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Abstract. We study an intermittent map which has exactly two ergodic in-

variant densities. The densities are supported on two subintervals with a com-

mon boundary point. Due to certain perturbations, leakage of mass through
subsets, called holes, of the initially invariant subintervals occurs and forces

the subsystems to merge into one system that has exactly one invariant den-

sity. We prove that the invariant density of the perturbed system converges in
the L1-norm to a particular convex combination of the invariant densities of

the intermittent map. In particular, we show that the ratio of the weights in

the combination equals to the limit of the ratio of the measures of the holes.

1. Introduction

Open and metastable dynamical systems are currently very active topics of re-
search in ergodic theory and dynamical systems. A dynamical system is called
open if there is a subset in the phase space, called a hole, such that whenever an
orbit lands in it, the dynamics of this obit is terminated (see [9, 10] and references
therein). A typical example of an open dynamical system is a billiard table with
holes. Probabilistic and topological aspects of open dynamical systems have re-
cently been of central interest to ergodic theorists [1, 6, 7, 8, 13, 12, 15].

A dynamical system is called metastable if it has two or more stable states. For
example, a system which consists of two adjacent billiard tables that are linked via
a small hole in their common boundary is a metastable dynamical system. Re-
searchers have recognised that studying open dynamical systems can bring insights
into the dynamics of metastable dynamical systems [11, 14, 15]. In particular, it
has been recognised that closed systems that are metastable behave approximately
like a collection of open systems: the infrequent transitions between stable states in
a metastable system are similar to infrequent escapes from associated open systems
[14, 15].

A particularly transparent description of this phenomenon is discussed in the re-
cent work of González-Tokman, Hunt and Wright [14]. In [14], a metastable expand-
ing system is described by a piecewise smooth and expanding interval map which
has two invariant sub-intervals and exactly two ergodic invariant densities. Due
to small perturbations, the system starts to allow for infrequent leakage through
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of Centre de Physique Théorique, Luminy, where much of this work was carried. S. V. thanks the
hospitality of the Department of Mathematical Sciences at Loughborough University where this
work was initiated. S.V. was supported by the ANR-grant Perturbations.

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Loughborough University Institutional Repository

https://core.ac.uk/display/288369278?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


2 Metastablilty of Certain Intermittent Maps

subsets (also called holes) of the initially invariant sub-intervals, forcing the two
invariant sub-systems to merge into one perturbed system which has exactly one
invariant density. The authors of [14] proved that the unique invariant density of
the perturbed interval map can be approximated by a convex combination of the
two invariant densities of the original interval map, with the weights in the combi-
nation depending on the sizes of the holes.

In this paper, we depart to the non-uniformly hyperbolic setting1. In particular,
we study an intermittent map which has exactly two ergodic invariant densities.
The densities are supported on two subintervals with a common boundary point.
Due to certain perturbations, leakage of mass through holes of the initially invari-
ant subintervals occurs and forces the subsystems to merge into one system that
has exactly one invariant density. We prove that the invariant density of the per-
turbed system converges in the L1-norm to a particular convex combination of the
invariant densities of the intermittent map. In particular, we show that the ratio
of the weights in the combination equals to the limit of the ratio of the measures
of the holes.

We would like to comment on the relationship between our work and the issue
of statistical stability. The latter is usually established in the context of systems
which admit a unique SRB measure (in our case an absolutely continuous invariant
measure, a.c.i.m.) and which are successively perturbed and the perturbed maps
posses an SRB measure too. One way to formulate the statistical stability is by
asking wether the perturbed density converges to the unperturbed one in L1, w.r.t.
the Lebesgue measure and whenever the SRB measure is absolutely continuous. A
general result of this kind has been established by Alves and Viana in the paper
[3], and successively by Alves [2] where sufficient conditions are given to prove the
statistical stability but still for the same class of maps. The latter is given by non-
uniformly expanding maps which admit an induction structure with the first return
map which is uniformly expanding, with bounded distortion and finally with long
branches of the domains of local injectivity. The perturbed map is chosen in an
open neighbourhood of the unperturbed one in the Ck topology with k ≥ 2, and
a few more conditions are given to insure that the subsets with the same return
times in the induction set are close and moreover the structural parameters of the
maps (especially those bounding the derivative and the distortion) could be chosen
uniformly in a Ck neighbourhood of the unperturbed map. The main result is that
when the perturbed maps converge to the unperturbed ones in the Ck topology
then the corresponding densities of the a.c.i.m. converge to each other in the L1

norm, w.r.t. the Lebesgue measure.

There are two main differences with our situation. First our unperturbed map
admits more than one a.c.i.m.; second, the maps are only close in C0, a better regu-
larity being restored only locally on the open domain of injectivity of the branches.
These two facts obliged us to find a completely different proof.

1With the exceptions of [6, 13], most of the results in ergodic theory of open and metastable
systems have been obtained for uniformly hyperbolic systems. See also [9, 13] for further details.
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In section 2 we recall the result of [14] about metastable expanding maps in a
slightly more general setting. In section 3 we introduce our metastable intermittent
system and its corresponding induced system. We then show that the induced sys-
tem satisfies the assumptions of section 2. Moreover, we prove a lemma that relates
invariant densities of the induced system to those of the original one. In section 4
we setup the problem of the metastable intermittent system. Further, we derive the
formula of the particular invariant density which is needed to approximate in the
L1-norm the invariant density of the perturbed system. This section also includes
the statement of our main result (Theorem 4.3) and the strategy of our proof. Sec-
tion 5 contains proofs of some technical lemmas and the proof of Theorem 4.3.

Notation.
∆ is an interval subset of [0, 1]. We denote by m the normalized Lebesgue measure
on the unit interval and with ‖·‖1 the associated L1 norm. Given two sequences
an and bn, when writing an . bn, or equivalently an = O(bn) with an and bn
non-negative, we mean that ∃C ≥ 1, independent of n and such that an ≤ Cbn,
∀n ≥ 1. By an ≈ bn we mean that ∃C ≥ 1, independent of n and such that
C−1bn ≤ an ≤ Cbn, ∀n ≥ 1. With an ∼ bn we mean that limn→∞

an
bn

= 1. We

will also use the symbols “O” in the usual Landau sense. Finally, |Z| denotes the
length of the interval Z.

2. Invariant Densities of Metastable Expanding Maps

2.1. The expanding system. Let T̂ : ∆ → ∆ be a map which satisfies the fol-
lowing conditions:

(A1) There exists a countable partition of ∆, which consists of a sequence of
intervals {Ii}∞i=1, Ii ∩ Ij = ∅ for i 6= j, Īi := [qi,0, qi+1,0] and there exists δ > 0

such that T̂i,0 := T̂ |(qi,0,qi+1,0) is C2 which extends to a C2 function T̄i,0 on a

neighbourhood [qi,0 − δ, qi+1,0 + δ] of Īi ;

(A2) infx∈∆\C0 |T̂ ′(x)| ≥ β−1
0 > 2, where C0 = {qi,0}∞i=1.

(A3) The collection T̂ (Ii)
∞
i=1 consists only of finitely many different intervals.

(A4) ∃ b in the interior of ∆ such that T̂ |∆∗ ⊆ ∆∗, where ∗ ∈ {l, r}, ∆∗ is an
interval such that ∆l ∪∆r = ∆ and ∆l ∩∆r = {b}.
(A5) Let H0 := T̂−1{b} \ {b}. We call H0 the set of infinitesimal holes and we

assume that for every n ≥ 1, (T̂nC0) ∩H0 = ∅.
(A6) T̂ verifies the Adler condition, namely there exists a constant DA > 0 such

that supi supx∈Ii
|D2T̂ (x)|
(DT̂ (x))2

≤ DA. In this case there will be an a.c.i.m. with a finite

number of ergodic components [17]. We will make the assumption that T̂ admits
exactly two ergodic a.c.i.ms µ̂∗, such that each µ̂∗ is supported on ∆∗ and the

corresponding density ĥ∗ is positive at each of the points of H0 ∩∆∗.

2.2. Perturbations of the expanding system. Let T̂ε : ∆→ ∆ be a perturba-
tion of T̂ which satisfies the following conditions:

(B1) There exists a countable partition of ∆, which consists of a sequence of
intervals {Ii,ε}∞i=1, Ii,ε ∩ Ij,ε = ∅ for i 6= j, Īi,ε := [qi,ε, qi+1,ε] such that
(i) for each i, ε→ qi,ε is a C2 function for all ε ≥ 0 and for ε sufficiently small we
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have that [qi,ε, qi+1,ε] ⊂ [qi,0 − δ, qi+1,0 + δ] ;

(ii) T̂ε|[qi,ε,qi+1,ε] has a C2 extension T̄i,ε : [qi,0 − δ, qi+1,0 + δ]→ R, and T̄i,ε → T̄i,0
in the C2 topology.

(B2) The collection T̂ε(Ii,ε)
∞
i=1 consists only of finitely many different intervals.

(B3) For each ε > 0, T̂ε admits a unique a.c.i.m. with density ĥε.
(B4) Boundary condition:

(i) if b /∈ C0, then T̂ (b) = b and for all ε > 0, T̂ε(b) = b;

(ii) if b ∈ C0, then T̂ (b−) < b < T̂ (b+) and for all ε > 0, b ∈ Cε, where Cε = {qi,ε}∞i=1.

2.3. Holes in the expanding system (T̂ε,∆). We are interested in perturbations

of T̂ which produce “leakage” of mass from ∆l to ∆r and vice versa. For this purpose
we define the following sets:

Ĥl,ε := ∆l ∩ T̂−1
ε (∆r)

and

Ĥr,ε := ∆r ∩ T̂−1
ε (∆l).

The sets Ĥl,ε and Ĥr,ε are called the “left hole” and the “right hole”, respectively,

of the perturbed expanding system (T̂ε,∆) . Thus, when T̂ε allows leakage of mass

from ∆l to ∆r, this leakage occurs when orbits of T̂ε fall in the set Ĥl,ε. Similarly,

when T̂ε allows leakage of mass from ∆r to ∆l, this leakage occurs when orbits of
T̂ε fall in the set Ĥr,ε.

Following [14] the limiting hole ratio (l.h.r) is defined by

l.h.r = lim
ε→0

µ̂r(Ĥr,ε)

µ̂l(Ĥl,ε)
,

whenever the limit exists.

In the following we will denote by BV ([u, v]) the space of functions of bounded
variation defined on the closed interval [u, v]. We will equip this set with the
complete norm given by the sum of the total variation plus the L1 norm with respect
to m. We denote this norm by ‖·‖BV ([u,v]) and the corresponding Banach space by

BV ([u, v]). By Pε we denote the Perron-Frobenius operator [4, 5] associated with

the map T̂ε and acting on BV (∆).

Proposition 2.1.

(1) There exists a β ∈ (0, 1) and a B ∈ (0,∞), such that for any ε ≥ 0 and
f ∈ BV (∆), we have

‖Pεf‖BV (∆) ≤ β ‖f‖BV (∆) +B||f ||1.

(2) Suppose that the l.h.r. exists. Then

lim
ε→0
||ĥε − ĥp||1 = 0,

where ĥp = λ̂pĥl + (1− λ̂p)ĥr and
λ̂p

1−λ̂p
= l.h.r..
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Proof. The proof of the first statement, which is the uniform Lasota-Yorke inequal-
ity, is standard for C2 perturbations of T̂ with |T̂ ′(x)| ≥ β−1

0 > 2 and satisfying
Adler’s condition. The proof of the second statement is exactly the same as the
proof provided by [14] for Lasota-Yorke maps with finite number of branches2. �

Remark 2.2. It will be important in the following that β and B can be chosen
independently of ε and ε small. This can be easily achieved by recalling that those
quantities are in fact explicitly determined in terms of the map, we refer to [3] for
the details. In particular they depend on: (i) the infimum of the absolute value of
the derivative, which we denoted by β0 for T and which persist larger than 2 by
condition (B1); (ii) the constant DA bounding the Adler’s condition which by its
definition (see above), can also be chosen uniformly in ε for ε small enough.

3. A metastable intermittent map

A main issue of our work will be to compare a map of the interval with a neutral
fixed point (intermittent map), with a perturbation of it. Instead of studying a
general class of maps, we prefer to work with a particular example which allows
us to analyze in a precise manner the steps of our approach. By looking at the
proofs in the following sections, it will be clear that our approach can be extended
to other intermittent maps.

3.1. The intermittent map and its perturbation. Let α ∈ (0, 1). For each
ε ≥ 0 define the continuous map Tε : [0, 1]→ [0, 1] by:

(3.1) Tε(x) =


T1,ε := x+ 4α(1 + 4ε)x1+α for 0 ≤ x < 1

4
T2,ε := −4(1 + 2ε)x+ 3

2 + 3ε for 1
4 ≤ x <

3
8

T3,ε := 4x− 3
2 for 3

8 ≤ x <
1
2

T4,ε(x) for 1
2 ≤ x ≤ 1

.

The component T4,ε(x) continuously extends T3,ε on the right; it is piecewise ex-
panding with the absolute value of the derivative bigger than3 2, of class C2 except
for the points of relative minima and with a finite number of long branches. We will
assume that it has only one spike emerging on the right side of 1/2 (see Figure 1)
and this spike is located at the point of relative minimum sr which does not move
with ε. We finally suppose that the height of the spike is exactly ε; likewise for
the left side. Notice that for ε = 0, the intermittent map T0 := T has exactly two
ergodic invariant probability4 densities, hl supported on [0, 1/2] and hr supported
on [1/2, 1]. Moreover, for any ε > 0, the perturbed map has a unique invariant

2We impose the same conditions as the ones imposed by [14], except that we relax the as-

sumption on the number of branches. Instead of requiring the map to have only finite number of
branches, we allow maps with countable number of branches whose image set is finite. The proofs

of [14] only depend on exploiting the locations and sizes of the jumps of the sets of discontinuities

of the invariant densities hε which occur on the forward trajectories of the partition points of T̂ε.

Thus their proof follows verbatim for the class of maps T̂ε of this paper.
3Since T4,ε ≡ T̂ε|[1/2,1], one can replace the assumption infx |T ′

4,ε(x)| > 2 by the assuming

that infx |T ′
4,ε(x)| > 1 and T4,ε has no periodic critical points except at 1. See [14] for further

details.
4Note that the case α ≥ 1 in (3.1) is not covered in this paper. It is well known that when µ̂l

is σ-finite. Obtaining results similar to those of this paper for intermittent maps with α ≥ 1 is an
interesting open problem.
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Figure 1. The graph of Tε for the values α = 0.3 and ε = 0.1

probability density hε. We will elaborate more on the uniqueness of hε in the Ap-
pendix. The graph of the map is shown in Figure 1. Let us point out that with our
assumptions T and Tε are C0 close, namely limε→0 ‖Tε − T‖0 = 0. Since T and
Tε are also continuous (and hence uniformly continuos on the closed unit interval),
this implies that for any n > 0 we have as well limε→0 ‖Tnε − Tn‖0 = 0.

3.2. Holes in the intermittent system (Tε, [0, 1]). We are interested in pertur-
bations of T which produce “leakage” of mass from Il := [0, b] to Ir : [b, 1] and vice
versa. For this purpose we define the following sets:

Hl,ε := Il ∩ T−1
ε (Ir)

and
Hr,ε := Ir ∩ T−1

ε (Il).

The sets Hl,ε and Hr,ε are called the “left hole” and the “right hole”, respectively,
of the perturbed intermittent system (Tε, [0, 1]). Note that for the intermittent
system defined in (3.1) b := 1/2.

3.3. The induced system. For each ε ≥ 0, we induce Tε on the same set ∆ :=
[a0, 1], where a0 := 1/4. We also set b0 := 1/4. It is important to notice that a0

and consequently ∆ are independent of ε (See Figure 2). Then for n ≥ 1 we define

bn+1,ε = T−1
1,ε (bn,ε), an,ε = T−1

2,ε (bn,ε), and a′n,ε = T−1
3,ε (bn,ε).

Then for ε ≥ 0 we define the induced map T̂ε : ∆→ ∆ by

(3.2) T̂ε(x) =

{
Tε(x) for x ∈ Z1,ε

Tn+1
ε (x) for x ∈ Zn,ε

,

where Z1,ε := (a0, a1,ε) ∪ (a′1,ε, 1) and Zn,ε := (an−1,ε, an,ε) ∪ (a′n,ε, a
′
n−1,ε).

We now define the following sets:

W0,ε := (a0, 1) and Wn,ε := (bn,ε, bn−1,ε), n ≥ 1.
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Observe that
Tε(Zn,ε) = Wn−1,ε and τZn,ε = n,

where τZn,ε is the first return time of Zn,ε to ∆.

Lemma 3.1.

(1) For ε = 0, the invariant densities of T̂ , ĥl and ĥr, are Lipschitz continuous
and bounded away from 0 on [a0, b], [b, 1] respectively.

(2) For ε = 0, the induced map T̂ : ∆→ ∆ satisfies assumptions (A1)-(A6).

(3) For ε > 0, the perturbed induced map T̂ε satisfies conditions (B1)-(B4).
(4) The limiting hole ratio of the induced system

l.h.r = lim
ε→0

µ̂r(Ĥr,ε)

µ̂l(Ĥl,ε)

exists and it is different from zero and infinity.

Proof. Statement (1) follows from the fact that T̂|[a0,b] is piecewise C2, piecewise

onto and expanding (see [5] for example). The same properties hold for T̂|[b,1]. To

prove (2), observe that supx∈∆ |T̂ ′(x)| > 3. Moreover, for all n ≥ 1, T̂n(C0) =
{b, 1} ∩H0 = ∅. Statement (3) is satisfied, in particular, condition (B4). We now
prove (4). We first observe that

µ̂r(Ĥr,ε)

µ̂l(Ĥl,ε)
=

∫
Ĥr,ε

ĥrdx∫
Ĥl,ε

ĥldx
=

ĥr(ξr,ε)|Ĥr,ε|∑∞
k=1 ĥl(ξ

k
l,ε)|Qk,ε|

,

where we applied the mean value theorem: ξr,ε is a point in Ĥr,ε, Qk,ε = [ak−1,ε, wk,ε],

where wk,ε = T̂−1
ε (b) ∩ Zk,ε and ξkl,ε is a point in Qk,ε. Again by the mean value

theorem there will be a point χkl,ε ∈ Qk,ε and such that |Qk,ε| = ε
|DT̂ε(χkl,ε)|

. More-

over, by the assumptions on the branch T̂4,ε we get immediately that |Ĥr,ε| =

ε
[
|DT̂4,ε(ul,ε)|−1 + |DT̂4,ε(ur,ε)|−1

]
, where ul,ε (resp. ur,ε) is a point on the left

hand side (resp. right hand side) of sr. Recall that sr is the relative minimum of

T4,ε and that T4,ε ≡ T̂4,ε. Thus we have

(3.3)
µ̂r(Ĥr,ε)

µ̂l(Ĥl,ε)
=
ĥr(ξr,ε)|

[
|DT̂4,ε(ul,ε)|−1 + |DT̂4,ε(ur,ε)|−1

]
∑∞
k=1 ĥl(ξ

k
l,ε)|DT̂ε(χkl,ε)|−1

.

We first deal with the denominator on the right hand side of (3.3). We write

DT̂ε(χ
k
l,ε)−DT̂ (ak−1) = DT̂ε(χ

k
l,ε)−DT̂ (χkl,ε) +DT̂ (χkl,ε)−DT̂ (ak−1).

Note that, by assumption (B1),

lim
ε→0
|DT̂ε(χkl,ε)−DT̂ (χkl,ε)| = 0,

and, by the continuity of DT̂ on [ak−1 − δ, ak + δ],

lim
ε→0
|DT̂ (χkl,ε)−DT̂ (ak−1)| = 0.

Therefore,

lim
ε→0

∞∑
k=1

ĥl(ξ
k
l,ε)|DT̂ε(χkl,ε)|−1 =

∞∑
k=1

ĥl(ak−1)|DT̂ (ak−1)|−1.
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We now show that
∑∞
k=1 ĥl(ak−1)|DT̂ (ak−1)|−1 is finite and different from 0. First

of all the density ĥl is bounded away from zero and infinity in the preimages of b
since it is Lipschitz continuous and bounded from below on [b0, b]. Then we observe
that the assumptions (A1, A2, A3, A6) imply that the first return map has bounded
distortion. Therefore, there exists a constant Cd independent of k which allows us
to bound |DT̂ (ak−1)|−1 ≤ Cd|DT̂ (vk)|−1 where vk is a point in Zk,ε for which the
inverse of the derivative gives the length |Zk,ε| of Zk,ε times the inverse of the length
of [b0, b]; finally the sum over the lengths of the Zk,ε on [b0, b] gives of course b− b0.
We now bound the numerator in (3.3). By an argument similar to that used above
we have

lim
ε→0

ĥr(ξr,ε)
[
|DT̂4,ε(ul,ε)|−1 + |DT̂4,ε(ur,ε)|−1

]
= ĥr(sr)

[
|DlT̂4(sr)|−1 + |DrT̂4(sr)|−1

]
,

where DlT̂4(sr) (resp. DrT̂4(sr)) denotes the right (resp. left) derivative of T̂4 at
the point sr. �

Remark 3.2. Lemma 3.1 implies that results of Proposition 2.1 hold for the induced
system. In particular,

lim
ε→0
||ĥε − ĥp||1 = 0,

where

(3.4) ĥp := λ̂pĥl + (1− λ̂p)ĥr.
and

l.h.r. =
λ̂p

1− λ̂p
.

a1 a’b1b2,ε ,ε ,ε ,ε1 bb0a0

Figure 2. The graph of induced system T̂ε for the values α = 0.3
and ε = 0.1
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3.4. Pulling back the invariant density. For all ε ≥ 0, we can find an a.c.i.m.,
µε, of Tε using the a.c.i.m., µ̂ε, of T̂ε [17]. In particular, for any measurable set
B ⊂ [0, 1], we have

(3.5) µε(B) = cτ,ε

∞∑
n=1

τZn,ε−1∑
j=0

µ̂ε(T
−j
ε B ∩ Zn,ε),

where c−1
τ,ε =

∑∞
k=1 τZk,ε µ̂ε(Zk,ε). In the following lemma we provide a lemma

expressing the density of µε in terms of that of µ̂ε. This will play a crucial role in
the proof of our main result.

Lemma 3.3. Let µε be a Tε-acim, defined as in (3.5). Then, for ε ≥ 0,

(3.6) hε(x) =


cτ,εĥε(x) for x ∈ ∆

cτ,ε
∑∞
n=k+1

(∑3
i=2

ĥε(T
−1
i,ε T

−(n−k−1)
1,ε x)

|DT (n−k)
ε (T−1

i,ε T
−(n−k−1)
1,ε x)|

)
for x ∈Wk,ε

,

where hε and ĥε are the densities of µε and µ̂ε respectively.

Proof. By (3.5), for any measurable set B ⊂ ∆, we have

µε(B) = cτ,εµ̂ε(B).

Passing to the densities and for Lebesgue almost all x ∈ ∆, we obtain

hε(x) = cτ,εĥε(x).

We then extend hε to a bounded variation function as ĥε. This proves formula
(3.6) for x ∈ ∆.

We now consider the case when B ⊆ Wk,ε. First, suppose B = Wk,ε, for some
k. Then by (3.5), we have

µε(Wk,ε) = cτ,ε

∞∑
n=1

n−1∑
j=0

µ̂ε(T
−j
ε Wk,ε ∩ Zn,ε) = cτ,ε

∞∑
n=k+1

µ̂ε(Zn,ε).

Therefore, if B ⊆Wk,ε, we obtain

µε(B) = cτ,ε

∞∑
n=k+1

µ̂ε(T
−(n−k)
ε B ∩ Zn,ε).

consequently, ∫
B

hεdx =

∞∑
n=k+1

∫
T
−(n−k)
ε B∩Zn,ε

ĥε(x)dx.

We now perform the change of variable Tn−ky = x by observing that the set B
is pushed backward n − k − 1 times with T−1

1,ε and then it splits into three parts

according to the actions of T−1
1,ε , T

−1
2,ε , T

−1
3,ε . Therefore,∫

B

hεdx = cτ,ε

∞∑
n=k+1

∫
B

(
3∑
i=2

ĥε(T
−1
i,ε T

−(n−k−1)
1,ε y)

|DT (n−k)
ε (T−1

i,ε T
−(n−k−1)
1,ε y)|

)
dy,
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where DT
(n−k)
ε (z) is the derivative of T

(n−k)
ε evaluated at the point z. Thus, for

Lebesgue almost all x ∈Wk,ε we obtain

hε(x) = cτ,ε

∞∑
n=k+1

(
3∑
i=2

ĥε(T
−1
i,ε T

−(n−k−1)
1,ε x)

|DT (n−k)
ε (T−1

i,ε T
−(n−k−1)
1,ε x)|

)

= cτ,ε

∞∑
n=1

(
3∑
i=2

ĥε(T
−1
i,ε T

−(n−1)
1,ε x)

|DT (n)
ε (T−1

i,ε T
−(n−1)
1,ε x)|

)
.

The last expression shows that hε can be extended to a bounded variation function
over all ∆c and therefore over all the unit interval. �

4. The problem of the original intermittent system

4.1. The problem. In subsection 3.1 we noted that the intermittent map T has
exactly two ergodic invariant densities, hl supported on [0, 1/2] and hr supported
on [1/2, 1]. Moreover, for any ε > 0, the perturbed map has a unique invariant
density hε. The uniqueness of the invariant density hε is proved in the Appendix.

Our main goal is to prove that the invariant density of the perturbed system
hε converges in the L1-norm to a particular convex combination of the invariant
densities, hl and hr, of the intermittent map. We define

(4.1) hp(x) :=


cτ,pĥp(x) for x ∈ ∆

cτ,p
∑∞
n=k+1

(∑3
i=2

ĥp(T−1
i T

−(n−k−1)
1 x)

|DT (n−k)(T−1
i T

−(n−k−1)
1 x)|

)
for x ∈Wk

,

where c−1
τ,p =

∑∞
k=1 kµ̂p(Zk), µ̂p = λ̂pµ̂l + (1− λ̂p)µ̂r.

Remark 4.1. Note that, by Lemma 3.3, hp is a T -invariant density. Moreover, since
T has exactly two ergodic invariant densities hl and hr, hp is a convex combination
of hl and hr. In fact, hp is a particular convex combination of hl and hr. In the
following proposition, we give an explicit representation of hp in terms of hl and
hr.

Proposition 4.2. The representation of hp in terms of hl and hr is given by

hp(x) = λphl(x) + (1− λp)hr(x),

where λp =
λ̂pcτ,r

λ̂pcτ,r+(1−λ̂p)cτ,l
, c−1

τ,l =
∑∞
k=1 kµ̂l(Zk) and c−1

τ,r =
∑∞
k=1 kµ̂r(Zk).

Proof. First, using Lemma 3.3, we have

hl(x) =


cτ,lĥl(x) for x ∈ ∆

cτ,l
∑∞
n=k+1

(∑3
i=2

ĥl(T
−1
i T

−(n−k−1)
1 x)

|DT (n−k)(T−1
i T

−(n−k−1)
1 x)|

)
for x ∈Wk

,

and for all x ∈ [0, 1]

hr(x) = cτ,rĥr(x).

Moreover,

c−1
τ,p =

∞∑
k=1

kµ̂p(Zk) = λ̂p

∞∑
k=1

kµ̂l(Zk) + (1− λ̂p)
∞∑
k=1

kµ̂r(Zk) = λ̂pc
−1
τ,l + (1− λ̂p)c−1

τ,r.
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Therefore, using (4.1), for x ∈ ∆, we have

hp(x) = cτ,p(λ̂pĥl(x) + (1− λ̂p)hr(x))

= λ̂p
cτ,l

λ̂p + (1− λ̂p)cτ,lc−1
τ,r

ĥl(x) + (1− λ̂p)
cτ,r

λ̂pcτ,rc
−1
τ,l + (1− λ̂p)

ĥr(x)

=
λ̂p

λ̂p + (1− λ̂p)cτ,lc−1
τ,r

hl(x) +
(1− λ̂p)

λ̂pcτ,rc
−1
τ,l + (1− λ̂p)

ĥr(x)

= λphl(x) + (1− λp)hr(x).

Using (4.1) again, for x ∈Wk, we obtain

hp(x) = cτ,pλ̂p

∞∑
n=k+1

(
3∑
i=2

ĥl(T
−1
i T

−(n−k−1)
1 x)

|DT (n−k)(T−1
i T

−(n−k−1)
1 x)|

)

= λ̂p
cτ,l

λ̂p + (1− λ̂p)cτ,lc−1
τ,r

∞∑
n=k+1

(
3∑
i=2

ĥl(T
−1
i T

−(n−k−1)
1 x)

|DT (n−k)(T−1
i T

−(n−k−1)
1 x)|

)

=
λ̂p

λ̂p + (1− λ̂p)cτ,lc−1
τ,r

hl = λphl(x).

�

4.2. Main result and the strategy of our proof. The following theorem is the
main result of the paper.

Theorem 4.3. Let hε be the unique invariant density of Tε. Then

(1)

lim
ε→0
||hε − hp||1 = 0.

(2) Moreover,

lim
ε→0

µr(Hr,ε)

µl(Hl,ε)
=

λp
1− λp

.

To prove (1) of Theorem 4.3, we use the following strategy:

(1) First we estimate

||hε − hp||1 ≤
∫

∆

|hε − hp|dx+

∞∑
k=1

∫
Wk\(Wk,ε∩Wk)

|hε − hp|dx

+

∞∑
k=1

∫
Wk,ε∩Wk

|hε − hp|dx = (I) + (II) + (III).

(4.2)

(2) In (I), we exploit the representations of hp, hε on ∆, and use Remark 3.2
to conclude that the limit of (I) is zero as ε→ 0.

(3) In (II), we obtain an upper bound

sup
x∈Wk\(Wk,ε∩Wk)

|hε(x)|+ sup
x∈Wk\(Wk,ε∩Wk)

|hε(x)| . k.

Since the left boundary point of Wk, bk, scales like k−
1
α , we have just

recovered, with a different technique, the well known fact that the density of
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the intermittent map behaves like x−α in the neighbourhood of the neutral
fixed point. Consequently, this implies that

(II) .
∞∑
k=1

k|Wk \ (Wk,ε ∩Wk)| '
∑
k=1

1

k1/α
.

and the uniform convergence of the series allows us to bring the limit inside
for ε→ 0.

(4) In (III) hε and hp can be compared on Wk,ε ∩Wk via their representations

in terms of ĥε and ĥp respectively. We then show that (III) is summable.
This allows us to move the limit ε → 0 inside the sum to conclude that
the limit of (III) equals zero. In this part, we invoke two results from the

induced system. Namely that limε→0 ||ĥε − ĥp||1 = 0, and the fact that ĥp
is Lipschitz continuous on [a0, b].

To prove (2) of Theorem 4.3, we use the representation of λp in Proposition 4.2 and
part (1) of Theorem 4.3.

5. Proof of Theorem 4.3

Before proving Theorem 4.3, we state and prove two lemmas. We first observe
that Tε(ak,ε) = bk,ε and bk,ε . k−

1
α , see for instance Lemma 3.2 in [16]. Thus,

|Zk,ε| . k−
1
α−1. In fact we precisely have |Zk,ε| ≤ Cεk−

1
α−1, where Cε = 1 +O(ε).

In the next Lemma, C̃ will denote a constant which is independent of ε. C̃ may
have different values in successive uses.

Lemma 5.1.

(1) For ε ≥ 0,
∑∞
k=1 kµ̂ε(Zk,ε) ≤ C̃.

(2) limε→0 |cτ,ε − cτ,p| = 0.

Proof. (1) By Proposition 2.1, and the fact that the L∞-norm (w.r.t. m) is bounded
by the BV-norm, we have

∞∑
k=1

kµ̂ε(Zk,ε) ≤ ||ĥε||∞
∞∑
k=1

k|Zk,ε| ≤ C̃(
B

1− β
)

∞∑
k=1

1

k1/α
≤ C̃.

To prove (2), we first observe that the constants cτ,ε and cτ,p are less or equal to
1; then

|cτ,ε − cτ,p| =
∣∣∣∣ 1∑∞

k=1 kµ̂ε(Zk,ε)
− 1∑∞

k=1 kµ̂p(Zk)

∣∣∣∣ ≤ ∞∑
k=1

k|µ̂ε(Zk, ε)− µ̂p(Zk)|.

By (1) the previous series is uniformly convergent in ε. Therefore, it is enough to
show that for any k, |µ̂ε(Zk, ε)− µ̂p(Zk)| converges to zero as ε→ 0. We have

|µ̂ε(Zk, ε)− µ̂p(Zk)| = 1

m(∆)

∣∣∣∣∣
∫
Zk,ε

ĥεdx−
∫
Zk

ĥdx

∣∣∣∣∣ ≤
1

m(∆)

∣∣∣∣∣
∫
Zk,ε∩Zk

ĥεdx+

∫
Zk,ε\(Zk,ε∩Zk)

ĥεdx−
∫
Zk∩Zk,ε

ĥdx−
∫
Zk\(Zk∩Zk,ε)

ĥdx

∣∣∣∣∣ ≤
1

m(∆)

[∫
Zk,ε∩Zk

|ĥε − ĥ|dx+ 2||ĥε||∞m(Zk,ε∆Zk)

]
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and the first term in the square bracket goes to zero because limε→0 ||ĥε − ĥ||1 =
0. �

Lemma 5.2. For ε ≥ 0, x ∈Wk,ε and k large we have

(1)

|DT (n−k)(T−1
i T

−(n−k−1)
1 x)| ≥

(
n

k + 2

)ηk
,

where i = 2, 3, ηk = d(k+2)
k+2+d for some d > 1.

(2)
∞∑

n=k+1

1

|DT (n−k)(T−1
i T

−(n−k−1)
1 x)|

. k.

Remark 5.3. Before proving Lemma 5.2 we need two observations:

• The same proof holds for Tε with all the constants involved uniformly
bounded in ε for ε small. Moreover it will be clear in the proof of the
theorem below that we can also take x not in Wk but in one of the two
similar sets adjacent to it: the proof will not change.
• It will be extremely important to have the constant d strictly larger than

1. Working with the map T (x) = x+ 4αx1+α, x ∈ [0, 1/4], such a constant

will be d = cα 4α(1 + α), where the constant c satisfies bk ≥ ck−
1
α . This is

done in the next sublemma.

Sublemma 5.4. Let bk = T−1
1 bk−1, with b0 = 1/4. Then there exists c independent

of k for which bk ≥ ck−
1
α , k ≥ 1 and d := cα 4α(1 + α) > 1.

Proof. We proceed as in Lemma 3.2 in [16], but proving the lower bound. Let us
choose c = 1

4(1+α)
1
α

+ δ, where δ is a small positive constant whose value will be

fixed later on. Note that with this value of c, the quantity d > 1. We now prove
the first assertion of the sublemma by induction. Suppose it is true for k; if it is
not true for k + 1 we should have

bk = bk+1(1 + 4αbαk+1) ≤ c(k + 1)−
1
α (1 + 4αcα(k + 1)−1)

which implies that k−
1
α ≤ (k + 1)−

1
α (1 + 4αcα(k + 1)−1) or

(
1 + 1

k

) 1
α − 1 ≤ 4αcα

k+1 .

But
(
1 + 1

k

) 1
α − 1 ≥ 1

α
1
k+1 , which in conclusion gives us cα ≥ 1

α 4α . With the given

choice c = 1

4(1+α)
1
α

+δ, we see that for δ small enough the preceding lower bound is

false and so the induction is restored provided we prove the first step of it, namely
b1 ≥ 1

4(1+α)
1
α

+ δ. Now b1 + 4αb1+α
1 = 1/4; suppose b1 will not verify the previous

lower bound, then we should have

1

4
≤ 1

4(1 + α)
1
α

+ δ + 4α
(

1

4(1 + α)
1
α

+ δ

)1+α

.

It is easy to check that this can never be true. �

Proof. (Of Lemma 5.2) As we anticipated above, we first need (1). We have

|DT (n−k)(T−1
i T

−(n−k−1)
1 x)| = Πn−k−1

m=0 |DT (TmT−1
i T

−(n−k−1)
1 x)

≥ Πn−k−1
m=1 inf

y∈Wk+m

|DTy| ≥ Πn−k−1
m=1 DT (bk+m+1).
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The last estimate is true because the derivative of T is increasing on [0, a0). In
particular, since DT1(x) = 1 + (1 +α)4αxα and bk ≥ c 1

k1/α
, where c is the constant

given in the sublemma, we have

|DT (n−k)(T−1
i T

−(n−k−1)
1 x)| ≥ Πn−k−1

m=1 (1 +
d

k +m+ 1
) = e

∑n−k−1
m=1 log(1+ d

k+m+1 ).

(5.1)

By the mean value theorem applied to the function x 7→ log(1 + x), x > 0 we
immediately have

|DT (n−k)(T−1
i T

−(n−k−1)
1 x)| ≥ e

d

1+ d
k+2

∑n−k−1
m=1 ( 1

k+m+1 )
≥ e

d

1+ d
k+2

log n
k+2

=

(
n

k + 2

)ηk
.

(5.2)

To prove (2) we sum over n the estimate in (5.2) and we use the fact that d > 1. �

Proof. (Proof of Theorem 4.3) We have

||hε − hp||1 ≤
∫

∆

|hε − hp|dx+

∞∑
k=1

∫
Wk\(Wk,ε∩Wk)

|hε − hp|dx

+

∞∑
k=1

∫
Wk,ε∩Wk

|hε − hp|dx = (I) + (II) + (III).

By Lemma 3.3

(I) =

∫
∆

|cτ,εĥε − cτ,pĥp|dx ≤ cτ,p
∫

∆

|ĥε − ĥp|dx+ |cτ,ε − cτ,p|
∫

∆

|ĥε|dx.

Therefore, by Proposition 2.1 and Lemma 5.1, (I)→ 0 as ε→ 0. To prove that (II)
converges to zero we first obtain a bound on supx∈Wk\(Wk,ε∩Wk) (|hp(x)|+ |hε(x)|) .
Using (4.1), Proposition 2.1 and Lemma 5.2, we have

sup
x∈Wk\(Wk,ε∩Wk)

|hp(x)| ≤ sup
x∈Wk

cτ,p

∞∑
n=k+2

3∑
i=2

|ĥp(T−1
i T

−(n−k−2)
1 x)|

|DT (n−k−1)(T−1
i T

−(n−k−3)
1 x)|

. (
B

1− β
) k.

A similar bound holds for hε by observing that the supremum should now be
taken on an adjacent cylinder of Wk,ε. Consequently, since, as we already saw,

|bk − bk−1| ≈ k−
1
α−1, k ≥ 1, we obtain

(II) ≤ 2(
B

1− β
) · const

∞∑
k=1

k|bk − bk−1| ≤ const

∞∑
k=1

k−
1
α .

The uniform convergence of this series allows us to take the limit for ε → 0 inside
and this will cancel the second contribution since m(Wk \ (Wk,ε ∩Wk))→ 0 when
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ε→ 0. For the third one we have:

(III) =

∞∑
k=1

∫
Wk,ε∩Wk

|hε(x)− hp(x)|dx

≤
∞∑
k=1

∫
Wk,ε∩Wk

|
∞∑

n=k+1

3∑
i=2

cτ,p
ĥp(T

−1
i T

−(n−k−1)
1 x)

|DT (n−k)(T−1
i T

−(n−k−1)
1 x)|

− cτ,ε
ĥε(T

−1
i,ε T

−(n−k−1)
1,ε x)

|DT (n−k)
ε (T−1

i,ε T
−(n−k−1)
1,ε x)|

|

≤
∞∑
k=1

|cτ,p − cτ,ε|
∫
Wk,ε∩Wk

∞∑
n=k+1

3∑
i=2

|ĥp(T−1
i T

−(n−k−1)
1 x)|

|DT (n−k)(T−1
i T

−(n−k−1)
1 x)|

dx

+

∞∑
k=1

cτ,ε

∫
Wk,ε∩Wk

∞∑
n=k+1

3∑
i=2

| ĥp(T
−1
i T

−(n−k−1)
1 x)

|DT (n−k)(T−1
i T

−(n−k−1)
1 x)|

−
ĥε(T

−1
i,ε T

−(n−k−1)
1,ε x)

|DT (n−k)
ε (T−1

i,ε T
−(n−k−1)
1,ε x)|

|dx

= A1 +A2.

The quantity A1 could be treated as the term (II) above: the integral inside the

sum gives the summable contribution k−
1
α which will allow us to take afterwards

the limit |cτ,p − cτ,ε| → 0 for ε→ 0. The same argument shows that A2 converges
uniformly in ε, but in order to take the limit inside the series, we have first of all
to split A2 into two supplementary terms:

A2 ≤
∞∑
k=1

cτ,ε

∫
Wk,ε∩Wk

∞∑
n=k+1

3∑
i=2

| ĥp(T
−1
i T

−(n−k−1)
1 x)

|DT (n−k)(T−1
i T

−(n−k−1)
1 x)|

−
ĥε(T

−1
i,ε T

−(n−k−1)
1,ε x)

|DT (n−k)(T−1
i T

−(n−k−1)
1 x)|

|dx

+

∞∑
k=1

cτ,ε

∫
Wk,ε∩Wk

∞∑
n=k+1

3∑
i=2

|
ĥε(T

−1
i,ε T

−(n−k−1)
1,ε x)

|DT (n−k)(T−1
i T

−(n−k−1)
1 x)|

−
ĥε(T

−1
i,ε T

−(n−k−1)
1,ε x)

|DT (n−k)
ε (T−1

i,ε T
−(n−k−1)
1,ε x)|

|dx

= A∗2 +A†2.

To show that A∗2 converges to zero as ε → 0 it will be sufficient to control the
integral∫
Wk,ε∩Wk

1

|DT (n−k)(T−1
i T

−(n−k−1)
1 x)|

[ĥp(T
−1
i T

−(n−k−1)
1 x)−ĥp(T−1

i,ε T
−(n−k−1)
1,ε x))+

ĥp(T
−1
i,ε T

−(n−k−1)
1,ε x))− ĥε(T−1

i,ε T
−(n−k−1)
1,ε x)]dx.
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We now make the change of variable yi = T−1
i T

−(n−k−1)
1 x ∈ Zn and set y′i :=

y′i(yi) = T−1
i,ε T

−(n−k−1)
1,ε (Tn−kyi). Then yi, y

′
i ∈ Zn ∪ Znε and we rewrite the previ-

ous integral as

(5.3)

∫
Zn

(
|ĥp(yi)− ĥp(y′i)|+ |ĥp(y′i)− ĥε(y′i)|

)
dyi.

We first have

lim
ε→0

∫
Zn

|ĥp(y′i)− ĥε(y′i)|dyi ≤ lim
ε→0
||ĥp − ĥε||1 = 0.

We also have limε→0

∫
Zn
|ĥp(yi) − ĥp(y′i)|dyi = 0, since by (1) of Lemma 3.1 ĥp is

Lipschitz on ∆ and y′i → yi as ε→ 0.

To prove that A†2 converges to 0 as ε → 0, it will be sufficient, after having
factorized one of the inverse of the derivatives, to show that the ratio

DT
(n−k)
ε (T−1

i,ε T
−(n−k−1)
1,ε x)

DT (n−k)(T−1
i T

−(n−k−1)
1 x)

, x ∈Wk,ε ∩Wk

goes to 1. We begin to rewrite it as

Πn−k−1
m=0

DTε(T
my′)

DT (Tmy′)

DTε(T
m
ε y)

DTε(Tmy′)

where we put y := T−1
i,ε T

−(n−k−1)
1,ε x ∈ Zn,ε and y′ := T−1

i T
−(n−k−1)
1 x ∈ Zn and we

also recall that Tmε y ∈ Wn−m,ε and Tmy′ ∈ Wn−m. The first ratio DTε(T
my′)

DT (Tmy′) goes

to one since for any 0 ≤ x < b0: limε→0 DTε(x) = DT (x). The second ratio can
now be written in the form∣∣∣∣ DTε(Tmε y)

DTε(Tmy′)

∣∣∣∣ = exp

[∣∣∣∣D2Tε
DTε

∣∣∣∣
ξ∈(Tmε y,T

my′)

· |Tmε y − Tmy′|

]
.

Recall that the first and the second derivative are finite outside the origin; so we are
left with proving that |Tmε y − Tmy′| tends to 0 when ε→ 0. But |Tmε y − Tmy′| =
|Tmε y − Tmy| + |Tmy − Tmy′| and the first term goes to zero since Tmε converges
uniformly to Tm and the second term goes to zero by the continuity of Tm. This
finishes the proof of part (1) of the theorem.
To prove (2), we first use Proposition 4.2 to obtain

λp
1− λp

=
λ̂pcτ,r

(1− λ̂p)cτ,l
.

Using (3.5) it follows immediately that cτ,r = 1 and cτ,l = µl(∆l), where ∆l is the
interval (b0, b). Therefore,

λp
1− λp

=
λ̂pcτ,r

(1− λ̂p)cτ,l
=

1

µl(∆l)
lim
ε→0

µ̂r(Ĥr,ε)

µ̂l(Ĥl,ε)
.

We now show that

(5.4)
1

µl(∆l)
lim
ε→0

µ̂r(Ĥr,ε)

µ̂l(Ĥl,ε)
= lim
ε→0

µr(Hr,ε)

µl(Hl,ε)

which leads to the formula in part (2) of the theorem. We invoke formula (3.5)
and the result which we obtained in part (1) of this theorem. We have Hl,ε =
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Il∩T−1
ε Ir = (Il∩T−1

ε Ir)l∪(Il∩T−1
ε Ir)r, where (Il∩T−1

ε Ir)l = (Il∩T−1
ε Ir)∩(0, b0)

and (Il ∩ T−1
ε Ir)r = (Il ∩ T−1

ε Ir) ∩ (b0, b).
Now, using (3.5) we obtain

µε((Il ∩ T−1
ε Ir)l) = cτ,ε

∞∑
n=2

µ̂ε(T
−(n−1)
ε (Il ∩ T−1

ε Ir)l ∩ Zn,ε) =

cτ,ε

∞∑
n=2

µ̂ε(T̂
−1
n,εIr ∩∆l) = cτ,ε

[
µ̂ε(T̂

−1
ε Ir ∩∆l)− µ̂ε(T̂−1

1,ε Ir ∩∆l)
]

where we define T̂−1
n,ε :=

(
Tnε |Zn,ε

)−1

. On the other hand

µε((Il ∩ T−1
ε Ir)r) = cτ,εµ̂ε(T̂

−1
1,ε Ir ∩∆l)

since (Il ∩T−1
ε Ir)r is inside the domain of induction. In conclusion we have proved

that

µε(Hl,ε) = µε(Il ∩ T−1
ε Ir) = cτ,εµ̂ε(Ĥl,ε).

In a much easier way we immediately have

µε(Hr,ε) = µε(Ir ∩ T−1
ε Il) = cτ,εµ̂ε(T̂

−1
ε ∆l ∩ Ir) = cτ,εµ̂ε(Ĥr,ε).

Therefore we have

(5.5)
µε(Hr,ε)

µε(Hl,ε)
=
µ̂ε(Ĥr,ε)

µ̂ε(Ĥl,ε)
.

By (2) of Proposition 2.1 and (1) of Theorem 4.3, we have:

• µ̂ε(A)→ (1− λ̂p)µ̂r(A), whenever A is a mesurable set in ∆r.

• µr(A)← µε(A)
1−λp , whenever A is a mesurable set in Ir.

• µ̂ε(A)→ λ̂pµ̂l(A), whenever A is a mesurable set in ∆l.

• µl(A)← µε(A)
λp

, whenever A is a mesurable set in Il.

Of course the same is true if A depends on ε since, take for instance Aε ⊂ Ir,

|µ̂ε(Aε)− (1− λ̂p)µ̂r(Aε)| ≤ ||ĥε − ĥp||1 → 0.

Putting together all that and using (5.5) we get (5.4):

lim
ε→0

µr(Hr,ε)

µl(Hl,ε)
= lim
ε→0

λp
1− λp

µε(Hr,ε)

µε(Hl,ε)
= lim
ε→0

λp
1− λp

µ̂ε(Ĥr,ε)

µ̂ε(Ĥl,ε)

= lim
ε→0

λ̂p

(1− λ̂p)µl(∆l)

µ̂ε(Ĥr,ε)

µ̂ε(Ĥl,ε)
= lim
ε→0

1

µl(∆l)

µ̂r(Ĥr,ε)

µ̂l(Ĥl,ε)
.

�
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6. Appendix

In the appendix we provide a method which can be used to determine the num-
ber of ergodic a.c.i.ms for maps similar to Tε. In particular we will show that for
any ε > 0, the map Tε defined in (3.1) has exactly one a.c.i.m. Let C(Tε) := {Ii}6i=1

be the partition on which Tε is piecewise monotonic. We introduce a directed graph
associated with the perturbed map Tε, ε > 0, and we denote it by G(Tε)

5.

• There is an arrow from Ii → Ij if and only if there exists a k ≥ 1 such that
T kε (Ii) ⊇ Ij , i, j ∈ {1, . . . , 6}.
• Ij is said to be accessible from Ii if there exists aa arrow in G(Tε) from Ii to Ij .
• The accessible set from Ii, denoted by [Ii], consists of all intervals Ij which are
accessible from Ii.

Lemma 6.1. Let µ be a Tε ergodic a.c.i.m6. Then the support of µ contains [Ii]
for some i = 1, . . . , 6.

Proof. We will first show that for any interval J ⊂ I, there exists an n ≥ 1 such that
Tnε (J) contains two partition points. Let J ⊂ Ii for some i. Sincem(Tε(J)) > m(J),
there exists a j ≥ 1 such that T jε (J) contains a partition point in its interior. We
consider all possible cases.

(1) If T jε (J) contains the partition point 0, then obviously there exists a k ≥ 1
such that T j+kε (J) contains [0, 1/2].

(2) The case of the partition point 3/8 is the same as that of 0.
(3) If T jε (J) contains the partition point 1/4 in its interior; i.e T jε (J) ⊃ (p1, p2)

with 1/4 ∈ (p1, p2) . Then we observe that T kε ([1/4, p2)) ⊆ [1/4, 1] for all
k ≥ 1, and infx∈[1/4,1] |T ′ε| > 2. Thus for some k ≥ 1, T kε ([1/4, p2)) must
contain two partition points (otherwise the length of iterates of the image
will go to ∞ since the modulus of the derivative is bigger than 2). Thus,
T j+kε (J) contains two partition points.

(4) The cases of the partition points 1/2, 5/8, 13/16, 1 are similar to that of
1/4.

Let C denote the support of µ. Since C contains an interval J , Tn(J), n ≥ 1
contains two partition points, and C is an invariant set, C must contain (mod 0)
an Ii. Consequently (by invariance) C must contain (mod 0) [Ii]. �

Lemma 6.2. For each ε > 0, Tε has a unique ergodic a.c.i.m.

Proof. Observe that for each i = 1, . . . 6,

[Ii] = {I1, I2, I3, I4, I5, I6}.

Thus by Lemma 6.1, and the fact that ergodic a.c.i.ms must have disjoint supports,
Tε has a unique a.c.i.m. �

5A similar graph can be found in [5] which is used to get an upper bound on the number on
ergodic of a.c.i.ms when the modulus of the derivative of the map is greater than 2. Since in our
case infx |Tε| = 1, we cannot use the results found in [5].

6We know that there is at least one such measure since the corresponding induced map has an
a.c.i.m.
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