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Abstract. We study Markov processes generated by iterated function sys-

tems (IFS). The constituent maps of the IFS are monotonic transformations

of the interval. We first obtain an upper bound on the number of SRB (Sinai-
Ruelle-Bowen) measures for the IFS. Then, when all the constituent maps have

common fixed points at 0 and 1, theorems are given to analyze properties of

the ergodic invariant measures δ0 and δ1. In particular, sufficient conditions
for δ0 and/or δ1 to be, or not to be, SRB measures are given. We apply some

of our results to asset market games.

1. Introduction

In the 1970’s, Sinai, Ruelle and Bowen studied the existence of an important class
of invariant measures in the context of deterministic dynamical systems. These in-
variant measures are nowadays known as SRB (Sinai-Ruelle-Bowen) measures [14].
SRB measures are distinguished among other ergodic invariant measures because
of their physical importance. In fact, from ergodic theory point of view, they are
the only useful ergodic measures. This is due to the fact that SRB measures are
the only ergodic measures for which the Birkhoff Ergodic Theorem holds on a set
of positive measure of the phase space. In this note, we study SRB measures in a
stochastic setting—Markov processes generated by iterated function systems (IFS).

An IFS1 is a discrete-time random dynamical system [1, 10] which consists of
a finite collection of transformations and a probability vector {τs; ps}Ls=1. At each
time step, a transformation τs is selected with probability ps > 0 and applied to the
process. IFS has been a very active topic of research due to its wide applications in
fractals and in learning models. The survey articles [5, 13] contain a considerable
list of references and results in this area.

The systems which we study in this note do not fall in the category of the IFS2

considered in [5, 13] and references therein. Moreover, in general, our IFS do not
satisfy the classical splitting3 condition of [7]. In fact, our aim in this note is to
depart from the traditional goal of finding sufficient conditions for an IFS to admit
a unique attracting invariant measure [7, 5, 13]. Instead, we study cases where an
IFS may admit more than one invariant measure and aim to identify the physically
relevant ones; i.e., invariant measures for which the Ergodic Theorem holds on a
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2In most articles about IFS, the constituent maps are assumed to be contracting or at least

contracting on average. Here we do not impose any assumption of this type. In fact the class of

IFS which we study in Section 4 cannot satisfy such assumptions.
3In particular, when all the maps have common fixed points at 0 and 1. See Section 4.
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set of positive measure of the ambient phase space. We call such invariant measures
SRB.

Physical SRB measures for random maps have been studied by Buzzi [3] in the
context of random Lasota-Yorke maps. However, Buzzi’s definition of a basin of an
SRB measure is different from ours. We will clarify this difference in Section 2. A
general concept of an SRB measure for general random dynamical systems can be
found in the survey article [11]. In this note we study physical SRB measures for IFS
whose constituent maps are strictly increasing transformations of the interval. We
obtain an upper bound on the number of SRB measures for the IFS. Moreover, when
all the constituent maps have common fixed points at 0 and 1, we provide sufficient
conditions for δ0 and/or δ1 to be, or not to be, SRB measures. To complement our
theoretical results, we show at the end of this note that examples of IFS of this
type can describe evolutionary models of financial markets [4].

In Section 2 we introduce our notation and main definitions. In particular, Sec-
tion 2 includes the definition of an SRB measure for an IFS. In Section 3 we identify
the structure of the basins of SRB measures and we obtain a sharp upper bound
on the number of SRB measures. Section 4 contains sufficient conditions for δ0 and
δ1, the delta measures concentrated at 0 and 1 respectively, to be SRB. It also con-
tains sufficient conditions for δ0 and δ1 not to be SRB measures. Our main results
in this section are Theorems 4.3 and Theorem 4.7. In Section 5 we study ergodic
properties of δ0 and δ1 without having any information about the probability vector
of the IFS. In Section 6 we apply our results to asset market games. In particular,
we find a generalization of the famous Kelly rule [9] which expresses the principle
of “betting your beliefs”. The importance of our generalization lies in the fact that
it does not require the full knowledge of the probability distribution of the random
states of the system. Section 7 contains an auxiliary result which we use in the
proof of Theorem 4.7.

2. Preliminaries

2.1. Notation and assumptions. Let ([0, 1],B) be the measure space where B
is the Borel σ-algebra on [0, 1]. Let λ denote Lebesgue measure on ([0, 1],B) and
δr denote the delta measure concentrated at point r ∈ [0, 1]. Let S = {1, . . . , L}
be a finite set and τs, s ∈ S, be continuous transformations from the unit interval
into itself. We assume:

(A) τs are strictly increasing.

Let p = (ps)Ls=1 be a probability vector on S such that for all s ∈ S, ps > 0.
The collection

F = {τ1, τ2, . . . , τL; p1, p2, . . . , pL}
is called an iterated function system (IFS) with probabilities.

We denote the space of sequences ω = {s1, s2, . . . }, sl ∈ S, by Ω. The topology
on Ω is defined as the product of the discrete topologies on S. Let πp denote the
Borel measure on Ω defined as the product measure pN. Moreover, we write

st := (s1, s2, . . . , st)
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for the history up to time t, and for any r0 ∈ [0, 1] we write

rt(st) := τst ◦ τst−1 ◦ · · · ◦ τs1(r0).

Finally, by E(·) we denote the expectation with respect to p, by E(·|st) the con-
ditional expectation given the history up to time t and by var(·) the variance with
respect to p.

2.2. Invariant measures. F is understood as a Markov process with a transition
function

P(r,A) =
L∑
s=1

psχA(τs(r)),

where A ∈ B and χA is the characteristic function of the set A. The transition
function P induces an operator P on measures on ([0, 1],B) defined by

Pµ(A) =
∫ 1

0

P(r,A)dµ(r)

=
L∑
s=1

psµ(τ−1
s A).

(2.1)

Following the standard notion of an invariant measure for a Markov process, we
call a probability measure µ on ([0, 1],B) F -invariant probability measure if and
only if

Pµ = µ.

Moreover, it is called ergodic if it cannot be written as a convex combination of
other invariant probability measures.

2.3. SRB measures. Let µ be an ergodic probability measure for the IFS. Suppose
there exists a set of positive Lebesgue measure in [0, 1] such that

(2.2)
1
T

T−1∑
t=0

δrt(st)
weakly→ µ with πp-probability one.

Then µ is called an SRB (Sinai-Ruelle-Bowen) measure. The set of points r0 ∈ [0, 1]
for which (2.2) is satisfied will be called the basin4 of µ and it will be denoted by
B(µ). Obviously, if λ(B(µ)) = 1 then µ is the unique SRB measure of F .

3. Number of SRB measures and their basins

The basin of an SRB measure for the systems we are dealing with is described
by the following two propositions.

Proposition 3.1. Let µ be an SRB measure and B(µ) be its basin. Let r0, r̄0 ∈
B(µ), r0 > r̄0. Then [r̄0, r0] ⊆ B(µ).

4Our definition of a basin is different from Buzzi’s definition [3]. In his definition he defines

random basins Bω(µ) for an SRB measure. In particular, according to Buzzi’s definition, for
the same SRB measure, basins corresponding to two different ω’s may differ on a set of positive

lebsegue measure of [0, 1]. See [3] for more detials.
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Proof. When weak convergence is considered on an interval, then µn
weakly→ µ if and

only if µn(f)→ µ(f) for any C1 function5. Since every C1 function is a difference

of two continuous increasing functions, this means that µn
weakly→ µ if and only if

µn(f)→ µ(f) for any continuous increasing function.

Let r0, r̄0 ∈ B(µ) and r̄0 < r′0 < r0. We will show that r′0 ∈ B(µ). Let assume
that f is continuous and increasing. Let us fix an st for which

lim
T→∞

1
T

T−1∑
t=0

f(r̄t(st)) = lim
T→∞

1
T

T−1∑
t=0

f(rt(st)) = µ(f).

We have r̄t(st) < r′t(s
t) < rt(st) (since all τs are increasing) and

1
T

T−1∑
t=0

f(r̄t(st)) ≤
1
T

T−1∑
t=0

f(r′t(s
t)) ≤ 1

T

T−1∑
t=0

f(rt(st)).

The averages on the left and on the right have common limit µ(f). Thus,

1
T

T−1∑
t=0

δr′t(st)(f) =
1
T

T−1∑
t=0

f(r′t(s
t))→ µ(f).

Since the event

{ lim
T→∞

1
T

T−1∑
t=0

f(r̄t(st)) = lim
T→∞

1
T

T−1∑
t=0

f(rt(st)) = µ(f)}

occurs with πp-probability 1, the event

{ 1
T

T−1∑
t=0

f(r′t(s
t))→ µ(f)}

also occurs with πp-probability 1. �

Proposition 3.2. Let µ be an SRB measure and B(µ) = 〈a, b〉 be its basin, where
〈a, b〉 denotes an interval closed or open at any of the endpoints. Then,

τs(a) ≥ a , s = 1, . . . , L, and if a 6= 0 then τs(a) = a for at least one s;

τs(b) ≤ b , s = 1, . . . , L, and if b 6= 1 then τs(b) = b for at least one s.

Proof. We will prove only the second claim with b 6= 1. The first claim is proven
analogously.

5Here is a sketch of the proof of this claim: Assume

µn(f)→ µ(f)

for any f ∈ C1([0, 1]). Let g be a continuous function and let {fk}k≥1 be a sequence of C1

functions converging to g in C0 norm. We have

|µn(g)− µ(g)| ≤ |µn(g)− µn(fk)|+ |µn(fk)− µ(fk)|+ |µ(fk)− µ(g)|
≤ 2‖fk − g‖C0 + |µn(fk)− µ(fk)| .

Now, for any ε > 0, we can find k0 such that 2‖fk0 − g‖C0 < ε/2 and then we can find n0 such

that for any n ≥ n0 we have |µn(fk0 )− µ(fk0 )| < ε/2.
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Assume that τs0(b) > b, for some 1 ≤ s0 ≤ L. Then, we can find r0 ∈ (a, b)
such that τs0(r0) > b. For arbitrary continuous function f , for ω ∈ A ⊂ Ω with
πp(A) = 1, we have

lim
T→∞

1
T

T−1∑
t=0

f(rt(st)) = µ(f).

The set As0 = {(s1, s2, . . . ) : (s0, s1, s2, . . . ) ∈ A} is also of πp-probability 1. Let
r′0 = τs0(r0) and let (st)′ denote the initial subsequences of length t of ω ∈ As0 .
Then,

1
T

T−1∑
t=0

f(r′t((s
t)′)) =

1
T

T−1∑
t=0

f(rt(st))−
1
T
f(r0) +

1
T
f(r′T−1((sT−1)′)) −→

T→+∞
µ(f).

This shows that τs0(r0) ∈ Bω(µ) and contradicts the assumptions.
Now, we assume that τs(b) < b, s = 1, . . . , L. Then, we can find r0 > b such that

τs(r0) ∈ (a, b) for all s. Let

As = {ω : lim
T→∞

1
T

T−1∑
t=0

f(r′t(s
t)) = µ(f), for r′0 = τs(r0)} , s = 1, . . . , L .

We have πp(As) = 1 for each s. Hence, πp(A) = 1, where A = ∪1≤s≤L(s,As)
and (s,As) = {(s, s1, s2, s3, . . . ) : (s1, s2, s3, . . . ) ∈ As}. For arbitrary continuous
function f , for ω ∈ A, if ω1 = s we have

lim
T→∞

1
T

T−1∑
t=0

f(rt(st))

= lim
T→∞

(
1
T

T−1∑
t=0

f(r′t((s
t)′)) +

1
T
f(r0)− 1

T
f(r′T−1((sT−1)′))

)
= µ(f),

where r′0 = τs(r0) and (st)′ are the initial subsequences of length t of ω ∈ As. This
implies that r0 ∈ B(µ). Since r0 > b, this leads to a contradiction. �

We now state the main result of this section. Firstly, we recall that 〈·, ·〉 denotes
an interval which is closed or open at any of the endpoints. Secondly, we define a
set BS whose elements are intervals of the form 〈·, ·〉 with the following property:

〈a, b〉 ∈ BS

if and only if

τs(a) ≥ a , s = 1, . . . , L and τs(a) = a for at least one s;

and
τs(b) ≤ b , s = 1, . . . , L and τs(b) = b for at least one s.

Theorem 3.3. The number of SRB measures of F is bounded above by the cardi-
nality of the set BS. In particular, if 0 and 1 are the only fixed points of some τs0 ,
s0 ∈ S, then F admits at most one SRB measure.

Proof. The fact that number of SRB measures of F is bounded above by the cardi-
nality of the set BS is a direct consequence of Proposition 3.2. To elaborate on the
second part of the theorem, assume without loss of generality that τs0(r) > r for all
r ∈ (0, 1). Obviously, by Proposition 3.2, if all the other maps τs, s ∈ S \ {s0} has
no fixed points in (0, 1), then F admits at most one SRB measure. So let us assume
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that there exists an s∗ ∈ S \ {s0} such that τs∗ has a finite or infinite number of
fixed points in [0, 1]. In the case of finite number of fixed points, denote the fixed
points of τs∗ in [0,1] by r∗i , i = 1, . . . , q, such that 0 ≤ r∗1 < r∗2 < · · · < r∗q ≤ 1.
Since τs(r∗i ) > r∗i for all r∗i ∈ (0, 1), the only possible basin for an SRB measure
would be either 〈r∗q−1, 1〉 or 〈r∗q , 1〉. In the case of infinite number of fixed points,
let

r̄ = sup{r ∈ (0, 1) : τs∗(r) = r}.
If r̄ < 1, then τs0(r̄) > r̄. By Proposition 3.2, 〈r̄, 1〉 is the only possible basin for an
SRB measure. If r̄ = 1, let J̄ denote the closure of the set of fixed points of τs∗ and
let J̄0 ⊆ J̄ be the minimal closed subset of J̄ which contains the point 1. J̄0 is the
only possible basin for an SRB measure. Moreover, it cannot be decomposed into
basins of different SRB measures. Indeed, let J1 ∪ J2 = J̄0 such that J1 = 〈a, b〉
with b < 1. Since τs0(b) > b, by Proposition 3.2, J1 cannot be a basin of an SRB
measure. Thus, F admits at most one SRB measure. �

The following example shows that Proposition 3.2 can be used to identify inter-
vals which are not in the basin of an SRB measure. In particular, it shows that the
bound obtained on the number of SRB measures in Theorem 3.3 is really sharp.

Example 3.4. Let

τ1(r) =

{
3r2 , for 0 ≤ r ≤ 1/3;
1− 3

2 (r − 1)2 , for 1/3 < r ≤ 1;
,

and

τ2(r) =

{
3
2r

2 , for 0 ≤ r ≤ 2/3;
1− 3(r − 1)2 , for 2/3 < r ≤ 1.

The graphs of the above maps are shown in Figure 1. Using Proposition 3.2,
we see that the points of the interval (1/3, 2/3) do not belong to a basin of any
SRB measure. Moreover, by Theorem 3.3, F admits at most two SRB measures.
Indeed, one can easily check that δ0 and δ1 are the only SRB measures with basins
B(δ0) = [0, 1/3] and B(δ1) = [2/3, 1] respectively. For any r ∈ [0, 1/3) for all ω’s
the averages 1

T

∑T−1
t=0 δrt(st) converge weakly to δ0. For r = 1/3 the only ω for

which this does not happen is ω = {1, 1, 1, . . . } so again the averages converge
weakly to δ0 with πp-probability 1. Similarly, we can show that B(δ1) = [2/3, 1].
If r ∈ (1/3, 2/3), then with positive πp-probability the averages converge to δ0 and
with positive πp-probability the averages converge to δ1. Thus, these points do not
belong to a basin of any SRB measure and there are only two SRB measures.

4. Properties of δ0 and δ1

In addition to condition (A), we assume in this section that for all s ∈ S:

(B) τs(0) = 0 and τs(1) = 1;

Obviously by Condition (B) the delta measures δ0 and δ1 are ergodic probability
measures for the IFS. We will be mainly concerned with the following question:
When does F have δ0 and/or δ1 as SRB measures? We start our analysis by
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Figure 1. Maps τ1 and τ2 in Example 3.4

proving a lemma which provides a sufficient condition for δx, the point measure
concentrated at x ∈ [0, 1], to be an SRB measure.

Lemma 4.1. Suppose that τs(x) = x for all s ∈ {1, . . . , L} and that there exists
an initial point of a random orbit r0, r0 6= x, for which limt→∞ rt(st) = x with
probability πp = 1. Then δx is an SRB measure for F and Bω(δx) ⊇ [x, r0]6.

Proof. Let f be a continuous function on [0, 1]. Let r0 6= x and fix a history st for
which limt→∞ rt(st) = x. Then

lim
t→∞

f(rt(st)) = f(x).

Consequently

lim
T→∞

1
T

T−1∑
t=0

f(rt(st)) = f(x).

Since the event
{ lim
t→∞

rt(st) = x}
appears with probability one, the event

{ lim
T→∞

1
T

T−1∑
t=0

f(rt(st)) = f(x)}

6The notation here is for the case when r0 > x.
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also appears with probability one. Thus, by Proposition 3.1, δx is an SRB measure
for F and Bω(δx) ⊇ [x, r0]. �

The following lemma, which is easy to prove, is a key observation for our main
results in this section.

Lemma 4.2. Each constituent map of the IFS can be represented as follows:

τs(r) = rβs(r),

with βs(r) satisfying:
(1) βs(r) > 0 in (0, 1) ;
(2) (ln r)βs(r) increasing;
(3) limr→0(ln r)βs(r) = −∞;
(4) limr→1(ln r)βs(r) = 0.

In the rest of this section, the following notation will be used:

αt
def
:= βs(rt−1) with probability ps, t = 1, 2, . . .

Theorem 4.3. Let F = {τs; ps}s∈S be an IFS such that τs(r) = rβs(r). Assume
that 0 < bs ≤ βs(r) ≤ Bs <∞ for all r ∈ [0, 1].

(1) If E(lnαt|st−1) ≤ 0 a.s., then limt→∞ rt(st) 6= 0 a.s.
(2) If lim supT→∞

1
T

∑T
t=1E(lnαt|st−1) < 0 a.s., then limt→∞ rt(st) = 1 a.s.

(3) If lim infT→∞ 1
T

∑T
t=1E(lnαt|st−1) > 0 a.s., then limt→∞ rt(st) = 0 a.s.

Proof. Let us consider the sequence of random exponents

α(t) = αtαt−1 · · ·α2α1,

where αi = βs(ri−1) with probability ps, and observe that

rt(st) = rα(t).

We have
lnα(t+ 1) = lnαt+1 + lnα(t),

and, with probability one,

E(lnα(t+ 1)|st)− ln(α(t)) = E(lnαt+1|st) ≤ 0.

Therefore, lnα(t) is a supermartingale. Moreover, because 0 < bs ≤ βs(rt) ≤ Bs <
∞, | lnα(t + 1) − lnα(t)| = | lnαt+1| < ∞. Hence lnα(t) is a supermartingale
with bounded increments. Thus, using Theorem 5.1 in Chapter VII of [12], with
probability one lnα(t) does not converge to +∞. Consequently, with probability
one, rt(st) = rα(t) does not converge to zero.

We now prove the second statement of the theorem. Again we consider the
sequence of random exponents

α(t) = αtαt−1 · · ·α2α1.

Let Mt denote the martingale difference

Mt := lnαt − E(lnαt|st−1).

We have E(Mt) = 0 and lnαt is uniformly bounded. Therefore, by the strong law
of large numbers (see Theorem 2.19 in [8]), with probability one

(4.1) lim
T→∞

1
T

T∑
t=1

Mt = 0.
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Therefore, with probability one,

lim sup
T→∞

1
T

lnα(T ) = lim sup
T→∞

1
T

T∑
t=1

lnαt

= lim sup
T→∞

1
T

T∑
t=1

Mt + lim sup
T→∞

1
T

T∑
t=1

E(lnαt|st−1) < 0.

From this we can conclude that for T large enough there is a positive random
variable η such that

α(T ) ≤ e−Tη a.s.
Thus, since r ∈ [0, 1], for T large enough we obtain

rT+1 = rα(T ) ≥ re
−Tη

a.s.

By taking the limit of T to infinity we obtain

lim
T→∞

rT+1 = lim
T→∞

rα(T ) ≥ lim
T→∞

re
−Tη

= 1 a.s.

The proof of the third statement is very similar to the proof of the second one with
slight changes. In particular, using (4.1), we see that, with probability one,

lim inf
T→∞

1
T

lnα(T ) > 0.

From this we can conclude that for T large enough there is a positive random
variable η such that

α(T ) ≥ eTη a.s.
Thus, since r ∈ [0, 1], for T large enough we obtain

rT+1 = rα(T ) ≤ re
Tη

a.s.

By taking the limit of T to infinity we obtain

lim
T→∞

rT+1 = lim
T→∞

rα(T ) ≤ lim
T→∞

re
Tη

= 0 a.s.

�

Corollary 4.4. Let F = {τs; ps}s∈S be an IFS such that τs(r) = rβs(r). Assume
that 0 < bs ≤ βs(r) ≤ Bs <∞ for all r ∈ [0, 1].

(1) If lim supT→∞
1
T

∑T
t=1E(lnαt|st−1) < 0 a.s., then δ1 is the unique SRB

measure of F with B(δ1) = (0, 1] .
(2) If lim infT→∞ 1

T

∑T
t=1E(lnαt|st−1) > 0 a.s., then δ0 is the unique SRB

measure of F with B(δ0) = [0, 1).

Proof. The proof is a consequence of statements (2) and (3) of Theorem 4.3 and
Lemma 4.1. �

Remark 4.5. Observe that:
(1)

∑
s ps lnBs ≤ 0 =⇒ E(lnαt|st−1) ≤ 0 a.s.

(2)
∑
s ps lnBs < 0 =⇒ lim supT→∞

1
T

∑T
t=1E(lnαt|st−1) < 0 a.s.

(3)
∑
s ps ln bs > 0 =⇒ lim infT→∞ 1

T

∑T
t=1E(lnαt|st−1) > 0 a.s.

Thus, the conditions in the statements of Theorem 4.3 and Corollary 4.4 are very
easy to check for certain systems.
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Remark 4.6. In the proof of statement (1) of Theorem 4.3, we have with probability
πp = 1, limt→∞ lnα(t) 6= ∞. In general, it is not clear that this implies that δ0 is
not an SRB measure. However, in the following theorem under additional natural
assumption on the variance of lnαt we show that δ0 is indeed not an SRB measure.

Theorem 4.7. If E(lnαt|st−1) ≤ 0 and var(lnαt|st−1) ≥ d > 0, for all t ≥ 1, then
δ0 is not an SRB measure of F .

Proof. Consider the sequence of random exponents

α(t) = αtαt−1 · · ·α2α1,

where αi = βs(rt−1) with probability ps, and observe that

rt(st) = rα(t).

Observe that

lnα(T ) =
T∑
t=1

lnαt.

Since
E(lnα(t)|st−1)− lnα(t− 1) = E(lnαt|st−1) ≤ 0,

and
0 < bs ≤ βs(rt) ≤ Bs <∞.

the sequence ZT = lnα(T ) forms a supermartingale with bounded increments.
Doob’s decomposition theorem gives the representation

ZT = WT + ST ,

where WT =
∑T
t=1E(lnαt|st−1) is a decreasing predictable sequence and

ST =
T∑
t=1

[lnαt − E(lnαt|st−1)],

is a 0 mean martingale with bounded increments. By Theorem 5.1 (Ch. VII) of [12]
with probability 1 process ST either converges to finite limit or lim supT→∞ ST =
− lim infT→∞ ST = ∞. In the first case the process ZT is bounded from above.
We will consider only the second case to show that with positive probability the
process ZT is bounded from above for a set of indices T which has positive density
in N, i.e, there exist M > 0, 0 < a, b < 1 such that

(4.2) πp(lim sup
T→∞

#{t ≤ T : Zt ≤M}
T

≥ a) > b.

Let us denote
Xt = lnαt − E(lnαt|st−1) , t ≥ 1.

This sequence satisfies assumptions of Theorem 7.1, with At = σ(st). We have

E(X2
t |st−1) = E((lnαt − E(lnαt|st−1))2|st−1)

=
L∑
s=1

ps(lnβs(r))2 −

(
L∑
s=1

ps lnβs(r)

)2

= var(lnαt|st−1) ≥ d > 0.
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Thus, the sequence Xt satisfies assumptions of Proposition 7.2. In particular, (7.1)
holds, i.e., if PosT is the number of times lnα(t) > 0 for t ≤ T , then

lim sup
T→∞

[πp(
PosT
T
≤ a)] = b > 0,

where a, b are some numbers in (0, 1). This means that if NT is the number of times
lnα(t) ≤ 0 for t ≤ T , then

lim sup
T→∞

[πp(
NT
T
≥ 1− a)] = b > 0.

Now, we we show that

πp(lim sup
T→∞

NT
T
≥ 1− a) ≥ b/2 > 0.

For T > T0 we have πp(NTT ≥ 1− a) > b/2. Let AT = {NTT ≥ 1− a}, T ≥ T0. The
set which contains points from infinitely many AT is A = ∩i∪T>iAT and since the
sequence (∪T>iAT )i is decreasing we have

πp(A) = lim
i→∞

πp(∪T>iAT ) ≥ b/2 .

Thus, with a positive probability b/2 > 0, there exist a sequence Tn →∞ such that
NTn
Tn
≥ 1− a or

πp(lim sup
T→∞

NT
T
≥ 1− a) ≥ b/2 > 0.

Thus, lnα(T ) is negative with positive density, i.e.,

lim
T→∞

1
T

#{t ≤ T : lnα(t) ≤ 0} ≥ 1− a > 0,

with positive probability b/2. This implies that rT (sT ) ≥ r̄ > 0 with positive
density 1− a and positive probability b/2. We can construct a continuous function
f which is 0 around 0 and 1 above r̄. The averages of this function satisfy

lim sup
T→∞

1
T

∑
T ′≤T

f(rT ′(sT ′)) ≥ 1− a,

with nonzero probability b/2 which proves there is no weak convergence to δ0. �

Remark 4.8. If E(lnαt|st−1) ≥ 0 and var(lnαt|st−1) ≥ d > 0, for all t ≥ 1, using
essentially the proof of Theorem 4.7, we obtain that δ1 is not an SRB measure of
F . In particular, if E(lnαt|st−1) = 0 and var(lnαt|st−1) ≥ d > 0, for all t ≥ 1, we
obtain that neither δ0 nor δ1 is an SRB measure.

5. Properties of δ0 and δ1: The case when p is unknown

In general, one cannot decide whether δ0 or δ1 is the unique SRB measure without
having information about p. We illustrate this fact in the following example.

Example 5.1. Let F = {τ1, τ2; p1, p2} where τ1 = r2, τ2 =
√
r and p1, p2 are un-

known. Observe that the exponents, which are explicit in this case and independent
of r, are β1(r) = 2 and β2(r) = 1/2. Then

p1 lnB1(r) + p2 lnB2(r) = (2p1 − 1) ln 2.

By Corollary 4.4, if p1 < 1/2 the measure δ1 is the unique SRB measure of F ;
however, if p1 > 1/2 the measure δ0 is the unique SRB measure of F . Thus, for
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this example, without having information about p, no information about the nature
of δ0 or δ1 can be obtained.

Although Example 5.1 shows that the analysis cannot be definitive in some cases
without knowing the probability distribution on S, our aim in this section is to find
situations when δ0 and/or δ1 are not SRB. Moreover, in addition to studying the
properties of δ0 and δ1, we are going to study the case when the IFS admit an
invariant probability measure whose support is separated from zero and is not
necessarily concentrated at one. The definition of such a measure is given below.

Definition 5.2. Let µ be a probability measure on ([0, 1],B), where B is the Borel
σ-algebra. We define the support of µ, denoted by supp(µ), as the smallest closed
set of full µ measure. We say that supp(µ) is separated from zero if there exists an
η > 0 such that µ([0, η]) = 0.

In addition to properties (A) and (B), we assume in this section that:

(C) Every τs has a finite number of fixed points.

In this section, we use a graph theoretic techniques to analyze ergodic properties
of δ0 and δ1. This approach is inspired by the concept of a Markov partition used
in the dynamical systems literature. For instance, in [2], the ergodic properties of
a deterministic system which admits a Markov partition is studied via a directed
graph and an incidence matrix. In our approach we construct a partition for our
random dynamical system akin to that of a Markov partition and use two directed
graphs to study ergodic properties of the system.

We now introduce the two graphs, Gd and Gu, which we will use in our analysis.
(1) Both Gd and Gu have the same vertices;
(2) For s ∈ {1, . . . , L}, an interval Js,m = (as,m, as,m+1) is a vertex in Gd and

Gu if and only if τs(as,m) = as,m, τs(as,m+1) = as,m+1 and τs(r) 6= r for
all r ∈ (as,m, as,m+1);

(3) Let Js,m and Jl,j be two vertices of Gd. There is a directed edge connecting
Js,m to Jl,j if and only if ∃ an r ∈ Js,m, r > al,j+1, and a t ≥ 1 such that
τ ts(r) ∈ Jl,j .

(4) Let Js,m and Jl,j be two vertices of Gu. There is a directed edge connecting
Js,m to Jl,j if and only if ∃ an r ∈ Js,m, r < al,j , and a t ≥ 1 such that
τ ts(r) ∈ Jl,j .

(5) By the out-degree of a vertex we mean the number of outgoing directed
edges from this vertex in the graph, and by the in-degree of a vertex we
mean the number of incoming directed edges incident to this vertex in the
graph.

(6) A vertex is called a source if it is a vertex with in-degree equals to zero. A
vertex is called a sink if it is a vertex with out-degree equals to zero.

For the above graphs, one can identify two types of vertices: let (as,m, as,m+1) be
a vertex. If τs(r) > r for all r ∈ (as,m, as,m+1), then the vertex (as,m, as,m+1)
will be denoted by Ĵs,m. If τs(r) < r for all r ∈ (as,m, as,m+1), then the vertex
(as,m, as,m+1) will be denoted by J̌s,m. When we prove a statement for a vertex
Js,m (without a label), this means that the result holds for both types of vertices.
The following lemma contains some properties of Gd and Gu.
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Lemma 5.3. Let Gd and Gu be defined as above.
(1) If Ĵs,m is a vertex in Gd, then Ĵs,m is a sink in Gd.
(2) Let J̌s,m and Jl,j be two vertices in Gd. There is a directed edge connecting

J̌s,m to Jl,j in Gd if and only if as,m < al,j+1 < as,m+1. In particular for
all s ∈ S there is no directed edge in Gd connecting Js,m to Js,j for any m
and j.

(3) If J̌s,m is a vertex in Gu, then J̌s,m is a sink in Gu.
(4) Let Ĵs,m and Jl,j be two vertices in Gu. There is a directed edge connecting

Ĵs,m to Jl,j in Gu if and only if as,m < al,j < as,m+1. In particular for all
s ∈ S there is no directed edge in Gu connecting Js,m to Js,j for any m and
j.

Proof. The proof of the first statement is straight forward. Indeed, let Jl,j be any
vertex in Gd and r ∈ Ĵs,m such that r > al,j+1. Then for all t ≥ 1 τ ts(r) >
τ t−1
s (r) > . . . τs(r) > r > al,j+1. The proof of the second statement follows from

the fact that if r > as,m ≥ al,j+1 then for t ≥ 1 we have τ ts(r) > as,m ≥ al,j+1. If
r > al,j+1 > as,m, then there exits a t ≥ 1 such that as,m < τ ts(r) < al,j+1. Proofs
of the third and fourth statements are similar to the first two. �

For our further analysis we introduce the following notion.

Definition 5.4. We say that a random orbit of F stays above a point c if all the
points of the infinite orbit are bigger than or equal to c with probability πp = 1.

Lemma 5.5. Let Jl,j be a vertex in Gd such that al,j+1 6= 1. If Jl,j is a source
in Gd, then the random orbit of F starting from r > al,j+1 stays above al,j+1 with
probability πp = 1.

Proof. Suppose Jl,j is a source in Gd. Then for all r > al,j+1, we have τ ts(r) > al,j+1

for all s ∈ S and t ≥ 1. This means that if r > al,j+1 we have τs1(r) > al,j+1 and
τs2 ◦ τs1(r) > al,j+1 and so on. �

Theorem 5.6. Let F be an IFS whose transformations satisfy the properties (A),
(B) and (C).

(1) If for all s ∈ S there is a vertex J̌s,m in Gd with as,m = 0, then δ0 is an
SRB measure, B(δ0) ⊇ [0, a), where a = mins{as,m+1}. In particular, for
any r0 ∈ [0, a), limt rt(st) = 0 a.s.

(2) If for all s ∈ S there is a vertex Ĵs,m in Gd with as,m+1 = 1, then δ1 is
an SRB measure. Moreover, B(δ1) ⊇ (b, 1], where b = maxs{as,m}. In
particular, for any r0 ∈ (b, 1], limt rt(st) = 1 a.s.

(3) Let Jl,j be a vertex in Gd such that al,j+1 6= 1. If Jl,j is a source in Gd
7

then F preserves a probability measure whose support is separated from 0
8.

(4) Let Jl,j be a vertex in Gu such that al,j+1 6= 0. If Jl,j is a source in Gu
then F preserves a probability measure whose support is separated from 1.

7In the case where al,j = 0, even if other Ĵs,m, with as,m = 0, receives a directed edge, the

result still holds. Thus, to know the existence of an invariant probability measure whose support
is separated from 0, it is enough to check that one vertex Jl,j with al,j = 0 which is a source in

Gd. Statements of Lemma 5.3 can be useful to visualize cases of this type.
8The invariant measure here is not necessarily δ1.
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(5) Let Ĵs∗,m be a vertex with as∗,m = 0 whose out-degree in Gu is at least one.
If ∃ a vertex Js0,j in Gd, as0,j = 0 and as0,j+1 < as∗,m+1, which is a source
in Gd, then for any r0 ∈ (0, 1], limt rt(st) 6= 0 a.s. Moreover, δ0 is not an
SRB measure for F .

(6) Let J̌s0,j be a vertex in Gd such that as0,j+1 = 1 and whose out-degree in
Gd is at least one. If ∃ a Js∗,m in Gu, as∗,m+1 = 1 and as∗,m > as0,j, which
is a source in Gu, then for any r0 ∈ [0, 1), limt rt(st) 6= 1 a.s. Moreover,
δ1 is not an SRB measure for F .

(7) If for all s ∈ S the vertices whose as,m = 0 are of the form Ĵs,m and their
as,m+1 ≡ a are identical, then for any r0 in (0, a], with probability one,
limt rt(st) = a. In particular, δa is an SRB measure with B(δa) = (0, a]
and δ0 is not an SRB measure.

(8) If for all s ∈ S the vertices whose as,m+1 = 1 are of the form J̌s,m and
their as,m ≡ b are identical, then for any r0 in [b, 1), with probability one,
limt rt(st) = b. In particular, δb is an SRB measure with B(δb) = [b, 1) and
δ1 is not an SRB measure.

Proof. We only prove the odd numbered statements in the theorem. Proofs of the
even numbered statements are very similar.
(1) For any r0 ∈ [0, a), any random orbit of F will converge to zero. Using Lemma
4.1, this shows that δ0 is an SRB measure with B(δ0) ⊇ [0, a).
(3) Let r0 > al,j+1. Since [0, 1] is a compact metric space and for all s ∈ S τs
is continuous, the average 1

T

∑T−1
t=0 P tδr0 of the probability measures converges in

the weak* topology to an F invariant probability measure9. By Lemma 5.5, this
measure is supported on [al,j+1, 1].
(5) Let D = {Js,m \ {0} : as,m = 0}. For any r0 ∈ D, there exists a finite
t ≥ 1 such that τ ts∗(r0) > as0,j+1. Since Js0,j is a source in Gd, by Lemma 5.5,
τ ts∗(r0) stays above as0,j+1 with probability πp = 1. Therefore, for any r0 ∈ D,
with positive probability, the random orbit of r0 is bounded away from 0. Let us
consider now the case of a starting point r′0 > as0,m+1. Since all the transformations
are homeomorphisms and 0 is a common fixed point, for any r′0 > as0,m+1 and any
t ≥ 0, with positive probability, rt(st) > as0,m+1. Hence, for any r ∈ (0, 1],
with strictly positive probability, limt→∞ rt(st) ≥ as0,m+1. Moreover, with strictly
positive probability, for any r ∈ (0, 1], there exists a T − 1 > t0 ≥ 1 such that

1
T

T−1∑
t=0

rt(st) ≥
1
T

t0−1∑
t=0

rt(st)−
(t0 + 1)
T

as0,m+1 + as0,m+1.

Therefore, with strictly positive probability, for any r ∈ (0, 1],

(5.1) lim
T→∞

1
T

T−1∑
t=0

rt(st) ≥ as0,m+1.

Now, to show that δ0 is not an SRB measure, it is enough to find a continuous
function f on [0, 1] such that with positive probability, for any r ∈ (0, 1],

{ lim
T→∞

1
T

T−1∑
t=0

f(rt(st)) 6= f(0)}.

9This follows from a random version of the Krylov-Bogoliubov Theorem [1].
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Indeed, this is the case if we use the function f(r) = r and (5.1). Thus, δ0 is not
an SRB measure..
(7) Obviously, for any r0 ∈ (0, a], the random orbit of F starting at r0 will converge
to a. Using Lemma 4.1, this implies that δa is an SRB measure with B(δa) = (0, a].
Moreover, since all the transformations are homeomorphisms with common fixed
point at a, for any r′0 > a, the random orbit of F stays above a. Thus, δ0 is not an
SRB measure. �

6. Asset Market Games

In this section, we apply our results to evolutionary models of financial markets.
In particular, we will focus on the model introduced by [4]. First, we recall the
model of [4].

6.1. The Model. Let S is a finite set and st ∈ S, t = 1, 2, ..., be the “state of the
world” at date t. Let p be a probability distribution on S such that for all s ∈ S
p(s) > 0. We also assume that st are independent and identically distributed.

In this model there are K “short-lived” assets k = 1, 2, ...,K (live one period
and are identically reborn every next period). One unit of asset k issued at time t
yields payoff Dk(st+1) ≥ 0 at time t+ 1. It is assumed that∑K

k=1
Dk(s) > 0 for all s ∈ S

and
EDk(st) > 0

for each k = 1, 2, ...,K , where E is the expectation with respect to the underlying
probability p. The total amount of asset k available in the market is V k = 1.

In this model there are I investors (traders) i = 1, ..., I. Every investor i at each
time t = 0, 1, 2, ... has a portfolio

xit = (xit,1, ..., x
i
t,K),

where xit,k is the number of units of asset k in the portfolio xit = xit(s
t), st =

(s1, ..., st). We assume that for each moment of time t ≥ 1 and each random
situation st, the market for every asset k clears:

(6.1)
I∑
i=1

xit,k(st) = 1.

Each investor is endowed with initial wealth wi0 > 0. Wealth wit+1 of investor i at
time t+ 1 can be computed as follows:

(6.2) wit+1 =
K∑
k=1

Dk(st+1)xit,k.

Total market wealth at time t+ 1 is equal to

(6.3) wt+1 =
I∑
i=1

wit+1 =
K∑
k=1

Dk(st+1).

Investment strategies are characterized in terms of investment proportions:

Λi = {λi0, λi1, λi2, ...}



16 WAEL BAHSOUN AND PAWE L GÓRA

of K-dimensional vector functions λit = (λit,1, ..., λ
i
t,K), λit,k = λit,k(st) t ≥ 0, satis-

fying λit,k > 0,
∑K
k=1 λ

i
t,k = 1. Here, λit,k stands for the share of the budget wit of

investor i that is invested into asset k at time t. In general λit,k may depend on
st = (s1, s2, ..., st). Given strategies Λi = {λi0, λi1, λi2, ...} of investors i = 1, ..., I,
the equation

(6.4) pt,k · 1 =
I∑
i=1

λit,kw
i
t

determines the market clearing price pt,k = pt,k(st) of asset k. The number of units
of asset k in the portfolio of investor i at time t is equal to

(6.5) xit,k =
λit,kw

i
t

pkt
.

Therefore

(6.6) xit,k =
λit,kw

i
t∑I

j=1 λ
j
t,kw

j
t

.

By using (6.6) and (6.2), we get

(6.7) wit+1 =
K∑
k=1

Dk(st+1)
λit,kw

i
t∑I

j=1 λ
j
t,kw

j
t

.

Since wi0 > 0, we obtain wit > 0 for each t. The main focus of the model is on the
analysis of the dynamics of the market shares of the investors

rit =
wit
wt
, i = 1, 2, ..., I.

Using (6.7) and (6.3), we obtain

(6.8) rit+1 =
K∑
k=1

Rk(st+1)
λit,kr

i
t∑I

j=1 λ
j
t,kr

j
t

, i = 1, 2, ..., I,

where

Rk(st+1) =
Dk(st+1)∑K

m=1Dm(st+1)

are the relative (normalized) payoffs of the assets k = 1, 2, ...,K. We have Rk(s) ≥ 0
and

∑
k Rk(s) = 1.

6.2. Performance of investment strategies and the Kelly rule. In the theory
of evolutionary finance there are three possible grades for investor i (or for the
strategy she/he employs):

(i) extinction: lim rit = 0 a.s.;
(ii) survival: lim sup rit > 0 but lim inf rit < 1 a.s.;
(iii) domination: lim rit = 1 a.s.

Definition 6.1. An investment strategy is called completely mixed strategy if it
assigns a positive percentage of wealth λt,k(st) to every asset k = 1, . . . ,K for all
t and st; moreover, it is called simple if λt,k(st) = λk > 0.
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In this theory, the following simple portfolio rule has been very successful: define

λ∗ = (λ∗1, ..., λ
∗
K), λ∗k = ERk(st), k = 1, ...,K,

so that λ∗1, ..., λ
∗
K are the expected relative payoffs of assets k = 1, ...,K. The port-

folio rule λ∗ is called the Kelly rule which expresses the investment principle of
“betting your beliefs” [9]. In [4] under the following two conditions:

E1) There are no redundant assets, i.e. the functions R1(s), ..., RK(s) of s ∈ S are
linearly independent.

E2) All investors use simple strategies;

it was shown that investors who follow the Kelly rule survive and others who use a
different simple strategy get extinct. In particular, If only one investor follows the
Kelly rule, then this investor dominates the market.

The main challenge in using the Kelly rule lies in the fact that it requires from
investors the full knowledge of the probability distribution p. In Subsection 6.4,
using an IFS representation of (6.8) and Theorem 4.3, we overcome this difficulty
by finding another successful strategy which requires partial knowledge of the prob-
ability distribution p.

6.3. An IFS realization of the model. In the rest of the paper, we are going to
show how the above model can be represented by an IFS. We are going to apply the
results of Sections 4 and 5 to study the dynamics of (6.8). As in [4], we assume here
that all the investors use simple strategies. Further, we focus on the case10 when
I = 2. The market selection process (6.8) reduces to the following one dimensional
system:

(6.9) rt+1(st+1) =
K∑
k=1

Rk(st+1)
λ1
krt

λ1
kr + λ2

k(1− rt)
,

where rt is investor’s 1 relative market share at time t and (λ1
k)Kk=1 and (λ2

k)Kk=1

are the investment strategies of investor 1 and 2 respectively. Then the random
dynamical (6.9) of the market selection process can be described by an iterated
function system with probabilities:

F = {τ1, τ2, . . . , τL; p1, p2, . . . , pL},

where

τs(r) =
K∑
k=1

Rk(s)
λ1
kr

λ1
kr + λ2

k(1− r)
.

We first note that the transformations τs of the IFS of the market selection process
are maps from the unit interval into itself and they satisfy assumptions (A), (B)
and (C). In fact, the maps for this model have additional properties. For example,
they are differentiable functions.

10This is the same as assuming that there are I investors, I > 2, where I − 1 investors use the
same strategy and only one investor deviates from them.
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6.4. Investors with partial information on p and a generalization of the
Kelly rule. We use Theorem 4.3 to provide a rule for investors with partial in-
formation on p. The investor who follows this rule cannot be driven out of the
market; i.e., she/he either dominates or at least survives. The importance of this
rule lies in the fact that investor 1 does not need to know the Kelly rule exactly11.
She/he only needs to know a perturbation of the Kelly rule; for example, the Kelly
rule plus some error bounds.

Firstly, we show in the following lemma that the logarithms of the exponents
βs(r) are uniformly bounded.

Lemma 6.2. Let

τ(r) =
K∑
k=1

Rk
λ1
kr

λ1
kr + λ2

k(1− r)
, r ∈ [0, 1],

and
τ(r) = rβ(r),

where, for each 1 ≤ k ≤ K we have Rk ≥ 0, λ1
k > 0, λ2

k > 0 and
∑K
k=1Rk =∑K

k=1 λ
1
k =

∑K
k=1 λ

2
k = 1. Then for any r ∈ U , U ⊆ [0, 1], ln(β(r)) is bounded.

Proof. Without loss of generality, we assume that U = [0, 1]. We have τ(r) =
rβ(r) = exp(ln(r)β(r)), so

β(r) =
ln(τ(r))

ln(r)
.

The minimum and maximum of β(r) can be attained at r = 0, r = 1 or at a point
of a local extremum. Using De L’Hospital rule we find

lim
r→0+

β(r) = 1 and lim
r→1−

β(r) =
K∑
k=1

Rk
λ2
k

λ1
k

.

A point of local extremum r∗ in (0, 1) of β(r) is found by solving

β′(r) =
1

ln(r)

(
τ ′(r)
τ(r)

− B(r)
r

)
= 0.

Therefore, at the point r = r∗ of local extremum

β(r∗) =

∑K
k=1Rk

λ1
kλ

2
k

[λ1
kr∗+λ

2
k(1−r∗)]2∑K

k=1Rk
λ1
k

λ1
kr∗+λ

2
k(1−r∗)

.

Observe that the function ∑K
k=1Rk

λ1
kλ

2
k

[λ1
kr+λ

2
k(1−r)]2∑K

k=1Rk
λ1
k

λ1
kr+λ

2
k(1−r)

is continuous at [0, 1]. Thus, it attains its maximum and minimum on [0, 1]. This
completes the proof of the lemma. �

11It is often difficult for an investor to know the exact probability distribution of the states of
the world.
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Corollary 6.3. Let

τs(r) =
K∑
k=1

Rk(s)
λ1
kr

λ1
kr + λ2

k(1− r)
, r ∈ [0, 1].

Then for r ∈ U , U ⊆ [0, 1],

bs = min
r∈Ū

∑K
k=1Rk

λ1
kλ

2
k

[λ1
kr+λ

2
k(1−r)]2∑K

k=1Rk
λ1
k

λ1
kr+λ

2
k(1−r)

and Bs = max
r∈Ū

∑K
k=1Rk

λ1
kλ

2
k

[λ1
kr+λ

2
k(1−r)]2∑K

k=1Rk
λ1
k

λ1
kr+λ

2
k(1−r)

.

Theorem 6.4. If for each k ∈ {1, . . . ,K} λ1
k lies between ERk and λ2

k, then
investor 1 cannot be driven out of the market; i.e., she/he either dominates or at
least survives.

Proof. Let us consider the function

G(r) =
K∑
k=1

vk
λ1
k

Λk(r)
, r ∈ [0, 1],

where
Λk(r) = λ1

kr + λ2
k(1− r) = (λ1

k − λ2
k)r + λ2

k,

and V = (v1, v2, . . . , vL) is a probability vector. We will find conditions on λ1
k which

ensure G(r) ≥ 1, r ∈ [0, 1]. It is easy to see that

(6.10) G(1) =
K∑
k=1

vk
λ1
k

λ1
k

= 1.

We also have

G′(r) =
K∑
k=1

vkλ
1
k

−(λ1
k − λ2

k)
(Λk(r))2

, r ∈ [0, 1],

and

G′′(r) =
K∑
k=1

vkλ
1
k

2(λ1
k − λ2

k)2

(Λk(r))3
> 0 , r ∈ [0, 1].

Thus, G is a convex function and its derivative G′ is increasing. If G′(1) ≤ 0 then
G is decreasing and because of (6.10) this implies that G(r) ≥ 1, r ∈ [0, 1]. Observe
that

G′(1) =
K∑
k=1

vkλ
1
k

−(λ1
k − λ2

k)
(λ1
k)2

=
K∑
k=1

vk
λ1
k

(λ2
k − λ1

k).

It is easy to see that a sufficient condition for G′(1) ≤ 0 is

vk ≥ λ1
k if λ1

k ≥ λ2
k;

vk ≤ λ1
k if λ1

k ≤ λ2
k,

(6.11)

or, in short, for each k, 1 ≤ k ≤ K, λ1
k should be between λ2

k and vk.
Now, let us consider the expression

L∑
s=1

ps ln(βs(r)).
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We have

L∑
s=1

ps ln(βs(r)) ≤ ln

(
L∑
s=1

psβs(r)

)
= ln

(
L∑
s=1

ps
ln(τs(r))

ln r

)

≤ ln

(
1

ln r
ln

(
L∑
s=1

psτs(r)

))
= ln

(
1

ln r
ln

(
L∑
s=1

ps

K∑
k=1

Rk(s)
λ1
kr

Λk(r)

))

= ln

(
1

ln r
[ln r + ln

(
K∑
k=1

(
L∑
s=1

psRk(s))
λ1
k

Λk(r)

)
]

)
= ln

(
1 +

1
ln r

ln(G(r))
)
,

(6.12)

with vk being the expected payoff for the kth asset, vk =
∑L
s=1 psRk(s), k =

1, . . . ,K.
A sufficient condition for

∑L
s=1 ps ln(βs(r)) ≤ 0 is for r ∈ [0, 1]:

ln(G(r)) ≥ 0 or equivalently G(r) ≥ 1.

We have shown before that a sufficient condition for this is (6.11) or placing each
λ1
k between the expected payoff vk and λ2

k.
To complete the proof of the theorem, we first use Lemma 6.2 to observe that

exponents βs(r) of this system are bounded and then (1) of Theorem 4.3. Indeed,
for any fixed partial history st−2, because the stochastic process st is an iid process,
we have

E(lnαt|st−1) =
L∑
s=1

ps ln(βs(rt−2)).

�

6.5. Incorrect beliefs. Our results in Section 5 are also interesting for studying
the dynamics of (6.8). In fact, they can be used to study the dynamics in the
situation where both players have ‘incorrect beliefs’; i.e., when players do not have
the right information or partial information about p. Thus, they either use wrong
distributions to build their strategies or they arbitrarily choose their strategies.
Consequently, their strategies are, in general, different from the Kelly rule and
the generalization which we presented in Subsection 6.4. In this case, the results
of Section 5 can be used to identify the exact outcome of the game in certain
situations. In some situations, as in Example 5.1, one cannot know the outcome of
the system without knowing p.

7. Appendix

The following general arcsine law has been proved in [6].

Theorem 7.1. [6] Let X1, X2, . . . be a sequence of random variables adapted to the
sequence of σ-algebras A1,A2, . . . . Let Sm =

∑m
i=1Xi, vm =

∑m
i=1E(X2

i |Ai−1)
and assume

E(Xm+1|Am) = 0 , EX2
m <∞ , and vm →∞ a.s.

Let Tn = inf{m : vm ≥ n} and Ln = 1
n

∑Tn
i=1E(X2

i |Ai−1)χ{Si>0}. If

1
n

Tn∑
i=1

X2
i χ{X2

i>nε} −→L1
0 for all ε > 0,
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then the distributions of Ln converge to the arcsine distribution.

We now use Theorem 7.1 to prove a proposition which is used in the proof of
Theorem 4.7.

Proposition 7.2. Let X1, X2, . . . be a sequence of random variables adapted to
the sequence of σ-algebras A1,A2, . . . . Suppose that there exist constants d > 0
and 0 < D <∞ such that for all n ≥ 1 we have

0 < d ≤ E(X2
n|An−1) and X2

n ≤ D.
Then, the sequence satisfies the remaining assumptions of Theorem 7.1. In partic-
ular, Theorem 7.1 implies the condition

(7.1) lim sup
n→∞

Pr(
Posn
n
≤ a) ≥ b > 0,

for some constants 0 < a, b < 1, where Posn =
∑n
i=1 χ{Si>0}.

Proof. The remaining assumptions of Theorem 7.1 are trivially satisfied. We have
m · d ≤ vm ≤ m ·D for all m ≥ 1 so Tn · d ≤ n ≤ Tn ·D for all n ≥ 1. Then,

Ln ≥
1
D

1
Tn
d

Tn∑
i=1

χ{Si>0}

and, for 0 ≤ a1 ≤ 1, we have

Pr

(
d

D

1
Tn

Tn∑
i=1

χ{Si>0} ≤ a1

)
≥ Pr(Ln ≤ a1) −→

n→∞

2
π

arcsin
√
a1.

For a1 small enough we obtain a meaningful estimate

Pr

(
1
Tn

Tn∑
i=1

χ{Si>0} ≤ a

)
≥ 1
π

arcsin
√
a,

for a = a1
D
d and n large enough. This implies condition (7.1). �
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