) = S*/G;, where G; = (g7)

Then, again, Y s and Y . are homeomorphic to S®, and Lg and L7 have isotropy

groups (gg) and (g7).
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Chapter 5

3-Dimensional and 4-Dimensional

Lens Spaces

Recall that in Chapter 1 we stated the results of [DGGW], which showed that all
2-dimensional orbifold spherical space forms are determined by their spectrum, and
[L], which showed examples in dimensions 5, 6, 7, and 8 of pairs of isospectral orbifold
lens spaces that are not isometric. Then, in Chapter 4 of this thesis, we proved our
results for higher dimensional lens spaces and showed that for every dimension greater
than 8 there exist pairs of isospectral non-isometric orbifold lens spaces (Corollary
4.5.6). In this chapter, we will study orbifold lens spaces in dimensions 3 and 4, and
prove (Theorem 5.1.1 and Theorem 5.2.1 respectively) that in these two dimensions,
the spectrum determines the geometry of an orbifold lens space. Then in Theorem
5.3.6, we will prove that an orbifold lens space cannot be isospectral to a spherical
space form with non-cyclic fundamental group. The results in this and the following

chapter have not been published yet.

93



5.1 3-Dimensional Orbifold Lens Spaces

For 3-dimensional manifold lens spaces, it is known that if two lens spaces are isospec-
tral then they are also isometric ([IY] and [Y]). We will generalize this result to the
orbifold case.

Using the notation adopted in the previous chapter, we write the two isospectral
lens spaces as Ly = L(q : p1,ps) and Ly = L(q : s1,$2). Now there are only five

possibilities:

Case 1 Both L; and Ly are manifolds. In this case gcd(p;,q) = 1 = ged(s;, q) for
i=1,2.

Case 2 One of the two lens spaces, say L; is a manifold, while the other, L, is an orbifold
with non-trivial isotropy groups. This means that gcd(pi,q) = ged(p2, q) = 1,

while at least one of s; or sy is not coprime to q.

Case 3 Both L; and Ly are orbifolds with non-trivial isotropy groups so that exacly

one of p; or ps is coprime to ¢ and exactly one of s; or s, is coprime to q.

Case 4 Both L; and L,y are orbifolds with non-trivial isotropy groups, but in one case,
say for Lq, exactly one of p; or py is coprime to ¢, while for the other lens space,

Ly neither s; nor sy is coprime to q.
Case 5 None of py, pa, s1 and ss is coprime to q.
With these five cases in mind, we will prove our main theorem:

Theorem 5.1.1. Given two 3-dimensional lens spaces Ly = L(q : p1,p2) and Ly =

L(q : s1,82). If Ly is isospectral to Lo, then the two lens spaces are isometric.

Proof. We will consider each case separately:
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Case 1

Case 2

Case 3

In this case L; and Ly are both manifolds. Tkeda and Yamamoto proved this

case (see [IY] and [Y]).

We know that whenever two isospectral good orbifolds share a common Rie-
mannian cover, their respective singular sets are either both trivial or both
non-trivial [GR]. Therefore, for orbifold lens spaces we can’t have a situation
where two lens spaces are isospectral, but one has a trivial singular set while

the other has a non-trivial singular set. So this case is not possible.

By multiplying the entries of L; and Ly by appropriate numbers coprime to ¢
we can rewrite Ly = L(q : 1,z) and Ly = L(q : 1,y), where z and y are not
coprime to q. Let Fi(z) [resp. Fy(z)] be the generating function associated to

the spectrum of L; [resp.Ls]. Let 7 be a primitive ¢g-th root of unity.

Then

lim(z —v)Fi(z) = lim(z — v) F2(2).

z—y z—y

Now,

lim(z — ) Fi(2)
IR R (z =) =2
T 521 (1 =2"2) (1 =772)(1 = 7*2) (1 = y~12)

9
q(1 — =) (1 = H=fL)

The last equality follows from the fact that the solution to the congruence
[+ 1=0(mod q) [resp. =l + 1 =0(mod ¢)] is l =¢—1 [resp. | =1],
and that the congruences zl + 1 = 0(mod ¢) and —xl + 1 = 0(mod ¢) have no

solutions since x is not coprime to gq.
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Since

lim(z — ) Fi(z) = im(z — v) F(2),

z—y z—y

we get

2 2

q(l _ ’Y_x'H)(I _ ,y:c—&—l) o (](1 _ ’7_y+1)<1 — '7y+1)7
[1 _ (,y—z—i-l + 7.7?-’-1) + 72] - [1 _ (,y—y—i-l + ,yy+1) + 72]7

= (Y7 ) = (7Y ),

Since v # 0, we get

— (5 +7) = (5 +7)
142 1+~
= ( = ) = ( v ),
= (VW) = (" ),
= (V¥ = ") = (" =),
= (1 =) =4"(1 = "),
= (7Y =) (1—=7"") =0,
= (7Y =7")=0or (1-79"") =0,
— z = y(mod ¢) or x = —y(mod q).

In either case, by Corollary 4.1.2 we get that L; and Ly are isometric.

Case 4 By multiplying the entries of L; by appropriate numbers coprime to ¢ we can

rewrite Ly = L(q : 1,x), where x is not coprime to ¢, and Ly = L(q : s1, $2),
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where s; and sy are not coprime to ¢. Let Fi(2) [resp. Fy(z)] be the generating

function associated to the spectrum of L; [resp.Ls).

Then
lim (2 7)1 () = lim (= — ) Fo(2).
Now,
tin (= 1) (2
BN (z =71 — 2%
= lim -
=7 q ; (1 =~2)(1 =772)(1 = 72)(1 —772)
B 2
g(1 =7 (1 —y*+1)
Since
lim(z —v)Fi(z) = lim(z — ) Fy(2),
z—y z—y
we get
2

q(1 — =) (1 — y=+)

1y (z = )1 = )
>

5 & = )1 =921 — 21— 772)

But the congruences s;/4+1 = 0(mod ¢), —s1l+1 = 0(mod q), s3l+1 = 0(mod q)
and —ssl + 1 = 0(mod ¢), have no solutions since s; and s, are not coprime to

q. So the above equation becomes

2
q(1 — =) (1 — 7 +)

=0,

which is a contradiction. So this case is not possible.
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Case 5 This is the hardest of all the cases. We will need to prove a few lemmas to
prove this case. Let L; = L(q : ax,by) and Ly = L(q : cu,dv) be the two
isospectral lens spaces with fundamental group of order ¢. Here gcd(ax, q) = z,
gcd(by, q) =y, ged(cu, q) = u and ged(dv, q) = v. By multiplying the entries of
Ly and Ly by appropriate numbers coprime to ¢ we can rewrite Ly = L(q : z, py)
and Ly = L(q : u,sv). We will also assume that ged(z,py) = 1 = ged(u, sv)
because if say ged(x,py) = e > 0, then we could divide z, py and ¢ by e and
get a lens space with fundamental group of order ¢/e instead of ¢, which is a

contradiction.

We will need two lemmas to prove the theorem for Case 5:

Lemma 5.1.2. Suppose Ly = L(q : x,py) and Ly = L(q : u, sv) are two isospectral
lens orbifolds where ged(x,q) = x, ged(py,q) = vy, ged(u,q) = u and ged(sv,q) = v.

Then either uw =x and v =y, oru =1y and v = .

Note: If u = x and v = y, then Ly = L(q : x,py) and Ly = L(q : z,sy); if

w=yand v =umx then Ly = L(q : z,py) and Ly = L(q : y,sz) = L(q : s 'y, z) =

1

L(q : x,s 'y). In either case, this implies that we can write L; = L(q : z,py) and

Ly = L(q: x,s'y) where s’ = s or s = s71.

We now prove the lemma:

Proof. We denote g/, = £ and ¢, = %. Then

. 1y (2 =771 =2
lim (2 — 4*)Fy(2) = lim -
zi)nwlz(z ) F1(2) e g 121: (1 — 47L2) (1 — yolz) (1 — APolz) (1 — y—Puiz)

Note that the only non-zero terms in this limit will be the ones where zl + x =
O(mod ¢q) or —zl + x = 0O(mod ¢), which gives | = tq;, —1 or | = tq), + 1 for

t € {1,...,xz}. Also note that for such a ¢, we have
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1

1

(1— ,ypy(tq/z—l)Jr:c)(l — ypyltass =)+

These two facts give

T (1 — ple—0aF ey (1 mnle—taatilrey”

042 Z e (e = im e =R
Since
T (2 = 79)Fi(2) = lim (= = 97)Fa(2),
we get
0423 e — = RG)
P TR (1 — )

(z =) (1 =27

1
= lim —
B 2 T =

So there must be an [ such that

2)(1—ytz) (1 = ymoviz)

ul + x = 0(mod q),

or

—ul + z = 0(mod q),

or

svl + x = 0(mod q),
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or

—svl + 2 = 0(mod q).

Recall that u|q. Then ul + x = 0(mod ¢) or —ul + x = 0(mod ¢) imply that wu|z.
Similarly, since v|q, we can show that if svl + x = 0(mod ¢) or —svl + x = 0(mod q)
then v|x. So either u|z or v|x.

Now by multiplying the elements of L; by an appropriate number we can rewrite
Ly = L(q : y,p’x). Then applying the same argument as above where we swap the
roles of x and y, we get either uly or vly.

Suppose u|x. Then since ged(z,y) = 1 we can’t have u|y. Similarly, if v|z, then
we can’t have v|y. Therefore, either u|x and v|y, or v|z and uly since if v or v divide
both, then it contradicts ges(q, x, py) = 1.

We can swap the roles of L; and Ly and repeat the above arguments again to get
either z|u and y|v, or y|u and z|v.

If u|z and vy, and at the same time z|v and y|u, then x|y, which contradicts the

fact that ged(q, x,y) = 1. So, the only possibilities are:
i. wu|z, v|y, z|u and y|v. This means x = u and y = v.
ii. |z, uly, z|v and y|u. This means z = v and y = w.
O

REMARK: From now on, we can write the two lens spaces as Ly = L(q : z,py)
and Ly = L(q : x,sy). Further, If ¢ is odd, we can also assume that both s and p
are odd since if one of them, say p, is even then we can replace the lens space with
L(q: x,(q—p)y) which is isometric to L; and the coefficient ¢ — p is odd. Also, if ¢ is
even, then both x and py (resp.sy) can’t be even simultaneously since ged(x, py)(resp.

sy); from now on, without loss of generality, if ¢ is even we will assume that x is even
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and py (resp. sy) is odd since if py (resp. sy) is even and z is odd, then we can

multiply the entries of the lens spaces by an appropriate number to re-write it as

Ly=L(q:y,p'z) (vesp. Ly = L(q:y,s'r)).

Lemma 5.1.3. Suppose, q is an integer. Given two isospectral lens spaces L1 = L(q :

x,py) and Ly = L(q : x, sy) as above. Suppose gcd(py+z,q) = dy, ged(py—x,q) = e1,

ged(sy + x,q) = do, and ged(sy — x,q) = ea. Then

(i)
(i)

ged(dy,er) =1 = ged(da, es).

FEither diy = dy and e; = e3, OR dy = e3 and e; = dy

Note We will use this lemma in our proof showing the conjugation map between

the cyclic groups defining L, and Ls.

Proof. (i) Suppose d = ged(dy, e1). So d|(py+x) and d|(py — x). This means d|2py

and d|2z. But, ged(z,py) = 1. That means d = 1 or d = 2. Now, if ¢ is even,
then x is even and py is odd, that means py + x and py — x are both odd. So, d
must be odd, and hence d = 1. If ¢ is odd, then since d divides ¢, which is odd,
d can’t be even; so again d = 1. Using a similar argument we can also prove

that ged(ds, e5) = 1.

We first suppose that d; = e; = 1. Suppose Fi(z) and Fy(z) are the respective
generating functions associated to L; and Ly. Then, if dy > 1, Fy(z) will have

a pole of order 2 at ¥*9/% and we get

2
. _ ~Axzq/d2N2 _
Z_}iigl/dg <Z v ) F2(Z) q(1 — V—Q(sy—w)/ch)’

since the only non-zero terms will be for [ = L and [ = ¢ — L.
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Since

lim (2 —4*7%)?2F)(z) = lim (2 — ") F)(2),

2—3y®a/d2 Z—yy®a/d2

we get

2
(T =)

=0,

which is a contradiction. Therefore, d; = 1. With a similar argument we can

show that e; = 1.

Now assume d; > 1. Then, as in the above case, Fj(z) will have a pole of order

2 at v*9/%  and we get

2
. _xq/di\2 —
i &=y RG) = Sy

Since Fy(2) = Fy(2), Fo(z) also has a pole of order 2 at ¥*9/%, This means that
either (sy+ ) = 0(mod g) or (sy — )} = 0(mod ¢). This means that either
dy divides dy or d; divides es.

Suppose d; divides dy. Now, since dy > d; > 1, we can apply the same argument
as above and get that either ds divides d; or dy divides e;. If dy divides dy, then

di = dy. If, dy divides ey, that means d; divides e;. But this contradicts

(i)above. Therefore, d; = d5 in this case.

If e, =1 and ey > 1 then applying a similar argument as above, we can show
that either ey divides d; or ey divides e;. But if ey divides dp, that means e
divides dy, which again contradicts (i). So, es must divide e;, and we get a

contradiction for e; > 1.

If e; > 1, then applying the same argument as before, we can show that either
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e1 divides dy or e; divides e;. Again, if e; divides dy, then e; divides d;, and
we get a contradiction. So we must have that e; divides es. Now reversing the

argument as before we can show that ey divides ey, and therefore e; = ¢4

If, on the other hand, d; divides ey, then we can apply the same arguments as
before to show that d; = ey and e; = d».

This completes the proof of the lemma.

]

NOTE If we are in the situation where ged(py + x,q) = ged(sy — x,q) and
gcd(py — x,q) = ged(sy + x,q), then, writing the second lens space as Ly = L(q :
x,—sy) = L(q : z,s'y), we can ensure that gcd(py + z,q) = ged(s'y + z,q) and
ged(py — x,q) = ged(s'y — x,q). Therefore, without loss of generality, from now on,

we will always assume that ged(py + z,q) = ged(sy + z,q) and ged(py — z,q) =

ged(sy — x,q).

5.1.1 Finite Subgroups of SO(4)

We now have two isospectral lens spaces Ly = L(q : z,py) and Ly = L(q : x,sy)
where the respective cyclic groups are G and G'. We will now show that these two
groups are conjugate to each other and that, according to Lemma 4.1.1, will prove
that L, and L, are isometric. In order to do this we will use the classification of
finite subgroups of SO(4) in [MS]. It is convenient to use the relationship of SO(4)
to quaternions for this.

Recall that the quaternion algebra H is given by [MS]

H={a+bi+cj+dk|abecdcRi®=;i=k=-1,ij=k=—ji}

= {21+ 227 | 21,22 € C}.
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As usual the ‘conjugate’ of a quaternion ¢ = a + bi + ¢j + dk is ¢ = a — bi — ¢j — dk,

and its ‘real part’ is Re(q) = a. It is then easy to check that

4> =q3 = qq = a® + b + & + d*.

Any non-zero quaternion has a two-sided multiplicative inverse given by ¢~* = q/|q|?.
We will consider the 3-sphere as the set of unit quaternions (the quaternions of length

1) as follows:

SP={a+bitci+dk|a®+b*++d* =1} = {21+ 205 | |21]* + |2)* = 1}

The product in H induces a group structure on S?. For each pair (p,q) of elements
of S3, the function

®,,: H—H

with @, ,(h) = phq™' leaves invariant the length of quaternions. We can, therefore,

define a homomorphism of groups:

D:S* xS — SO4)

such that ®(p,q) = ®,,.

The homomorphism & is surjective with kernel of {(1,1),(—1,—1)}. The ho-
momorphism ® gives a 1-1 correspondence between finite subgroups of SO(4) and
finite subgroups of S* x S? containing the kernel of ®. Moreover two subgroups are
conjugated in SO(4) iff the corresponding groups in S* x S are conjugated [MS].
So to prove that two finite subgroups of SO(4) are conjugate, we prove that the

corresponding subgroups of S? x S* are conjugate.
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Let G be a finite subgroup of S* x S?. For i = 1,2, we denote by

TS xS = S?

the two projections. We use the following notations as used in [MS]:

Ri = m(({1} x S N Q).

The projections 1 and 7y induce isomorphisms (see [MS] and [DV]) given respectively
by
T G/(LK X RK) — L/LK

and

Ty - G/(LK X RK) — R/RK

From these we get an isomorphism

(bG . L/LK — R/RK

such that ¢g = T 0 7?1’1.
Conversely, given two finite subgroups L and R of S*, with two normal subgroups

Lg and R such that there exists an isomorphism ¢ : L/Lx — R/R, we can define
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a subgroup G of S? x S? such that

LK = 7'('1<<S3 X {1}) N G),
R:TFQ(G),
Ri = m(({1} x SN Q).

and ¢ = ¢g. As a result, the subgroups of S* x S can be uniquely identified by
5-tuples (L, Lk, R, Ry, ¢) [MS].
For classifying subgroups of S* x §* upto conjugation, Du Val [DV], Mecchia and

Seppi [MS] used the following result:

Proposition 5.1.4. Let G and G' two subgroups of S® x S? described respectively by
(L,Lk,R,Ry,$) and (L', L}, R', Ry, &'). The groups G and G’ are conjugated in
S? x S? if and only if there exist two inner automorphisms, o and B, of S* such that
a(L) =L, B(R) =R, a(Lk) = Ly, B(Rk) = Ry and ¢ = B~ ¢'a, where a and f3

are the maps induced by o and 3 on the factors L/ Ly and R/Rk.

Up to conjugation the finite cyclic subgroups of S?* are the following:
2 2
Cn = {cos(ﬂ) + isin(ﬂ) |la=0,..,n—1}
n n

and up to conjugation the cyclic subgroups of S* x S* containing (-1, —1) are [MS]:

Type 1: (Compr, Com, Congy Con,y @), With ged(s,r) =1 and

¢s : CQmT/C2m — CQnr/O2n
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given by ¢(e™/™ Cy,,) = €™/ Cy,. In this case |®(G)| = 2mnr.

Type 2: (Cyury Cony Criry Cry @5), With ged(s, ) = 1 = ged(2,n) = ged(2,m), ged(2,1) = 2
and

¢S : CmT/Cm % CnT/Cn
given by ¢,(e?™/mrC,,) = €25™/"C,,. In this case |®(G)| = mnr/2.

Coming back to the proof of our main theorem, we let the isometry group acting

on Ly be denoted by G =< g >, where

cos 22T gip 2T 0 0
q q
—gin 2T cog 227 0 0
q q
g =
0 0 cos 2BUT  gip 2puT
q q
. 2
0 0 —sin 2”% cos %

Similarly, the isometry group acting on Ly is denoted by G’ =< ¢’ >, where

cos 2T gip 227 0 0
q q
—§in 2T cog 227 0 0
q q
/ —
g oy
0 0 CoS 28;” sin 25um
0 0 —sin 25% cos 28%

Using the definition of the homomorphism ®, we can calculate the pre-images of
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_ 27 (z+py) 2w (z—py) _ 27 (z+sy) 2w (x—sy)

the two generators g and ¢’ in S*xS3; they are (e~ 22 e 20 )and (e~ 20 ,e 2
respectively.

In order to prove our result we first have to show that the pre-images of the two
groups, G and G’ can’t lie in the two different types described above.

For odd ¢ it is easy to see since in that case both pre-images will be of Type 2,
since Type 1 are the groups that, under the image on ® have order 2mnr, which is
even and can’t be equal to q.

Now suppose ¢ is even. We first notice that by the definition of the subgroups L,
Ly, R, and R for the cyclic subgroups of S x S3, we get that for G, the order of Lg
is ged((py — x), q) and the order of Rk is ged((py + ), q). Similarly, for G’ the order
of Lk is ged((sy — x),q) and the order of Rx is ged((sy + x),q). We denote ®~'G
and ®7'G’" by (L, Lk, R, Rk, ¢s) and (L', Ly, R', Ry, ¢s) respectively. Now, from
Lemma 5.1.3 and our subsequent note, we know that ged(py + x, q) = ged(sy + x, q)
and ged(py — z,q) = ged(sy — x,q). So, |Lk| = |L| and |Rk| = |R)|. Now it is

obvious that ®1G and ®~'G" are of the same Type.

I: q is odd. If ged(py + x,q) = ged(sy + z,q) = dy and ged(py — x,q) = ged(sy —
x,1) = dy. We will denote ¢/d; by ¢;. In this case, the two subgroups will corre-
spond to the subgroups (Csg,, Cy,, Cagy, Cay, @) (Where t = (py — x)w(mod 2¢s)
for some number w coprime to 2¢y) and (Cay, Cayy Cogy, Cay, o) (Where t/ =
(sy — x)w'(mod 2¢2) for some number w’ coprime to 2¢;). We now need to
find inner-automorphisms « and g according to Proposition 5.1.4 such that the

following diagram commutes:

CY2<11 /CdZ L} CQQz/C(h

L

¢t’
02(11 /Cd2 5 CQQz/Cdl
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i2m i2n
We need to find inner-automorphisms of @ and 8 of S? such that a(e?n) = e2a

i2mt i2nt!

and f(e22) = e 22 . The definition of « is obvious as we can define o = Id,

which conjugates every element to itself.

Now, to define 3 we recall some facts from the identification of the quaternions
with the euclidean 4-space or R*. Recall that any quaternion ¢ = a+bi+cj+dk
can be written as ¢ = (a, V') where the pure quaternion V = bi + ¢j + dk can
be identified with the point (b, c, d) of the subspace R? of R*. Tt is also known
that any conjugation in the quaternions is equivalent to a rotation in R*. We
notice that the points €27/22 and ¢?™'/2® lie on the same unit circle in the
complex plane C as 2¢y roots of unity. So, we can view these points in R3
as (cos2mt/2qy, sin 27t /2qs,0) and (cos27mt’ /2qs, sin 27t' /2¢q2,0).  This means
that we can find a rotation of R® that maps (cos2mt/2qs,sin 27t/2q2,0) to
(cos 2mt’ /2qs, sin 27t’ /2¢o, 0). From the above facts about quaternions, we know
that such a rotation will be a conjugation in the quaternions and hence an
inner-automorphism in S®. Indeed, if we now view (cos 27t/2qs, sin 27t /2¢s, 0)
and (cos27t’/2qq, sin 27t' /2¢2,0) as pure-quaternions and write them as 0 +
cos 27t [2qai + sin 27t /2qoj + Ok and 0 + cos 27’ /2qoi + sin 27t /2q05 + Ok, re-
spectively, then it is easy to see that the unit quaternion cos2w(t' —t)/4qs +
0i + 07 + sin 27 (t' — t)/4g2k conjugates 0 + cos 27t /2qqi + sin 27t /225 + 0k to

0 + cos 27t /2qoi + sin 27t’ /2q05 + Ok.

Now, by Proposition 5.1.4, we have the two groups G and G’ as conjugates in

SO(4) and therefore, the corresponding orbifold lens spaces are isometric.

II: q is even, x is even, and py (resp. sy) is odd: In this case again the two groups

will of of Type 2, and the proof will go exactly as it did for I above.

III: q is even, z is odd, and py (resp. sy) is odd: In this case, the two groups will
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be of Type 1, and with slight modifications it can be shown that the proof will

go exactly as it did for I and II.

This completes our proof for Case 5.

5.2 4 Dimensional Orbifold Lens Spaces

It is known that in the manifold case, even dimensional spherical space forms are only
the sphere and the real projective spaces [12]. It is also known that the sphere S" is
not isospectral to the real projective space P*(R) [BGM].

In the orbifold case, there are many even dimensional spherical space forms with
fixed points. We will focus on the 4-dimensional orbifold lens spaces. In [L], Lauret
has classified cyclic subgroups of SO(2n + 1) up to conjugation. According to this

classification, any cyclic subgroup G of SO(2n+1) is represented by G =< ~ > where

. ) ) cosf sind
v = diag(R(ZF), ..., R(ZF*),1) and R(0) =
—sinf cosf

Suppose n = 2. Let

R(p:/q) 0

and

R(s1/q) 0
g2 = R(s2/q)

0 1

Suppose there are 4-dimensional orbifold lens spaces O; = S*/ él and Oy = St/ GQ,
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where él =< g; > and é’g =< gy >.
Theorem 5.2.1. Given Oq, O, él and ég as above. If Oy and Oy are isospectral

then they are isometric.

Proof. From Theorem 4.4.3 we know that on the domain {z € C| |z] < 1}, the

spectrum generating functions of O; and Os, respectively, are,

1< (1+2)
Fy(z:p1,p2,0) = -
! q ; 17 (z = y7t)(z — yrit)

and
g (1+2)

1
q q lzl szzl(z - /ySLl)(Z — fy—Sil)

Notice that Fy(z : p1,p2) = (1 — 2)F,(z : p1,p2,0) and F(z : s1,89) = (1 —
2)Fy(z : s1,52,0), where F,(z : p1,p2) and F,(z : s1, s3) are respectively the spectrum
generating functions for the 3-dimensional orbifold lens spaces Ly = L(q : p1,p2) and
Ly = L(q : s1,2). This means that if O; and Oy are isospectral then L; and L, are
also isospectral.

Now, from Theorem 5.1.1, we know that L; and Ly are isometric. By Lemma
4.4.2 we know that L; is isometric to Lo iff O; is isometric to O,. This proves the

theorem. O

5.2.1 Some Higher Dimensional Orbifold Lens Spaces

We can generalize the above results to obtain pairs of higher dimensional orbifold lens

spaces which may be distinguished by their spectra. In Chapter 4 we saw examples
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of orbifold lens spaces in dimensions 9 and higher. Also, in [L] there exist examples of
orbifold lens spaces in dimensions 5 through 8 where the spectrum doesn’t determine
the orbifold. We will now prove some results to demonstrate that in every dimension
there exist pairs of orbifold lens spaces where the spectrum does determine the lens
space.

We first prove that for all odd dimensions > 5, there exist pairs of orbifold lens

spaces that may be distinguished by their spectra. Suppose n > 3. Let

R(p1/q) 0
9= R(p2/q)

O [21174

and

R(s1/q) 0
R(s2/q) ;

O I2n74

where Iy, 4 is the 2n — 4 by 2n — 4 identity matrix.

e
3
I

Suppose there are m = 2n — 1-dimensional orbifold lens spaces O; = S™/ G, and

Oy = Sm/é27 where G, =< g1 > and Gy =< Jo >.

Proposition 5.2.2. All distinct orbifolds of the form Oy and Oy as defined above

have distinct spectra.

Proof. From Theorem 4.5.3 we know that on the domain {z € C| |z] < 1}, the

spectrum generating functions of O; and Os, respectively, are,

_ 14+2) 1 1
F2n 4<Z:p17p270): ( T E
! (1=2)% g S [, (= =7t (z = y#)
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and

2n—4 . = (1+Z) 1 q 1
F; (2-5175270)—m'_21‘[2

773 i (2 = i) (2 — V_Sil)'

We note that Fy(z : p1,p2) = (1 — 2)*" " F7" (2 : p1,p2,0) and Fy(z : s1,52) =
(1 —2)*"*F2"(2 : 51,52,0), where Fy(z : p1,p2) and Fy(z : 51, s2) are respectively
the spectrum generating functions for the 3-dimensional orbifold lens spaces L; =
L(q: p1,p2) and Ly = L(q : s1,82). This means that if O; and O, are isospectral then
L, and Ly are also isospectral.

Now, from Theorem 5.1.1, we know that L; and Ly are isometric. By Lemma

4.5.2 we know that L; is isometric to Lo iff O; is isometric to O,. This proves the

theorem. O

We now prove that for all even dimensions > 6, there exist pairs of orbifold lens
spaces that may be distinguished by their spectra.

Suppose n > 3. Let

and

g2 = R(s2/q) ;

O IQn—?)

where Iy, 3 is the 2n — 3 by 2n — 3 identity matrix.
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Suppose there are m = 2n-dimensional orbifold lens spaces O; = S™/ G, and

O, = Sm/ég, where él =< gl > and ég =< §2 >.

Proposition 5.2.3. All distinct orbifolds of the form Oy and Oy as defined above

have distinct spectra.

Proof. From Theorem 4.5.3 we know that on the domain {z € C| [z] < 1}, the

spectrum generating functions of O; and Os, respectively, are,

_ 14+2) 1< 1
F'3 (2 prype, 0) = s 1
! (1—2z)> ¢ 12_1: [T (= =70 (z — 2t

and

Mm-3( . (42 1 1
AP0 = e T e

As before, we note that Fy(z : p1,ps) = (1 — 2)*" F2"73(2 : p1,p2,0) and Fy(z :
s1,82) = (1= 2" PF"73(2 1 51,52,0), where Fy(z : p1,ps) and Fy(z : s1,52) are
respectively the spectrum generating functions for the 3-dimensional orbifold lens
spaces L1 = L(q : p1,p2) and Ly = L(q : s1,2). This means that if O; and O, are
isospectral then L, and Ly are also isospectral.

Now, from Theorem 5.1.1, we know that L; and L are isometric. By Lemma
4.5.2 we know that L; is isometric to Lo iff O; is isometric to O,. This proves the

theorem. O
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5.3 Lens Spaces and Other Spherical Space Forms

One question still remains: Is an orbifold lens space ever isospectral to an orbifold
spherical space form which has non-cyclic fundamental group?

Our final result in this chapter is to prove that an orbifold lens space cannot be
isospectral to a general spherical space form with non-cyclic fundamental group. We
will use some results from [I2] noting that in some cases his assumption that the

acting group is fixed-point free is not used in certain proofs, and therefore, the results

hold true for orbifolds.

Definition 5.3.1. Let G be finite group, and let Gy be the subset of G consisting of
all elements of order k in G. Let o(G) denote the set consisting of orders of elements
i G. Then we have

G = Ueo()Gr (disjoint union)

The following lemma is proved in [I2] for fixed-point free subgroups of SO(2n), but
we note that the proof doesn’t require this condition and reproduce the proof from

12].

Lemma 5.3.2. Let G be a finite subgroup of SO(2n) (n > 2). Then the subset Gy, is
divided into the disjoint union of subsets C}, ..., ,z" such that each CL(t = 1,2, ..., 1)

consists of all generic elements of some cyclic subgroup of order k in G.

Proof. For any g € G}, we denote by A, the cyclic subgroup of G generated by g.
Now, for ¢,¢" € G}, the cyclic group A, N Ay is of order k if and only if A, = A,.
Now the lemma follows from this observation immediately.

[]

We now state another lemma (see [12] for proof) that will be used to prove our

result.
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Lemma 5.3.3. Let g be an element in SO(2n) (n > 2) and of order q (¢ > 3).
Set v = e2™V=14. Assume g has eigenvalues ~, v, APY, v7P1 ..., APk 4Pk ith
multiplicities 1,1,11,11, ..., i, i, Tespectively, where py,...,pr are integers prime to q

with p; # £p;(modq) (for 1 < i < j < k), p # £l(modq) (for i = 1,,k) and

1—22

l+i1+...+i, = n. Then the Laurent expansion of the meromorphic function Tt (=99

at z =y 1is

(z =)t 2n =L =)t

1 /_1 n+ll ‘
( S H{COt z(1”0]' +1) — cot E(pj — 1)}% 4+ lower order terms.
q q
7j=1

The following proposition is proved by Ikeda for a group G that acts freely. How-
ever, we note that the proposition is true even if G does not act freely since the proof

does not use the property that G acts freely.

Proposition 5.3.4. Let G be a finite subgroup of SO(2n) (n > 2), and let k € o(G).

We define a positive integer ko by

ko=2n—14ifk=1 or?2,

= mazgeq, {maz. of multiplicities of eigenvalues of g} if k > 3.
Then the generating function Fg(z) has a pole of order ko at any primitive k-th root
of 1.

Proof. At z = 1, we notice that for g = I3, € Gy, we get

: _ \2n—-1 - =
lim(1— "~ Fo(2) = 1.

as g has eigenvalue 1 with multiplicity 2n. So, F(z) has a pole of order 2n — 1 at

z=1.
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At z = —1 we notice that for g = — I, € G,, we get

2
: 2n—1
iln%(l + 2) Fo(z) = _|G|7

as ¢ has eigenvalue -1 with multiplicity 2n. Also, for any other ¢’ € G5, the eigenvalue
-1 has multiplicity at most 2n. So F(z) has a pole of order 2n —1 at z = —1 as well.
We now assume k > 3. Now let Gy, Ci, ...,C* be as in Lemma 5.3.2. Then we

have

1—22 1— 22
|G‘FG Z det Ign Z det IQn )
1 1 (5.1)
— Z — Z
B Z Z det Ign Z det ]2n )
j=1 geGy

Set v = e2™V=1/k_ For any primitive k-th root 4* of 1, where ¢ is an integer prime

to k, let

Ay (t) Ay —1 (t)
e R P e e ey

be the principal part of the Laurent expansion of Fg(z) at z = 4%. Then each
coefficient a@;(t) is an element in the k-th cyclotomic field Q(v) over the rational

number field Q. The automorphisms o; of Q() defined by

v — 4t

transforms a;(1) to a;(t) by Equation (5.1). Hence, it is sufficient to show that the

generating function Fg(z) has a pole of order kg at z — ~, that is, to show that

ak()(l) 7& 0.

Note that if 0 < b < a < 7, then cota — cotb < 0. Now the proposition follows
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immediately from Lemma 5.3.3 and Equation (5.1). O
From Proposition 5.3.4, we get

Corollary 5.3.5. Let S* 1 /G and S*~1 /G’ be two isospectral orbifold spherical space

forms. Then o(G) = o(G’).
We now prove our result

Theorem 5.3.6. Let S* /G and S*~1/G' be two (orbifold) spherical space forms.
Suppose G is cyclic and G’ is not cyclic. Then S*"7'/G and S*"~'/G" cannot be

1sospectral.

Proof. By Corollary 4.1.14, we already know that if |G| # |G’| then S*"~!/G and
S?"=1 /G’ cannot be isospectral. So let us assume that |G| = |G'| = q.

Suppose $*"71 /G and §*"7! /G’ are isospectral. If G is cyclic then it has an element,
of order q. Now, by Corollary 5.3.5, G’ must also have an element of order ¢, but
since |G'| = ¢, that implies that G’ is cyclic, which is not true by assumption, and we

arrive at a contradiction. This proves the theorem. O
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Chapter 6

Heat Kernel for Orbifold Lens

Spaces

In the previous chapter we used the spectrum to determine the geometry of three
and four dimensional orbifold lens spaces. It is also known that if two orbifolds
(manifolds) have the same spectrum, then their respective asymptotic expansions of
the heat kernel will also be the same. The question arises whether we can prove
the results in Chapter 5 by using the coefficients of the asymptotic expansion of the
heat kernel? In this chapter, we show that the equality of the heat coefficients for
two orbifolds is not enough to determine their geometry. In other words, we cannot

obtain the results of the previous chapter only from these coefficients.

6.1 Heat Kernel

In the mathematical study of heat conduction and diffusion, a heat kernel is the
fundamental solution to the heat equation on a specified domain with appropriate

boundary conditions. It is also one of the main tools in the study of the spectrum of
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the Laplace operator, and is thus of some auxiliary importance throughout mathe-
matical physics. The heat kernel represents the evolution of temperature in a region
whose boundary is held fixed at a particular temperature (typically zero), such that

an initial unit of heat energy is placed at a point at time t = 0.

Definition 6.1.1. Let M be a Riemannian manifold. A heat kernel, or alternatively,

a fundamental solution to the heat equation, is a function
K:(0,00) x M x M — M (6.1)

that satisfies
1. K(t,x,y) is C* int and C* in x and y;

2. OKJOt + Ao(K) = 0, where Ay is the Laplacian with respect to the second

variable (i.e., the first space variable);

8. limy_o+ [3, K(t,x,y)f(y)dy = f(x) for any compactly supported function f on
M.

The heat kernel exists and is unique for compact Riemannian manifolds. Its impor-

tance stems from the fact that the solution to the heat equation

ou
E + A(U) = 0,

u:[0,00) x M — R,
(where A is the Laplacian with respect to the second variable) with initial condition
u(0,z) = f(z) is given by
uta) = [ Kto)sw)dy (6.2)
M
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If {\;} is the spectrum of M and {(;} are the associated eigenfunctions (normalized

so that they form an orthonormal basis of L?(M)), then we can write

K(t,z,y) = Z e M G(2)G(y).

From this, it is clear that the heat trace,

is a spectral invariant. The heat trace has an asymptotic expansion as t — 0+ :

Z(t) = (4mt)™ 2N " gt
j=1
where the a; are integrals over M of universal homogeneous polynomials in the cur-

vature and its covariant derivatives ([MP], see [G] or [CPR] for details). The first few

of these are

ag = vol(M),

i),
a; = — T
1 6Ma

1
57% —2|p|* — 10|R[*),

=360 /., {

a2

dim(M) 5

e—1 wche 18 the Ricci

where 7 = ZZTLSM ) Rapay is the scalar curvature, p = >
tensor, and R is the curvature tensor. The dimension, the volume, and the total
scalar curvature are thus completely determined by the spectrum. If M is a surface,

then the Gauss-Bonnet Theorem implies that the Euler characteristic of M is also a

spectral invariant.
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The importance of K(¢,z,y) in studying the spectrum of A derives largely from

the following theorem by Minakshisundaram [MP]:

Theorem 6.1.2. The fundamental solution of the heat equation has an asymptotic

expansion in a neighbourhood of the diagonal in M x M :

K(t,z,y) ~ (47rt)dim(M)/2e’T2/4t(Z uj(z,y)t’) ast 0,
=0

where r = d(x,y) is the Riemannian distance from x to y.
The uj(x,y) are smooth functions. Fix x and suppose y is in some normal coordi-

nate neighbourhood w' of x. Then the u;(x,y) are given recursively by

uo(z,y) = 072, (6.3)

uj(r,y) = —7”9‘1/2/ 0" (x, ys) Ay (w1 (2, y))s" ' ds, (6.4)
0

where the integration is along the geodesic y, joining x to y, and 6 is defined by

dvol = 0dw. It is well known that 0 = (det(g,;))"? where g;; = g(0/ow,d/ow?).

A more in depth study of the heat trace can yield more information. It is known
for example that if M is a closed, connected Riemannian manifold of dimension n < 6,
and if M has the same spectrum as the n-sphere S” with the standard metric (resp.
R™), then M is in fact isometric to S™ (resp. R™). More on this can be found in
[CPR]. There are other invariants besides those mentioned above. For generic closed
Riemannian manifolds for example, the geodesic length spectrum - the set of lengths

of closed geodesics - is a spectral invariant [C].
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6.1.1 Heat Trace Results for Orbifolds

In the case of a good Riemannian orbifold, Donnelly [D] proved the existence of the

heat kernel and also proved the following results:

Theorem 6.1.3. Let f : M — M be an isometry of a manifold M, with fixed point

set ). Then there is an asymptotic expansion ast | 0

ZTr(f,\ﬂ)e ~ Z (47t) ”/ZZtk/ bi(f, a)dvoly(a),
By

NeQ
where N is a subset of Q (and a submanifold of M ), X\ is an eigenvalue of A, s a
linear map from A-eigenspace to itself induced by f, and the functions by(f,a) depend

only on the germ of f and the Riemannian metric of M near the points a € N.

Theorem 6.1.4. The coefficients by(f,a) are of the form by(f,a) = |detB|b,(f,a)
where by (f,a) is an invariant polynomial in the components of B = (I — A)~" (where
A is defined in the following remarks no. 2) and the curvature tensor R and its

covariant deriwatives at a. In particular,

bo(f,a) = |detB| (6.5)

bi(f,a) = ]detB]( + 6Pkk + SRzksthth3 + 3RzktthtBh1 RiohaBrsBhs). (6.6)

We will summarise the tools used by Donnelly to prove the above results in the
following remarks:

Remarks and Notation I:

1. Suppose z is a point in a normal coordinate system on the Riemannian manifold
M. Suppose N C M is a totally geodesic submanifold and let 7 : (TN)+ — N
be the normal bundle of N. Denote by F the fiber of 7 : (UN) — N such that
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m(x) = a € N, then the factor ¢(z) by which the exponential map blows up the
volume, i.e. such that dvolyy(z) = ¢ (x)exp * (dvoly(x)) has the Taylor series

expansion

Y(r) =1- §ijal’%j N ERikjkaxj +0(2%).

. A denotes the endomorphism induced by f on the fiber of the normal bundle

over z € N which is a connected sub-manifold of dimension n in 2.

. Donnelly used the fact that det(I — A) # 0 to make the change of variables
Z = x — f(x). Then using the classical Morse Lemma, he found a smooth

coordinate change so that
_ 2
d(z+ f(a), f(@)* =) vF =lyll*
i=1
With this change of coordinates, the Taylor series expansion for 1(z) becomes

1 1
Y(r)=1- §RkahaBkthtysyt - aRkihinthtysyt + O(yg)a (6.7)

and the absolute value of the Jacobian determinant of this change of variables

has the Taylor series expansion

1
|J(z,y)| =1+ E(Rikz‘ththt + Riksh Bri Bt + Riren Brs Bri)y'y' + O(y?). (6.8)

Also, the Taylor series expansion for ug(f(x),x) is given by

w(F@).7) = 1+ 5 puagy" + O") (6.9
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4. Tt is shown that

k

Z J(|det(BYu;(f(x), 2) (2, y)](2))(0), (6.10)

where

B Z(?yz

In [DGGW] Donnelly’s work is extended to general compact orbifolds, where the
heat invariants are expressed in a form that clarifies the asymptotic contributions of
each part of the singular set of the orbifold. We will summarise the construction used
in [DGGW] in the following remarks before stating their main theorem.

Remarks and Notation II:

1. An Orbifold O was identified with the orbit space F(O)/O(n), where F(O) -
a smooth manifold - is the orthonormal frame bundle of O and O(n) is the
orthogonal group, acting smoothly on the right and preserving the fibers. It
can be shown that the action of O(n) on the frame bundle F(O) gives rise to
a (Whitney) stratification of O. The strata are connected components of the
isotropy equivalence classes in 0. The set of regular points of O intersects each
connected component Oy of O in a single stratum that constitutes an open

dense submanifold of Oy. We refer to the strata of O as O-strata.

2. If (U, Gy, my) is an orbifold chart on O, then it can be shown that the action
of Gy on U gives rise to stratifications both of U and of U. These are referred

to as U-strata and U-strata, respectively.

3. Let O be a Riemannian orbifold and (U, Gy, my) an orbifold chart. Let N be

a U-stratum in U. Then it can be shown that all the points in N have the
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same isotropy group in Gy; this group is referred to as the isotropy group of N,

denoted Iso(N).

4. Given a U-stratum N, denote by Is0™%(N) the set of all v € Iso(N) such that
N is open in the fixed point set Fix(y) of 4. For v € Gy, it can be shown
that each component W of the fixed point set Fiz(y) of v (equivalently, the
fixed point set of the cyclic group generated by ) is a manifold stratified by a
collection of U-strata, and the strata in W of maximal dimension are open and
their union has full measure in W. In particular, the union of those U-strata N

for which v € Is0™**(N) has full measure in Fiz(y).

5. Let 7 be an isometry of a Riemannian manifold M and let () denote the set of
components of the fixed point set of 7. Each element of () is a submanifold of
M. For each non-negative integer k, Donnelly [D] defined a real-valued function
(cited above), which we temporarily denote bg((M,~),.), on the fixed point set
of v. For each W € Q(7), the restriction of by((M,~),.) to W is smooth. Two

key properties of the by are:

(a) Locality. For a € W, bp((M,7),a) depends only on the germs at a of
the Riemannian metric of M and of the isometry . In particular, if U is a

v-invariant neighborhood of a in M, then by ((M,7),a) = bx((U,7), a).

(b) Universality. 1f M and M’ are Riemannian manifolds admitting the re-
spective isometries v and +/, and if 0 : M — M’ is an isometry satisfying

govy=+"o0, then by((M,~),z) = b.(M',7),o(x)) for all z € Fix(y).

In view of the locality property, we will usually delete the explicit reference to

M and rewrite these functions as by(7,.), as they are written in [D].

6. Let O be an orbifold and let (U, Gy, my) be an orbifold chart. Let N be a
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ma( Then N is an open subset of a component of

U-stratum and let y € Iso ).
Fiz(v) and thus, by(7,.)(= bk((U,7),.)) is smooth on N for each nonnegative
)

integer k. Define a function bk(N, ) on N by

nNo) = 3 b,

yeIsoma®(N)

Definition 6.1.5. Let O be a Riemannian orbifold and let N be an O-stratum.

(i) For each nonnegative integer k, define a real-valued function bp(N,.) by set-
ting b(N, p) = bp(N, p) where (U, Gy, my) is any orbifold chart about p, p €

7 (p), and N is the U-stratum through p.

(ii) The Riemannian metric on O induces a Riemannian metric - and thus a volume

element - on the manifold N. Set

Iy = (47Tt)—dim(N)/QZtk/ be(N, x)dvoly(z),

k=0 N

where dvoly is the Riemannian volume element.

(iii) Set
Iy = (4mt)~4mO@2N " 0, (0)t*,
k=0

where the ai(O) (which we will usually write simply as ay) are the familiar
heat invariants. In particular, ag = vol(O), ay = & [, 7(x)dvolO(x), and so
forth. Observe that if O is finitely covered by a Riemannian manifold M (say,
O = G\M ) then a(0O) = ‘—é'ak(M).

We now state the theorem that [DGGW] proved:
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Theorem 6.1.6. Let O be a Riemannian orbifold and let \y < Ay < ... be the
spectrum of the associated Laplacian acting on smooth functions on O. The heat trace

P et of O is asymptotic ast — 07 to

Iy
[ [
ot D Tso(N)|
NeS(0)

where S(O) is the set of all O-strata, |Iso(N)| is the order of the isotropy at each
p € N, and Iso(p) is the conjugacy class of subgroups of O(n). This asymptotic

expansion is of the form
o

(47Tt)—dim(0)/2 Z Cjtj/2
§=0

for some constants c; .
Using the above theorem, [DGGW] proved the following results for surfaces:

1. Within the class of all footballs (bad or good) and all teardrops, the spectrum
distinguishes footballs from teardrops and determines the orders of the cone
points. Roughly speaking, a pg-football is topologically homeomorphic to a
2-sphere with two isolated cone points of order p and ¢ respectively; locally
the singular points are homeomorphic to R?/Z, and R?/Z, respectively. A p-
teardrop is topologically homeomorphic to a 2-sphere with a single cone point

of order p, which is locally homeomorphic to R?/Z,.

2. The spectrum distinguishes teardrops and footballs from triangular pillows with
positive Euler characteristic. Roughly speaking, a triangular pillow is a two
dimensional orbifold with three isolated cone points where the orbifold is locally
covered by R?, S? or H? and the group action is either by a cyclic group or
a dihedral group. For definitions and notation for footballs, teardrops and

triangular pillows see [Co.
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3. The spectrum distinguishes triangular pillows with positive Euler characteristic

from triangular pillows with negative Euler characteristic.

4. The spectrum distinguishes teardrops from triangular pillows with negative Eu-

ler characteristic.

5. If C is the class consisting of all closed orientable 2-orbifolds with non-negative
Euler characteristic, then the spectrum distinguishes the elements of C' from

smooth oriented closed surfaces.

6. Within the class of all closed 2-orbifolds with non-negative FEuler characteris-
tic, the spectrum distinguishes whether the orbifold has zero or positive Euler

characteristic.

7. Within the class of closed 2-orbifolds of constant nonzero curvature R or -R, the
spectrum determines the sign of the curvature - that is, whether the orbifold is

spherical or hyperbolic.

8. Within the class of spherical 2-orbifolds of constant curvature R > 0, the spec-

trum determines the orbifold.

It is also known [Sa] that

1

us(a,a) =

and the Taylor series expansion for u; (f(z),z) is given by

1 1 1
uy(f(z),x) =W + éwky’“ + §[th + Ekah]ykyh + 01,
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where W = %7’, W, = %T;k and

1 5
th - 5{97_;.19}1 + 3pkh;uu + ngkh - 4pk:u10hu + 2pukauhv + 2Rkuvahuvw}-

6.2 Three Dimensional Lens Spaces

We define the normal coordinates for a three-sphere as follows [Iv]: Consider a three-

sphere of radius r,
S*(r) = {(v1,v2,v3,04) € R 2 (1) + (02)” + (v3)? + (v0)* =1},

and let (R,,0,¢) be the spherical coordinates in R* where R € (0,00), ¢ € [0, 27],
0 € (0,7] and ¢ € (0,7]. These coordinates are connected with the standard coordi-

nate system (ui, us, us, uq) in R* by the following equations:

u; = Rsinsinf cos ¢,
uy = Rsintsin fsin ¢,
uz = Rsint cosb,

uy = Rcos. (6.11)

The equation of S*(r) in these coordinates is R? = r2. The functions z; = ¢, x5 = 0,
and x3 = ¢ provide an internal coordinate system on S3(r) (without one point) in

which the metric g induced on S?(r) from E* has components g;; such that
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2 0
(9i5) = r?sin?
O r? sin? 1) sin? 6

g induces on S*(r) a Riemannian connection 77. Using the formula

m 1 m
Ly = 59" 091 + digy; — Ougyl,

we can calculate the Christoffel symbols, which are as follows:
%, =T%, = cotyp, Ty, = I3, = cotyp, s, = '3, = coth, T'Y, = —sincosp,
Il = —sinycostpsin® @, T2, = —sincosd. All the other symbols are zero.

Now let 7 : [0, 27r] — S3(7) be a path in S3(r) such that z;0y = 7/2 for i = 1,2 and
x30y = id|jp24]. Since cos /2 = cot m/2 = 0 and sin7/2 = 1 we have F;klv([ogﬂ]) =0,
and consequently, if we take R = r = 1, we get g;; = 65 Therefore, the coordinate
system {x1, x5, x3} and the frame {0/0x,0/0x5,0/0x3} are normal for 7 along the
path ~.

From the Equations (6.11) it is clear that the set ([0, 27]) is a circle obtained by
intersecting S3(r) with the (vy,v,)—plane {v € R* : v;(p) = 0 fori > 3} in R*. In fact,

we have
([0, 27]) = {(v1,v2,0,0) € R - v% +v§ = 7’2} = Sl(r) x (0,0).

It is clear if C' is a circle on S3(r) obtained by intersecting S*(r) by a 2-plane
through its origin then there are coordinates on S*(r) normal along C for the Rie-
mannian connection considered above.

We will assume r = 1. Then, using the above normal coordinate system, and the
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formulas

R}y, = 0%, — 0L, + T T — DL

km>

Rabcd = Gaj Ricd
we calculate the values of the curvature as follows:
Ri212 = Rwewo = sin’ 1,

R1313 = R¢¢w¢ = sin2 ’QD sin2 9,

R2323 = R9¢9¢ = Sin4 @D sin2 0.

All other values are zero. The values of the Ricci tensor, calculated by pu, = RS,

are as follows:

P11 = Pyy = 2,
P22 = peo = 2sin* 1),

P33 = Poy = 2sin” ¢ sin’ 6.
All other values are zero. We then calculate the scalar curvature as follows:
7= 9" pyy + 9% poo + 9°"pss = 6.

Since 7 is constant all its covariant derivatives, 7.; are zero. Using papm = OmpPab —
plbfim — palfinb, we also calculate all the covariant derivatives of the Ricci tensor,
which turn out to be zero as well.

Let e; = (1,0,0,0), e = (0,1,0,0), e3 = (0,0,1,0) and e4 = (0,0,0,1) be the
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standard basis in R*. We define the following two subsets:
N, = {(m,y,0,0) c2t 4yt = 1} Cc R*and N, = {(O,O,Z,w) cAw? = 1} c R

The tangent space T.,S?, has basis vectors {es,e3,e4} such that {e;} is a basis
for T., N, and {e3,e4} is a basis for T,, N;-. Similarly, the tangent space T,,S*, has
basis vectors {ey, es, e3} such that {e3} is a basis for T,, N, and {e1, e2} is a basis for
T,,N;-. We will now calculate the values for by(f,a), bi(f,a) and by(f,a). Suppose

O = $?/G is an orbifold lens space where G =< v > and

2p1 7 2p1 7

cos “&%  gin £=5 0 0
q q
— sin AT (g 20T 0 0
q q
7= )
0 0 cos 22T gjp 221
q q
0 0 —sin QPT” cos 22

where p; # +p, (mod q). Suppose ged(py,q) = ¢ and ged(pa, q) = go, so that p; =
P11, Do = Paga and ¢ = Gq1 = Bga. Suppose ng(@yﬁA) = g so that & = ag, 8= By

and ged(a, f) = 1. This means we can write 7 as
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Now

fixes N,, and

fixes N,.
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cos 22—” sin 22L™ 0 0
g g
—sin 2‘2’!—;” Cos 22—19” 0 0
2poT i 2pom
0 0 cos =2 sin =22
i 2pom 2pam
0 0 sin =2=  cos =°=
1 0 0 0
0 1 0 0
7 =
0 0 cos 222 gip 2p2Ta
B B
0 0 —sin 2227 g 2p2ma
B B
cos 228 gip 2T 0
(e} o
sin 2278 og 228 ) 0
o (7
=
0 0 1 0
0 0 0 1




Note that since the group action is transitive and the fixed point sets are S!,
the functions b(.,.) are constant along these fixed circles. Therefore, it suffices to
consider just a single point in these fixed point sets to calculate the values of the
functions. We will choose the points e; € N, and e4 € N, to calculate the values of
functions.

We have, in the notation of the Theorem 6.1.6, N, = S! x {(0,0)} and N, =
{(0,0)} x S

Also, Isoy, = {1,7%,7%,..~B=Da) |Isoy,| = B8, Ison, = {1,73,723,...7(6“_1)&}
and |Ison,| = a.

We now use Theorem 6.1.6 to calculate the heat trace asymptotic for O using the

I
formula I + I’g“ + % where

, > , =1
Iy = (4mt)~ O N " 04 (0)tF = (4rt)~#m@/2 Y~ ?ak(Si‘)t’“
o i |G
U R () 5
| | ’
q pr 4k! dqm — k! 32qm

and for ¢ € a, b,

I, = (at) SOV S [ (N, ) dvoly, (o)
k=0 Ni

t_1/2 o _ )
o u )2 Ztk /~ bk(Ni:@dUOlNi (x), since N; — N; is trivial in this case

k=0 VN
(mt) Y2 SN - . :
=5 Zt 27bi (N, x) (for any choice of x by homogeneity)
k=0

= /mt~ Y2 Ztkbk(Ni, ) , where by (N;, z) = Z b (7, ).
k=0

yElsomaz N
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Now for a =e; and r € {1,2,...(6 — 1)},

COoS 2paTar sin 2pamar
B
A,yrc"x (a) — B
—sin QPQgM cos 2”2;,“”"
1 — cos 2pamar —sin 2paTar
B B
I - A,yréz (CL) - 5
gin 2p2ror 1 — cog 2p2ror
B B
1 — cos —2”2;; or  _ gip 2227or
1 B
Boa(a) = (I — Apa(a))™! =
7 7 4 gin? B2Tor
sin 2poTar 1 — cos 2pamar
B
]_ —_ COt pamar
1 B
2
cot I% 1

So, |detB.a(a)| = (1 + cot? BT = 4Sin21p2;m.

Similarly we can show that for b = e, and r € {1,2,...(a — 1)},

1 — cot BmBr
o

cot I%ﬁr 1

and [det B ,;(b)] = (1 + cot” 227) = Lo,
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We will now calculate b;(N;,.) for i =0,1,2 and j = a, b:

ot?2 pPoTQT 1

. 1
bo(v"*,a) = |detB.ra =—(1 = )
0(’7 ) Cl) | € y (a)’ 4( +c ﬁ ) 4 sin2 pggcw

So,

b()(Na?a) = Z b0<f7 CL)

felsomas N,
B-1
== Z bo(’Ym, a)
r=1
g paTTQUT
= —(1 + cot? 2t
r=1 4( ﬁ )
Gty wr
— Z(l + cot? E) , since ged(pea, B) =1
r=1
- 2 ar
— 4 sin 5
521 .
=5 by lemma 5.4 in [DGGW].

We can similarly show that

- 1 r a?—1
bo(Ny, b) = yith cot? P

We will now calculate by (N,,a) and b;(N,,b). Note that for both B,ra(a) and

B_.5(b), Bz = Bag = B3y = B3y = B3z = 0. Using the formula in Theorem 6.1.4, we

%
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get

. det(B.ra 1 1 1 1 1
b1(7m, CL) M{nglg |:2 - Z(COt 07" — cot 97“)2 — (5 + 2)2 — 2((4 —+ Z)]
1 1 1
+31313[2— (54—0)2—2(1—1—0) —3(4c0t29 +0) }
1 1 1
+Rggzg[2— (5 +0)* = 2(7 +0) = 3( cot? 6, +0) }}
which gives
ré 3 2 3 3 9
bl(’)/ ,a) 1+C0t 9 R1313<2___ZCOt ) )) +R2323<2_§_4_1C0t HT))}
3
(1 + COt 0 )(R1313 + R2323)[2 — 1_1(1 + COJC2 GT)]
1 1 5 1 \9
= (R1313 + R2323 [6 1 + COt 9 — E(l + cot 91") ]
1
S
(Fiaus + Rauag 6sin’ 6,  165sin? 0,
where 0, = p”ﬁ’a’”
So,
B—1
b1 (N, a) = b1 (v, a)
r=1
_ ﬁl(R R )[ 1 1 ]
= 1313 223) | e T parar 1 gin? E2ET
r=1 B B
B—1 B—1
1 1 1
= (Riz13 + Ras03) [6 — |
- sin r:l sin” 7

since ged(paa, 5) = 1.
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Also, Zf:_ll —a = '82;1 and Zf;ll — i = 5%1252711 (see [DGGW]). So we get
8 8

B*—1 54+1052—11>
18 720

2 2
= —(Riz13 + Rasa3) (8 23;(()6 1)-

bl(Nm a) = (Riz13 + 32323)(

We can similarly show that

a?—1 a*+10a®—-11
18 720 )
(a2 — 29)(a® — 1)

720 '

bl(Nb, b) = (Riz13 + R2323)<

= —(Ri313 + Ra323)

We will now calculate bQ(Na, a) and bg(Nb, b) using (6.10):

bo(f,6) = et (B)] [, ) + A, (£(2), 2 (2)| (2 ) 0)
+ A3 o £ (), )0 (E ) 0)]

where (z), |J(Z,y)| and uo(f(x), x)are taken from (6.7), (6.8) and (6.9) respectively.

Note that

Ay (uo(f(x), )0 (x)]J (7, 9)])(0)

1 1
=AZ(1+ Epkhykyh + ERiksthiBhtysyt
1

1 )
+ éRiktththiysyt - §RkahaBkthtysyt + O(ys))(o) =0.
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We now calculate A, (uq(f(z), z)y(x)|J(Z,y)])(0), which is

r 1 1 1
Ay< _W + Ekak + g(th + EWth)ykyh + 0(93)}

r 1 1
1— ngihinthtysyt — §RkahaBkthtysyt + O(Z/S)}

r 1
1+ E(Rikiththt + Riksh Bii Bre + Riktththi)} > (0),

where W = %7’, W, = %T;k and

1 5
th - g{gT;kh + 3pkh;uu + ngk‘h - 4pkuphu + 2pukauhv + 2Rkuvahuvw}-

For lens spaces, we have 7 = 6, and all the covariant derivatives of 7 and py, are zero.

So, in this case, we will have W =1, W), = 0 and

1.5

th = a ngk;h - 4pkuphu + 2pukauhv + 2RkuvahuUw}’

This gives

Ay(ur (f (), z)b(2)] ] (Z, y)])(0)

-1 1
= Ay< 1+ (Wi + —pin)y*y" + O(y?)

3 6
r 1 1
1— éRkihinthtysyt — §RkahaBkthtySyt + O(y3)]

r 1
1+ E(Rikiththt + Riksh BriBh + Riktththi)] ) (0)

=A, (1 + %{% |:1Opkh — 4pruPru + 2Puo Brune + 2Rkuvahuvw] + épkh}ykyh
+ %RikzsthiBhtysyt + éRiktththiysyt - %RkahaBkthtysyt + 0(93)> (0)
= %{% [200% — 807 + 4pacRraka + Riaka
+ %Pkk + Riksh BriBhs + Riktn Bt Bi — 3RkahaBkths}-
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So, for a =e; and r € {1,2,...6 — 1},

. 1 1 1 1 1
b ro :dtBrd _2 - 2 - __2 _aaRaa
(7%, @) =ldet(Byrs (0))| | 1557 + o516l + Topme — gehe + P Fikas
1 1 1 1
+ %Riaka + §Pkk + gRiksthiBhs + §RiktthtBhi - RkahaBkths

gives

L 2 + L Ip|* + L (p11 + p22 + p33)
_T JE— —_—
120 60 1Y 18 P11 T P22 T P33

1
~ % [20%1 + 2p§2 + 2p§3 — (p11 + poz) Ri212 — (p11 + p33) Rizis

— (pag + p33) Razos + 2R3y 5 + 2R3, 5 + 2R§323]

1
3 [31212[(312 + 321)2 + Q(Bfl + ng)

+ (Bi1 + B22)?] — Ruis13(Biy + Bi,) — Rasos(B3, + 332)} }

(17, 0) =|det(Bre (a)|{

We denote by Q the following expression:

{557+ 1ol + 2(ou + po + )
_7— —_— JE—
1200 60T T g\ T 2P

1
~ % [prl + 2035 + 2055 — (p11 + paz) Risrz — (p11 + ps3) Risis

— (p22 + psa) Roaos + 2R1g15 + 2R355 + 2R§323] }

Using this, we can now write

paTQr

B

. 1 1
by(v", a) = |det(me(a))|{Q — gl2Rume — (1 + cot?

1 )(Ri313 + R2323)]}7
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and

paTQr

1 1
= ‘det(B,ym (a))]{Q — §[2R1212 - 1(1 + cot?
=1
B—1 B—1

paTQT 2 1 5 P2Tar
1 t?—=——)— =R —(1 te —
(1+co 3 ) 3 1212;4( +co 3 )

)(Riz13 + 32323)]}

Q = o T 2 = o T
I (1 4+ cot” —) — —Ry212 Z(l + cot E)

r=1

—~

[3 1
R R
n 1313+ 2323) Z (1 +Cot2

r=1

B—
Q 1 Z R1313 + Rogaz) \~ 1
:Z z: 2 7r7" R1212 2 7r7‘ 48 a4 T

_3@ — 2R1212 B2 —1 R1313 + 32323 Bt 4+106% — 11
- (=) + ( )
12 3 48 45

Similarly, we can show that for b = e4, for instance,

ba(Ny, b) =

3@ — 2R1212 <a2 — 1) I R1313 + R2323 (Oé4 + 10042 — 11)
12 3 48 45 '

Using Theorem 6.1.6 we now calculate the first few coefficients of the asymptotic

expansion as follows:
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Iy, Iy,
+ +
|Iso(N,)|  |1so(Ny)]
t_3/2 (Wt)_1/2

:32qﬁet T g [towbo(Na, a) + t'7by(Na, a) + t*mba(Ny, a) + }

(Wt)_l/Q 0 0 1 7 2 7
n T[t 7bo(Np, b) + t17by (Ny, b) + t2ba(No, b) + ]

t_3/2 t2 3 t4 bo(N (I) bO(Nb )
e BBy () by o
32q7r(++2+6+24+ )+ 3 VT

N <b1(]\;a,a) N bl(jihb))\/%tlﬂ n (bz(]\;a,a) L bQ(JZb,b)>ﬁt3/2 L

From this, the coefficient of ¢~ 3/2 ig 3%

the coefficient of t~/2 is

32qm + I} * « 32q7r 125
the coefficient of t%/2 is

1 Va(Risis + Rogos)[a(8” —29)(8° — 1) + B(a”® —29)(a® — 1)]
64qm 72008 ’

and the coefficient of t3/2 is

1 3@ - 2R1212 (Oé - 1) (62 - 1)
1927 \/_{ 36 [ a T B

Ri313 + Raszas [044 +10a® — 11 n B +105% — 11} }

2160 o B ’

The above results show that the coefficients are dependent on «, $ and the curva-
ture tensor and its covariant derivatives. Since all lens spaces are finitely covered by

S3, the parts of the coefficients that consist of the curvature tensor and its covariant
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derivatives will be the same for all lens spaces. The only difference will therefore be

in the terms containing o and 5. We can rewrite

bo(N,. ) — 1(1 cot? pzﬂ'OéT') 1 N 1 o PaTTQUT
o(Ng, a) = - cot* /) = - - cot® ———,
r=1 4 ﬁ r=1 4 r=1 4 ﬁ
1 piTor 1 A P17 BT
bo(Np,b) =) —(14+cot?2 22y =N = ~ ot T
o( Ny, b) 4( +co - ) 4+ 1¢ o
r=1 r=1 r=1
N A1 1 o PoOuTT 1 9 P2OTIT (g
bl(Na, a) = (R1313 + R2323) |:6(1 + cot —) — 1—(1 -+ cot ) :|
r=1 ﬁ 6 ﬁ
B—1
5(R1313 + Rasos3) <R1313 + R2323> o P2QuTT
- SIS T PR32 o2 20
- 48 + Z 24 v Tg
B—1
Z <R1313 + Rz:m) 4 DeOuT
— /2 =) cott o
16
r=1
a—1
~ 1 mprr 1 p prr
(N, b) =S (R R [—1 2 PPy 2 4 eop2 BTy
1(Ny, b) ;( 1313 + Razz3) 6( + cot” —— ) 16( +cot” — )
a—1
5(Ri313 + Rasos) (R1313 + R2323> o D137
- 8IS T PR332 AT
- 48 " Z 24 O Ta
a—1

<R1313 + st23> 4 D1pTr
cot” ———,
o

r=1
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1 1
B 9 B—

Y Q o P2OTT o P2OxTT
bo(N,,a) =— l14+cot“——)— —R E 1+ cot™ ——
2( (l) 4 ( CO B ) 12 1212 T_l( CO 5 )

N

3 1
R R
1313 + 2323) Z (14 cot? pQ?TT)Q

r=1

Q

12Q) — 8Ry212 + Riz13 + Rasos
48

r=1

B-1
6Q + 4R1212 + Ri313 + Rasas 9 Ppamr
+ Z < 2 ) cot —ﬁ

r=1
Ris13 + Rasos 4 DeOuTT
— s cott E=——

Y

a—1

2
(1 + COt2 plﬁﬂ-fr) — —R1212 Z(l + CO)G2 p—1B7T’I“)

a 12 o
r=1

[y

o—

O+

ba (N, b) =

ﬁ
Il
—_

a—1

(R1313 + Ras23) Z 9 p15 mr
cot® ———)?

r=1

_ az_l 12Q) — 8Ry212 + Riz13 + Ragos
48

r=1

a—1
6Q + 4R1212 + Riz13 + Razas o 137
2 ( 24 ) cor

n <R1313 + R2323> cot? plﬁ'm".
48 a

Note that each b;j(N,,a), (j = 0,1,2) is of the form

-1 4
b] (Naa CL) = Z C%(R) COtAi p_QETMaa
r=1

=1 =1

where A; is the finite number of monomials in the powers of cot ’%, and for each
i, Cf%(R) are constant functions in terms of the curvature tensor and its covariant

derivatives of the covering space, i.e. the sphere. Since ged(pacr, 8) = 1, and we are
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summing over 7 as it ranges from 1 to  — 1, we can write

Aj

B-1
bi(Nuva) = 33 CE(R) cot™ %
r=1

=1 i=1
Similarly, since ged(a, p13) = 1, we can write

OCIAJ

b; (N, b) Z Z R) cot™ %.

r=1 i=1

More generally, for any k, the functions b(y"%, a) and bk(v”fé ,a) are universal
polynomials in the components of the curvature tensor, its covariant derivatives and
the elements of B.ra(a) and B ,;(b) respectively. Since the elements of B,-a(a) are

BH = BQQ = 1/2, B12 = —% COt/\i p—Q%ﬂ-r and le = %COtAi p_g(;m”7 every bk(v”d,a) WlH

be of the form Z;A:jl C4(R) cott B25%. This means that for each k, we will have,

B—1 Ag

be(Nuva) = N Ca(R) cot™ %
1

r=1 i=

and similarly,
—1 Ay

be (N, b) Z Z C? (R) cot™ %7“‘

r=1 i=1

This observation gives us the following lemma:

Lemma 6.2.1. Given two orbifold lens spaces Oy = S3/Gy and Oy = S3 /Gy, such

that G =< v1 > and Gy =< 75 > where

2p1 i
e 0
M=
2pop i
0 e «
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with p1 # £ps (modq), gcd(pr,q) = qu1, 9cd(P2,q) = @21, D1 = P1qu1, P2 = Pagor,

q=a1q11 = 51%1; ng(thl) = g1, 01 = 041, ﬁAl = B1g1, and

25 i

e 0
T2 = )
2spmi
0 e «

with s\ # £55 (modq), ged(si,q) = qi2, ged(S2,q) = Go2, S1 = S1Gi2, S2 = S2G22,
q = Qaqiz = BQQQQ; ged(ay, 32) = (o, Qp = Qi2go, 32 = [292.
Then Oy = S*/G1 and Oy = S3 /Gy will have the exact same asymptotic expansion of

the heat kernel if ay = oo and By = [Ps.

This lemma gives us a tool to find examples of 3-dimensional orbifold lens spaces
that are non-isometric (hence non-isospectral) but have the exact same asymptotic

expansion of the heat kernel.

Example 6.2.2. Suppose ¢ = 195, and consider the two lens spaces O; = L(195 : 3,5)
and Oy = L(195 : 6,35). Since there is no integerl coprime to 195 and no e; € {1, —1}
such that {e113, esl5} is a permutation of {6,35}(mod q), O1 and Oy are not isometric
(and hence non-isospectral). However, in the notation of the lemma above, p; = 3,
Py =5, §1 =6, So = 35, ged(pr,q) = 3 = ged(S1,q), ged(pa, q) = 5 = ged(ss, q) and
g =195=3x65=>5x39. So, d; = dy =65 and B = [ = 39, with ged(d;, 3;) = 13
(fori=1,2) giving oy = ag =5 and [y = P = 3. Therefore, O1 = L(195 : 3,5) and

Oy = L(195 : 6,35) have the exact same asymptotic expansion.
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6.3 Four Dimensional Lens Spaces

We define the normal coordinates for a four-sphere as follows [Iv]: Consider a four-

sphere of radius r,
S'(r) = {(v1,v2,v3,v4,v5) € R” 2 (01)* + (v2)? + (v3)? + (va)* + (v5)* = %},

and let (R, 1,0, ¢,t) be the spherical coordinates in R% where R € (0,00), v € (0, 7],
6 € (0,7], ¢ € (0,7] and ¢t € [0,27]. These coordinates are connected with the

standard coordinate system (u1, us, us, uyg, us) in R® by the following equations:

u; = Rsinysinfsin ¢sint,
uy = Rsintsinfsin ¢ cost,
uz = Rsint sinf cos ¢,

uy = Rsin cos,

us = Rcos. (6.12)

The equation of S*(r) in these coordinates is B? = r2. The functions z; = ¢, x5 = 0,
13 = ¢ and x4 = t provide an internal coordinate system on S*(r) (without one point)

in which the metric ¢ induced on S$*(r) from E? has components g;; such that

. 0
2 sin” 1)

(9ij) =

r? sin? ) sin? 0

O r? sin 1) sin® @ sin? ¢

g induces on S*(r) a Riemannian connection v7. Using the formula
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m 1 m
Fij — §g l[ajgu + 8z'glj - algﬂ]’

we can calculate the Christoffel symbols, which are as follows:

I3, =Th =15 =T =T} =Ty = coty, T, = I3y = Ty = Iy, = cotd,
I, = —siny cos), 'ty = —siny cosypsin®@, '3, = —sinfcosf, I'3, = —sin ¢ cos ¢,
[}, = —siny cosysin®@sin® ¢, '3, = —sinfcosfsin® ¢, I'l; = cot ¢. All the other
symbols are zero.

Now let v : [0,27] — S*(r) be a path in S*(r) such that z; oy = 7/2 for i =
1,2,3 and x4 0y = id|j2x. Since cosm/2 = cotn/2 = 0 and sin7/2 = 1 we have
F§k|v([072ﬂ]) = 0, and consequently, if we take R = r = 1, we get g;; = 5? . Therefore,
the coordinate system {xy, x9, x3, 4} and the frame {0/0x1,0/0x2,0/0x3,0/0x4} are
normal for 57 along the path ~.

From the equations (6.12) it is clear that the set ([0, 27]) is a circle obtained by
intersecting S*(r) with the (uy,us)—plane {v € R : u;(p) = 0 fori > 3} in R®. In

fact, we have
7([0,27]) = {(v1,v2,0,0,0) € R® : v? + v = 2} = S'(r) x (0,0,0).

It is clear if C' is a circle on S*(r) obtained by intersecting S*(r) by a 2-plane
through its origin then there are coordinates on S*(r) normal along C for the Rie-
mannian connection considered above.

We will assume r = 1. Then, using the above normal coordinate system, and the

formulas

km>

R, =00 — 0,1, + Tk Ty — TiT;
Rabcd - galezcda
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we calculate the values of the curvature tensor as follows:

R1212 = R¢9¢9 = Sin2 ¢,
Ri313 = Rygpye = sin® 1 sin® 0,

_ w2 s 2 2
Ry14 = Rypyt = sin® ¢ sin” 0sin” ¢,
Rasoz = Ropgps = sin® ¢ sin” 0,

_ wid e 2 2
Ras24 = Rowey = sin” ¢ sin” 0 sin” ¢,

R334 = Ry = sin® ¢ sin §sin? ¢.

All other values are zero. The values of the Ricci tensor, calculated by pu, = RS,

are as follows:

P11 = Py = 3,
P22 = peo = 3sin’ 1),
P33 = Popo = 3sin2 1/} Sin2 9,

pas = pu =3 sin? ¢ sin? @ sin? ¢.

All other values are zero. We then calculate the scalar curvature as follows:

7= 6" pyy + 6% poo + 9% pos + 9" pre = 12.

Since 7 is constant all its covariant derivatives, 7.; are zero. Using pupm = OmpPab —
pwlt,, — pall,,, we also calculate all the covariant derivatives of the Ricci tensor,
which turn out to be zero as well.

Let e; = (1,0,0,0,0), es = (0,1,0,0,0), e3 = (0,0,1,0,0), e, = (0,0,0,1,0) and
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es = (0,0,0,0,1) be the standard basis in R®. We define the following two subsets:
Na = {(x7y70707'0) :LEQ +y2+v2 — 1} C R5

and

Ny = {(O,O,z,w,v):z2+w2+v2:1} C R

The tangent space T,,S*, has basis vectors {es, €3, ey, €5} such that {ey, es} is a
basis for T, N, and {es, e,} is a basis for T, N-. Similarly, the tangent space T,,S*,
has basis vectors {ey, es, €3, e5} such that {es, es} is a basis for T,, NV, and {ey, e2} is
a basis for T,, Ni-.

Suppose O = S*/G is an orbifold lens space where G =< v > and

2P 2y

cos 2% gin “H£= 0 0 0
q q
ca 20T 2p1m
—sin &% cos £~ 0 0 0
q q
_ 2poT s 2pam
Y= 0 0 cos == sin == 01,
0 0 —sin 22T (og 2227 0
q q
0 0 0 0 1

where p; # +p, (mod q). Suppose ged(pi,q) = ¢1 and ged(p2, q) = g2, so that p; =
P1a1, P2 = p2qe and ¢ = gy = Pge. Suppose ged(d, f) = g so that & = ag, 5 = Bg

and ged(a, B) = 1. This means we can write 7 as
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Now

—sin
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QZ—” sin 227 0 0
g ag
1T oog 2T 0 0
ag ag
2pam in 2p2m
0 0 cos =52 sin =%
_ gjp 2p2m 2pam
0 0 sin == cos =57
0 0 0 0
1 0 0 0
0 1 0 0
0 0 cosB2r® iy 2p2ma
B B
0 0 —sin 2220 (g 2p2m
B B
0 0 0 0




fixes N,, and

coS @ sin @ 0 0 0

—sin W coS @ 0 0 0

7 = 0 0 1 0 0
0 0 0 1 0

0 0 0 0 1

fixes V.

Note that since the group action is transitive and the fixed point sets are S2,
the functions bg(.,.) are constant along these fixed spheres. Therefore, it suffices to
consider just a single point in these fixed point sets to calculate the values of the
functions. We will choose the points e; € N, and e4 € N, to calculate the values of
functions.

We have, in the notation of the Theorem 6.1.6, N, = S* x {(0,0)} and N, =
{(0,0)} x S%.

Also, Isoy, = {1,7%,7%%,..4B=DY Isoy,| = B, Ison, = {1,73,72£,...7(“_1)3}
and |Isoy,| = a.

Now, as in the case of three-dimensional lens spaces, we have for a = e; and
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redl,?2,..

2pamar - 2pamar
COs Sin
B B
A,yrc"x (a) — B
s 2pomar 2pamar
— S1n COS
B B
1 — cos 2pamar —sin 2paTar
I — A,yréz (CL) - 5
gin 2p2ror 1 — cog 2p2ror
1 — cos 2pomar —<in 2pamar
B
Byra(a) = (I — Aya(a) ™ = -
yre e 4sin2 poTar
gip Zp2mar 1 — cog 2p2mor
B
]_ —_ COt pamar
1 B
2
cot I% 1
1
So, |detByra(a)| = (1 + cot® P2F) = 1 e

Similarly we can show that for b = e, and r € {1,2,...(a — 1)},

1 — cot p—lzﬂ k
1
B sb) =3 )
cot I%ﬁr 1
and |detB_,5()| = 2(1+cot? plg’gr) = 4sin21p1wr . Note again that for both B4 (a)
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and B,yrB(b); Bi3 = Bo3 = B3y = Bsg = B33 = By = By = Byg = Boy = Byg =
B3y = By = 0.

Recall that for any k, the functions b,(y"%, a) and bk(vrﬁ, a) are universal polyno-
mials in the components of the curvature tensor, its covariant derivatives and the
elements of B.ra(a) and B_,;(b) respectively. Since the elements of B,.a(a) are
By = By = 1/2, Byy = —%Cot’\i 1% and By = %cot’\i ’%, every br(v"%, a)

will be of the form ZiA:jl C(R) cot™ B5 as in case of 3-dimensional lens spaces

QT

before, where A; is the finite number of monomials in the powers of cot 2 5 and
for each i, Cf;(R) are constant functions in terms of the curvature tensor and its
covariant derivatives. This means that, just as in the case of three-dimensional lens

spaces, for each k, we will have,

B—1

A
be(Naya) = Y 3 C4(R) cot™ %,

r=1 =1

and
a—1 Ag

b( Nb, —ZZ cotAi%.

r=1 i=1

This observation gives us the following lemma:

Lemma 6.3.1. Given two orbifold lens spaces Oy = S*/Gy and Oy = S*/Gy, such

that Gy =< v > and Gy =< 79 > where

2py i

e a 0 0

2po i

M= 0 e « 0
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with p1 # £ps (modq), gcd(pr,q) = qu1, 9cd(P2,q) = @21, D1 = P1qu1, P2 = Pagor,

q=a1q11 = 51%1; ng(thl) = g1, 01 = 041, ﬁAl = B1g1, and

Yo = 0 e 01,

with sy # £55 (modq), ged(si,q) = qi2, ged(S2,q) = Go2, S1 = S1Gi2, S2 = S2G22,
q = daia = Pagas, ged(di, o) = go, dia = a9z, P2 = Pago.
Then O; = S4/G1 and Oy = 84/G2 will have the exact same asymptotic expansion of

the heat kernel if ay = a and B = Ps.

This lemma gives us a tool to find examples of 4-dimensional orbifold lens spaces
that are non-isometric (hence non-isospectral) but have the exact same asymptotic

expansion of the heat kernel.

Example 6.3.2. Suppose ¢ = 195, and consider the two lens spaces O = I~/1+ =
L(195 : 3,5,0) and Oy = Li, = L(195: 6,35,0) (using the notation from Proposition
4.4.1). Since there is no integer | coprime to 195 and no e; € {1,—1} such that
{e1l3, esl5} is a permutation of {6,35}(mod q), Oy and Os are not isometric (and
hence non-isospectral). However, in the notation of the lemma above, py = 3, ps = 5,
§1 =6, 55 = 35, ged(p1,q) = 3 = ged($1,q), ged(pa,q) = 5 = ged(sy,q) and q =
195 =3 x 65 = 5 x 39. So, dy = diy = 65 and B = By = 39, with ged(d;, 5;) = 13
(for i = 1,2) giving oy = ag = 5 and 1 = Po = 3. Therefore, Oy and Oy have the

eract same asymptotic expansion.
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