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Abstract This paper presents two studies of an intervention designed to help undergraduates
comprehend mathematical proofs. The intervention used multimedia resources that presented
proofs with audio commentary and visual animations designed to focus attention on logical
relationships. In study 1, students studied an e-Proof or a standard written proof and their
comprehension was assessed in both immediate and delayed tests; the groups performed
similarly at immediate test, but the e-Proof group exhibited poorer retention. Study 2
accounted for this unexpected result by using eye-movement analyses to demonstrate that
participants who studied an e-Proof exhibited less processing effort when not listening to the
audio commentary. We suggest that the extra support offered by e-Proofs disrupts the
processes by which students organise information, and thus restricts the extent to which their
new understanding is integrated with existing knowledge. We discuss the implications of these
results for evaluating teaching innovations and for supporting proof comprehension.
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1 Introduction

Most students learn about proving at least in part via encounters with written proofs. In much
undergraduate instruction, this is obvious: students are often expected to learn by watching and
listening as a lecturer presents proofs at a board (Weber, 2004). Some students no doubt learn a
lot from lecturers’ explanations, which typically use examples, diagrams, and dynamic
physical gestures, and are rich in references to prior knowledge (Greiffenhagen, 2008; Mills,
2014; Pritchard, 2010). But it is also true that students can fail to follow well-structured
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presentations because their thinking is derailed by unfamiliarity with new notation or by an
early point of confusion (Gabel & Dreyfus, 2013), or because they attend to algebraic
manipulations but fail to grasp the conceptual ideas that the lecturer is attempting to convey
(Lew, Fukawa-Connelly, Mejía-Ramos, & Weber, 2016). For many, the primary product of
lecture attendance is a set of notes that is competently written but not yet understood, and
learning requires making sense of these during independent study.

In other pedagogical approaches, contact time is focused more explicitly on engaging
students’ reasoning skills. Mathematicians and mathematics educators have designed under-
graduate instructional sequences to develop both content knowledge and the ability to
construct mathematical arguments (Alcock & Simpson, 2001; Burn, 1992; Larsen, 2013;
Stylianides & Stylianides, 2009a), and inquiry-based learning is attracting increasing attention
(Laursen, Hassi, Kogan, &Weston, 2014). But critical reading remains a big part of a student’s
task. In inquiry-based learning and guided reinvention activities, students are deliberately
encouraged to evaluate and critique mathematical arguments (Larsen & Zandieh, 2008).
Further, students in almost all instructional situations are expected to use books or online
materials to support their learning. Courses have reading lists and sometimes assigned texts
and, other than in rigorously applied traditional Moore methods (Coppin, Mahavier, May, &
Parker, 2009), students are expected to refer to such materials.

Reading to learn, then, is expected in undergraduate mathematics. And this is appropriate:
we want educational systems to produce young people who can critically assess written
arguments, and we want to develop the next generation of mathematicians and scientists—
those people will spend much of their working lives learning from complex written materials.
It is therefore appropriate to study interventions that might support effective mathematical
reading. In this paper, we pursue this line of research, reporting two studies on the effects of an
intervention designed to help undergraduate students read and understand mathematical
proofs.

2 Research background

In undergraduate mathematics, deductive arguments abound, and students must make sense of
these if they are to learn with understanding. There is room for debate about competent proof
comprehension and validation—mathematicians do not always agree about the permissibility
of Bgaps^ in even fairly simple arguments (Inglis, Mejía-Ramos, Weber, & Alcock, 2013). But
they do tend to spot claims that are outright false and to recognise and reject arguments that
prove the converse of a claim rather than the claim itself (Inglis & Alcock, 2012; Selden &
Selden, 2003). Undergraduate students do not reliably do this: at least some are unduly swayed
by the appearance of an argument (Segal, 2000), and some do not reliably spot logical errors in
individual deductions or in the way that the global structure of a purported proof relates to a
theorem statement (Alcock & Weber, 2005; Imamoğlu & Toğrol, 2015).

It is not obvious, however, whether these failures reflect fundamental inadequacy in logical
reasoning or simple inattention (Hodds, Alcock, & Inglis, 2014; Weber, 2010; Weber &Mejía-
Ramos, 2014). The latter is plausible because it appears that many students enrolled in
transition-to-proof courses have not learned to read effectively, or even to see reading as a
way to learn mathematics. There is evidence that some treat texts primarily as sources of
problems and procedures to copy, tending to skip expository sections and miss many of the
author’s intended messages about the structure of the material and its central ideas (Randahl,
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2012; Weinberg, Wiesner, Benesh, & Boester, 2010). Observational and interview studies
indicate that undergraduates are less assiduous than more advanced mathematicians in attend-
ing to details, addressing gaps in prior knowledge, and identifying and resolving misunder-
standings (Shepherd, Selden, & Selden, 2012; Shepherd & van de Sande, 2014).

When undergraduates are asked to evaluate individual proofs, outcomes are similar. Some are
willing to make validation judgements quickly, even if they are not fully confident that they
understand all aspects of an argument (Weber, 2010; Weber & Mejía-Ramos, 2014). Some will
accept that a theorem is proved by an argument for its converse (Selden & Selden, 2003; Inglis &
Alcock, 2012), and some will subsequently admit that they did not spot such an important fault
because they did not read the theorem before attempting to understand the proof (Powers,
Craviotto, & Grassl, 2010). This comparative inattention is reflected in studies of reading
behaviour: Inglis and Alcock (2012) showed that undergraduates make eyemovements consistent
with searching for logical justifications, but do so substantially less than mathematicians. Overall,
these results are consistent with students’ self-affirmed beliefs about proof reading: unlike their
lecturers, undergraduates often believe that a reader can expect to understand a proof within
15 minutes and without needing to construct extra justifications (Weber & Mejía-Ramos, 2014).

If some student failures in comprehension and validation are due to inattentive reading, then
it is plausible that reading performance might respond to guidance that leads to increased
attention (cf. Hodds et al., 2014). And there is encouraging evidence that students can read
more effectively, especially after appropriate tasks or training. Some students do spontaneously
engage in useful behaviours: they identify proof frameworks, break proofs into sub-proofs,
illustrate difficult assertions with examples, and compare what they read with their own proof
attempts (Weber, 2015). Students in interview studies improve their validation performance
when given opportunities to reconsider their answers (Selden & Selden, 2003), and observa-
tions from both peer assessment and intervention studies indicate that exposure to critiquing
tasks can lead students to reflect on the shortcomings of their own written mathematics (Jones
& Alcock, 2013; Stylianides & Stylianides, 2009b). Similarly, reflective reports suggest that
when asked to critique written arguments, undergraduates quickly adopt stringent criteria
about both content and communication (Kasman, 2006). Finally, evidence from experimental
and eye-movement studies indicates that mathematical reading comprehension improves in
response to light-touch self-explanation training. Hodds et al. (2014) reported a sequence of
studies using a short self-study booklet that instructed students in how to construct self-
explanations when reading mathematical proofs. In both lab and classroom studies, this
training led to better subsequent proof comprehension and more expert-like reading behaviour.

None of this means that better reading would lead to perfect comprehension. But it does
give cause for optimism: perhaps undergraduates do not routinely behave as we might hope
when studying proofs, but can improve considerably if taught to read more effectively. One
question, then, is how might a concerned lecturer teach students to study written proofs? In this
paper, we address this question by evaluating one intervention designed to support effective
proof reading: the provision of an e-Proof.

3 Intervention: design principles and early feedback

In this section we explain the rationale behind the design of e-Proofs, relate this to the literature
on mathematics education and multimedia learning, and present small-scale evidence that
students view e-Proofs favourably. In the following sections, we present two studies. Study 1
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focused on outcomes, evaluating performance on comprehension tests after students studied an
e-Proof or a standard textbook proof. Study 2 focused on processes, investigating the effects of
e-Proofs on two aspects of students’ reading behaviours: distribution of attention and inferred
processing demand.

3.1 Intervention design

E-Proofs were designed to address the natural weaknesses of traditional lectures as identified in the
mathematics education literature (e.g., Lew et al., 2016). Their designer—the last author of this
paper—observed that proof presentations in lectures require students to draw on background
knowledge, validate justifications, and recognise larger-scale proof structures, all in rapid succes-
sion; further, that lecturers’ verbal explanations are ephemeral and typically no longer available
when students re-read their notes (Alcock & Wilkinson, 2011). She thus set out to construct a
resource that would capture the explanations that she would ordinarily offer verbally, but allow
students to engage more fully with these by making them replayable and by highlighting the parts
of the proof to which they referred. The result was eight e-Proofs designed for beginning real
analysis. Each showed a single theorem and proof and offered multiple explanation screens. Each
screen focused attention using greying out, boxes and arrows, and was accompanied by a short
audio commentary that could be played by clicking a button, and replayed as many times as
desired. A sample screen (one of ten) for an e-Proof as used in studies 1 and 2 is shown in Fig. 1. A

Fig. 1 A sample e-Proof screen. The accompanying audio commentary said BIn the eighth line, we translate this
information about h back into information about f and g by writing h-prime of c in terms of f-prime of c and g-
prime of c. Differentiating h is simpler than it looks because the fraction is just a constant. We then rearrange to
obtain the equation for the conclusion of the theorem^
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full e-Proof as used in study 2 appears at https: 10.6084/m9.figshare.4239554.v1, and more detail
on the design appears in by Alcock and Wilkinson (2011).

3.2 E-Proof design principles

From a mathematical perspective, e-Proofs belong to a class of interventions that provide
reading support targeted to specific content. Other such interventions have been designed to
support careful reading of textbook sections by combining direct instruction on what to read
with questions to prompt reflection (Alcock, Brown, & Dunning, 2015; Shepherd, 2005), or to
promote careful reading of single proofs by asking comprehension questions tailored to those
proofs (Conradie & Frith, 2000; Cowen, 1991). In reports on both types, authors have
expressed the wish to help students engage in thought processes that will help them to
understand a mathematical text. E-Proofs were also designed with this aim and, like all of
these interventions, they required considerable time to construct but were designed for use in
independent study so that they would not require lecture reorganisation.

From the perspective of the proof comprehension literature, the audiovisual explanations
offered in e-Proofs address the dimensions put forward in models of proof comprehension by
authors such as Lin and Yang (2007) and Mejía-Ramos, Fuller, Weber, Rhoads and Samkoff
(2012). The seven-dimensional model of Mejía-Ramos et al., for instance, involves compre-
hension of (1) the meanings of terms and statements, (2) the logical status of statements, (3) the
warrants or justifications used to deduce claims from other information, (4) the higher-level
ideas or overarching approach, (5) the modular structure (if a proof can be broken into
meaningful subsections), (6) transfer of the ideas to new contexts, and (7) application
(illustrating the proof’s workings with specific examples). Such models have typically been
used for generating proof comprehension tests, and e-Proofs embody some of their dimensions
in more obvious ways than others: it is less natural to discuss transfer while the screen still
shows the proof in question, for instance. Also, the e-Proof designer attempted to capture
somewhat Bnatural^ explanations, rather than (say) to ensure that every e-Proof offered equal
treatment of each dimension. Nevertheless, the audiovisual explanations typically included all
of the first five dimensions of this model and sometimes the seventh.1 In theory, then, they
should assist students in focusing their attention in ways that contribute to proof
comprehension.

3.3 E-Proof design and multimedia learning

From the broader perspective of learning resource design, e-Proofs conform to recommenda-
tions based on Mayer’s (2001) theory of multimedia learning. Mayer views learning as an
active process in which learners select which information to attend to, organise this into a
coherent cognitive structure, and integrate it with relevant knowledge from their long term
memory—see Fig. 2.

Mayer has related this theory to multimedia learning in particular via two key results: that
working memory is limited (Baddeley, 1992), and that visual and verbal information are
entered into and processed in an individual’s cognitive system via separate channels (as per

1 The model of Mejía-Ramos et al. had not been published when e-Proofs were designed, but its authors intended
it to be as complete as possible, so it is encouraging that it does capture all the types of explanation that the
designer spontaneously included.
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dual coding theory, see Clark & Paivio, 1991). On this basis, Mayer and Moreno (2003)
offered recommendations for designing educational resources that render working memory
load manageable by taking advantage of multimedia communication. E-Proofs are consistent
with these recommendations: they move some essential processing from the visual to the
auditory channel, allow time between successive bite-sized segments, provide cues to reduce
processing of extraneous elements, avoid presenting identical streams of printed and spoken
words, and present narration and corresponding animation simultaneously to minimise the
need to hold representations in memory. In theory, then, e-Proofs should assist students in the
complex task of proof comprehension by presenting information in a way that allows
engagement without working memory overload.

3.4 Early feedback on e-Proofs

The eight e-Proofs initially constructed were used by the designer in a real analysis lecture
course (on continuity, differentiability, and integrability) for approximately 115 second- and
third-year undergraduates who were studying for UK degrees in mathematics or mathematics
with another subject. There was no formal evaluation of e-Proofs at this stage; the designer
simply used them in lectures, trying out different approaches such as playing all the animations
in sequence or allowing students to discuss a printed copy of the proof before showing
animations for the more challenging parts. The e-Proofs (along with lecture notes) were made
available on the institutional virtual learning environment as the course progressed, and all
eight remained available through the examination period.

From the beginning, it was clear that students liked this new type of resource. Positive
comments were common on standard feedback forms, where a typical comment was, BI found
hearing the lecturer explaining each line individually helpful in understanding particular parts
and how they relate to the entire proof.^ Broader feedback-gathering exercises revealed similar
attitudes. Based on responses to an earlier survey and on focus group interviews (Roy, 2014),
we constructed an online survey combining items on e-Proofs with other items on study
behaviour. Thirty-eight students (approximately one third of the class) took part and partici-
pants were asked to state the extent to which they agreed with eight statements including:

& I understand more by studying a proof on paper for myself than I do when using an e-
Proof;

& e-Proofs helped me understand where different parts of a proof come from and how they fit
together.

Fig. 2 Mayer’s theory of learning
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Participants responded on a Likert scale, reverse-scored where necessary so that the
response to each item ranged from 0 (strongly negative response to e-Proofs) to 4 (strongly
positive response). The mean score was 25.53 out of 32, 95% CI [24.45, 26.60]. We report this
result to provide indicative evidence that those undergraduates who took part held favourable
views on e-Proofs.

We were aware, however, that students are likely to view extra resources favourably simply
because they show that a lecturer wants to support learning. We were also aware that authors of
reports on related interventions described their experiences but did not conduct experimental
evaluation studies (Alcock et al. 2015; Shepherd, 2005), so they could not provide empirical
evidence about causal effects on learning outcomes. For e-Proofs, therefore, we conducted
such a study, measuring learning outcomes via immediate and delayed comprehension tests.

4 Study 1: learning outcomes

4.1 Study 1 method

Study 1 used an experimental design to compare the effect of studying an e-Proof with that of
studying the same proof on paper with no additional explanation (the Btextbook^ version).
Participants were enrolled in a real analysis course; all were in either the second or third year of
a single or joint honours UKmathematics degree, meaning that 50% or more of their study time
was spent on mathematics. They were randomised into an e-Proof group (N = 21) or a textbook
proof group (N = 28), where group assignment was done using a random number generator.
Both groups studied a previously unseen proof of Cauchy’s Generalised Mean Value Theorem
for 15 min (see Fig. 1)2. The e-Proof group sat in a computer lab and were each provided with
earphones to permit individual study of the e-Proof. The textbook group sat in a classroom and
each received a printed copy of the proof.3 Both groups had access to pens and paper; they were
neither encouraged to use these nor prevented from doing so. For the immediate test phase, both
groups were provided with a short version of the proof and an additional information sheet
which contained definitions of continuity and differentiability and statements of relevant
theorems. They were given 30 min to complete an immediate post-test comprising eight free-
response questions designed according to Lin and Yang’s (2007) proof comprehension model,
which has five facets: basic knowledge, logical status, summarisation, generality, and applica-
tion. The test was scored out of 18, and included questions such as follows:

& With h defined as in the proof, what is h′(x)?
& Where does the proof show that h satisfies the conditions for Rolle’s Theorem?
& Find an interval where f xð Þ ¼ 1þ x2 and g xð Þ ¼ x2 � 1 satisfy the premises of Cauchy’s

Generalised MVT.

Two weeks later, all participants were again provided with the short version proof and the
information sheet, this time in a single lecture theatre. They took the same test as a delayed test,

2 The version used in the study had line numbers so that participants could refer to these.
3 Because the computer room could not accommodate half of the class, a third group listened to a live lecture.
This group is not relevant here, but the full study was presented at the 13th Conference of the SIG-MAA on
Research in Undergraduate Mathematics Education (Roy, Alcock, & Inglis, 2010) and we are grateful to
conference participants who gave useful feedback.
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this time in 20 min due to classroom time constraints. The test—with scoring information—
and both versions of the proof are provided in the Supplementary Materials.

4.2 Study 1 results

The mean scores of the two groups at immediate and delayed test are shown in Fig. 3.
An analysis of variance (ANOVA) with one within-subjects factor (time of test: immediate,

delayed) and one between-subjects factor (group: e-Proof, textbook) revealed a significant
main effect of time, F(1,47) = 28.213, p < 0.001. Both groups performed significantly better in
the immediate test than in the delayed test, which is accounted for by the 2-week delay and the
shorter time available to answer the same questions. The main effect of group was not
significant, F(1,47) = 0.006, p = 0.938, but there was a significant time × group interaction,
F(1,47) = 5.659, p = 0.021. The drop-off in the score between the immediate and delayed tests
was greater for the e-Proof group than for the textbook group (2.8 versus 1.3 points out of 18).
This cannot be accounted for by the delay or the intervening teaching because both groups had
the same delay and the same intervening teaching. Thus, it indicates that the e-Proof group
exhibited significantly poorer retention.

4.3 Study 1 discussion

This outcome was a reminder that well-intentioned interventions might not promote good
retention of studied material, even when students report that these interventions are helpful.
They were also a salutary reminder that evaluation is tricky. Had we stopped at an immediate
test, we would have concluded that e-Proofs did no harm and that, as students liked to have
them, providing them was a good idea. It took a delayed test to reveal that e-Proofs did not
affect immediate test performance, but did apparently prompt students to learn in a way that
led to poorer retention. These points are not new; they are (for instance) consistent with recent
rigorous studies showing that student evaluations are not consistent with teaching effectiveness
as measured by performance in subsequent courses (Braga, Paccagnella, & Pellizzari, 2014;
Carrell & West, 2010). But we believe they bear repeating here because some reports of
interventions in mathematics education are framed in a way that focuses on instructor or

Fig. 3 Mean proof
comprehension test scores for
e-Proof and textbook groups at
immediate and delayed test. Error
bars show ±1 SE of the mean
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student experiences (Trenholm, Alcock, & Robinson, 2012), and because student experience
surveys are becoming increasingly influential in the UK context where this study took place
(Cheng & Marsh, 2010).

This result does not, however, imply that e-Proofs are never useful. Perhaps this particular
e-Proof was weak on its own terms. Mathematicians do not always agree about what makes a
proof pedagogically sound (Lai, Weber, & Mejia-Ramos, 2012), and similar resources de-
signed by a different lecturer might be more effective. Or perhaps e-Proofs are not ideal for
first encounters with proofs, but would help students struggling with previously studied proofs
or using them as revision tools. Both of these are real possibilities that would merit further
research. We considered them seriously, but remained troubled because we did not understand
the cognitive mechanisms by which this e-Proof affected retention. Without this understand-
ing, we believed that attempts to design better e-Proofs or to help students use them more
effectively would be based on intuitive guesswork rather than evidence. We therefore decided
to step back and study in detail the processes involved in studying this type of resource. Our
purpose in study 2 was to use an experimental design and eye-movement data to investigate
the effects of e-Proofs on reading processes.

5 Study 2: reading processes

5.1 Study 2 methodology

Eye-movement studies have been used extensively to investigate reading behaviours and
thereby to infer information about the cognitive processes underlying reading in English and
a variety of other languages (see Rayner, 2009, for an extensive review). These studies use the
fact that when reading fixed materials, eye movements are not smooth but instead consist of
short stops called fixations and rapid movements called saccades. In ordinary silent reading in
English, fixations typically last around 225–250 ms (Rayner, 2009), but individual fixation
durations vary considerably. So eye-movement studies commonly use mean fixation durations
as a measure of processing demand, where mean fixation durations are higher when people
engage in more demanding tasks. Evidence for this comes from educational and psychological
studies that vary the complexity of stimuli or other task demands (Amadieu, Van Gog, Paas,
Tricot, & Mariné 2009; Rayner, 1998; Gould, 1973; Van Gog, Paas, & Van Merriënboer,
2005). For instance, mean fixation durations increase as text becomes more conceptually
difficult (Jacobson & Dodwell, 1979), and when fixating on words that are less frequent in the
language (Inhoff & Rayner, 1986). Note that mean fixation durations are used to infer
moment-to-moment processing demand (Rayner, 1998) rather than conscious intention or
experience. Higher mean fixation durations should not be interpreted to mean that individual
readers are more motivated to read the material, have decided to exert more effort, or even are
aware that they are doing so. They simply provide a behavioural measure indicating that a task
is more or less demanding.

Fixation locations are used in the obvious way to measure locus of attention, where
appropriate analysis software (e.g., Tobii Technology, 2010) allows the user to define areas
of interest within the material to be read. Areas of interest are typically used in two ways:
researchers study attention distribution by summing the durations of all fixations in each area
to calculate their associated dwell times; they also study reading behaviours by comparing
patterns of saccades between areas. In recent research in mathematics education, studies using
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dwell times have indicated that mathematicians, more than undergraduates, focus attention on
words in proofs (Inglis & Alcock, 2012). Saccade patterns have been used to document
strategies for comparing fraction magnitudes, by examining when people shift attention from
numerator to denominator for a single fraction and when they shift attention from the
numerator of one fraction to the numerator of another (Obersteiner & Tumpek, 2016). Saccade
patterns have also indicated that mathematicians, more than undergraduates, shift their atten-
tion between lines of a proof when reading it for validation (Inglis & Alcock, 2012), and that
self-explanation training promotes more expert-like mathematical proof reading behaviour
(Hodds et al., 2014).

5.2 Study 2 method

In the study presented here, we used a within-subjects design to compare students’ reading
behaviours when studying an e-Proof and a textbook proof. We used four proofs: two for
which there were pre-existing e-Proofs from the real analysis course, and two in elementary
number theory for which similar e-Proofs were created. Both e-Proof and textbook versions
were formatted for use on an eye-tracker screen—the only difference between the two versions
of each was the extra animations and audio provided for the e-Proofs. For each of the four
proofs, we formulated a short multiple-choice comprehension test, designed this time accord-
ing to the framework set out by Mejía-Ramos et al. (2012). We switched to short multiple-
choice tests because our main interest in this study was in reading processes rather than
learning outcomes, but we still wanted to ensure that the participants made appropriate effort to
read for comprehension. We switched to the alternative model when it became available
because it is more comprehensive than the geometry-focused model of Lin and Yang
(2007). The proofs and tests appear in the Supplementary Materials.

Thirty-four students took part in exchange for an £8 inconvenience allowance; each
completed the study individually in an eye-movement laboratory. Each participant saw two
proofs in textbook format then two in e-Proof format, where the textbook proofs appeared first
so that we could assess students’ reading behaviour before this was influenced by the implicit
guidance provided by e-Proofs. To ensure a fair comparison of e-Proof- and textbook-
prompted reading behaviour, participants were randomly assigned to one of two groups: for
each proof, half of the participants saw an e-Proof and half saw the textbook format. Before
each proof, participants saw an instruction page stating what theorem and what type of proof
(e-Proof or textbook) they would be asked to read and indicating what key to use to move to
the next page. Participants were encouraged to read the proofs for as long as they wished in
order to maximise their comprehension. They were also told that when they had finished
reading, they would be asked to rate their confidence in their own understanding and to answer
a multiple-choice comprehension test.

Eye movements were recorded using a Tobii T120 remote eye-tracker (Tobii
Technology, 2010) set to sample at 60 Hz and calibrated at the start of the study for each
participant. We treated each line of each proof as an area of interest, and we report data
using both mean fixation durations and total dwell times. Because of inconsistent record-
ing (which typically occurs if a participant makes unusually exaggerated head movements
or is wearing heavy eye makeup), data were excluded for one participant for Theorem 1,
two for Theorem 3, and one for Theorem 4. All analyses were performed after excluding
outlier fixations lasting longer than 3 standard deviations above the mean (i.e., fixations
longer than 1031 ms).

Roy et al



5.3 Study 2 results

Although comprehension test scores were not the primary focus of study 2, between-groups
differences were investigated using Kolmogrov-Smirnov Z tests (because scores were out of 3
or 5, parametric tests were not appropriate). No significant between-group differences were
observed for any proof, all ps > 0.1. So, as in study 1, there was no evidence of comprehension
differences at immediate test. We report the reading process data in three stages, focusing first
on attention distribution, then on global processing demand, then on processing demand in
detail.

5.3.1 Study 2 results: attention distribution

Did the participants distribute their attention differently when reading an e-Proof and when
reading a standard proof? We anticipated that they would: the e-Proofs’ creator believed that
students did not always notice key ideas in a proof, and intended to point these out using the
annotations and commentary. The global answer, however, was no. Figure 4 shows the mean
total dwell times for each line of each proof, comparing these results for participants who read
the e-Proof and those who read the standard proof. As is clear from these graphs, different lines
of the proofs attracted different proportions of participant attention, but participants in both
groups spent longer and shorter times on the same lines.

Statistical analyses confirmed these observations. For Theorem 1, for instance, the main
effect of condition was borderline significant F(1,31) = 4.126, p = 0.051, η2p = 0.117, reflecting

the fact that reading the e-Proof took longer on average than reading the standard proof. The
distribution of attention varied by line: for Theorem 1, for instance, a 5 × 2 ANOVAwith one
within-subjects factor (line number: 1, 2, 3, 4, 5) and one between-subjects factor (condition: e-
Proof, textbook proof) showed a significant main effect of line number, F(4,124) = 55.053,
p < 0.001, η2p = 0.631. For example, participants took longer to comprehend Line 2 compared

to the other four lines. The line number × condition interaction was not significant, F <1, so
attention distributions were not significantly different. Results for the other three proofs were
similar in terms of main effects but different in that the line number × condition interaction

Fig. 4 Mean total dwell times for
each line of each proof, separated
by proof type
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effects were also significant. Inspection of the graphs indicates that the e-Proofs did not
substantially alter overall patterns of attention, but did tend to amplify differences in dwell
times; it seems that they encouraged even longer dwell times on those lines that naturally
attracted more participant attention in the textbook version (this was particularly the case for
line 2 of Theorem 2 and line 5 of Theorem 4).

5.3.2 Study 2 results: processing demand

Next, we investigated whether e-Proofs affected processing demand. Again there were reasons
to believe that they would: observational studies indicate that students typically read with less
care than experts (Weber & Mejía-Ramos, 2014), and e-Proofs are designed to promote more
expert-like reading, which might lead to longer mean fixation durations. On the other hand, e-
Proofs are designed to make proof comprehension easier, so they might make study of proofs
less demanding. In fact, they turned out to make no significant difference, as represented
graphically in Fig. 5. For Theorem 1, for instance, a 5 × 2 ANOVAwith one between-subjects
factor (condition: e-Proof, textbook) and one within-subjects factor (line number: 1, 2, 3, 4, 5)
showed a significant main effect of line number, F(4,124) = 20.999, p < 0.001, η2p = 0.404; this

indicates differences in the cognitive demand associated with each line. But there was no
significant main effect of condition, F(1, 31) = 1.115, p = 0.299, η2p = 0.035, and no significant

line number × condition interaction, F < 1. Results were similar for the other proofs, indicating
that overall, there was no systematic association of proof format with processing demand.

5.3.3 Study 2 results: processing demand with audio on and off

There was, however, a difference at a more detailed level, and we believe this is key to
understanding the unfortunate retention effect found for e-Proofs in study 1. Because e-Proofs
offer audio explanations but do not force the listener to use these, we were able to separate
fixation durations for e-Proofs into two categories: those during which the audio was playing
and those during which it was not (eight participants were excluded from this analysis because
they did not use the e-Proofs’ audio features for any e-Proof, relying solely on the text and
animations). An ANOVAwith one within-subjects factor (condition: e-Proof audio-on, e-Proof

Fig. 5 Means of the participants’
mean fixation durations for each
line of each proof, separated by
proof type
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audio-off, textbook) showed a significant difference in mean fixation durations across the three
conditions F(2,50) = 3.651, p = 0.033, η2p = 0.127. Means were 300.1, 286.6, and 300.8 ms,

respectively and, as shown in Fig. 6, Bonferroni-corrected paired t tests (α ¼ 0:17) showed
that mean fixation durations were significantly higher for both textbook proofs and e-Proofs
with audio on than they were for e-Proofs with audio off, t(33) = 2.666, p = 0.012, d = 0.457
and t(25) = 3.143, p = 0.004, d = 0.616, respectively. This indicates that, when viewing the
written texts of e-Proofs without listening to the audio, the processing demand reflected in the
undergraduates’ mean fixation durations was significantly less than that associated with
reading a text with no audio available. One possible interpretation is that e-Proofs undermined
the participants’ self-reliance—their reading reflected processing as demanding as that in
normal reading when listening to the audio explanations, but less demanding when viewing
the text independently.

5.3.4 Methodological comments on both studies

We conclude this section with two methodological points.
First, as noted in the Study 1 discussion, an e-Proof offers a specific set of audiovisual

explanations, and it could be that an alternative set would result in different outcomes.
However, study 2 used a counterbalanced experimental design involving four different proofs
from two subject areas, so we consider it unlikely that alternative audiovisual explanations
would evince dramatically different reading processes—if e-Proof effectiveness varied greatly
according to the specific explanations offered, we would expect to see greater variety in the
reading behaviours than was evident here. Of course, there remain other possible relationships
between our findings and learning in context. Perhaps e-Proofs are not effective for retention
after initial study of a proof, but are very helpful for students who have not independently
reached a satisfactory understanding or who choose to use them while revising for an
examination. Perhaps e-Proofs would be effective if they were modified so that they required
more active engagement, requiring the student to respond in some way to explanations or other
prompts. These suggestions are open to confirmation or refutation in future empirical studies,
where such studies might also take into account contextual factors such as prior knowledge,

Fig. 6 Means of participants’
mean fixation durations for
e-Proofs with audio on, e-Proofs
with audio off, and textbook
proofs (*p < 0.05, **p < 0.01).
Error bars show ±1 SE of the
mean
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study goals, availability of one-to-one help, time spent in independent study, individual
differences in take-up of e-Proofs as one among a set of learning resources, and so on.

Our second methodological point is that studies 1 and 2 both took place in Bartificial^
situations—study 1 involved individual learning in classroom settings different from the
normal lecture theatre (a computer lab in the case of the e-Proof group), and study 2 involved
individual reading on a screen in a lab. We do not claim that reading on a screen is the same as
reading on paper, though it is now common—students regularly access mathematical content
online or via electronic lecture notes and textbooks. And we do not claim that students would
behave identically in typical lecture or group learning situations. We do claim—as is routine in
experimental studies—that removing complex contextual factors allows us to infer causal
connections between controlled variables and resultant comprehension outcomes and reading
processes. In study 1, the between-groups difference provides evidence that study of an e-
Proof resulted in poorer knowledge retention than study of a textbook proof. In study 2,
mathematical reading processes were revealed via a behavioural measure that captures reading
processes more directly than test performance; this provided evidence that the availability of
audio explanations led students to exert less processing effort when these were turned off.

5.4 Study 2 discussion

The results of study 2 provide a process-based account for the comparatively negative effect of e-
Proofs on retention that we found in study 1. Recall that e-Proofs were expected to support proof
comprehension by using a design consistent with Mayer and Moreno’s (2003) recommendations
for multimedia learning resources. They did not support comprehension in a straightforward way,
but we suggest that our results as a whole can nevertheless be understood in terms of Mayer’s
(2001) framework. When engaging with multimedia resources, learners need to select new
information from audio and visual stimuli, organise that information to construct a coherent
representation, and integrate it with their existing knowledge to create new knowledge (Fig. 2).
When undergraduates study an e-Proof, they engage with multiple tasks: reading the written text,
listening to the audio, following the highlighted arrows and boxes, and clicking the mouse to
move between slides. The form of the explanations offered means that there might be interference
between the audio explanations and the learner’s interaction with the text, so perhaps there should
be caveats to the dual-coding-based recommendation that audio and visual information should
differ. And the fact that explanations are available means that learners are not fully in control of
selecting what they will attend to and in what order; removing choice about what to attend to
could mean that attention is not well directed toward ideas that learners can link to existing
knowledge. Moreover, the learning process is subject to numerous short interruptions. Because
processing occurs in limited-capacity working memory, such interruptions could interfere with,
rather than help, organisation. Thus the new information might remain comparatively poorly
structured and not well integrated into long-term memory. In such circumstances, learners might
struggle to reuse that knowledge, especially after a time gap.

This account is consistent with the retention effect of studying e-Proofs as found in study 1:
if e-Proof readers succeed in following and understanding the provided explanations, they
might attain good short-term understanding of those explanations but only weaker integration
with their own existing knowledge. It is also consistent with the process effect of reading e-
Proofs as found in study 2: if e-Proof readers concentrate primarily on following and
understanding the provided explanations, one would expect them to exhibit longer fixation
durations when audio is playing than when it is not.
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Moreover, this account is consistent with the fact that students believed e-Proofs to be
helpful. We do not suggest that they wilfully misreported their learning experiences, or even
that they were misguided about how much they had learned. We suggest, instead, that they
were reporting accurately on their experience of learning in the short term. Our results suggest
that using e-Proofs might enable students to attain understanding with somewhat less effort
than they would have to exert without the provided support. But learning with comparative
ease in the short term is not necessarily the same as learning in a way that will promote deep
understanding and long-term retention (Bjork, Dunlosky, & Kornell, 2013).

In general, it is not obvious how to balance these issues: there can be a fine line between
productive struggle and distressing failure. But these results suggest to us that e-Proofs provide
help that is too much or too directive, and that other approaches seem more promising for
instructors wishing to support undergraduate proof comprehension. Specifically, as we ob-
served in the Intervention section, e-Proofs fit into a class of interventions designed to support
careful reading of mathematical texts by combining direct instruction on what to read with
text-specific prompts. In this, they differ from approaches involving self-explanation training,
which have the same overall goal but are not text-specific; instead they provide students with
generic guidance on questioning their understanding of each part of a text and relating both the
questions and self-generated answers to their existing knowledge (e.g., Hodds et al. 2014).
When we began research in proof comprehension, we did not know which approach would be
more effective. The evidence to date indicates that undergraduate mathematics students, at
least those with experience similar to our participants, would likely be better served in the first
instance by generic resources that teach them to self-explain.

6 Conclusion

The findings presented here pertain to a question raised by Weber and Mejía-Ramos (2014, p.
91): BIf a student fails to understand a proof, is this because the quality of the presentation was
inadequate or because the student did not exert sufficient effort to understand it?^ In con-
structing e-Proofs, a lecturer does considerable presentational work to make individual proofs
accessible. This sounds like it should help, but in our study it resulted in poorer retention,
which should concern any lecturer or researcher designing an intervention to support students’
understanding of proofs. We conclude by offering comments on the relevance of this finding to
broader issues in the learning of proof.

Teaching interventions happen all the time. Teachers and lecturers recognise that proof
presents a challenge to their students, and they innovate on a daily and yearly basis in order to
give better explanations or tasks related to specific proofs, and in order to help students
experience the process of proving and learn about the meaning proof in the mathematical
community. In the contemporary educational environment, they can also facilitate access to
electronic resources and can tailor-make their own. This fosters creativity, which in itself
generates positive feeling: there is no doubt that committed teachers and lecturers make sincere
efforts to support their students. But it also means that innovation tends to run ahead of
evaluation. One lesson confirmed by the studies reported in this paper is that it is risky to
evaluate learning innovations by student feedback alone. No doubt this data has value—if a
resource is not perceived as useful, there is not much hope of its being adopted by today’s
discerning internet users. But we should be careful not to conflate opinions about the learning
experience with actual learning outcomes (cf. Bjork et al. 2013).
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Our work thus raises questions about the responsibility of teachers, lecturers, and particularly
researchers in evaluating interventions, deciding to make resources available, and communi-
cating with students about how best to use these. For mathematics students attempting to get to
grips with proof, the contemporary environment creates a huge meta-problem: from the
plethora of freely-available resources—lecturers’ webpages, open-source textbooks, online
videos—how can they identify those that are useful, and how should they divide their time
between them? This problem is well recognised in discussions about information literacy in
both students (Kuiper, Volman, & Terwel, 2005) and teachers (Kovalik, Jensen, Schloman, &
Tipton, 2010). But we suspect that it is not often discussed in mathematics degree programmes.
In our experience, mathematicians sometimes provide links to online resources, and students
certainly seek out video explanations for proofs they do not understand. But there is little
information on how students might sensibly organise their independent study time. Even
resources designed to address this gap (e.g., Alcock, 2013) do not usually discuss the likely
merits of watching more lectures or online videos versus studying proofs in lecture notes or
tackling proof construction problems. A student who is motivated—quite reasonably—by a
sense of progress might well opt for one of the former, when in fact struggling independently to
construct or understand difficult proofs might be a better use of time (cf. Bjork et al. 2013).
Contemporary students must learn how to navigate the web in order to find high-quality
learning resources; they might also need to learn when not to use them.
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