
POSITION DEPENDENT RANDOM MAPS IN ONE AND

HIGHER DIMENSIONS
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Abstract. A random map is a discrete-time dynamical system in which one

of a number of transformations is randomly selected and applied on each it-

eration of the process. In this paper, we study random maps with position

dependent probabilities on the interval and on a bounded domain of R . Suffi-

cient conditions for the existence of an absolutely continuous invariant measure

for random map with position dependent probabilities on the interval and on

a bounded domain of R are the main results of this note.

1. Introduction

Let τ , τ , ..., τ be a collection of transformations from X to X. Usually, the

random map T is defined by choosing τ with constant probability p , p > 0,
∑

p = 1. The ergodic theory of such dynamical systems was studied in [9] and

in [8] (See also [7]).

There is a rich literature on random maps with position dependent probabilities

with τ , τ , ..., τ being continuous contracting transformations (see [10]).

In this paper, we deal with piecewise monotone transformations τ , τ , ..., τ and

position dependent probabilities p (x), k = 1, ..., K, p (x) > 0,

∑

p (x) = 1,

i.e., the p ’s are functions of position. We point out that studying such dynamical

systems was first introduced in [4] where sufficient conditions for the existence

of an absolutely continuous invariant measure were given. The conditions in [4]

are applicable only when τ , τ , ..., τ are C expanding transformations (see [4]

for details). In this paper, we prove the existence of an absolutely continuous

invariant measure for a random map T on [a, b] under milder conditions ( see section

4, Conditions (A) and (B)). Moreover, we prove the existence of an absolutely

continuous invariant measure for a random map T on S, where S is a bounded

domain of R ( see section 6, Condition (C)) .

The paper is organized in the following way: In section 2, following the ideas

of [4], we formulate the definition of a random map T with position dependent

probabilities and introduce its Perron-Frobenius operator. In section 3, we prove

properties of the Perron-Frobenius operator of T . In section 4, we prove the exis-

tence of an absolutely continuous invariant measure for T on [a, b]. In section 5, we

give an example of a random map T which does not satisfy the conditions of [4];

yet, it preserves an absolutely continuous invariant measure under conditions (A)
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and (B). In section 6, we prove the existence of an absolutely continuous invariant

measure for T on a bounded domain of R . In section 7, we give an example of a

random map in R that preserves an absolutely continuous invariant measure.

2. preliminaries

Let (X,B,λ) be a measure space, where λ is an underlying measure. Let τ :

X → X, k = 1, ...,K be piecewise one-to-one, non-singular transformations on a

common partition P ofX : P = {I , ..., I } and τ = τ | , i = 1, ..., q, k = 1, ...,K

(P can be found by considering finer partitions). We define the transition function

for the random map T = {τ , ...τ ; p (x), ...p (x)} as follows:

(2.1) P(x,A) =

∑

p (x)χ (τ (x)),

where A is any measurable set and {p (x)} is a set of position dependent

measurable probabilities, i.e.,

∑

p (x) = 1, p (x) ≥ 0, for any x ∈ X and

χ denotes the characteristic function of the set A. We define T (x) = τ (x)

with probability p (x) and T (x) = τ ◦ τ ◦ ... ◦ τ (x) with probability

p (τ ◦ ...◦τ (x)) ·p (τ ◦ ...◦τ (x)) · · · p (x). The transition function

P induces an operator P on measures on (X,B) defined by

P µ(A) =

∫

P(x,A)dµ(x) =

∑

∫

p (x)χ (τ (x))dµ(x)

=

∑

∫

p (x)dµ(x) =

∑∑

∫

p (x)dµ(x)

(2.2)

We say that measure µ is T -invariant iff P µ = µ, i.e.,

(2.3) µ(A) =

∑

∫

p (x)dµ(x), , A ∈ B.

If µ has density f with respect to λ, the P µ has also a density which we denote

by P f . By change of variables, we obtain

∫

P f(x)dλ(x) =

∑∑

∫

p (x)f(x)dλ(x)

=

∑∑

∫

p (τ x)f(τ x)

1

J (τ )

dλ(x)

(2.4)

where J is the Jacobian of τ with respect to λ. Since this holds for any mea-

surable set A we obtain an a.e. equality:

(2.5) (P f)(x) =

∑∑

p (τ x)f(τ x)

1

J (τ )

χ (x)

or

(2.6) (P f)(x) =

∑

P (p f) (x)



where P is the Perron-Frobenius operator corresponding to the transformation

τ (see [1] for details). We call P the Perron-Frobenius of the random map T .

The main tool in this paper is the Perron-Frobenius of T which has very useful

properties.

3. Properties of the Perron-Frobenius operator of T

The properties of P resemble the properties of the classical Perron-Frobenius

operator of a single transformation.

Lemma 3.1. P satisfies the following properties:

(i) P is linear;

(ii) P is non-negative; i.e., f ≥ 0 =⇒ P f ≥ 0;

(iii) P f = f ⇔ mu = f · λ is T -invariant;

(iv) ‖P f‖ ≤ ‖f‖ , where ‖.‖ denotes the L norm;

(v) P = P ◦ P . In particular, P f = P f .

Proof. The proofs of (i)-(iv) are analogous to that for single transformation. For the

proof of (v), let T andR be two random maps corresponding to {τ , τ , ..., τ ; p , p , ..., p }

and {ζ , ζ , ..., ζ ; r , r , ..., r } respectively. We define {τ } and {ζ } on a

common partition P. We have

P (P f) = P

(

∑

P (p f)

)

=

∑∑

P (r P (p f))

=

∑∑∑

r (ζ )[P (p f)](ζ )

1

J (ζ )

χ

=

∑∑∑∑

r (ζ )p (τ ◦ ζ )f(τ ◦ ζ )

×
1

J (τ ◦ ζ )

1

J (ζ )

χ (ζ )χ

=

∑∑

P (p (ζ )r f) = P f.

(3.1)

!

4. The existence of absolutely continuous invariant measure on [a, b]

Let (I,B,λ) be a measure space, where λ is normalized Lebesgue measure on

I = [a, b]. Let τ : I → I, k = 1, ...,K be piecewise one-to-one and differentiable,

non-singular transformations on a partition P of I : P = {I , ..., I } and τ =

τ | , i = 1, ..., q, k = 1, ..., K. Denote by V (·) the standard one dimensional

variation of a function, and by BV (I) the space of functions of bounded variations

on I equipped with the norm ‖ · ‖ = V (·) + ‖ ·‖ .

Let g (x) = , k = 1, . . . , K. We assume that

Condition (A):

∑

g (x) < α < 1, x ∈ I, and

Condition (B): g ∈ BV (I), k = 1, . . . ,K .

Under the above conditions our goal is to prove:

(4.1) V P f ≤ AV f +B‖f‖



for some n ≥ 1, where 0 < A < 1 and B > 0. The inequality (4.1) guarantees the

existence of a T -invariant measure absolutely continuous with respect to Lebesgue

measure and the quasi-compactness of operator P with all the consequences of

this fact, see [1]. We will need a number of lemmas:

Lemma 4.1. Let f ∈ BV (I). Suppose τ : I → J is differentiable and τ (x) *= 0,

x ∈ I. Set φ = τ and let g(x) = ∈ BV (I). Then

V (f(φ)g(φ)) ≤ (V f + sup f)(V g + sup g).

Proof. First, note that we have dropped all the k, i indices to simplify the notation.

Then, the proof follows in the same way as in Lemma 3 of [9]. !

Lemma 4.2. Let T satisfy conditions (A) and (B). Then for any f ∈ BV (I),

(4.2) V P f ≤ AV f +B‖f‖ ,

where

A = 3α + max

∑

V g ;

and

B = 2βα + β max

∑

V g ,

where β = max (λ(I )) .

Proof. First, we will refine partition P to satisfy additional condition. Let η > 0

be such that

∑

(g (x) + ε ) < α whenever |ε | < η, k = 1, . . . ,K. Since g ,

k = 1, . . . ,K are of bounded variation we can find a finite partition K such that for

any k = 1, . . . , K

|g (x)− g (y)| < η,

for x, y in the same element of K. Instead of the partition P we consider a join

P ∨ K. Without restricting generality of our considerations, we can assume that

this is our original partition P. Then, we have

(4.3) max

∑

sup g (x) < α.

We have V (P f) = V (

∑

P (p f)). We will estimate this variation. Let

φ = τ , k = 1, . . . ,K, i = 1, . . . , q. We have

V

(

∑

P (p f)

)

= V

(

∑∑

f(φ )g (φ )χ

)

≤

∑∑

[|f(a )‖g (a )|+ |f(a )‖g (a )|]

+

∑∑

V [f(φ )g (φ )].

(4.4)



First, we estimate the first sum on the right hand side of (4.4):

∑∑

[|f(a )‖g (a )|+ |f(a )‖g (a )|]

=

∑

[

|f(a )|

(

∑

|g (a )|

)

+ |f(a )|

(

∑

|g (a )|

)]

≤ α

(

∑

(|f(a )|+ |f(a )|)

)

≤ α

(

∑

(

V f + (λ(I ))

∫

fdλ

)

)

= α (V f + β‖f‖ ) .

(4.5)

We now estimate the second sum on the right hand side of (4.4). Using Lemma

4.1 we obtain:

∑∑

V [f(φ )g (φ )] ≤

∑∑

(

V f + sup f

)(

V g + sup g

)

≤

∑

(

2V f + β

∫

fdλ

)

(

max

∑

(

V g + sup g

)

)

≤ (2V f + β‖f‖ )

(

max

∑

V g + α

)

.

(4.6)

Thus, using (4.5) and (4.6), we obtain

(4.7) V P f ≤

(

3α + max

∑

V g

)

V f +

(

2βα + β max

∑

V g

)

‖f‖ .

!

In the following two lemmas we show that constants α and max

∑

V g

decrease when we consider higher iterations T instead of T . The constant β

obviously increases, but this is not important.

Lemma 4.3. Let T be a random map which satisfies condition (A). Then, for

x ∈ I,

(4.8)

∑

p (x)

|T (x)|
< α ,

where T (x) = τ ◦ τ ◦ · · · ◦ τ (x) and p (x) = p (τ ◦ · · · ◦ τ (x)) ·

p (τ ◦ · · · ◦ τ (x)) · · · p (x), define random map T .

Proof. We have

T (x) = τ ◦ τ ◦ · · · ◦ τ (x)

with probability

p (τ ◦ · · · ◦ τ (x)) · p (τ ◦ · · · ◦ τ (x)) · · · p (x).

The maps defining T may be indexed by w ∈ {1, 2, ..., K} . Set

T (x) = τ ◦ τ ◦ · · · ◦ τ (x)



where w = (k , ..., k ), and

p (x) = p (τ ◦ · · · ◦ τ (x)) · p (τ ◦ · · · ◦ τ (x)) · · · p (x).

Then,

T (x) = τ (τ ◦ · · · ◦ τ (x))τ (τ ◦ · · · ◦ τ (x)) · · · τ (x).

Suppose that T satisfies condition (A). We will prove (4.8) using induction on N .

For N = 1, we have

(4.9)

∑

p (x)

|T (x)|
< α

by condition (A). Assume (4.8) is true for N − 1. Then,

∑

p (x)

|T (x)|
=

∑ ∑

p (x)p (τ (x))

|τ (x)‖T (τ (x))|

≤

(

∑

p (x)

|τ (x)|

)





∑

p (τ (x))

|T (τ (x))|



 < α · α = α .

(4.10)

!

Lemma 4.4. Let g = , where T and p are defined in Lemma 4.3, w ∈

{1, ...,K} . Define

W ≡ max

∑

V g ,

and

W ≡ max

∑

V g ,

where P is the common monotonicity partition for all T . Then, for all n ≥ 1

(4.11) W ≤ nα W ,

where α is defined in condition (A).

Proof. We prove the lemma by induction on n. For n = 1 the lemma is true by

definition of W . Assume that the lemma is true for n, i.e.,

(4.12) W ≤ nα W .



Let J ∈ P and x < x < ... < x be a sequence of points in J . Then

∑∑

|g (x )− g (x )| =

∑ ∑

|g (x )− g (x )|

≤

∑ ∑ ∑

|g (τ (x ))g (x )− g (τ (x ))g (x )|

≤

∑ ∑ ∑

|g (τ (x ))g (x )− g (τ (x ))g (x )|

+

∑ ∑ ∑

|g (τ (x ))g (x )− g (τ (x ))g (x )|

≤

∑∑

|g (x )− g (x )|

∑

g (τ (x ))

+

∑∑

g (x )

∑

|g (τ (x ))− g (τ (x ))|

≤ α

∑∑

|g (x )− g (x )|

+ α

∑ ∑

|g (τ (x ))− g (τ (x ))|

≤ α W + αW ≤ α W + nα W = (n+ 1)α W .

(4.13)

We used condition (A) and lemma 4.3. !

Theorem 4.5. Let T be a random map which satisfies conditions (A) and (B).

Then T preserves a measure which is absolutely continuous with respect to Lebesgue

measure. The operator P is quasi-compact on BV (I), see [1].

Proof. Let N be such that A = 3α +W < 1. Then, by Lemma 4.3,

∑

g (x) < α , x ∈ I.

We refine the partition P like in the proof of Lemma 4.2, to have

max

∑

sup g < α .

Then, by lemma 4.2, we get

(4.14) ‖P f‖ ≤ A ‖f‖ +B ‖f‖ ,

where B = β (2α + W ), β = max (λ(J)) . The theorem follows by

the standard technique (see [1]). !

Remark 4.6. It is enough to assume that condition (A) is satisfied for some iterate

T ,m ≥ 1.



Remark 4.7. The number of absolutely continuous invariant measures for random

maps has been studied in [6]. The proof of [6], which uses graph theoretic methods,

goes through analogously in our case; i.e., when T is a random map with position

dependent probabilities.

5. Example

We present an example of a random map T which does not satisfy the conditions

of [4]; yet, it preserves an absolutely continuous invariant measure under conditions

(A) and (B).

Example 5.1. Let T be a random map which is given by {τ , τ ; p (x), p (x)}

where

(5.1) τ (x) =

{

2x for 0 ≤ x ≤

x for < x ≤ 1
,

(5.2) τ (x) =

{

x+ for 0 ≤ x ≤

2x− 1 for < x ≤ 1
;

and

(5.3) p (x) =

{

for 0 ≤ x ≤

for < x ≤ 1
,

(5.4) p (x) =

{

for 0 ≤ x ≤

for < x ≤ 1
.

Then,

∑

g (x) = < 1. Therefore, T satisfies conditions (A) and (B). Con-

sequently, by theorem 4.5, T preserves an invariant measure absolutely continuous

with respect to Lebesgue measure. Notice that τ , τ are piecewise linear Markov

maps defined on the same Markov partition P : {[0, ], [ , 1]}. For such maps

the Perron-Frobenius operator reduces to a matrix (see [1]). The corresponding

matrices are:

(5.5) P =

(

0 1

)

, P =

(

0 1

)

.

Their invariant densities are f = [0, 2] and f = [2, 0]. The Perron-Frobenius

operator of the random map T is given by:

(5.6) P =

(

0

0

)(

0 1

)

+

(

0

0

)(

0 1

)

=

( )

.

If the invariant density of T is f = [f , f ], normalized by f +f = 2 and satisfying

equation fP = f , then f = and f = .

6. The existence of absolutely continuous invariant measure in R

Let S be a bounded region in R and λ be Lebesgue measure on S. Let τ :

S → S, k = 1, ..., K be piecewise one-to-one and C , non-singular transformations

on a partition P of S : P = {S , ..., S } and τ = τ | , i = 1, ..., q, k = 1, ...,K.

Let each S be a bounded closed domain having a piecewise C boundary of finite

(n − 1)-dimensional measure. We assume that the faces of ∂S meet at angles

bounded uniformly away from 0. We will also assume that the probabilities p (x)



are piecewise C functions on the partition P. Let Dτ (x) be the derivative

matrix of τ at x. We assume:

Condition (C):

max

∑

p (x)‖Dτ (τ (x))‖ < σ < 1.

Let sup ‖Dτ (x)‖ := σ and sup p (x) := π . Using smoothness

of Dτ ’s and p ’s we can refine partition P to satisfy

Condition (C’):

∑

max σ π < σ < 1

.

Under this condition, our goal is to prove the existence of an a.c.i.m. for the

random map T = {τ , ..., τ ; p , ..., p }. The main tool of this section is the multi-

dimensional notion of variation defined using derivatives in the distributional sense

(see [3]):

V (f) =

∫

‖Df‖ = sup{

∫

fdiv(g)dλ : g = (g , ..., g ) ∈ C (R ,R )},

where f ∈ L (R ) has bounded support, Df denotes the gradient of f in the distri-

butional sense, and C (R ,R ) is the space of continuously differentiable functions

from R into R having a compact support. We will use the following property of

variation which is derived from [3], Remark 2.14: If f = 0 outside a closed domain

A whose boundary is Lipschitz continuous, f is continuous, f is C , then

V (f) =

∫

‖Df‖dλ +

∫

|f |dλ ,

where λ is the n−1-dimensional measure on the boundary of A. In this section

we shall consider the Banach space (see [3], Remark 1.12),

BV (S) = {f ∈ L (S) : V (f) < +∞},

with the norm ‖f‖ = V (f) + ‖f‖ . We adapt the following two lemmas from

[5]. The proofs of Lemma 6.1 and Lemma 6.2 are exactly the same as in [5].

Lemma 6.1. Consider S ∈ P. Let x be a point in ∂S and y = τ (x) a point in

∂(τ (S )). Let J be the Jacobian of τ at x and J be the Jacobian of τ

at x. Then

J

J

≤ σ .

!

Let us fix 1 ≤ i ≤ q. Let Z denote the set of singular points of ∂S . Let

us construct at any x ∈ Z the largest cone having a vertex at x and which lies

completely in S . Let θ(x) denote the angle subtended at the vertex of this cone.

Then define

β(S ) = min θ(x).

Since the faces of ∂S meet at angles bounded away from 0, β(S ) > 0. Let α(S ) =

π/2 + β(S ) and

a(S ) = | cos(α(S ))|.



Now we will construct a C field of segments L , y ∈ ∂S , every L being a

central ray of a regular cone contained in S , with angle subtended at the vertex y

greater than or equal to β(S ).

We start at points y ∈ Z, where the minimal angle β(S ) is attained, defining L

to be central rays of the largest regular cones contained in S . Then we extend this

field of segments to C field we want, making L short enough to avoid overlapping.

Let δ(y) be the length of L , y ∈ ∂S . By the compactness of ∂S we have

δ(S ) = inf δ(y) > 0.

Now, we shorten L of our field, making them all of the length δ(S ).

Lemma 6.2. For any S , i = 1, . . . , q, if f is a C function on S , then

∫

f(y)dλ (y) ≤
1

a(S )

(

1

δ(S )

∫

fdλ + V (f)

)

.

!

Our main technical result is the following :

Theorem 6.3. If T is a random map which satisfies Condition (C), then

V (P f) ≤ σ(1 + 1/a)V (f) + (M +

σ

aδ

)‖f‖ ,

where a = min{a(S ) : i = 1, . . . , q} > 0, δ = min{δS , : i = 1, . . . , q} > 0,

M = sup (Dp (x)−
DJ

J

p (x)) and M =

∑

max M .

Proof. We have V (P f) ≤
∑

V (P (p f)). We first estimate V (P (p f)). Let

F = , and R = τ (S ), i = 1, . . . , q, k = 1, . . . , K. Then,

∫

‖DP (p f)‖dλ ≤

∑

∫

‖D(F χ )‖dλ

≤

∑

(
∫

‖D(F )χ ‖dλ +

∫

‖F (Dχ )‖dλ

)

.

(6.1)

Now, for the first integral we have,

∫

‖D(F )χ ‖dλ =

∫

‖D(F p )‖dλ

≤

∫

‖D(f(τ ))

p (τ )

J (τ )

‖dλ +

∫

‖f(τ )D

(

p (τ )

J (τ )

)

‖dλ

≤

∫

‖Df(τ )‖‖Dτ ‖

p (τ )

J (τ )

dλ +

∫

‖f(τ )‖
M

J (τ )

dλ

≤ σ π

∫

‖Df‖dλ +M

∫

‖f‖dλ .

(6.2)



For the second integral we have,

∫

‖F (Dχ )‖dλ =

∫

|f(τ ))|

p (τ )

J (τ )

dλ =

∫

|f |p
J

J

dλ .

(6.3)

By Lemma 4.3,

J

J

≤ σ . Using Lemma 4.2, we get:

∫

‖F (Dχ )‖dλ ≤ σ π

∫

|f |dλ

≤
σ π

a

V (f) +

σ π

aδ

∫

|f |dλn.

(6.4)

Using Condition (C’), summing first over i, we obtain

V (P (p f)) ≤ ( max σ π )(1+1/a)V (f)+( max M +

max σ π

aδ

)‖f‖ ,

and then, summing over k we obtain

V (P f) ≤ σ(1 + 1/a)V (f) + (M +

σ

aδ

)‖f‖ .

!

Theorem 6.4. Let T be a random map which satisfies condition (C). If σ(1 +

1/a) < 1, then T preserves a measure which is absolutely continuous with respect

to Lebesgue measure. The operator P is quasi-compact on BV (S), see [1].

Proof. The proof of the theorem follows by the standard technique (see [1]). !

7. Example in R

In this section, We present an example of a random map which satisfies condition

(C) of theorem 6.3 and thus it preserves an absolutely continuous invariant measure.

Example 7.1. Let T be a random map which is given by {τ , τ ; p (x), p (x)}

where τ , τ : I → I defined by:

(7.1)

τ (x , x ) =























































(3x , 2x ) for (x , x ) ∈ S = {0 ≤ x , x ≤ }

(3x − 1, 2x ) for (x , x ) ∈ S = { < x ≤ ; 0 ≤ x ≤ }

(3x − 2, 2x ) for (x , x ) ∈ S = { < x ≤ 1; 0 ≤ x ≤ }

(3x , 3x − 1) for (x , x ) ∈ S = {0 < x ≤ ; < x ≤ }

(3x − 1, 3x − 1) for (x , x ) ∈ S = { < x , x ≤ }

(3x − 2, 3x − 1) for (x , x ) ∈ S = { < x ≤ 1; < x ≤ }

(3x , 3x − 2) for (x , x ) ∈ S = {0 ≤ x ≤ ; < x ≤ 1}

(3x − 1, 3x − 2) for (x , x ) ∈ S = { < x ≤ ; < x ≤ 1}

(3x − 2, 3x − 2) for (x , x ) ∈ S = { < x ≤ 1; < x ≤ 1}

,



(7.2) τ (x , x ) =























































(3x , 3x ) for (x , x ) ∈ S

(2− 3x , 3x ) for (x , x ) ∈ S

(3x − 2, 3x ) for (x , x ) ∈ S

(3x , 3x − 1) for (x , x ) ∈ S

(2− 3x , 3x − 1) for (x , x ) ∈ S

(3x − 2, 3x − 1) for (x , x ) ∈ S

(3x , 3x − 2) for (x , x ) ∈ S

(2− 3x , 3x − 2) for (x , x ) ∈ S

(3x − 2, 3x − 2) for (x , x ) ∈ S

,

and

(7.3)

p (x) =























































0.215 for (x , x ) ∈ S

0.216 for (x , x ) ∈ S

0.216 for (x , x ) ∈ S

0.216 for (x , x ) ∈ S

0.215 for (x , x ) ∈ S

0.216 for (x , x ) ∈ S

0.216 for (x , x ) ∈ S

0.216 for (x , x ) ∈ S

0.215 for (x , x ) ∈ S

, p (x) =























































0.785 for (x , x ) ∈ S

0.784 for (x , x ) ∈ S

0.784 for (x , x ) ∈ S

0.784 for (x , x ) ∈ S

0.785 for (x , x ) ∈ S

0.784 for (x , x ) ∈ S

0.784 for (x , x ) ∈ S

0.784 for (x , x ) ∈ S

0.785 for (x , x ) ∈ S

The derivative matrix of (τ ) , is

(7.4)

(

0

0

)

or

(

0

0

)

,

and the derivative matrix of (τ ) , is

(7.5)

(

0

0

)

or

(

− 0

0

)

.

Therefore, the Euclidean matrix norm, ‖D(τ ) ‖ is , or and the Euclidean

matrix norm, ‖D(τ ) ‖ is . Then

max

∑

p (x)‖Dτ (τ (x))‖ ≤ 0.216

√

13

6

+ 0.785

√

2

3

.

For this partition P, we have a = 1, which implies

σ(1 + 1/a) = 2(0.216

√

13

6

+ 0.785

√

2

3

) ≈ 0.9998 < 1.

Therefore, by theorem 6.4, the random map T admits an absolutely continuous

invariant measure. Notice that τ , τ are piecewise linear Markov maps defined

on the same Markov partition P = {S , S , . . . , S }. For such maps the Perron-

Frobenius operator reduces to a matrix and the invariant density is constant on the

elements of the partition (see [1]). The Perron-Frobenius operator of the random

map T is represented by the following matrix

(7.6) M = Π M +Π M ,



where M , M are the matrices of P and P respectively, and Π , Π are the

diagonal matrices of p (x) and p (x) respectively. Then, M is given by

M = p Id ×





























0 0 0

0 0 0

0 0 0





























+ p Id ×

























































=





























a a a a a a b b b

c c c c c c d d d

c c c c c c d d d

e e e e e e e e e

e e e e e e e e e

e e e e e e e e e

e e e e e e e e e

e e e e e e e e e

e e e e e e e e e





























,

(7.7)

where p = (0.215, 0.216, 0.216, 0.216, 0.215, 0.216, 0.216, 0.216, 0.215),

p = (0.785, 0.784, 0.784, 0.784, 0.785, 0.784, 0.784, 0.784, 0.785), Id is 9×9 identity

matrix and

a = 0.12306

b = 0.087222

c = 0.12311

d = 0.087111

e = 0.11111.

The invariant density of T is

(7.8) f = (f , f , f , f , f , f , f , f , f ), f = f , i = 1, 2, . . . , 9,

normalized by

(7.9) f + f + f + f + f + f + f + f + f = 9,

and satisfying equation fM = f . Then, f = f = f = f = f = f = and

f = f = f = f .
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10. Stenflo, Ö., Uniqueness of invariant measures for place-dependent random iterations of func-

tions, IMA Math. Appl. 2002, 132, 13-32.

Department of Mathematics and Statistics, University of Victoria, PO BOX 3045

STN CSC, Victoria, B.C., V8W 3P4, Canada

E-mail address: wab@math.uvic.ca

Department of Mathematics and Statistics, Concordia University, 7141 Sherbrooke

Street West, Montreal, Quebec H4B 1R6, Canada

E-mail address: pgoravax2.concordia.ca


