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Abstract 

The well-known and widespread replacement of oysters (abundant during the 

Mesolithic period) by cockles and mussels in many Danish Stone Age shell middens 

ca. 5,900 cal. yrs BP coincides with the transition to agriculture in southern 

Scandinavia. This human resource shift is commonly believed to reflect changing 

resource availability, driven by environmental and/or climatic change at the 

Mesolithic-Neolithic transition rather than cultural choice. While several hypotheses 

have been proposed to explain the “Mesolithic-Neolithic oyster decline”, an 

explanation based on a sudden freshening of the inner Danish waters has received 

most attention. Here, for the first time, we test and refute this long-standing 

hypothesis that declining salinity explains the marked reduction in oysters identified 

within numerous shell middens across coastal Denmark at the Mesolithic-Neolithic 

transition using quantitative and qualitative salinity inference from several, 

independent proxies (diatoms, molluscs and foraminifera) from multiple Danish fjord 

sites. Alternatively, we attribute the oyster decline to other environmental causes 

(particularly changing sedimentation), ultimately driven by external climatic forcing. 

Critical application of such high-quality environmental archives can reinvigorate 

archaeological debates and can aid in understanding and managing environmental 

change in increasingly impacted coastal regions.      

 

Introduction 

A striking but consistent feature of many Danish Stone Age shell middens is a high 

abundance of the European flat oyster (Ostrea edulis), present in Mesolithic (Ertebølle 

culture) layers, and its widespread replacement about 5,900 cal. yrs BP by species such as 

the cockle (Cerastoderma edule) and the blue mussel (Mytilus edulis) in the Early Neolithic 

layers (Funnel Beaker culture) (Andersen, 2000, 2007; Fischer and Kristiansen, 2002). The 
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oyster decline is contemporaneous with the introduction of agriculture in southern 

Scandinavia (ca. 5,900 cal. yrs BP; e.g. Andersen and Rasmussen, 1993) and the 

concomitant transition from a predominately marine to terrestrial diet for humans (Tauber, 

1981; Fischer et al., 2007), and has previously been hypothesised to be a causal factor 

behind these changes (Rowley-Conwy, 1984; Andersen, 2007). Although the oyster decline 

has been known for almost 50 years (Andersen, 1976), its cause remains contested. Oysters 

require higher salinities and temperatures than the species which widely replaced it (mainly 

cockles and mussels) in the Neolithic layers of many Danish shell middens and 

subsequently several environmental (as opposed to non-environmental or cultural) 

hypotheses have been proposed for this transition (Rowley-Conwy, 1984; Bailey and Milner, 

2008; Schulting, 2010).  

The most commonly cited hypothesis is the declining salinity of inner, accessible coastal 

waters (Rowley-Conwy, 1984; Andersen, 2007) perhaps associated with lowering of relative 

sea-level (Christensen, 1995; Berglund et al., 2005) and/or a reduction in tidal amplitude 

(Nielsen, 1938; Petersen, 1993; Petersen et al., 2005), both ultimately reducing the input of 

high-salinity water from the North Sea into the inner Danish coastal waters of the Limfjord 

and Kattegat. Ostrea edulis generally requires salinities above 23-25 g L-1 and summer 

water temperatures above 15°C to spawn successfully (Spärck, 1924; Jensen and Spärck, 

1934; Yonge, 1960). In Danish coastal waters today, the European flat oyster is confined to 

the western part of the Limfjord (which is open to the North Sea in the west) and to the 

deeper, highly saline and oxic waters of the Kattegat, where the species occurs very 

sporadically.  

Here we use palaeoenvironmental data to test the so-called “salinity hypothesis” mentioned 

above (hereafter H1). We also use palaeoenvironmental data, regional palaeoclimate data 

and present-day oyster ecology and habitat information to test two other plausible 

explanations, namely; (H2) the temperature decline at the end of the Holocene thermal 

maximum directly affected oyster reproduction and oyster population dynamics and (H3) 
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increased sedimentation altered the availability of suitable habitats. We also consider two 

non-environmental, human ecological-cultural hypotheses: firstly, that the substantial rise in 

population from the start of  the Neolithic (Shennan et al., 2013) might lead to over-

exploitation of oysters to unsustainable levels and their dramatic decline in the 

archaeological record (H4); and finally, the cultural rejection of oysters as a food (H5) 

(paradoxically an opposite driver to H4 but leading to the same observation of an oyster 

decline in the midden record). We consider these last two briefly in the discussion but focus 

upon the three main environmental hypotheses for the oyster decline given above (H1-H3), 

as these can be tested directly using palaeoenvironmental data. Here, we apply state-of-the-

art multiproxy palaeoenvironmental techniques to reconstruct key environmental parameters 

(notably salinity and sedimentation change) from Danish fjord sediments collected either 

adjacent or in close proximity to Stone Age shell middens (Fig. 1A-D) to test competing 

environmental hypotheses H1-H3 independently and critically. 

Methods and results 

Multiproxy palaeoenvironmental analyses (diatoms, molluscs and foraminifera, prepared 

using standard techniques; see Supplementary Data) were performed on five Holocene 

sedimentary sequences collected from past (Korup Sø) or present shallow (<6 m) Danish 

fjord systems from Jutland and Zealand (Fig. 1A and Table 1). Salinity change was 

quantitatively reconstructed at each site (Fig. 2A; Table 1) using a 210-site coastal pan-

Baltic diatom-inferred (DI) salinity inference model. Age-depth models were produced for 

each site based on multiple 14C datings of terrestrial plant material (Kilen, Tempelkrog, 

Horsens Fjord, Norsminde Fjord) or shell material (Korup Sø). Full methodological details 

are provided in Supplementary Data. 

 

The DI-salinity reconstructions infer similar or higher salinity levels than at present over both 

the late Mesolithic and Early Neolithic period (Fig. 2A), but with no evidence for a salinity 

decline at the Mesolithic/Neolithic transition (5,900 cal. yrs BP) or even persistently lower 
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salinity in the Neolithic period. This is corroborated by qualitative mollusc and foraminiferal 

assemblage data and novel semi-quantitative mollusc-based minimum salinity 

reconstructions (MI-salinity, Table 1, Fig. 2A; Supplementary Data) available at four of the 

five sites (not Norsminde Fjord). The Danish molluscan fauna is particularly well studied and 

this new semi-quantitative approach makes use of long-term observations, distribution and 

wealth of knowledge of molluscan species-salinity relationships (available in the literature) to 

produce a semi-quantitative estimate of the lower-range of salinity required to support the 

fauna found in the fossil dataset. 

Statistical analysis of DI and MI-salinity values for each sequence confirms this with only a 

single case out of 9 comparisons with a significant decrease between the Mesolithic and 

Neolithic sections, and two cases of salinity increase (1-tailed t-test, p < 0.05; Table 1). 

Moreover, the MI-minimum salinity decline at Korup Sø is gradual rather than dramatic 

(contrary to H1), likely reflecting local changes to hydrography at this site rather than a 

regional salinity change as the connection between the site and the sea gradually 

disappeared due to isostatic uplift, sedimentation and progressive isolation from the 

Kattegat. The diatom data supports this interpretation, as there is no decrease in DI-salinity 

at Korup Sø over this period, despite the gradual switch from planktonic to benthic taxa.   

Bulk sediment accumulation rates (AR, Fig. 2B) were calculated for each site using the age-

depth models. At Horsens Fjord, Norsminde Fjord and Korup Sø, relatively lower 

sedimentation rates are recorded in older sediments (i.e. before 6,000 cal. yrs BP). 

Accumulation rates increase gradually at both Norsminde Fjord and Horsens Fjord from 

about 6,500 cal. yrs BP, while Korup Sø AR remains low until ca, 5,900 cal. yrs BP, when a 

three-fold increase occurs. At Tempelkrog, the highest rates occur between ca. 7,000-5,850 

cal. yrs BP and decline in the Early Neolithic period. Kilen exhibits a pattern typical of 

sediment focussing (i.e. movement of sediment from shallower to deeper zones of the fjord), 

with higher sedimentation rates occurring under deeper water conditions (before ca 7,000 

cal. yrs BP), falling as the fjord gets shallower from ca 5,200 cal. yrs BP (Lewis et al., 2013). 
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Discussion 

The high abundance of coastal shell middens dated to the late Stone Age from ca. 7,600 cal. 

yrs BP (Andersen, 2000, 2007) suggests that environmental conditions were optimal for 

mollusc growth in general at that time, and for oysters in particular. This includes high 

salinity (> 23-25 g L-1), high summer temperatures (>15°C) and suitable substrate (Spärck, 

1924; Jensen and Spärck, 1934; Yonge, 1960). Our data suggest that suitable salinity 

conditions extend into the Early Neolithic period (Fig. 2A and Supplementary Data). We 

observe no evidence of a widespread, sudden decline in salinity at the Mesolithic/Neolithic 

transition or any period of persistently lower salinity within the Early Neolithic (Fig. 2A), in 

either the quantitative or qualitative biological data (diatom, foraminiferal and mollusc) 

presented here.  

Other molluscs found in shell middens over the late Stone Age period also argue against any 

coherent salinity change (Rasmussen, 1958; Nielsen, 2008). Two species of Veneridae 

(Ruditapes decussata and Polititapes aureus, both previously in the genus Tapes), with high 

salinity requirements and absent in Danish waters today, increase into the Early Neolithic 

sections of several shell middens (Nielsen, 2008 G. Bailey and N. Milner, unpublished data). 

Ostrea edulis itself exhibits great variability throughout Danish shell middens, with large 

oysters abundant or dominant in several middens (e.g. Havnø, Visborg and Krabbesholm; 

Fig. 1A) throughout the Neolithic period, even showing occasional increases in abundances 

in some cases (e.g. Krabbesholm; Nielsen, 2008). Even within the Norsminde shell midden, 

where a large oyster decline is evident, oysters (and Bittium reticulatum, requiring salinities 

above 25 g L-1) remain present (and R. decussatus increases) in the Neolithic period. 

Furthermore, Ostrea edulis exhibits an almost identical distribution to the corrugated venus 

(Venerupis corrugata previously called Tapes pallustra) in the Stone Age in Denmark, which 

has been attributed to identical substrate affinity, rather than salinity tolerance (Rasmussen, 
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1958), as these two species have very different salinity tolerance limits, with V. corrugata 

able to live in salinities of ≤18 L-1 (Jensen and Spärck, 1934; Rasmussen, 1958). 

We also discount any role played by changing tidal amplitude on salinity (and sedimentation) 

dynamics within the Danish coastal waters as recent results from tidal modelling suggest 

that only minor changes have occurred in the tidal amplitude around the North Sea and 

Baltic coasts over the last 8,000 years (Uehara et al., 2006). Furthermore, we find no 

evidence amongst any of the biological proxies (in terms of either inferred salinity change or 

a shift in assemblage composition to more benthic taxa) for a sudden, substantial sea-level 

change around 6,100 cal. yrs BP as inferred at Blekinge in southern Sweden (Berglund et 

al., 2005). Rather, our proxy data are more consistent with the muted sea-level fluctuations 

reconstructed for eastern Denmark at Vedbæk (Christensen, 2001) (Fig. 2A). We therefore 

reject the salinity hypothesis (H1) as the cause of the oyster decline in the Danish shell 

middens over the Mesolithic-Neolithic transition. 

The other two environmental hypotheses (H2: temperature decline and H3: increased 

sedimentation) need not in fact be mutually exclusive. Here we argue for a more nuanced, 

spatially complex alternative that combines these two environmental explanations for the 

oyster decline. The trends within the shell middens (outlined above) and 

palaeoenvironmental records presented here (Fig. 2) all exhibit a degree of spatial and 

temporal variability, but provide evidence for extensive changes in the marine environment 

at, or near 5,900 cal. yrs BP, at a time when climate was beginning to cool (Snowball et al., 

2004; Seppä et al., 2009; Brown et al., 2012) (Fig. 2B). We hypothesise that accessible 

oyster beds were steadily waning as a resource for hunter-gatherer societies from ca. 6,300 

cal. yrs BP, as temperature in particular declined below optimal conditions (H2), but other 

factors (specifically sedimentation patterns) triggered the sudden oyster decline recorded in 

shell middens.  
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Suitable habitat is key to the development of oyster beds. Ostrea edulis favours a hard 

substrate (i.e. coarser silts/sands containing stones and shells) with sparse vegetation cover, 

and is easily choked by a high flux of fine-grained sediment (Jensen and Spärck, 1934; 

Yonge, 1960). This contrasts with taxa such as Cerastoderma edule and Mytilus edulis, 

which are better suited to living in finer sediments (Jensen and Spärck, 1934). Over the Late 

Mesolithic/Early Neolithic, sedimentation rates increased (i.e. starting before agriculture 

developed in coastal catchments) at four of the five sites (though earlier at Tempelkrog, 

beginning around ~6,900 cal. yrs BP and peaking between ca. 6,400-6,100 cal. yrs BP), 

increasing the rate of shallowing of these fjords and reducing exchange and sedimentary 

export (Fig. 2B).  

The underlying causes behind increased sedimentation rates in Danish Fjords in the Late 

Mesolithic/Early Neolithic period need to be investigated further, though it remains likely that 

these differ between sites for a variety of reasons (as demonstrated by the variable timings 

in the data presented here; Fig 2B). Individual fjord sedimentation rates are likely to be 

heavily influenced by topographical features such as fjord area, water depth and water-

current systems. After several thousand years of sedimentation since being submerged by 

the rising sea-levels in the Early Holocene (Petersen, 1981; Christensen, 1995, 2001; 

Berglund et al., 2005; Bendixen et al., 2015), many of these sites were becoming shallower, 

and increasingly acting as sediment sinks. Shallowing would also promote macrophyte 

development, further trapping sediments.  

Additionally, changing climate around this time likely also contributed to increased or 

variable sedimentation rates in these fjord systems. Isotope records from regional lake and 

peat systems show spatial variability, with some records indicating a more humid Holocene 

thermal maximum (HTM), followed by drier conditions in the Early Neolithic (e.g. Harrison 

and Digerfeldt, 1993; De Jong et al., 2006; Olsen et al., 2010), whilst other nearby lakes 

(e.g. Hammarlund et al., 2003; Seppä et al., 2005) suggest a shift to wetter conditions in 

southern Scandinavia after ca. 6,100 cal. yrs BP, likely increasing run off and sediment input 
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from the catchment. Changing hydrological conditions and decreasing temperatures towards 

the end of the peak period of the HTM (ca. 8,000 BP and 4,000 BP in northern Europe with 

maximum temperatures between ca. 7,500-6,000 BP; Snowball et al., 2004; Antonsson et 

al., 2008; Renssen et al., 2012) would have likely altered the local vegetation and 

subsequently run off rates and fjord-sedimentary inputs. Later (post ca. 5,900 BP), forest 

clearance might also have been important following the introduction of agriculture into the 

catchments by a substantially larger population (Shennan et al. 2013), and in some areas 

forest restructuring following the likely pathogen-related elm (Ulmus) decline (Andersen and 

Rasmussen, 1993; Peglar and Birks, 1993; Rasmussen et al., 2002). Furthermore, beach 

ridges are believed to have developed at a number of coastal sites around Denmark in the 

Late Mesolithic/Early Neolithic (including Norsminde Fjord and Bjørnsholm Bay; Andersen, 

1989; Andersen and Rasmussen, 1991; Andersen, 1992). As these beach ridges generally 

form along/near the mouths of fjords and estuaries, they are likely to have reduced the 

connection of these sites with the open seas and resulted in reduced current flows and lower 

energy in the system, limiting the sediment removal capacity and encouraging greater 

deposition within the basin. Under a combination of the above conditions, a positive 

feedback between increasing sediment accumulation rate and fjord shallowing might 

develop, eventually leading to the decline or disappearance of once productive, but 

increasingly stressed and perhaps over-exploited oyster beds from many shallower, 

accessible coastal areas. 

Recently, Shennan et al. (2013) have shown a major increase in human population density 

around 5,900 BP (following the onset of the Neolithic period) in Denmark. Bailey and Milner 

(2008) and Nielsen (2008) have both previously suggested that a combination of 

environmental stress and over-exploitation (hypothesis H5) might be responsible for oyster 

populations decreasing in size and age in Neolithic layers of the Norsminde Fjord and 

Krabbesholm shell middens (Fig 1A, D). Measurement of the size and age of molluscs 

present in shell middens can give an indication of the natural population health and resource 
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exploitation pressure. In Denmark, these analyses have shown only a gradual decrease in 

age and size of collected oysters present within the middens over time (and continuing 

throughout the Neolithic) (Bailey and Milner, 2008; Nielsen, 2008) suggesting slow 

degradation of natural oyster beds, and perhaps more consistent with changing 

environmental conditions than over-exploitation. Furthermore, Bailey and Milner (2008) have 

shown that oyster populations at Norsminde Fjord do not appear to have become particularly 

stressed (i.e. greater collection of smaller and younger specimens) until later in the Neolithic, 

and much later than the Mesolithic-Neolithic oyster decline.  

If increasing human population (and subsequent over-exploitation) was a primary cause of 

the oyster decline (H4), then an initial increase in the abundance of oysters present in the 

shell middens in the Early Neolithic might be expected (i.e. more oysters needed to support 

a larger population), followed by a rapid shift to smaller, younger specimens as the natural 

oyster populations became quickly stressed due to over-exploitation. Whilst, human 

population increase in the Neolithic (Shennan et al., 2013) likely accentuated this gradual 

pattern of decreasing age and size of oysters evident in Danish shell middens through time 

(Bailey and Milner, 2008; Nielsen, 2008), the lack of clear evidence for large-scale stress on 

the shell midden-oyster population at ca. 5,900 BP argues against this as a primary cause of 

the oyster decline. However, we acknowledge that age-size data of collected molluscs are 

not available for all shell middens demonstrating an oyster decline, and therefore in some 

cases earlier, localised population stress due to increasing population and human impact 

might have occurred. Nonetheless, with the data available we argue that changing 

environmental conditions (lower temperature and increased sedimentation rates) caused an 

overall decline in oyster availability, particularly in the near-shore more-accessible oyster 

beds, meaning that alternative resources were exploited. Furthermore, as the oyster decline 

is generally synchronous across Denmark, then if localised over-exploitation through 

population increase was a major driver, then greater variability in the timing of this oyster 

decline would be expected. 
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Importantly, whilst the oyster decline was widespread it was not total and oysters remained 

accessible, and even locally abundant at a few sites, far into the Neolithic period where 

favourable hydrographic conditions allowed (e.g. at Havnø, Visborg and Krabbesholm, 

Andersen, 2008; Nielsen, 2008; Figs 1A, C) despite declining temperature. This finally 

argues against a cultural explanation (or indeed a purely temperature-driven threshold; Fig. 

2) for the oyster decline as oysters were clearly not rejected as a dietary component 

(hypothesis H5). Shellfish were still harvested in many places, despite the occurrence of a 

cultural shift from a marine to a terrestrially-dominated diet (Tauber, 1981; Fischer et al., 

2007). Indeed some oyster-dominated middens re-appeared briefly in Denmark around 

4,900-4,400 cal. yrs BP during the Pitted Ware and Single Grave cultural period, although 

with far fewer shells (Andersen, 2007). However, forest restructuring following the elm 

decline and early Neolithic forest clearances resulted in sedimentation rates further 

increasing in many sites across Denmark (at Korup Sø, dramatically so; Fig. 2B), and this 

marked the end of large-scale oyster harvesting across coastal Denmark. 

 

Conclusions 

The oyster decline (evident in many Danish shell middens) is seen as an important marker of 

a wider human resource shift, attributable to environmental and climate change, without the 

need to invoke purely cultural hypotheses which may be difficult to test rigorously. 

Specifically, we argue that the change is principally the result of accelerated deposition of 

fine-grained sediments during a period of declining temperatures, rather than reduced 

salinity. These factors altered conditions within inner coastal waters, fjord systems and local 

catchments, e.g. increasing sedimentation rates to levels critical for oyster populations to 

survive.  

 

We have shown here that palaeoenvironmental data can help establish the context for 

archaeological inquiry, make important contributions to understanding patterns of 
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archaeological and cultural change, and test competing hypotheses of change. We hope 

that the unequivocal rejection of the long-standing salinity hypothesis based on qualitative 

and quantitative salinity inferences and our alternative environmental hypothesis will 

reinvigorate archaeological debate concerning the introduction of agriculture and human 

subsistence strategies in southern Scandinavia. Furthermore, understanding the impacts 

that climate and environmental change has on valuable marine resources is critical for 

successful and sustainable management of heavily exploited ecosystems such as the Baltic 

Sea in light of projected changes for this system in future. 
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Table and Figure captions 

Table 1. Proxy summary. Summary of biological proxies analysed over the study period 

from the five Danish coastal sites (ca. 7,400-5,000 BP), with an assessment of salinity 

change over the Mesolithic-Neolithic transition (Meso-Neo salinity change). See 

Supplementary Data for stratigraphic profiles of proxies. Salinity change is inferred using 

qualitative (diatoms, foraminifera, molluscs), semi-quantitative (mollusc-inferred (MI) 

minimum salinity inference) and quantitative approaches (diatom-inferred salinity), and is 

qualified by proxy preservation, and temporal resolution. Molluscs at Norsminde Fjord are 

too scarce to permit a reliable salinity inference. Individual stratigraphic plots for proxies are 

shown in Supplementary Data. * = Temporal resolution of MI-min salinity inferences based 

on amalgamated 10 cm slices. One-tailed t-tests on Mesolithic and Neolithic data series 

were applied after testing for unequal variances; n.s. = not significant (p > 0.05); values in 

italics indicate a positive salinity difference between Neolithic and Mesolithic sections (i.e. 

higher salinity in Neolithic sections). 

Fig. 1. Map of Denmark and shell midden data. A. Location of the five study sites, Kilen, 

Korup Sø, Norsminde Fjord, Horsens Fjord and Tempelkrog and distribution of late coastal 

Stone Age shells middens across Denmark (shaded areas). Numbered sites (in italics) 1-5 

contain Stone Age shell middens with abundant oysters: 1. Bjørnsholm Bay 2. Ertebølle, 3. 

Krabbesholm, 4. Visborg, 5. Havnø. Site 6 (Vedbæk) shows the location from which the 

Danish sea-level curve displayed in Fig. 2A originates. Isolines show the modern surface 

salinity (in g L-1; black numbers along isolines) gradient in the Kattegat and adjacent coastal 

waters. Isobases for the highest level of the Littorina Sea (ca. 6,200 yrs BP) above present 

sea-level in Denmark are shown by dotted (red) lines; in metres (red numbers) after Mertz 

(1924) and Christensen (2001). Map modified from Dahl et al. (2003) and Rasmussen et al. 

(2007). B. Photo of a section through the late Stone Age (ca. 6,800-5,500 cal. yrs BP) 

Norsminde Fjord shell midden (courtesy of S.H. Andersen). C. Percentage abundance of key 

molluscs present in stratigraphic layers of the Late Stone Age Norsminde Fjord shell midden 
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between ca. 6,500-5,200 cal. yrs BP/4,500-3,200 B.C. (from Bailey and Milner, 2008). D. 

Minimum numbers of individuals (MNI) of key molluscs present in stratigraphic layers of the 

Late Stone Age Krabbesholm shell midden (from Nielsen, 2008). Numbered sections: a. 

Mesolithic-Ertebølle oyster-dominated layer (ca. 6,800 cal. yrs BP/4800 B.C.); b. marine 

sand containing both Mesolithic and Neolithic artefacts; c. Early Neolithic Funnel Beaker 

Culture shell layers (ca. 5,900-5,300 cal. yrs BP/3,950-3,350 B.C.); d. compact ash and shell 

layer and e. brown earth soil with some shell fragments.  

 

Fig 2. Coastal proxy data. A. Palaeosalinity inferred from diatoms (labelled DI; or blue line) 

and molluscs (labelled MI; or brown line) for each site over the study period, along with 

regional sea-level curves from Vedbæk, East Zealand, Denmark (Christensen, 2001), and 

Blekinge, south east Sweden (Berglund et al., 2005). Dotted reference line refers to the 

average DI-salinity at each site over for the Ertebølle period (ca. 5,900-7,400 cal. yrs BP). 

Black arrows indicate modern surface salinity (MSS) at the study sites. The modern surface 

salinity for Tempelkrog is based on the average for the wider Isefjord (Fig. 1). Kilen is now a 

semi-isolated brackish lake (since AD 1856) and therefore the MSS is taken from the 

adjacent Struer Bay (See SF1, Supp. data). Korup Sø has no MSS as it is no longer a fjord 

system. B. Sediment accumulation rates at the five study sites (7,400-5,000 cal. yrs BP) 

based upon the independent 14C age-depth models and pollen-inferred composite air 

temperature for Denmark (Brown et al., 2012). Abbreviations of archaeological divisions 

(after Fischer and Kristiansen, 2002): EN = Early Neolithic (ca.5,900-5,300 cal. yrs BP), 

MNA = Middle Neolithic  A (ca.5,300-4,800 cal. yrs BP). 



Site Proxy No. of 
samples 

Resolution 
range (~years) 

Avg. resolution 
(~years) 

Meso-Neo salinity 
change 

t-test
p-value

Kilen 

Diatoms (and DI-salinity) 47 5-160 50 None n.s.
Molluscs 296 5-20 10 None 
MI-min salinity inferences* 88 20-60 25 Increase p < 0.05 
Foraminifera 21 60-250 120 None 

Korup Sø 
Diatoms (and DI-salinity) 30 5-340 80 None n.s.
Molluscs 27 30-400 90 Gradual decrease 
MI-min salinity inferences 27 30-400 90 Gradual decrease p < 0.001 

Norsminde Fjord 
Diatoms (and DI-salinity) 37 10-230 60 None n.s.
Molluscs 22 50-200 90 (Poor preservation) 
Foraminifera 28 10-240 90 None (poor preservation) 

Horsens Fjord 

Diatoms (and DI-salinity) 32 60-90 80 Gradual increase p < 0.01 

Molluscs 116 10-50 20 None 
MI-min salinity inferences* 19 105-155 126 None n.s.

Foraminifera 31 10-90 70 None 

Tempelkrog 
Diatoms (and DI-salinity) 10 110-620 250 None (low resolution) n.s.

Molluscs 181 10-20 15 None 
MI-min salinity inferences* 36 45-100 66 None n.s.

Table 1
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