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Abstract: A new tool for black-box nonlinear system identification of multi-input multi-output 
systems is presented in this paper. The new structure extends the conventional, linear state space 
model into a nonlinear framework, where each parameter is a nonlinear function of inputs or states. 
The method works iteratively in the time domain using an Extended Kalman Filter. The model retains 
a state space structure in modal canonical form, which ensures that a minimal number of parameters 
need to be identified and also produces additional information in terms of system eigenvalues and 
dominant modes. This structure is completely black-box, requiring no physical understanding of the 
process for successful identification, and it is possible to easily expand the order and complexity of 
nonlinearities, whilst ensuring good parameter conditioning. A simple nonlinear example illustrates 
the method, and identification of a highly nonlinear brake model is also presented. These examples 
show the method can be applied as a mechanism for model order reduction; it is equally well suited 
as a tool for nonlinear plant system identification. In both capacities this new method is valuable, 
particularly as the generation of simplified models for the whole vehicle and its subsystems is an 
increasingly important aspect of modern vehicle design. 
 
Keywords: Nonlinear System Identification, Black-box, Extended Kalman Filter, State Space, Brake 
model.  

 
 

1     INTRODUCTION 
 
System identification is the process of selecting an 
appropriately accurate model structure and fitting its 
unknown parameters to obtain a suitable mapping of the 
available input-output data. Many papers have been published 
in the last decades on structured grey-box parametrisation, 
where one or more parameters of a perfectly known model are 
identified to match the data with increasing precision [1], or 
to produce real-time adaptive models [2]. Many of these 
employ iterative algorithms based on nonlinear Kalman 
Filters, where the parameters to be identified are concatenated 
with, or entirely replace the state vector. Examples can be 
found in [3] or in the more recent [4], where a full vehicle 
model is identified from experimental data, via both Extended 
and Unscented Kalman Filters. The major drawback of such 
methods is that they require good engineering knowledge and 
experience of the application, for a precise formulation of the 
process function.  
*Corresponding author: Department of Aeronautical and 
Automotive engineering, Loughborough University, UK 
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Less common in the literature and more complex, is 
the topic of black-box identification. This is the difficult task 
of prescribing a structure which is generic enough to replicate 
the response of any nonlinear dynamic system, given 
appropriate parametrisation, solely based on input-output data 
and no a-priori physical knowledge. A wide analysis of linear 
and nonlinear system identification is available in Soderstrom 
and Stoica [5] and Ljung [6]. These include model validation 
techniques and identification by means such as the recursive 
instrumental variables or the prediction error method.  
Juditsky et al [7] deeply focus on the mathematical basis of 
nonlinear black-box identification, while Sjoberg et al [8] 
give a comprehensive overview of nonlinear black-box 
methods, from a user’s approach. These classic references 
tend to be mathematically obscure however, and hence 
difficult for the user to implement.  

In recent times, the approach of trying to artificially 
reproduce the mechanisms of human learning through 
Artificial Neural Network (ANN) methods, has become 
increasingly popular. ANN can achieve superb performance, 
eg in [9], but as with most black-box methods, do not give 
any insight into the virtually unknown model that has been 
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identified. A comparison between black-box and grey-box 
identification in the automotive field can be found in [10], 
where Savaresi et al have successfully identified magneto-
rheological damper models through both a nonlinear semi-
physical model and a Nonlinear AutoRegressive eXogenous 
(NARX) structure. In this paper, the performance achieved by 
the black-box method outruns the state-of-the-art grey-box 
semi-physical model, which also proves computationally 
heavier, despite the low number of parameters. The 
identification is however control-oriented and no physical 
system knowledge can be obtained from the NARX model.  

More recently, Van Mulders et al [11] have 
employed polynomial-based black-box nonlinear state-space 
systems, where the parameters are identified by the least-
squares method. This structure consists of a linear state-space 
model with polynomials added to the process and 
measurement equations. One major drawback is the resulting 
large number of parameters, with corresponding concerns 
over conditioning. It also appears that the linear state-space 
system is somewhat disconnected from the nonlinear 
polynomial addition and the two can cancel each other out, 
with parameter divergence as a consequence. Other papers, 
such as [12] and [13] take the frequency domain based route 
and estimate the system transfer function based on step input 
tests or multi-frequency sinusoidal signals. This method can 
be effective for system control purposes, such as automotive 
traction control implementation, but is less well suited to 
model order reduction applications.  

In this paper, a new approach to Kalman Filter – 
based system identification is presented. A novel nonlinear 
state space structure is used to identify Multi-Input Multi-
Output (MIMO) data, with each parameter of the state space 
matrices allowed to vary as a nonlinear function over a certain 
range of inputs or states. It develops the work of [14], using a 
simpler structure for the nonlinearities and an improved 
process for applying necessary parameter constraints. What 
we present is fully black-box identification, solely based on 
input-output time histories using no a-priori engineering 
knowledge of the system. The authors have also applied the 
Unscented Kalman Filter (UKF), developed by Julier et al [15] 
to this black-box structure, but, although easier to code, the 
UKF proves to be computationally inefficient due to the large 
number of parameters identified. 

In the next section, the structure of the filter and its 
implementation will be described in detail, with the 
introduction of a simple example, to demonstrate the 
capabilities of the filter. We will then present the black-box 
identification of a highly nonlinear full vehicle brake model, 
taken from the automotive industry. This allows further 
discussion of the filter’s structure, while showing its full 
capabilities for model order reduction applications. 
 

2    METHOD 
 
2.1 Structured EKF for grey-box parametric 
identification 
 
The well-known Extended Kalman Filter (EKF) was first 
developed by the Dynamic Analysis Branch of NASA for the 
Apollo spacecraft real-time navigation system, from the 
seminal paper published in 1960 by R.E. Kalman [16]. It is 
here considered in its identifying form for structured, grey-
box parametrisation, sometimes also referred to as dual 
estimation. Based on prior engineering knowledge of the 
system, nonlinear plant and sensor models f and h are defined, 
both being first-order differential functions of the state vector 
x, measurements y, inputs u and system parameters θ: 
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0

x f x u
z

θ +ω  
= =   θ   





   

( ), ,y h x u= θ + u                               (1) 
 

Unlike in the traditional EKF, the problem now comprises 
estimation of the extended state vector z, where some or all of 
the parameters θ of the model are concatenated with the true 
states. These parameters are assumed to be constant in time; 
hence their derivatives are modeled as zero. As in all Kalman 
Filtering applications, ω represents the modelling error and υ 
the measurement error; these are assumed Gaussian and 
uncorrelated white noise sequences, with zero mean. The 
design Q, S and R matrices are obtained for the EKF 
algorithm as the covariance matrices of the error sequences: 
 

( ),   ( ),   ( )T T TQ E S E R E= ωω = ωu = uu           (2) 
 
S is considered null, as in most research papers on the matter 
[17] and also based on the analysis of Hodgson and Best [18]. 
The EKF performs a linearisation at each time step, 
approximating the nonlinear model and measurement 
functions f and h through Jacobian matrices, defined: 
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The full algorithm, here implemented in the continuous 
process – discrete measurement form, consists of the 
following recursive equations: 

 
1( )T T

k k k k k k kK P H H P H R −= +                       (4) 
* (1 )k k k kP K H P= −                               (5) 
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Where vk is the innovation vector, defined as the difference 
between measurement and observation prediction: 
 

k k kv y h= −                                     (8) 
 
and T is the Euler integration interval, which must be set 
small relatively to the dynamics of the system. At each time-
step iteration, the algorithm updates F and H, and computes 
an estimation of the state error covariance P. 
 
2.2  Unstructured EKF for black-box system identification 
through linear interpolation 

 
We seek to produce a tool for black-box identification of 
nonlinear input-output data, with nonlinear process and 
measurement models which are as generic as possible. 
However, we must impose some form of structure to ensure a 
minimal parameter model is produced; otherwise the 
identifying EKF will tend to drift the parameters to non-
sensible values due to poor conditioning in the identification 
process. We also need a structure that will allow expansion of 
the parameter set to virtually any nonlinear function, and 
permits easy switching between higher and lower system 
orders. We therefore start from a generic continuous process, 
discrete measurement state-space structure: 
 

k k kx Ax Bu= +                                  (9) 
k k ky Cx Du= +    

  
A canonical form for A, B, C and D is preferable, to minimise 
the number of elements to be identified. Of the possible 
choices, the control canonical form has the advantage of 
displaying the coefficients of the transfer function 
denominator in the first row of the A matrix; it doesn’t 
however appear to be a good candidate, as its parameters are 
of different orders of magnitude. Given the identification 
starts with no a-priori knowledge of the system, the 
parameters are all nominally initialised to the same value. In 
the control canonical form, some of those will then need to 
shift to high magnitudes and some others to much lower 
orders; this would be a slow process via EKF.  

The modal canonical form appears to be a more 
sensible choice, since it has approximately normalised 
parameters throughout the A, B, C, and D matrices. The 
structure is modal because the poles of the transfer function 
appear in the diagonal of the A matrix and this gives a further 
advantage in providing additional information of the 
identified reduced-order system, in terms of its most relevant 
modes. A hypothetical third order system in the modal 
canonical form, with two inputs and two outputs will then be 
described by: 
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Where the 2x2 sub-matrix in A represents a complex 
conjugate pair of the eigenvalues σ1 ± j ω1 and σ2 is a real pole. 
We are allowed to vary the number of states and define 
eigenvalues in any combination of conjugate pairs and real 
poles. An automated process could be easily employed to 
select whether a conjugate pair or two real poles are more 
appropriate at a certain position of the A matrix. For example, 
identification of ω = 0 would motivate the reduction of a 
complex pair to two real poles. 
 To identify nonlinear input-output data we now impose 
every non-zero element of the state-space matrices to be 
represented by a nonlinear function of the input or state it 
multiplies. The first eigenvalue σ1 can therefore be expressed 
as a function 

1
gσ  of x1, across a given domain of this state; 

element b11 is a function of the input u1 and so on. The third 
order system of eq.10 can be now expressed as:  
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Here we also set additional outputs 

icy in order to constrain 

the parameters of the B matrix, with the dual objective of 
normalising each modal state (x3) or state pair (x1 and x2) 
while avoiding the parameter conditioning problems that arise 
if B and C elements are allowed to vary freely. A fixed 
number of nodes is then prescribed for each nonlinear 
function, as shown in Figure 1. 
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Figure 1. Every element of the A, B, C, and D matrices is a nonlinear function 
of a state or an input. 
 
The extended state vector becomes: 
 

( ) ( ) ( ) ( ) ( ) ( )( )1 1 11 111 1 1 1

T

n p p b p bz x x g g g g g gg g g g g gσ σ ω ω=      

                                (12) 

where 𝑥𝑥𝑖𝑖  are the actual n-states, and 𝛾𝛾𝑖𝑖  are the y-ordinates 
corresponding to the nodes of each nonlinear-varying element 
in the A, B, C, and D matrices; p is the fixed number of nodes 
for each nonlinearity. By normalising the inputs and outputs 
over the interval [-1,+1] and constraining the states to be 
similarly normalised, all variables operate in the specified 
domain of g. The domain of each nonlinear function is 
divided into (p - 1) equally-spaced regions, so p parameters 
are identified for each nonlinear function g. Increasing the 
number of nodes might improve the accuracy of the 
identification, but will also increase the total number of 
parameters in the model. For example, a single order, single 
input system with two outputs will result in an extended 
vector of 127 total elements (p = 21 parameters for each 
nonlinear element in the A, B, C, and D matrices, plus one 
state). Full nonlinearities can be applied to some but not all 
elements of the state-space description, i.e. some elements 
might only be described by p = 2 and we will see an example 
of this at the end of this section. The exact value of each A, B, 
C, and D element at any given time step is calculated via 
linear interpolation: 

1
1

1 1

( ) ( )
( ) ( )

i i
i i

i i i i

x x
g +

+
+ +

− χ χ −
= ⋅ g + ⋅ g

χ − χ χ −χ
             (13) 

 
where 𝑥𝑥  refers here to the state or input appropriate to the 
nonlinearity. The coding of the Jacobians requires particular 
attention, as each nonlinear parameter is a function of the 
state or input it multiplies, but also of the 𝛾𝛾𝑖𝑖  ordinates it 
depends on, that are also part of the extended state vector. 
Only the nodes that define the interval we are falling into at 
each instant in time need to be considered; the derivatives will 
be zero with respect to every other node. Figure 2 represents a 
generic ith interval in the nonlinear domain of Figure 1.  

 
 
Figure 2. Generic i-th interval in the nonlinear function of an element in A, B, 
C or D. 

The derivatives of the nonlinear function g with 
respect to the state x and parameters 𝛾𝛾𝑖𝑖  and  𝛾𝛾𝑖𝑖+1  are 
computed from eq.13 as follows: 
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Therefore, given a third order, single-input, single-output 
example, with a conjugate pair and a real pole, we have the 
following process and measurement models: 
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and an extended vector defined as: 
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The Jacobian F of the process model then becomes: 
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and: 
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f f g
g g gg g
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The Jacobian H of the nonlinear measurement model is 
calculated with the same procedure, on the nonlinear 
functions of the C and D matrices. 
 
2.3    Implementation 
 
Eqns.4-7 can now be applied to a given time history of input-
output test data, specifically acquired in N samples for the 
purpose of identification. A difficult and very often 
experience-based decision in every Kalman Filter application 
is the initial setting of the covariance matrices Q, R and P. 
From eq.2: 
 

( )cov Qω =   ( )cov Rν =                     (20) 

 
The process error is not known or predictable here, so the 
model covariance is nominally set to Q = λI, where I is the 
identity matrix and λ is the only tuning parameter; this defines 
the speed of variation of the identified parameters. The 
elements of Q relative to the actual states of the system are all 
set zero, since we make the assumption that the errors are in 
the parameter settings, not in the model structure. Q then 
becomes: 
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P is initially and sensibly set equal to Q. An initialisation of 
all the parameters is needed; these can be nominally set to 
zero, or alternatively a simple linear identification can be 
performed on the data using the structure represented in eq.10 
with constant elements in A, B, C and D. For further 
information on the linear identification see [14]. In this case, 
each of the parameters in the linear state space model 

initialises the relative nonlinear function: all the ( )1i gg σ  

ordinates (i =1…p) of the nonlinear first eigenvalue are 
nominally assigned to the identified linear value of σ1, and so 
on. Using the initial parameter set, the filter completes one 
full iteration by operating on all the N samples of the data and 
then iteratively repeats the process through the input-output 
time history, effectively rinsing the model through the data. 
Each iteration starts with the parameter set that has been 
identified at the end of the previous iteration. 
The error covariance matrix R is numerically re-evaluated at 
the end of each iteration and this is computed from eq.20 
where the error υ between the simulated output of the 
identified system and the original data is computed on the 
whole time-history using the most recent available parameter 
set. Constraints are applied to the input matrix using the 
additional outputs yc. One constraint is applied to each state 
associated with a single pole, and one is required for each pair 
of states associated with an eigenvalue conjugate pair. So in 
this case: 
 

( )
( )

1 2 3

1 2

3

1 1 2 2 3 3

1

2

( ) ( ) ( ) ( )

,

c c c d

b b

b

x g x x g x x g x u g u

y g g

g

 ⋅ + ⋅ + ⋅ + ⋅
 
 = Φ
 
 Φ 

  (22) 

 
The model for each constraint equation is the sum of squared

ig parameters of the nonlinear functions of the B matrix 

elements that refer to the given real pole or conjugate pair: 
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The outputs yc are then initialised according to the starting 

values of the ig (to give zero error) and are then adapted 

after each iteration i of the algorithm according to the 
maximum absolute value of the normalised state or state pair, 
across the identifying data. Here: 
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The EKF therefore has additional innovations which 
continuously constrain the magnitude of the elements of B to 
ensure all states fully occupy but do not exceed the prescribed 
domain, [-1,+1].  
 
3    RESULTS 

 
3.1   Identification of a simple model 

 
A simple example will now be used to illustrate the method. 
Consider the single order, single output and single input 
system described by the following process and measurement 
equations: 
 

3 0.2x x u= − +  
y x=                                        (25) 

 
With no a priori knowledge of the system dynamics assumed 
in the idetnfiication process, it is sensible and standard 
practice to use a broad-bandwidth random input to excite the 
plant. Here the input is white noise at a high sampling 
frequency (500Hz) filtered to remove all content above 25Hz. 
This produces smooth data, allowing better and faster 
identification through the Kalman Filter (which depends on 
Euler integration). It also has the advantage of exciting the 
system through a wide range of potentially important 
frequencies, with the one simple assumption that the relevant 
system dynamics occur within a known bandwidth to 
(nominally) 25Hz.  A different set of data is of course used 
for the validation process, on which all the performance 
results are based. Identification performance is measured 
using percentage explanation: 
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The tuning parameter λ provides stable running of the filter on 
this data over a wide range of values, between 10-2 < λ < 10-10; 
with 10-2 at the limit of filter stability, and 10-10 still effective, 
but with an inconveniently slow optimisation. At the selected 
λ = 10-5 the filter is comfortably stable and achieves an 
optimised result in under 40 seconds. 

With an unknown system it is sensible to first 
consider the simplest possible case: a non-dynamic, zero-

order model comprising D elements alone. Such a model 
could be identified using simple ordinary least-squares 
techniques, but our filter can also be employed. As we would 
expect, this returns a very poor fit, with Rx < 1%. Linear 
models and nonlinear extensions of various orders and with 
various choices of p can then be explored. 

In order to determine the lowest order, simplest 
model that achieves acceptably high performance (a 
subjective decision) the method should be applied repeatedly 
in a systematic way, starting with the zero order case and 
identifying models with progressively higher order and 
number of nonlinear nodes p.  As model order and complexity 
increases, the resulting (validation) performance increases to 
a plateau; further, when unnecessarily high order models are 
identified, the parameters may diverge due to poor 
conditioning and/or repeated eigenvalues appear in the result.  
We see an example of this in Section 3.2.  Thus by 
systematically identifying several models, the best performing, 
well conditioned and lowest order option becomes apparent. 

Here a first order linear model identification is now 
run and the best fit is achieved at an explanation of 95.21%. 
This uses constant A, B, C, and D matrices, as per eq.10 with 
only one eigenvalue, identified at -0.66.  The next step adds 
nonlinearity, with low resolution (for simplicity, only p = 2 
per nonlinear function). This slightly improves the 
performance to 95.58%, but the obtained results provide 
useful information: Figure 3 shows the evolution of the 
identified parameters over the iterations (plot a), along with 
the evolution of the trace of the P matrix (plot b). We see 
good convergence, which shows good conditioning. Figure 4 
illustrates the final model and it is clear that greater resolution 
is needed in the A matrix, due to the considerable variation in 
value that the system is trying to achieve, while B and C 
resemble constant values, and the D matrix is almost zero. 

  

 
 

Figure 3. Parameter convergence and trace of P for nonlinear identification 
results with low accuracy in the A, B, C, and D functions. 
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Figure 4. Nonlinear identification results with low accuracy in the A, B, C, 
and D functions. 
 

A further identification run with greater resolution 
achieves 99.92%, with a nonlinear A function now free to 
display an approximately quadratic form (with p = 3, Figure 
5a). And finally a high-resolution (21 node) nonlinear 
function gives the freedom to return 100% accuracy in the 
validation output and an almost perfectly shaped quadratic 
curve in the A matrix nonlinearity (Figure 5b).  

Despite the higher complexity, the model shows no 
variation for both the nonlinear elements in the B and C 
matrices, and D is still correctly identified as zero (not 
shown). Note that, other than slower operation of the 
identifying filter, there is no disadvantage in increasing p for 
all elements of B, C and D; because the parameters are 
distributed over the normalised range of the input and states, 
they generally retain good conditioning. Care must be taken 
with the selection of p for the A matrix terms however, as we 
see in the next section. 

  

 
 

Figure 5. Nonlinear identification results with increasing resolution in the A 
function. 

 
3.2    Identification of a brake model   
 
The new Filter is tested for the identification of a highly 
nonlinear automotive brake model. Two sets of input-output 
data have been provided by Jaguar Land Rover (an 

identification set and a validation set). The recorded output 
represents the hydraulic pressure at the calipers while the 
input is the pressure at the brake pedal.  The identification set 
again consists of white noise, filtered above 25Hz and the 
validation set comprises a nominal sequence of brake 
applications of varying intensity. No other physical 
description of the system has been provided. 
  In this case the data is single sided, so domain 
intervals of [0,1] are applied. As in the previous example, λ 
=10-5 and a zero-order nonlinear input-output relationship is 
first sought (D matrix look-up table - Figure 6). This achieves 
an identification performance of Rx = 98.01%, which 
confirms the value of a direct nonlinear relationship and sets a 
benchmark Rx performance.  

 
 
Figure 6. Nonlinear direct input-output relationship, zero-order model 
identification. 

Further, close observation of the input-output time-
histories shows a dynamic model is clearly needed: there is a 
time delay in the response at low magnitude (Figure 7a), 
though interestingly, this does not appear to be the case at 
high amplitudes (Figure 7b), where no phase error is evident.  
Note also the relationship between input and output (Figure 
7c) which shows a further challenge to the identification; the 
model must cope with hard, step nonlinearities here as there is 
clearly a deadband in the response at low input magnitude. 

A first-order linear state-space identification 
achieves performance Rx = 94.86%, so we can see 
nonlinearity modelling is more critical than transient 
modelling alone. 

Next, a nonlinear single-order system with high 
resolution p = 21 causes instability, whereas basic resolution 
in A (p = 3), with full complexity elsewhere has the effect of 
preventing over-parametrisation and gives an accuracy of 
97.50%. Figure 8 shows how the parameters vary with 
increasing iteration of the algorithm; here we see the p = 21 
case has divergent parameters, but the p = 3 case shows clear 
convergence.  Divergence will only occur where the model 
structure has become poorly conditioned; in this case the 
deadband in the output at low magnitudes is causing the 
eigenvalue to drift to unstable positive values for the unused 
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lower range of the input (and hence states), so associated B 
and C parameters diverge. By restricting the nonlinearity 
resolution in A (only) to limit eigenvalue variability in this 
region, the parameters converge and the final model shown in 
Figure 9 gives 99.60% performance, which is illustrated in 
Figure 10. 
 

 

 

 

 

Figure 7. Evidence of dynamic behaviour in input-output time history at low 
(a) and high (b) magnitudes, and evidence of deadband (c – validation data 
shown). 

 

Figure 8. Divergence of the identified parameters in the p = 21 case (a - only 
diverging parameters shown) and convergence for the case of p = 3 (b).  

 

 

Figure 9. A, B, C and D nonlinear functions. Single-order system, before 
and after scaling. 
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Dynamic behaviour replication is now good at both 
low and high magnitudes, as shown in Figure 10a and Figure 
10b; validation data can be seen in Figure 10c. However, the 
corresponding normalised state behaviour has an interesting 
characteristic (Figure 11) with a plateau at 0.5 and only few 
excursions to the normalised peak. 

This effect is due to there being very little data at the 
highest input magnitudes. It does not restrict the validity or 
accuracy of the model but does allow us to illustrate 
parameter robustness. By now applying a simple scaling of 
1/0.5 to the gb elements and restarting the filter, the model is 
rapidly re-optimised (within 5 iterations). This produces 
smoother nonlinear variations (Figure 9 – after scaling). It is 
important to note that the overall performance index does not 
change following this intervention.  

 

 

 
 
Figure 10. Nonlinear single-order low (a) and high (b) magnitude dynamic 
behaviour. Full validation data-set also shown (c).  
 

 
 
Figure 11. Normalised state behaviour for nonlinear single-order system. 

Progressively higher orders can now be explored, 
until a satisfactory model has been identified or a good 
compromise between complexity and accuracy has been 
found. This process could easily be automated; for example 
an overnight run of optimisations would yield accuracy and 
parameter convergence statistics on several model order and 
nonlinearity complexity combinations. For this example, a 
summary of the process is given in Table 1 in the Appendix.  
 
4    CONCLUSIONS 
 
A novel method for MIMO black-box system identification 
has been presented, which can be employed for model order 
reduction applications as well as conventional nonlinear plant 
system identification problems.  The new structure is based 
on an extension of the linear state space system where each 
parameter of the A, B, C and D matrices becomes a nonlinear 
function of an input or state. The method is easy to 
implement, operating in the time domain using the well-
known Extended Kalman Filter. 

 The prescribed structure provides effective models 
for smoothly nonlinear systems and can also approximate 
hard nonlinearities such as the dead-band in the brake model 
example considered here.  It would be naïve to assume the 
structure is capable of replicating all behaviour in systems 
with multiple combinations of harsh nonlinearity, but it does 
provide enough flexibility to map the most significant 
nonlinear effects and variations in system dynamics; it is able 
to identify the best minimal order approximation to system 
reponse using a simple nonlinear structure. 

Being in the modal canonical form it also provides 
further information in terms of the most relevant modes of the 
system. The tool is fully black-box and requires no a-priori 
engineering knowledge of the system to be identified. It has 
been successfully applied to a brake feel model from the 
automotive industry. The identification process consists of 
progressively expanding the order of the state space system, 
starting from a zero-order nonlinear input-output relationship, 
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up to an order where a good compromise between complexity 
and performance is found.  

Accuracy of fit and parameter convergence 
behaviour are the main indicators in the process. Together 
with the nonlinear mapping of the eigenvalues, these allow 
the user to develop insight into the model behaviour, most 
suitable model order and degree of nonlinearity in an intuitive 
way. Hence, although the filter operates on the data as a fully 
black-box process, consecutive optimisations allow the user 
to develop multiple solutions, through which they gain insight 
into the most appropriate and robust model to use. In this case, 
the model identified to fit the brake data is accurate, as 
demonstrated at both low and high magnitudes in the 
identification data and in the validation results. Further work 
will focus on automating the process, with the aim of 
delivering a completely black-box tool that can be operated 
with minmal user interpretation. 
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APPENDIX 
 

Table 1. Summary of identification results for different order models. 

System 
Order Description Comments Linear               

Model Rx 
Linear Model 
Eigenvalues 

Nonlinear                   
Model Rx              

Time taken          
(per iteration) 

0 D matrix only 
 (look-up table) 

Evidence of nonlinearity in the input; further 
evidence of dynamic behaviour clear from 
input-output relationship. 

- - 98.01% 0.66s 

1 
Basic resolution in A;                               

Higher resolution in B, C 
and D  

Low resolution in A prevents over-
parametrisation; evidence found of minimum 
input threshold from negative eigenvalues at 
low magnitude; 

94.86% -1.47 99.60% 1.22s 

2 Eigenvalues in a 
conjugate pair 

Good performance but eigenvalue optimised 
with zero frequency, suggesting two real poles; 60.49% -2.11 ± j 0.02 99.00% 2.13s 

2 Two real poles Good performance but nonlinear model 
identifies poles very close together; 94.70% -1.09; -4.74 99.20% 1.92s 

3+ Progressively higher 
orders 

Over-parametrised and increasingly 
computationally heavy, no better performance 
achieved; 

94+% - 99+% 2.70s+ 
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