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1 Abstract 
Condition monitoring and early failure detection are needed to reduce operational 
costs of wind turbines, particularly for offshore farms where accessibility is restricted. 
Failure detection technologies should be simple and reliable in order to contribute to 
the overall aim of cost reduction. Operational data from the Supervisory Control And 
Data Acquisition (SCADA) system are a potential source of information for condition 
monitoring and have the advantage of being recorded at each turbine without the costs 
of additional sensors. Detection of drivetrain failures using these ten-minute data has 
been successfully demonstrated in the last five years. This paper summarises and 
evaluates different ways of so-called normal behaviour modelling of temperature using 
SCADA data, i.e. the prediction of a measured temperature under the assumption that 
the system is behaving normally. After training, the residual of modelled and measured 
temperature acts as an indicator for possible wear and failures. Multiple approaches 
are discussed: linear modelling, artificial neural networks in auto-regressive, feed-
forward and layer recurrent configurations, adaptive neuro-fuzzy inference systems 
and state estimation techniques. A case study with real data reveals differences of ap-
proaches, sensitivity to training data and settings of algorithms. Early failure detection 
of a gearbox failure is demonstrated, although challenges in achieving reliable monitor-
ing without many false alarms become apparent. 

2 Introduction 
Although wind energy costs have been dramatically decreased in the last decade, 
maintenance costs still contribute with up to 40 EUR/MWh for offshore farms [MIL14]. 
Traditional corrective maintenance strategies cannot be used for current projects in 
remote or offshore locations where limited accessibility would result in extended down-
times. Additionally, the financial losses per downtime are more critical nowadays due 
to dramatically increased turbine sizes and associated higher energy production. The 
advanced maintenance strategy of condition-based or predictive maintenance requires 
health statuses for all critical parts. Temperatures recorded by the Supervisory Control 
And Data Acquisition (SCADA) system are a cost-effective way to monitor the drive 
train health as these are commonly available for performance monitoring. In contrast, 
‘dedicated’ condition monitoring systems, which are mainly based on vibration monitor-
ing, are installed as an ‘add-on’ and may cost 11,000 EUR per turbine [YAN13]. Alt-
hough SCADA data are usually sampled as low resolution 10 minute averages, slow 
wear related degradation can be tracked by finding changes in the temperature behav-
iour – i.e. how the temperature reacts in the transient interaction of turbine loading, 
cooling systems, heat convection and the environment. In contrast to monitoring of 
high absolute temperatures which commonly occur only shortly before a fault, the 
slight changes in the temperature behaviour can develop well in advance. First ap-
proaches investigated trends by visually comparing drive train temperatures as a scat-
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ter plot against the relative power [WIG08, FEN13] or building clusters of presumed 
healthy and faulty samples [KIM11, WIL14]. These attempts proved that analysis of 
SCADA data might help to detect imminent failures, but highly manual interpretation 
was required. For effective clustering of the condition, training data including faults has 
to be available, which is not feasible in practice. Recent research has focused on data-
driven normal behaviour modelling (NBM), where temperatures are modelled using the 
history of the signal and / or information from other sensors while assuming normal 
behaviour, i.e. a healthy turbine [WIL14, SCH13, SUN16]. Further research has e.g. 
investigated more physical damage modelling or assessment of SCADA alarms. An 
overview of condition monitoring with SCADA data can be found in a recent review of 
the authors [TAU16a]. This paper focuses on different approaches of NBM of drive 
train temperature and ways to detect imminent failures. In a case study, data from a 
real wind farm are used to briefly demonstrate the functionality and assess the quality 
of modelling and monitoring. 

3 Main section 
NBM can be described as modelling a signal with information from the environment 
and from the process itself as sketched in Figure 1. In the case of the wind turbine 
considered as a process, the environment might consist of e.g. ambient temperature, 
wind speed etc. and process variables like turbine power output, rotational speed or 
temperatures acting as additional inputs. The model uses the information from the in-
puts to predict the target temperature by learning the relationship during a training 
phase. Different methodologies for modelling are discussed in chapter 3.1. After train-
ing, the residual of measured and modelled signal is expected to be approx. 0 for 
healthy conditions and different from 0 for faulty conditions. Several techniques to de-
tect anomalies in the residual are discussed in chapter 3.2. 

Process

Model

Measured signal

Modelled signal

Residual

Environment

 

Figure 1: Sketch of NBM principle [TAU16b] 

3.1 NBM modelling techniques 
The different NBM modelling techniques can be assigned to two main approaches. If 
historic values of the target are used beside other inputs, the model can be termed 
auto-regressive with exogenous input (ARX). On the other hand,, full signal reconstruc-
tion (FSRC) avoids using the history of the target signal. The most promising FSRC 
modelling approaches derived from an earlier case study [TAU16b] are compared with 
three different ARX approaches. 
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3.1.1 FSRC – non-auto-regressive 

FSRC is tested by using the two strongest signals from a cross-correlation analysis as 
inputs to predict a target temperature. Findings from a previous case study indicated 
that using more or lagged inputs does not necessarily improve the accuracy signifi-
cantly [TAU16b]. 

One of the simplest ways of modelling the target temperature is building a weighted 
sum of the inputs. Although the assumption of linearity may not be true for drive train 
temperatures, successful failure detection based on linear NBM has been demonstrat-
ed [SCH10]. In this work, linear modelling with interactions (LINI) is tested, allowing 
linear terms, an intercept and products of the input pairs as inputs conducted with a 
least squares fit solver. 

Artificial Neural Networks (ANN) can be applied to various non-linear problems. For 
NBM of drive train temperatures, feed-forward networks (ANN-FF) have been widely 
applied, e.g. [SCH10]. A network with one hidden layer of six neurons is trained with 
Levenberg-Marquard backpropagation. A layer recurrent architecture (ANN-LR) with a 
delay of two time-steps is investigated to consider the inertia of the system. 

Adaptive Neuro-Fuzzy Inference System (ANFIS) as a combination of fuzzy inference 
and neural network learning has been demonstrated for failure detection [SCH13]. A 
setup with two Gaussian membership functions per input in combination with a linear 
output function is trained with a hybrid least squares and backpropagation algorithm. 

3.1.2 ARX – auto-regressive 

ARX modelling is investigated by using the same two exogenous inputs and historical 
values of the target temperature. Linear and ANN ARX modelling is supported by the 
last 20 time-steps of the target temperature. 

Non-linear State Estimation Technique (NSET) as proposed by [WAN12] is also inves-
tigated with a memory matrix of training states and an estimation of the target via a 
weight matrix determined by the minimal Euclidean distance of observation and state 
matrix. NSET can be considered as similar to ARX, because the current observation is 
used to build the estimate. The number of states in the memory matrix is reduced with 
a selection algorithm [WAN12]; here an allowed distance to the grid of 𝛿𝛿 = 0.00015 is 
used. 

3.2 Prediction performance metrics and anomaly detection tech-
niques 

The accuracy of predicting a temperature signal can be described by statistical metrics 
related to the residual, i.e.: the mean absolute error (MAE), standard deviation of abso-
lute error, the root mean squared error, mean absolute percentage error or the coeffi-
cient of determination 𝑅𝑅2. 
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Different techniques to detect anomalies in the residual have been proposed for NBM 
of drive train temperatures. Obviously, a fixed threshold for the residual based on train-
ing experience (i.e. the residual distribution) is an easy way of detecting higher tem-
peratures than expected. Averaging the residual for one day has been proven to be 
beneficial to increase certainty in results [SCH10, SCH13]. An exponentially weighted 
moving average control chart was proposed to account for cumulating effects 
[WAN16]. A Mahalanobis distance was suggested considering the training distribution 
and built for residual and target [BAN15]. A daily ‘abnormal level index’ was introduced 
with penalties for residuals based on their assignment to defined zones in the training 
distribution [SUN16]. Raising an alarm if several alarms in a week occurred has proved 
to be an efficient way to reduce false alarms [SCH13]. 

Table 1 gives the details of the investigated anomaly detection techniques in this work. 

Technique Details Warning Alarm 
Raw residual (RAW)  >  𝑋𝑋 % of a Normal 

distribution fitted to 
training residual 

≥ 288 ten 
minute 
warnings in 
past 7 days 

Daily residual 
[SCH10] (DAILY) average of 144 samples 

Mahalanobis dis-
tance [BAN15] 
(MAHAL) 

distance is a function of 
residual and target refer-
encing to training residual 
and target 

>  𝑋𝑋 % of a Weibull 
distribution fitted to 
training distance 

Exponentially 
weighted moving 
average control 
chart [WAN16] 
(EWMA) 

past observations 
weighting with 𝜆𝜆 = 0.2 

< 𝜇𝜇 − 𝑋𝑋𝑋𝑋 or 
> 𝜇𝜇 + 𝑋𝑋𝑋𝑋 with 
𝜇𝜇: mean, 𝑋𝑋: stand-
ard deviation of the 
training residual 

Abnormal level in-
dex [SUN16] (ALI) 

penalty= �
5, if > 97.5%
3, if > 75%

1, else
 

of Normal distribution fitted 
to the training residual 

fuzzy warning be-
tween 0 and 1 

moving av-
erage of 
last 7 days’ 
warnings 

 

Table 1: Configuration of anomaly detection techniques (the warning threshold 𝑋𝑋 is cali-
brated, cp. chapter 3.3.2 and Table 2)  

3.3 Case study for gearbox monitoring 
Data from a Scottish wind farm with 12 turbines with a rated power of 2-3 MW are ana-
lysed. The maintenance records indicate 4 turbines with a gearbox exchange in the 
investigated 2.5 years of available data. Due to missing maintenance reports, the rea-
sons for the exchanges are unclear. It is assumed that the gearboxes failed and, in 
general, gearbox bearing failures are the most likely cause. The SCADA data are pre-
processed by filtering of non-operational times and checking for valid sensor ranges. 
NBM with 5 months of training is applied to detect gearbox failures in a drivetrain tem-
perature. 
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3.3.1 Normal behaviour prediction performance 

The prediction performance of the different modelling approaches is visualised in Fig-
ure 2 for all turbines in the farm which are not affected by gearbox exchanges. The 
results indicate that NSET outperforms all other approaches. ANNFF, ANNLR and 
ANFIS perform with similar accuracy. Using historic values in an ARX setup does not 
prove to be truly beneficial for ANN modelling. Linear ARX modelling results in poor 
performance and is excluded subsequently. 

 

Figure 2: Median of monthly performance for turbines without gearbox exchange 

3.3.2 Calibration of anomaly detection thresholds 

The warning thresholds for the anomaly detection techniques are calibrated with mod-
elling results of one turbine without gearbox exchange. In a simple optimisation the 
thresholds are decreased in steps of 0.05 as long as no alarms are issued. The result-
ing thresholds are summarised in Table 2. The parameters for the ALI calculation are 
not calibrated due to the higher complexity of this technique. 

 LINI ANNFF ANNLR ANFIS ANNARX NSET 
RAW (%) 95.25 98.45 97.50 98.10 99.45 65.95 
DAILY (%) 93.75 97.55 98.50 97.20 98.90 72.20 
MAHAL(%) 87.85 93.35 95.40 92.15 97.35 85.90 
EWMA (-) 3.00 3.70 3.75 3.55 4.35 0.70 

 

Table 2: Calibrated warning threshold 𝑋𝑋 for different techniques (cp. Table 1) 

3.3.3 Gearbox failure 

Evaluation of the maintenance records indicate a gearbox failure and finally exchange 
in turbine A. From the daily residuals shown in Figure 3 it is difficult to visually identify 
the change in the behaviour before the failure. The sinusoidal variation of the residual 
indicates that the training has not learned this effect probably caused by seasonal 
temperature changes. 
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Application of the calibrated anomaly detection techniques resulted in the alarm pat-
terns given in Figure 4. All alarms which are close to the end of the time axis can be 
considered as valid alarms for the gearbox degradation. Using LINI modelling, the ear-
liest alarms which are not interrupted for more than two weeks until the end are raised 
approx. 25 days before failure for RAW, DAILY, MAHAL and EWMA anomaly detec-
tion. ANNFF modelling results in an early alarm 30 days before failure for RAW, 
MAHAL and EWMA and even 35 days in advance for DAILY. Similar results are ob-
tained for ANNLR with 34, 23, 29 and 30 days for RAW, DAILY, MAHAL and EWMA, 
respectively. ANFIS modelling gives an early alarm (24 days) only for RAW anomaly 
detection (DAILY: no, MAHAL: 4, EWMA: 7 days). Failure detection with ANNARX and 
NSET and the discussed anomaly detection techniques does not work at all. LINI 
modelling and MAHAL anomaly detection are affected by alarms long before the fault, 
which could also indicate the gearbox degradation, but might be false alarms. The 
fuzzy alarm generated by the ALI technique shows an upward trend for all modelling 
techniques except NSET. However, it has to be noted that ALI levels of a similar mag-
nitude occurred in the turbine used for calibration. 

 

Figure 3: Residual of modelled and measured temperature before a gearbox failure 
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Figure 4: Alarms of different NBM modelling techniques and ways of anomaly detec-
tion 

3.3.4 Validation with remaining turbines in farm 

Application of the modelling and anomaly detection techniques on the other three tur-
bines undergoing a gearbox exchange resulted in less clear and probably many false 
alarms. However, ANNFF and ANNLR modelling generated the best compromise of 
possible early alarms and minimal possible false alarms in two of three cases. 

Testing the algorithms on the remaining turbines without noted gearbox exchanges 
revealed that the calibration did not work properly as high alarm levels occurred. 

4 Conclusion 
Different modelling techniques and anomaly detection techniques have been dis-
cussed and compared with the aim of condition monitoring of wind turbine drive trains. 

The application of NBM algorithms in a case study shows that temperature prediction 
with a mean error of approx. 1° C is feasible with two model inputs for all investigated 
modelling techniques except linear ARX. Indeed, NSET performs with a prediction er-
ror approx. ten times smaller. 

Using the residual of measured and modelled temperature for fault detection is not as 
straightforward as might be assumed. The calibration of the thresholds of the different 
anomaly detection techniques with one turbine in the farm did not result in reliable fault 
detection for all turbines. This might be due to various reasons including the unac-
counted seasonal effect, suboptimal configuration of modelling techniques and anoma-
ly detection algorithms or even incomplete maintenance records and poor data quality. 
However, the successful detection of a gearbox failure in one turbine up to 35 days in 
advance shows promise for LINI, ANNFF, ANNLR and ANFIS modelling, in particular 
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using RAW and DAILY anomaly detection. The poor failure detection performance us-
ing ARX modelling techniques including NSET indicate, that although the target tem-
perature is accurately predicted, the model parameters are adapting to new behaviour 
associated with incipient failure so no change in residual behaviour is observed. The 
ALI fuzzy alarm generation has not been implemented in a comparable manner to the 
other detection techniques, but the challenges of finding only true alarms have been 
visible here as well. 

Further research needs to address the seasonal effect, optimal input selection, suitable 
calibration of anomaly thresholds, dedicated anomaly detection techniques for ARX 
techniques and additional ways to achieve reliable failure detection. 
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