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Carbohydrate Needs of the Young Athlete 

Julia K Zakrzewski and Keith Tolfrey  

 

1. Introduction  

Good nutritional practice is essential for both health and exercise performance in athletes. 

Although young people today are generally less active and heavier than recommended, 

numbers of young athletes involved in competitive sport and intense regular training with 

high energy expenditures have increased in recent years (Malina, 2010). Ensuring adequate 

energy is available to meet the demands of high energy expenditures is important in the 

young athlete to ensure proper growth, development, and maturation (Malina, 2010). 

Physiological and metabolic changes that accompany the transition from childhood to 

adolescence and to adulthood, combined with the additional energy expenditure arising from 

exercise, mean that the dietary needs of young athletes require special consideration.  

 

Carbohydrate (CHO) intake provides the majority of energy in the diet and is also essential to 

fuel high intensity exercise. Dietary CHO intake in young athletes may be evaluated in terms 

of both the total daily intake and the timing of consumption in relation to exercise; these 

factors can determine whether adequate CHO substrate is available for muscles and the 

central nervous system (CNS) or whether CHO fuel sources might limit exercise performance. 

Although the CHO needs of adults have been well-documented, little research attention has 

been given to child and adolescent populations; this is surprising given the plethora of 

physical, physiological and metabolic child-adult differences that are seen in the pediatric 

sport and exercise science literature. Therefore, there is no doubt that specific evidence 

focusing on young athletes is required to inform CHO recommendations tailored to this age 

group. This chapter provides an overview of the available evidence that can be used to inform 
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recommendations for CHO intake and timing in young athletes. Where no direct evidence in 

young athletes is available, we have relied on the relevant adult-based literature whilst 

emphasising that the direct translation and application of these findings to children and 

adolescents must be viewed cautiously. 

 

2. Recommended values for CHO intake for young athletes  

The Dietary Guidelines for Americans (U.S. Department of Health and Human Services & 

U.S. Department of Agriculture, 2010) provide estimated daily energy needs by age, sex, and 

physical activity level (Table 1). The latest edition of these guidelines was released in 2010 

and is available online (www.health.gov/dietaryguidelines/2010.asp). Rather than using 

kilojoules (kJ; the SI unit), the recommendations for energy intake are provided in 

kilocalories (kcal), which typically provide more meaningful values for the general public to 

interpret. The Institute of Medicine (2002) has established ranges for the percentage of 

energy (kcal) in the diet that should come from CHO, protein, and fat; these Acceptable 

Macronutrient Distribution Ranges (AMDR) take into account both chronic disease risk 

reduction and intake of essential nutrients. However, unlike daily total energy intake, 

recommendations for CHO intake have not been stratified by physical activity level, age or 

sex; the AMDR is 45 to 65% of total energy intake. Combining these details with the 

recommendations in Table 1, older and more active children should consume more CHO (g) 

due to the higher total energy intake that is recommended. Accordingly, perhaps it would be 

preferable for young athletes to aim to consume the amount of CHO (g) equal to 45 to 65% of 

daily energy within the ‘active’ energy intake category of Table 1. For example, a 12 year old 

female athlete should consume 1800 to 2200 kcal per day, with 203 to 248 g (45% of total 

kcal) to 293 to 358 g (65% of total kcal) from CHO. However, the Dietary Reference Intake 

http://www.health.gov/dietaryguidelines/2010.asp
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(DRI) remains at 100 g⋅d-1 and Recommended Dietary Allowance (RDA) at 130 g⋅d-1 for all 

age and sex categories (children ≥ 1 year), which are not specific to physical activity level.  

 

For young athletes, the RDAs appear to require further consideration due to the additional 

energy expenditures in this population. The American College of Sports Medicine (ACSM, 

2009) recommendations that adult athletes should consume 6 to 10 g∙CHO∙kg-1∙body mass-1 

each day, depending on the athlete’s total daily energy expenditure, type of sport, sex, and 

environmental conditions, but excludes children and adolescents explicitly from these 

recommendations. Based on the combination of a higher reliance on fat as a fuel, lower 

glycogen stores and limited glycolytic capacity in younger athletes, they may require less 

dietary CHO (% total energy intake) than adults (see section 4). The American Dietetic 

Association have provided some general guidance for adolescent athletes, recommending the 

consumption of a training diet that meets nutrition needs for physical activity and health with 

55 to 60% of total energy from CHO (Steen, 1996). They also emphasise the importance of a 

diet including variety, balance, moderation in food choices and targeting athletes with an 

increased risk for developing eating disorders. However, no specific guidelines for pre-

pubertal children were provided due to the lack of child-specific evidence. 

 

3. Current levels of CHO intake in young athletes 

Nutritional surveys reporting CHO intakes of young athletes are important in identifying 

groups or individuals who may be at risk of inadequate dietary CHO consumption. The 

increased independence and peer pressure that often accompanies adolescence can influence 

food selections, which may lead to certain nutrient deficiencies and an increased risk of 

negative health consequences; for example stunted growth, loss of lean body mass, reduced 
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bone mineral content or density, fatigue, delayed injury recovery, menstrual dysfunction and 

diminished performance (Malina, 2010; Tamminen and Crocker, 2012). 

 

A number of small-scale studies have assessed daily absolute CHO intake in young athletes - 

examples are displayed in Table 2. Intakes are likely influenced by a number of factors 

including age, sex, body composition, specific event and/or sport. Even when considering 

only a single sport, assessments of CHO intakes have shown daily values ranging from 293 to 

469 g, corresponding to 41 to 55% daily energy intake, in adolescent association football 

players (Bar-Or & Unnithan, 1994; Boisseau et al., 2002; Giovannini et al., 2000; Iglesias-

Gutiérrez et al. 2005; Rico-Sanz et al. 1998). For female adolescents, CHO represented 54% 

of total energy intake in athletes of various sports (Cupisti et al. 2002), but only 46% of total 

energy in volleyball players (Papadopoulou et al. 2002) were found. However, longitudinal 

nutrient intake assessments are needed to estimate any changes in CHO intake in relation to 

growth. In a three year follow-up study of 19 young French association football players, daily 

CHO intake increased from 320 g to 360 g from 13 to 14 years and then to 396 g at 15 years 

of age, but did not increase when expressed per kg body mass (Leblanc et al. 2002). A three 

year longitudinal study in female runners reported an increased CHO intake relative to total 

energy intake, but decreased total absolute energy and CHO intakes (Wiita and Stombaugh, 

1996). Further longitudinal nutritional surveys that consider age, sex, puberty, body 

composition and sport or specific event would provide valuable information on current CHO 

intakes in young athletes and changes with growth. 

 

It is difficult to ascertain whether reported CHO intakes are adequate for health and 

performance due to the lack of specific CHO intake recommendations in young athletes that 

account for individual considerations, such as age, sex body composition and training load 
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(see section 2). However, it may be possible to identify certain groups susceptible to ‘low’ 

CHO intakes, where sex appears to be an important factor. Intake of CHO is generally higher 

in boys (6 and 9 g·kg-1) (Chen et al., 1989; Leblanc et al., 2002; Montfort-Steiger et al., 2005) 

compared with girls (3 to 5.5 g·kg-1) (Cupisti et al., 2002; Papadopoulou et al., 2002; Wiita 

and Stombaugh, 1996). The prevalence of eating disorders is also higher in adolescent female 

than male athletes, as well as being higher in elite athletes compared with non-athletes 

(Martinsen and Sundgot-Borgen, 2013). Reports of disordered eating and low energy intakes 

in young athletes competing in specific sports is also likely to place individuals at risk of 

inadequate CHO intake. Events where it is seen as an advantage to remain lean, have an 

aesthetically appealing appearance, and weight-class sports all carry an increased risk of low 

energy and CHO intakes. Thus, athletes including distance runners, figure skaters, divers, 

synchronized swimmers, rhythmic dancers, gymnasts, and boxers may require special 

attention (Manore, 2002). Restricted eating with the belief that it can delay puberty is a 

concern among young girls participating in aesthetic sports (Malina, 2010), but is fairly 

simple to identify using specific questionnaires. For example, the children’s Dutch Eating 

Behaviour Questionnaire (DEBQ) for the measurement of restrained, emotional and external 

eating (van Strien and Oosterveld, 2008) may be a useful tool for coaches and parents to 

screen young athletes for restrictive eating and inadequate CHO intakes. 

 

4. Child-adult metabolic differences 

An insight into exercise substrate metabolism in children and adolescents underpins our 

understanding of young athletes’ CHO needs. Differences in substrate metabolism between 

children and adults have been known for some time now. Over 70 years ago it was 

demonstrated that children have lower respiratory exchange ratio (RER) values during 

exercise compared with adults, indicating a higher reliance on fat and lower reliance on CHO 
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oxidation (Robinson, 1938). Subsequently, lower RER values have been observed in boys 

and girls compared with adults during submaximal exercise performed at similar absolute 

(Montoye, 1982) and relative (Foricher et al., 2003; Martinez and Haymes, 1992) exercise 

intensities. Prepubertal boys and girls also have low CHO oxidation rates compared with 

matched sex adolescents during exercise at the same relative intensity (Timmons et al., 2007a; 

2007b), suggesting puberty may modulate these changes in fat oxidation. Data are not 

entirely consistent in females, however, with some studies indicating that girls and women 

exhibit similar contributions of fat oxidation to energy expenditure (Rowland and Rimany 

1995). Discrepancies in the results of studies investigating females (Martinez and Haymes, 

1992; Rowland and Rimany 1995) may be due to inadequate control for the menstrual cycle 

(Oosthuyse and Bosch, 2010). 

 

Possible mechanisms that can explain the lower reliance on CHO and higher reliance on fat 

as fuels at rest and during exercise in children are unclear. The commonly held belief that 

children have an underdeveloped glycolytic system was based initially on a series muscle 

biopsy studies with a small sample of boys by Eriksson and colleagues more than 40 years 

ago, reviewed by Eriksson (1980). In these studies, the glycogen content of muscle in 11 to 

16 year old boys was 50 to 60% lower than reported in untrained adults (Eriksson et al. 1973) 

and increased with maturation (Eriksson and Saltin 1974). The activity of the rate limiting 

enzyme for glycolysis in 11 year old boys, phosphofructokinase (PFK), was only 

approximately 30% of that reported in published studies of untrained men (Eriksson et al. 

1973). Although other researchers have not measured PFK, quantification of other glycolytic 

enzyme activities from muscle biopsies have proffered equivocal results. In a mixed sex 

comparison of 8 six year old children with 12 thirteen year old mid-adolescents and 13 

seventeen year old young adults, lactate dehydrogenase (LDH) activity was highest in the 
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adolescents (143%>children; 55%>young adults; Berg et al. 1986). Although aldolase and 

pyruvate kinase were also greatest in the adolescent group, the enzyme activities were only 

significantly higher than the children not the young adults (Berg et al. 1986). 

 

In contrast, several oxidative enzymes including succinic dehydrogenase (SDH), fumarase 

and isocitrate dehydrogenase (ICDH) measured in young boys and adolescent girls were 

considerably higher when compared directly and indirectly with activities at physiologic 

temperatures in men and women (Eriksson et al. 1973; Haralambie, 1979; 1982). The young 

children in Berg’s study (1986) had ~40% higher fumarase activity than the young adults; 

furthermore, when the data for the three age groups were pooled (n=33; age range 3 to 19 

years) fumarase was inversely related to chronological age (r2=0.23). Comparing the ratio of 

PFK to ICDH (glycolytic:oxidative) activity in a mixed sex group of adults and 13 to 15 year 

old adolescent girls, Haralambie (1982) found it doubled in adults (1.63 vs. 0.84). This 

strongly suggests that oxidation of tricarboxylic acid cycle intermediates is more prominent 

during adolescence than glycolysis. Some of the enzymes included in these studies were 

described as equilibrium or non-rate limiting, which may diminish their influence on the flux 

through physiologic pathways; more importantly, the comparisons between young people and 

adults were indirect in the Scandinavian studies, and all of the studies were with small sample 

sizes because of the ethical and logistical difficulties in obtaining tissue samples from this 

population. Nevertheless, there is evidence supporting the lower lactate dehydrogenase (LDH) 

activity (Kaczor et al., 2005) and blood lactate concentration during exercise (Mácek et al., 

1976; Mahon et al., 1997) in young people compared with adults. This is important as lactate, 

an intermediate of CHO oxidation, is inversely related to fat oxidation (Achten and 

Jeukendrup, 2004). Moreover, the lactate increase above baseline (LIAB) coincides with the 

intensity at which fat oxidation begins to decline in adolescents (Tolfrey et al., 2010) and 
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adults (Achten and Jeukendrup, 2004) and the increase in blood lactate with intensity is more 

pronounced in men than boys (Mahon et al., 1997). It is possible that a higher proportion of 

type I muscle fibres and intramuscular triacylglycerol (IMTAG) stores observed in children 

compared with adults may contribute to their increased ability to oxidise fat, but such data 

obtained from muscle biopsy in children are sparse and may also depend on training status 

(Bell et al., 1980; Fournier et al., 1982). Increased FFA availability and uptake during 

exercise in children compared with adults has also been reported (Delamarche et al., 1992), 

but not always confirmed (Boisseau and Delamarche, 2000; Martinez and Haymes, 1992). 

Although no age-related changes in carnitine palmitoyltransferase (CPT1) activity or major 

differences in enzyme activities of fat metabolism were observed in children compared with 

adults (Haralambie, 1982; Kaczor et al., 2005), the CPT/2-oxoglutarate dehydrogenase ratio 

of enzyme activities in skeletal muscle may be higher in children (Kaczor et al., 2005), 

suggesting a preferential oxidation of fat over CHO. 

 

More recent work using stable isotope techniques indicates that children do not have an 

underdeveloped glycolytic flux and it is has been suggested that glycogen stores limit CHO 

oxidation. Indeed, younger, less mature boys rely more on exogenous CHO oxidation during 

exercise (Timmons et al. 2007a; see section 6.2). Although no difference in exogenous CHO 

oxidation was reported between 12 and 14 year old girls, this may have been due to the small 

difference in puberty between the two groups (Tanner 3 and 4) (Timmons et al. 2007b). 

These findings should be considered in the context of exercise training, however, as the early 

work by Eriksson et al. (1973) showed that 4 months of training increased muscle glycogen 

concentration in 11 to 13 year old boys and, after maximal work, blood and muscle lactate 

were higher and a greater reduction in muscle glycogen occurred. In a second experiment, 6 

weeks of training increased succinate dehydrogenase and phosphofructokinase activities by 
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30 and 83%, respectively (Eriksson et al. 1973). Therefore, the capacity to store and use 

glycogen may increase with training in boys; there is no available direct evidence of this in 

girls. 

 

5. CHO intake: the days and hours before endurance exercise 

Manipulating CHO intake in the days (‘CHO loading’) and hours before an important 

exercise training session or competition allows adult athletes to commence exercise with 

glycogen stores sufficient to fuel the event. In adults, glycogen stores are an important source 

of blood glucose to provide energy for exercise and studies using invasive methods have 

shown that severe reductions in muscle glycogen (Bergström et al., 1967) and blood glucose 

derived from liver glycogen (Coyle and Coggan, 1984) are associated with the early onset of 

fatigue. Accordingly, elevating muscle glycogen content prior to exercise through the 

consumption of a high-CHO diet (CHO loading) postpones fatigue by approximately 20% in 

endurance events lasting more than 90 minutes, where exhaustion often coincides with 

critically low muscle glycogen content (Hawley et al. 1997). Carbohydrate loading and the 

associated glycogen supercompensation (i.e., increase above original baseline concentration) 

may also improve endurance performance by 2 to 3% where a pre-determined distance is 

covered as quickly as possible. Conversely, there is little or no effect of elevating pre-

exercise muscle glycogen content above normal resting values on a single exhaustive bout of 

high-intensity exercise lasting less than 5 minutes or for moderate-intensity running or 

cycling lasting 60 to 90 minutes, where substantial quantities of glycogen remain in the 

working muscles at the end of exercise (Hawley et al. 1997). Adult endurance athletes can 

achieve glycogen supercompensation without the need for the ‘traditional’ depletion phase 

(exhaustive exercise and low CHO diet to achieve glycogen depletion) in the days before 

loading, and with as little as 24 to 36 hours of high CHO intake and rest (Burke et al. 2011). 

http://europepmc.org/abstract/MED/9291549/?whatizit_url_Chemicals=http://www.ebi.ac.uk/chebi/searchId.do?chebiId=CHEBI%3A28087
http://europepmc.org/abstract/MED/9291549/?whatizit_url_Chemicals=http://www.ebi.ac.uk/chebi/searchId.do?chebiId=CHEBI%3A28087
http://europepmc.org/abstract/MED/9291549/?whatizit_url_Chemicals=http://www.ebi.ac.uk/chebi/searchId.do?chebiId=CHEBI%3A28087
http://europepmc.org/abstract/MED/9291549/?whatizit_url_Chemicals=http://www.ebi.ac.uk/chebi/searchId.do?chebiId=CHEBI%3A28087
http://europepmc.org/abstract/MED/9291549/?whatizit_url_Chemicals=http://www.ebi.ac.uk/chebi/searchId.do?chebiId=CHEBI%3A28087
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Based on dietary recommendations for adults, young athletes may be under the impression 

that consuming a high-CHO diet in the days and hours before exercise will improve 

performance, and consequently they might CHO load to some degree in preparation for major 

events. However, the effects of CHO loading on glycogen supercompensation and 

performance in children and adolescents remain unknown, partly due to ethical issues 

surrounding the use of invasive procedures with young people (e.g. muscle biopsies for the 

determination of muscle glycogen) and side effects associated with the glycogen depletion 

stage of the ‘traditional’ CHO loading protocol (Bergström et al. 1967). In fact, the 

commonly held understanding that CHO loading can improve performance may not apply as 

readily to young people for various reasons. First, the relevance of CHO loading to youth 

athletes engaging in events lasting less than 90 minutes should be questioned, based on 

evidence from adults. Second, it appears that the physiological mechanism underpinning the 

effect of CHO loading on performance in adults may not translate to children due to their 

limited capacity to store glycogen (Eriksson et al. 1973) and utilise endogenous CHO during 

exercise (Timmons et al. 2007a). This suggests that children may not be able to 

‘supercompensate’ and, even if children did exhibit an ability to increase muscle glycogen 

through CHO loading, they are less likely to use endogenous CHO to provide energy for 

exercise (see section 4). Indeed, there is evidence that adult women may not benefit from 

CHO loading and, like children, appear to rely to a greater extent on fat and exogenous CHO 

oxidation during exercise than adult men (Horton et al. 1998; Tarnopolsky et al. 1995; 

Tarnopolsky 2008). Although six days of high-CHO diet can increase muscle glycogen and 

cycling time to fatigue in women, the magnitude of these changes was smaller than those 

observed previously in men (Walker et al. 2000), with further research revealing the increase 

in CHO availability and oxidation following CHO loading (plus CHO ingestion during 
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exercise) did not translate to improved performance in women (Andrews et al. 2003). When 

comparing men and women directly, the increase in muscle glycogen concentration and time 

trial performance in endurance trained men following a 4-day CHO loading regimen did not 

occur in women of a similar training status (Tarnopolsky et al. 1995).  

 

Evidence that the performance-enhancing effect of CHO loading in men may not be equally 

effective in women implies the applicability of CHO loading to young athletes is 

questionable. However, increasing muscle glycogen stores through CHO loading may benefit 

male adolescents during the later stages of puberty (Tanner stage 4 and 5) when the metabolic 

profile is similar to that of adult men (Riddell et al. 2008; Stephens et al. 2006; Timmons et al. 

2007a). Furthermore, as noted in section 4, training resulted in an increased capacity to store 

and use glycogen in boys (Eriksson et al. 1973); thus, young athletes who train regularly may 

exhibit an ability to increase their glycogen stores through CHO loading, with potential 

effects on performance. For these reasons, the interaction between training, CHO loading and 

exercise performance in young people warrants examination. Since it is now known that the 

glycogen depletion phase of CHO loading is not required in adults, some ethical issues 

associated with this research in children may no longer exist and there may be scope to study 

whether the effects of CHO loading in adults translate to young athletes. 

 

Similar to CHO loading, research over the past three decades has supported the 

recommendation that adults should consume an easily digestible high CHO meal 2 to 4 hours 

before endurance competition. This practise replenishes liver glycogen stores (which are 

reduced to low values after an overnight fast), increases muscle glycogen stores and can 

extend endurance capacity (time to exhaustion), but does not necessarily improve time-trial 

performance (Chryssanthopoulos et al. 2004; Wee et al. 2005; Williams and Lamb 2008). Yet 
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again, it is unclear whether the performance-enhancing effects of pre-exercise CHO 

consumption translate to young people. As with CHO loading, the potential for children to 

increase their glycogen stores needs to be examined systematically. Children do, however, 

have a higher capacity to use exogenous CHO (Timmons et al. 2003; 2007a); suggesting that 

provision of adequate pre-exercise CHO to maintain blood glucose concentration during 

exercise may be beneficial. In particular, consuming a meal rich in low glycaemic index (GI 

– see section 10) CHO releases glucose gradually (Jenkins et al. 1981; Ludwig et al. 1999); 

the attenuated postprandial glucose and insulin response maintains blood glucose 

concentrations during exercise, can reduce the suppression of fat oxidation that normally 

accompanies CHO feeding, and may improve exercise performance in adults (Burke et al. 

2011). Furthermore, the blunted glucose and insulin response to meals with a low GI has 

been demonstrated in children and adolescents, but no effect on substrate oxidation during 

postprandial exercise was observed (Zakrzewski et al. 2012) and the effect on exercise 

performance has not been investigated. Although not all studies have supported the benefits 

of consuming low GI foods in the hours before exercise, this practise may be beneficial when 

it is difficult to consume CHO during exercise and in individuals who are sensitive to a 

hyperinsulinaemic response to CHO feedings (e.g., those with low insulin sensitivity). From a 

general health and well-being perspective, it is also worth mentioning that regular breakfast 

consumption is associated with improved health, nutrition and academic performance in 

young people (Rampersaud et al. 2005). In addition, exercise in the fasted state, often the 

alternative to consuming a high-CHO meal 2 to 4 hours before exercise, may not be a 

practical option for young people. Consequently, fasted exercise involving ‘skipping 

breakfast’ may not be a feasible or healthful behaviour in young people.  
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There is no doubt that further research is required to provide specific recommendations for 

CHO consumption in the days and hours before exercise in young people. Importantly, the 

efficacy and safety of 'CHO loading' has not been studied in children and should be 

considered. Rather than CHO loading to ‘supercompensate’, it may be preferable for young 

athletes to ensure that CHO intake in the days and hours leading up to competition is 

sufficient to avoid depletion of glycogen stores and, perhaps more importantly, adequate 

CHO is available to meet daily requirements. Indeed, CHO provides an important source of 

energy for growth in children, who require more energy per kilogram of body weight during 

physical activity than adults (Bar-Or 2001). Inadequate energy intake in combination with 

high energy expenditures should be avoided due to the potential consequences of negative 

energy balance (see section 3).  

 

6. CHO intake: during endurance exercise  

The majority of experimental research on CHO intake in young athletes has involved the 

provision of different mono- and disaccharides during exercise (see Table 3). Since CHO 

oxidation increases with exercise intensity, increasing glucose availability should logically 

help sustain a higher exercise intensity and enhance performance. The available evidence in 

young people has generally supported these claims through examination of performance and 

substrate metabolism, as discussed below. Potential mechanisms explaining the enhanced 

performance with CHO intake during exercise in adults include provision of an additional 

fuel source when glycogen stores become depleted, muscle glycogen sparing, prevention of 

low blood glucose concentrations, and effects on the central nervous system; some of which 

may also apply to children and depend on the characteristics of the exercise. 
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6.1 Performance 

A small number of studies have investigated the effects of exogenous CHO ingestion 

immediately before or during exercise on performance in young people, but have produced 

conflicting results. In contrast to much of the adult literature, one of the first studies in young 

people to examine the effects of CHO ingestion immediately before exercise reported no 

effect on performance (Hendelman et al. 1997). Three hours after a standardised breakfast, 15 

year old untrained adolescent boys consumed a candy bar, fat-free fig bars or a sweetened 

drink (placebo) 10 min before exercise. Despite varying quantities of CHO, the pre-exercise 

CHO snacks did not affect blood glucose concentration or substrate oxidation during 75 min 

cycling at 60% of VO2max or subsequent time trial performance (Hendelman et al. 1997). 

However, the performance trial may have been too short (5 to 6 minutes) to detect differences 

due to substrate availability. Furthermore, is not possible to isolate the effects of CHO from 

total energy intake on performance as the snacks were not standardised for macronutrient or 

energy content, and participants were provided with absolute amounts of CHO, resulting in 

individual variation in amounts relative to body size. Notwithstanding the short-comings of 

the study, it should be noted that performance times were faster in the CHO conditions (311.9 

s and 316.2 s) compared with the placebo (328.1 s), a difference that was not statistically 

significant, but may be meaningful for young athletes competing against others of a similar 

standard.  

 

Subsequent work has supported the benefits of CHO ingestion during exercise for endurance 

performance in young people and suggests that the composition of the ingested CHO can 

affect the extent of the improvement. Compared with a placebo (water), ingestion of a 6% 

glucose or 3% glucose plus 3% fructose solution during 90 min of moderate intensity 

exercise delayed time to exhaustion at 90% of maximal power output in boys aged 10 to 14 
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years (Riddell et al. 2001). Indirect support for this finding comes from reports of reduced 

ratings of perceived exertion (RPE) during exercise with glucose ingestion in adolescent boys, 

indicating the boys felt the exercise was ‘easier’ (Riddell et al. 2000a). Interestingly, 

consuming the glucose-fructose mixed drink enhanced time to exhaustion more than glucose 

alone (40% and 25% delays, respectively) compared with water (Riddell et al. 2001). 

Although the authors speculated that the enhanced performance with the glucose-fructose 

mix may be related to the additional muscle glycogen-sparing effect of fructose, endogenous 

CHO oxidation (i.e., liver and muscle glycogen) did not differ between trials despite a 

reduced reliance on exogenous glucose sources with the fructose plus glucose drink. It is also 

possible that the improvement in performance with CHO intake could be due partly to a non-

metabolic mechanism. In adults, mouth rinsing can enhance performance when a high power 

output is required over durations of 45 to 75 min via its effects on the central nervous system 

(CNS), with CHO-rich pre-event meals dampening this effect (Jeukendrup and Chambers, 

2010). It is interesting to note that the boys in the aforementioned Hendelman et al. (1997) 

study may have not benefited from the non-metabolic effects of CHO ingestion during 

exercise, as CHO was provided 10 min before exercise. 

 

The finding that performance only improved in seven of twelve subjects in the glucose trial 

and nine out of twelve in the glucose-fructose mix trial highlights the need for future research 

to consider individual variation. In particular, the inclusion of 10 to 14 year olds in Tanner 

stages 2 to 4 (early to late-pubertal) coupled with the known effects of age and puberty on 

metabolism is likely to have contributed to individual variation (Timmons et al. 2007a). 

Future studies should also consider the performance test used, which could contribute to 

some of the variability; the reliability of tests to volitional exhaustion in children is not 

known and prolonged tests to exhaustion have a high coefficient of variation in adults 
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(Jeukendrup et al. 1996). Although the order of the trials was counterbalanced, the inclusion 

of a habituation session has been suggested to reduce the coefficient of variation in 

adolescents completing a cycling time trial (Montfort-Steiger et al. 2005). 

 

Further research is required to clarify the potential benefits of CHO supplementation on 

performance in young people, including identification of the optimal CHO feeding regimen 

(dosage, composition, timings) for peak performance, taking into consideration individual 

factors such as age, puberty, sex, training status and previous diet. Studies investigating 

reasons for between-subject variability could pave the way to a more individualised approach 

to CHO prescription. In particular, although an improvement in performance with glucose 

ingestion throughout exercise has been documented in women (Campbell et al. 2001); this 

finding requires investigation in prepubertal and adolescent girls to inform sex-specific 

dietary recommendations for athletic performance. 

 

6.2 Substrate oxidation 

The improved endurance performance with CHO intake in adults is attributed largely to 

increased CHO oxidation and maintenance of euglycaemia during exercise, particularly as 

exercise duration increases and endogenous CHO stores become depleted. Although the 

invasive nature of the techniques employed to quantify glycogen stores has posed ethical 

restrictions when considering similar research with children, stable isotope tracer techniques 

used in conjunction with indirect calorimetry represents a promising non-invasive method of 

estimating endogenous and exogenous substrate oxidation in younger age groups and has 

been used to examine the effects of CHO ingestion during exercise (Riddell et al. 2000a; 

Timmons et al. 2003; 2007a). 
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In young people, CHO ingestion during exercise increases total CHO oxidation and lowers 

total fat oxidation when compared with a placebo, often flavoured water (Table 3). These 

findings have been demonstrated mainly in healthy boys aged 10 to 17 years (e.g. Riddell et 

al. 2000a; Timmons et al. 2007a) and may also apply to girls (Timmons et al. 2007b) and 

obese boys (Chu et al. 2011) although the evidence is sparse. The mechanisms responsible for 

the reduction in fat oxidation following CHO ingestion relate to the rise in insulin that 

inhibits lipolysis and free fatty acid (FFA) availability (Horowitz et al. 1997) and the increase 

in blood glucose uptake and, therefore, CHO oxidation, which inhibits the rate of FFA entry 

into the mitochondria (Coyle et al. 1997; Sidossis et al. 1996). During exercise, glucose 

supplementation increases glucose and insulin concentrations, increases CHO oxidation and 

suppresses fat oxidation in boys (Riddell et al. 2001; Timmons et al. 2007a). Separate 

examination of exogenous and endogenous substrate stores has revealed that the reduction in 

fat oxidation and increased exogenous CHO oxidation during exercise with CHO ingestion is 

accompanied by a sparing of endogenous CHO in boys (Timmons et al. 2007a). Thus, it 

appears that CHO is preferable over fat as a fuel when exogenous CHO is provided at a 

sufficient rate during exercise in young people.  

 

Consideration of age and pubertal status is crucial when evaluating the effects of CHO 

ingestion during exercise in young people. Whether exercise is performed with or without 

CHO ingestion, boys and girls oxidise a proportionally higher amount of fat and lower 

amount of CHO than adults (Riddell et al. 2008; Timmons et al. 2003; 2007a; 2007b). When 

CHO is ingested during exercise, pre- and early-pubertal boys exhibit a higher rate of 

exogenous CHO oxidation, which provides a greater relative proportion of total energy, 

compared with adult men (Timmons et al. 2003). Interestingly, the rate of exogenous CHO 

oxidation in boys (Timmons et al. 2003) is similar to trained adults, who also have increased 
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rates of fat oxidation during exercise (Burelle et al. 1999; Jeukendrup et al. 1997), 

highlighting the need to consider training status when comparing young people and adults. 

Independent of chronological age, advanced pubertal status reduces the contribution of 

exogenous CHO oxidation to total energy expenditure, and testosterone concentration is 

inversely related to exogenous CHO oxidation in males (Timmons et al. 2007a). Therefore, 

the age-related effects of CHO intake on exercise metabolism are likely attributed to puberty.  

 

The higher exogenous CHO oxidation in younger and less mature boys when CHO is 

ingested during exercise is accompanied by a greater conservation of endogenous glycogen 

stores compared with more mature boys and adult men (Timmons et al. 2003; 2007a). Since 

it is unlikely that a blunted ability to oxidise CHO can explain the lower total CHO and 

higher fat oxidation in these boys due to their well-developed capacity to oxidise exogenous 

CHO, the greater ‘sparing’ of endogenous CHO stores could indicate a reduced capacity to 

store muscle glycogen in younger less mature boys. Moreover, the decrease in blood glucose 

during the onset of exercise suggests reduced glycogen stores in boys (Riddell et al. 2001) 

and girls (Delamarche et al. 1994). Children may compensate for the limited glycogen stores 

by increasing their reliance on exogenous fuels, such as consumption of CHO snacks and 

beverages, when available. It has been suggested that the greater reliance on exogenous CHO 

in younger, less mature boys may be important in protecting endogenous substrates for 

growth and development of the musculoskeletal system and CNS. Overall, consuming 

exogenous CHO during exercise may be of particular benefit to young and less mature boys. 

 

Dietary recommendations for young athletes should consider these findings by advocating the 

consumption of orally consumed CHO during or immediately before exercise to ensure 

sufficient exogenous CHO is available to fuel exercise in younger less mature children, 
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perhaps more so than adults. Ideally, CHO recommendations should be specific to pubertal 

status rather than chronological age, with a reduced need to provide exogenous CHO as 

maturation progresses. Since rates of exogenous CHO oxidation in more mature 12 year old 

boys were similar to those of 14 year old pubertal boys, it may be sufficient to distinguish 

between young people in pre- and early puberty and those in mid-late puberty, rather than 

each of the five Tanner stages (Timmons et al. 2007a). Importantly, exogenous CHO 

oxidation increases with exercise duration (Timmons et al. 2003), meaning that boys 

competing in endurance events in particular could benefit from CHO ingestion during 

exercise. However, the direct application of this recommendation for young athletes who 

exercise less than 60 to 120 minutes, as used in the supporting evidence, is questionable. 

 

Whether from the pediatric or adult literature, the majority of research on exercise 

metabolism has been conducted in males. Similar to boys, there is some evidence that 

younger less mature girls have higher fat and lower endogenous CHO oxidation rates during 

exercise compared with older adolescents (Timmons et al. 2007b). However, CHO 

supplementation only reduced fat oxidation in those aged 12 years, not those aged 14 years, 

and the balance between exogenous and endogenous CHO oxidation during exercise was not 

different between 12 and 14 year old girls. Consequently, it is possible the reported age- and 

maturation-related differences in exogenous CHO oxidation in males and the potential 

implications for performance may not apply to girls. Alternatively, the similarity in 

exogenous CHO oxidation reported between 12 and 14 year old girls may have been due to 

the small, albeit statistically significant, difference in puberty between the two groups 

(Tanner 3 and 4) (Timmons et al. 2007b). This is complicated further by issues related to 

menstrual cycle stage; all 14 year old girls were tested in the early follicular phase, but only 4 

of the 12 year olds had experienced their first menstrual period and were not tested at a 
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standardised time due to the sporadic nature of their menstruation. It is advisable to control 

for menstrual cycle stage, as variations in ovarian hormone levels throughout the menstrual 

cycle alter exercise metabolism in women (Oosthuyse and Bosch, 2010). Interestingly, 

ingestion of glucose minimises these effects and there is evidence the performance- 

enhancing effects of glucose ingestion during exercise are more pronounced in the luteal 

compared with the follicular stage (26% vs. 19% improvement) (Campbell et al. 2001). 

 

Unfortunately, studies that replicate the reported findings in girls are not available, making it 

impossible to draw any firm conclusions based on the available evidence. Due to some of the 

data inconsistencies between studies including boys and girls, studies directly examining 

between-sex differences in the response to CHO supplementation in young people are needed. 

In adults, there is evidence that women may derive a greater benefit from CHO ingestion than 

men; women oxidise a greater relative proportion of exogenous CHO during endurance 

exercise, which spares more endogenous fuel (Campbell et al. 2001; Riddell et al. 2003). 

Moreover, glucose ingestion improved time trial performance by a 19 to 26% in trained 

women (Campbell et al. 2001), but only 7% in trained men (Angus et al. 2000), although 

differences in study design mean these values cannot be compared directly. A direct 

comparison of trained men and women, however, reported remarkably similar metabolic 

responses to CHO supplementation, with both groups experiencing an increased plasma 

glucose turnover and oxidation, which suppressed fat and endogenous CHO oxidation (Wallis 

et al. 2006). Future studies with children and adolescents, controlling for training status and 

puberty, should include both boys and girls to determine possible sex-related differences to 

CHO supplementation during exercise to inform nutritional recommendations for athletic 

performance in young male and female athletes.  
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7. CHO intake: Post-exercise  

Timing of food consumption based on competition or exercise event time is important to, not 

only enhance exercise performance, but also improve recovery time. Consuming the correct 

nutrients during the period after exercise is essential for initiating the rebuilding of damaged 

muscle tissue and the restoration of energy reserves. Since a fundamental goal of traditional 

post-exercise nutrient timing is to replenish glycogen stores, CHO intake after exercise is 

critical when glycogen is depleted. Although the post-exercise period is widely considered 

the most important part of nutrient timing in adults (Burke et al. 2004; 2011), very few 

studies have examined post-exercise CHO intake in young people. Consequently, the 

evidence discussed within this section is based on studies with adults and it is important to 

highlight from the beginning that the findings may not apply to young people, particularly 

pre- and early pubertal children.  

 

Consumption of CHO (or CHO plus protein) within 30 min of an exercise session results in 

higher glycogen levels than when ingestion is delayed for 2 hours (Ivy et al. 1988; 2002). 

When post-exercise CHO intake is proportional to body mass, men and women are able to 

benefit to a similar extent from faster glycogen resynthesis compared with placebo ingestion 

(Tarnopolsky et al. 1997). This enhanced capacity to replenish glycogen stores may allow 

performance to be maintained during periods of training, with post-exercise CHO 

consumption over a 7 day training period improving subsequent performance (increased time 

to exhaustion) compared with a placebo (Roy et al. 2002). The composition of the snack and 

type of CHO consumed after exercise affects the extent of glycogen synthesis. Carbohydrates 

with a high GI supply energy quickly for glycogen resynthesis during recovery and result in 

higher muscle glycogen levels 24 hours after a glycogen-depleting exercise when compared 

with low GI CHOs (Burke et al. 1993). Accordingly, when comparing simple sugars, it 
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appears that glucose and sucrose are equally effective, whereas fructose alone (which has a 

lower GI) is less effective (Blom et al. 1987). Therefore, consumption of high GI CHO 

snacks after exercise rather than low GI CHO and fructose-containing snacks are 

recommended for adults. When considering meal composition, it is often recommended that 

adults should consume a mixed CHO and protein meal following exercise, ideally in a 3:1 

CHO to protein ratio (Kerksick et al. 2008). Although glycogen synthesis rates may not 

necessarily be improved with the co-ingestion of protein and CHO compared with 

isoenergetic CHO ingestion (Millard-Stafford et al. 2008), the provision of protein and amino 

acids for muscle protein repair and promoting a more anabolic hormonal profile (Rodriguez 

et al. 2007) may be particularly important for growing young people.  Milk may, therefore, be 

a convenient source of protein and CHO when it is not possible to consume a meal after 

exercise. Indeed, glycogen repletion is similar when CHOs are consumed in the form of 

solids and liquids (Burke et al. 2004) and liquids are sometimes preferred by athletes 

immediately after exercise for practical reasons. However, caution should be taken when 

translating such findings to young people, as the efficacy of post-exercise fluid ‘supplements’ 

has not been studied in children and adolescents. This practice might be best avoided in 

younger populations, who can gain the same benefits from consuming a post-exercise CHO 

and protein as part of a well-balanced diet. 

 

Based on the available evidence in adults, the joint position stand of the American College of 

Sports Medicine and American Dietetic Association (2009) recommends the consumption of 

approximately 1.0 to 1.5 g∙kg∙body weight-1 of CHO during the first 30 min and again every 2 

hours for 4 to 6 hours to replace glycogen stores (American Dietetic Association, 2009). 

These recommendations are particularly important when the time between two training 

sessions is less than 8 hours or sessions are very prolonged (Berardi et al. 2006; Ivy et al. 
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2002). It is unnecessary for athletes who rest one or more days between intense training 

sessions to practice nutrient timing provided sufficient CHO is consumed during the 24 hour 

period after the exercise bout (Burke et al. 1996). For instance, glycogen stores would be 

depleted to a large extent following a marathon, but these athletes are not likely to perform 

another race or exercise session the same day; CHO intake after exercise would be more 

important for triathletes training for durations of around 60 to 90 min twice a day. When 

considering whether the benefits of post-exercise CHO intake apply to children and 

adolescents, age and maturation-related changes in metabolism must be considered. As 

discussed in sections 4 and 5, the lower muscle endogenous CHO stores in younger, less 

mature children may indicate that ‘supercompensation’ of muscle glycogen is not possible. 

Alternatively, the effects of post-exercise CHO intake may actually be enhanced in this 

population if glycogen levels can be enhanced to some degree; boys may be able to increased 

muscle glycogen concentration and use more muscle glycogen during maximal exercise in 

response to training (Eriksson et al. 1973). Nevertheless, consuming a meal or snack after 

exercise may be important for all athletes, regardless of age, to meet daily CHO and energy 

balance goals. Although child and adolescent athletes do not typically engage in more than 

one intense training session per day, there may be occasions where they participate in 

multiple events in one day (e.g., track and field meetings) and it may be preferable for 

endurance athletes training every day (e.g., distance runners, swimmers, cyclists) to consume 

CHO within 30 min of training to aid recovery. Indeed, CHO supplementation during 

exercise in boys can diminish post-exercise physiologic stress and attenuate the immediate 

exercise-induced increase in immune counts in boys, indicating improved immune function 

(Timmons et al. 2004). Research investigating the effect of post-exercise CHO intake on 

recovery, fuel stores and subsequent performance in young people is much needed.  
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8. Short duration high intensity exercise and skill performance 

Children typically engage in very short bursts of intense physical activity interspersed with 

varying intervals of low and moderate intensity during both habitual free-play (Bailey et al. 

1995) and various team sports, rather than continuous bouts of 1 to 2 hours that have been 

studied in much of the research discussed. Since CHO oxidation provides the majority of 

ATP during higher intensity exercise where the glycolytic energy pathway predominates, 

logic suggests that low CHO availability might limit high intensity exercise performance, as 

reported in adults (Maughan et al. 1997). Carbohydrate ingestion during exercise can improve 

performance when the exercise is of high intensity (75% VO2max) and relatively short 

duration (<1 hour), and it has become clear that the underlying mechanism for this is not 

metabolic, but may reside in the CNS. Indeed, undigested CHO mouth rinses have been 

shown to result in similar performance improvements (Jeukendrup and Chambers, 2010). 

 

Again, data in young people are confined to only a few studies with inconsistent findings. 

When boys ingested CHO 30 min before repeated Wingate anaerobic tests (WAnT), peak 

power and mean power were not different compared with placebo ingestion, indicating no 

improvement in performance. Post-exercise glucose concentration and blood lactate 

concentration were also unaffected, despite higher pre-exercise glucose concentration in the 

CHO trial (Marjerrison et al. 2007). Similarly, CHO ingestion immediately before and during 

exercise did not affect sprint times during a modified version of the Loughborough 

Intermittent Shuttle Test in team game players aged 12 to 14 years (Phillips et al. 2010), with 

follow-up studies showing no effect of the concentration of CHO consumed (Phillips et al. 

2012a) or a CHO (maltodextrin) compared with a placebo gel (Phillips et al. 2012b) on 15 

second sprint time. Likewise, during a 90 minute basketball-specific training session in 14 to 

15 year old male basketball players, sprint performance was not influenced by ad libitum 
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consumption of an 8% carbohydrate solution compared with no fluid ingestion (Carvalho et 

al. 2011). However, it may be noteworthy that the 6% CHO-electrolyte drink improved time 

to exhaustion by 24% (Phillips et al. 2010). In a separate study, the same group found a 6% 

CHO-electrolyte solution improved time to exhaustion during intermittent exercise by 34% 

compared with a 10% solution (Phillips et al. 2012a). Furthermore, a CHO (maltodextrin) gel 

increased intermittent endurance capacity by 21% (Phillips et al. 2012b). This indicates that 

supplementation benefitted at least some of the players, with the greatest benefits from 

consuming a 6% solution. Overall, the limited evidence suggests that pre-exercise CHO 

ingestion may improve intermittent endurance capacity, but not sprint performance in 

adolescent boys. Again, it is not possible to make firm conclusions based on the available 

evidence, which is limited to a few studies that have not typically included girls. 

 

9. Sports drinks and hydration 

Despite the paucity of literature on exogenous CHO ingestion during exercise and 

performance in young athletes, evidence does suggest that adding CHO to sports drinks may 

be beneficial for maintaining hydration (please refer to Chapter ?? ‘Hydration for the young 

athlete’) ***Note for Chad to update when editing our chapter and making a link to another 

author’s chapter***. Adding flavour, CHO and sodium chloride (NaCl) to drinks has been 

used as a strategy to improve the palatability of sports drinks, increase voluntary fluid intake 

and help maintain hydration during exercise. Compared with unflavoured water, voluntary 

fluid intake increased by 45% with flavoured water and almost doubled with a 6% CHO and 

18 mmol∙L-1 NaCl drink in boys (Wilk and Bar-Or 1996). Consequently, while flavouring 

water reduced voluntary dehydration, the further addition of CHO and NaCl prevented it 

altogether. Similar findings were observed in trained, heat-acclimatised boys who 

experienced higher sweating rates during prolonged exercise (Rivera-Brown et al. 1999). 
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These studies have focused on exercise in hot humid conditions and have typically used three 

hour exercise protocols consisting of four 20-min cycling bouts at 50 to 60% maximal 

oxygen uptake (interspersed with 25 min rest periods). When using a different exercise 

protocol more closely reflecting real-life situations (a time trial run followed the steady-state 

exercise bouts), voluntarily fluid consumption, hydration and time to exhaustion were similar 

regardless of whether unflavoured water, flavoured water or flavoured water with CHO and 

NaCl was provided to heat-acclimatised adolescent male runners (Wilk et al. 2010). 

Furthermore, in non-acclimatised girls exercising in the heat, voluntary drinking was 

enhanced with flavoured compared with unflavoured water regardless of combination with 

CHO and NaCl, but hydration was promoted to a greater extent with the drink containing 

CHO and NaCl (Wilk et al. 2007). Similarly, there was a tendency towards a lower 

hypohydration and greater fluid retention with the consumption of a CHO plus NaCl drink in 

trained, heat-acclimatised girls with high sweating rates, although voluntary dehydration was 

not prevented completely (Rivera-Brown et al. 2008). Based on these studies, it would appear 

that voluntary dehydration may be reduced to some extent by drinking a CHO-electrolyte 

drink in both girls and boys, but it is not possible to determine the independent effects of 

CHO and NaCl. Caution is recommended when interpreting these findings, based on 

prolonged exercise (4 x 20-min bouts with 25 min rest periods) in hot humid conditions. For 

many young people training for shorter periods (<90 min) in temperate conditions, the 

promotion of these drinks may lead to unnecessary overconsumption of sugary drinks (see 

section 10).  

 

10. Health, glycaemic index and insulin sensitivity 

Maintenance of good health is essential for disease prevention, to promote continued 

wellness throughout life and for normal growth and development. Since habitual diet has a 
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considerable impact on health, it is important to consider CHO intake recommendations for 

exercise performance alongside any potential health consequences of the practices advocated. 

This is particularly important for children and adolescents as they progress through puberty 

and develop lifestyle behaviours that can affect future health. Specifically, recommendations 

for CHO intake in young people may require special consideration, as insulin is a key 

hormone stimulating glucose uptake and regulating glycogen metabolism during rest and 

exercise, and the pubertal transition from Tanner stage 1 to 3 is associated with a 32% 

reduction in insulin sensitivity with concomitant increases in fasting glucose, insulin and the 

acute response to glucose, which recovers by Tanner stage 5 (Goran and Gower, 2001). 

Consequently, caution should be exercised when prescribing high CHO diets or ‘CHO 

loading’ and high GI foods to young people in the pre- to mid stages of puberty.  

 

Despite potential health concerns of prescribing specific diets to young people, the available 

evidence suggests that dramatic changes in CHO and fat intakes do not affect glucose and 

lipid metabolism adversely in the short term; most participants have been healthy non-obese 

young people, meaning that the findings are likely to apply to many young athletes. During a 

7 day high-CHO diet (60% CHO, 25% fat) and low-CHO diet (30% CHO, 55% fat), 

prepubertal children (Tanner stage 1) and adolescents (Tanner stage 4 and 5) adapted rapidly 

by adjusting CHO and fat oxidation to macronutrient intake, with only minor changes in 

parameters of glucose metabolism (Sunehag et al. 2002). Interestingly, acute consumption of 

a high-CHO diet did not affect insulin sensitivity adversely in these children and adolescents, 

whereas insulin sensitivity actually improved when the adolescents changed from a low-CHO 

to high-CHO diet. Similar findings were observed when energy intake was adjusted for the 

maintenance of energy balance (estimated from individual basal metabolic rate), with healthy 

non-obese children and adolescents increasing their CHO oxidation during a high-CHO diet 
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and fat oxidation during a high-fat diet (Treuth et al. 2003). However, the boys exhibited 

more pronounced changes in substrate oxidation than the girls, indicating boys may adapt 

more readily to changes in diet composition (Treuth et al. 2003). Unlike lean adolescents, 

obese adolescents failed to increase insulin sensitivity during the high-CHO diet, resulting in 

increased insulin secretion to maintain normal blood glucose levels (Sunehag et al. 2005). 

Consequently, high CHO-diets may not be suitable for certain populations, including 

overweight children and possibly girls. 

 

When considering CHO ingestion during exercise, the presence of certain health conditions 

must be considered, particularly insulin dependent diabetes mellitus (IDDM) and obesity. 

Although no difference in substrate oxidation between boys with and without IDDM occurred 

when a placebo was given during exercise, exogenous glucose oxidation was impaired in 

boys with IDDM when glucose was ingested despite two- to threefold higher blood glucose 

and plasma insulin concentrations than the healthy controls. Glucose ingestion did, however, 

spare endogenous glycogen stores to a similar extent in both groups (Riddell et al. 2000b). 

Moreover, glucose ingestion equal to total-CHO utilisation attenuated the drop in blood 

glucose, reducing the likelihood of hypoglycaemia during moderate intensity exercise in boys 

with IDDM (Riddell et al. 2000b). Overweight young people may also have specific 

nutritional needs due to their altered metabolism, including a greater reliance on CHO 

oxidation during exercise (McMurray and Hosick 2011). The suppression of whole body fat 

oxidation during exercise with CHO ingestion (vs. placebo) is likely to be counterproductive 

for obese children trying to maximise fat oxidation and weight management through regular 

physical activity (Chu et al. 2011). Moreover, consumption of sugar-sweetened beverages, 

including sports drinks, energy drinks, lemonade, and other fruit drinks, has been linked to 

excess weight gain in children and adults (Malik et al. 2006). Indeed, it would not be 
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advisable to recommend CHO supplementation during exercise in overweight children if this 

adds to their total daily energy intake. It is also crucial that young people are aware of the 

difference between sports and energy drinks and do not consume these drinks on a regular 

basis as part of their diet. Sports drinks may be recommended for fuel and hydration before 

during and after prolonged exercise in hot humid conditions (see section 9), but are 

categorised as ‘sugar-sweetened beverages’. Thus, regular consumption of sports drinks for 

most young athletes is likely to be unwarranted and could result in the overconsumption of 

sugar. Energy drinks specifically are not recommended due to the health risks associated with 

many of the ingredients, related to cardiovascular disease and bone mineralisation (Seifert et 

al. 2011).  

 

Rather than the total amount of CHO in the diet, the ‘quality’ or GI of the CHO may have 

greater relevance for health. The concept of GI was introduced as a method of classifying 

different CHO-rich foods according to their effect on postprandial glycaemia and is defined 

as the incremental area under the two hour blood glucose curve following ingestion of 50 g 

available CHO as a percentage of the corresponding area following an equivalent amount of 

CHO from a standard reference product (glucose or white bread) (Jenkins et al. 1981). Foods 

classified as HGI include refined grain products, white bread and potato, whereas LGI foods 

include whole grain products, legumes and fruits. There is now a large body of evidence 

providing robust support for low GI diets in the prevention of obesity, diabetes, and 

cardiovascular disease in adults (Brand-Miller et al. 2009) with similar findings emerging in 

young people (Fajcsak et al. 2008; Rovner et al. 2009; Rouhani et al. 2013). Therefore, 

although high GI snacks may be recommended after exercise to promote the replenishment of 

muscle glycogen stores in adults, caution should be exercised when promoting the regular 

http://www.ncbi.nlm.nih.gov/pubmed?term=%22Fajcsak%20Z%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Rovner%20AJ%22%5BAuthor%5D
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consumption of high GI foods in young people. This is particularly pertinent in adolescents 

within the mid-pubertal stages who are characterised by a reduction in insulin sensitivity.  

 

Finally, it should be highlighted that many of the reviewed studies within the pediatric 

literature refer to ‘CHO supplementation’ rather than meals or snacks. In general, the use of 

dietary supplements is not advocated for children or adolescents. Young athletes who 

consume sports drinks and energy drinks for their perceived physiological benefits may not 

be aware of the potential risks (e.g., high sugar content) and, in many cases, specific health 

benefits from nutritional supplements and drinks may be better achieved through appropriate 

consumption of a nutritious diet. Regarding CHO supplementation specifically, glucose 

drinks consumed during prolonged exercise when it is not possible to consume food may be 

beneficial. However, pre- and post-exercise CHO needs can be met by consuming food and 

drink as part of a healthy balanced diet. In particular, the benefits and efficacy of ‘recovery 

drinks’ for young people have not been studied, perhaps partly due to the concerns linked 

with promoting this practice in children.  

 

11. Summary 

Nutrition, including adequate CHO intake, is essential for the health and performance of 

young athletes. Since young athletes have physiological and metabolic characteristics that 

distinguish them from adults, nutritional recommendations must be tailored to the age and 

pubertal stage of the athlete. Unfortunately, most of the knowledge on the CHO needs of 

athletes is informed by evidence from adult-based research. The development of specific 

recommendations for young athletes is difficult due to the lack of child-specific evidence, 

which is further complicated by the dietary intake required for growth and development in 

conjunction with that required for training and competition. Although many unanswered 
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questions remain concerning CHO needs of the young athlete, it is possible to make some 

general recommendations. 

 

In terms of the overall diet, CHO should contribute to the majority of energy intake, which 

must be high enough to support growth and maturation whilst fuelling the additional physical 

activity in young athletes. For child and adolescent athletes, CHO is also an important fuel 

for high intensity exercise. The Dietary Guidelines for Americans (2010) for energy intake 

and the AMDR values for CHO intake may provide useful guidance in calculating age-

specific CHO needs in relation to physical activity level. Based on the current evidence, some 

authors have also attempted to make general recommendations for CHO intake in young 

athletes; for example, at least 50% of total daily energy intake (Petrie et al. 2004). 

Decrements in exercise performance, fatigue and changes in body composition may serve as 

useful indicators that CHO intake may not be adequate. Given the tendency of adolescent 

girls to limit their daily energy intake, attention should be directed to female adolescent 

athletes to ensure that CHO needs are met daily and energy balance is maintained.  

 

Timing of CHO consumption in relation to training and competition requires examination in 

young athletes. Currently, evidence on CHO loading in young athletes is not available. 

During exercise, drinks containing CHO could be considered for young athletes engaged in 

endurance exercise due to the preferential use of exogenous CHO in younger athletes in the 

pre- or early- pubertal stages. Although CHO-electrolyte drinks can minimise voluntary 

dehydration, there are health concerns associated with excessive consumption of such sugary 

beverages. Therefore, a healthy, balanced diet in line with the AMDR for total and CHO 

derived energy would be sufficient to fuel exercise for most young athletes. More research 

with young athletes is needed to inform specific recommendations for CHO intake and timing 
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in relation to exercise, including dosage and composition, and the efficacy of exogenous 

CHO intake in sport-specific situations (e.g. cycling, running, team sports). In adults, the 

restoration of muscle and liver glycogen is a fundamental goal of recovery between training 

sessions or competitive events; this requires examination in children and adolescents. Most 

dietary CHO should be from complex low GI sources (e.g. unsweetened porridge, wholegrain 

bread, wholegrain pasta, brown rice, lentils), with limited quantities of simple sugars and 

high GI CHO, but easily-digestible high GI foods may provide a useful source of CHO in the 

hours before and immediately after exercise; another area warranting examination in young 

athletes. Undoubtedly, research that can address such issues is crucial to inform CHO 

recommendations for young athletes in terms of both total daily intakes and in relation to 

exercise timing (before, during and after exercise). Providing well-informed 

recommendations for young athletes would be valuable in ensuring the maintenance of 

overall health and to enhance exercise performance during these important years of growth 

and maturation.  
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Table 1. Estimated daily total energy (kcal) needs by age, sex, and physical activity level 

Sex Age (years) 
Physical activity level 

Sedentary Moderately active Active 

Female 

4 to 8 1200 to 1400 1400 to 1600 1400 to 1800 

9 to 13 1400 to 1600 1600 to 2000 1800 to 2200 

14 to 18 1800 2000 2400 

Male 

4 to 8 1200 to 1400 1400 to 1600 1600 to 2000 

9 to 13 1600 to 2000 1800 to 2200 2000 to 2600 

14 to 18 2000 to 2400 2400 to 2800 2800 to 3200 

Source: Dietary Guidelines for Americans (2010). The values in Table 1 may be used in 
conjunction with the AMDR for CHO  (45 to 65% of total energy intake) to estimate CHO 
needs specific to age, sex and physical activity level. 
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Table 2.  Examples of reported CHO intakes in young athletes 

Author (date) Sport/event Age (y) Sex CHO intake (g⋅d-1) 

Malczewska et al. 
(2000) 

Mixed endurance 
(n=93) 17 (1) F 352 (127) 

Benardot  et al.  
(1989) 

Gymnastics 
(n = 29) 7-10 F 219 (57) 

Benardot  et al.  
(1989) 

Gymnastics 
(n = 22) 11-14 F 227 (64) 

Ziegler et al. 
(2002) 

Figure skating 
(n=48) 15 (2) F 243 (111) 

Horswill et al.  
(1990) 

Wrestling 
(n=18) 16 (2) M 367 (123) (BWL) 

209 (136) (DWL) 

Hickson et al.  
(1987) 

US football 
(n=46) 12-14 M 302 (125) 

Hickson et al.  
(1987) 

US football 
(n=88) 15-18 M 366 (170) 

Papadopoulou et al.  
(2002) 

Volleyball 
(n=65) 14-19 F 195 (88) 

Rico-Sanz et al.  
(1998) 

Association football 
(n=8) 17 (2) M 526 (62) 

Mean (SD); BWL = pre-season before weight loss; DWL = during-season during weight loss  

 



45 
 

Table 3. Studies investigating the effect of CHO intake during exercise on metabolism and performance 

Author(s) Participants Experimental design 

Contribution 
of CHOexo 

oxidation to 
total EE 

Metabolic effect of CHO ingestion Performance 
effect 

Hendelman 
et al. 

(1997) 

13 ♂ 
14.9(0.5) y 

Candy bar (280 kcal, 36 g CHO), fat-
free fig bars (200 kcal, 44 g CHO) or 
placebo consumed 10 min before 75 

min CE @ 60% VO2peak 
+ 2500 m CE time trial 

Not assessed No effect between conditions No effect between 
conditions 

Riddell et 
al. 

(2000a) 

8 ♂ 
13 to 17 y 

Placebo or glucose drink (3 g 
glucose · kg BM−1) 
consumed during 

120 min CE @ 60% VO2peak 

~25% 

↑ CHO oxidation 
↓ fat oxidation 

↑ blood glucose and plasma insulin 
↓ CHOendo 

 
 
 
 

 
↓ RPE 

Riddell et 
al. 

(2001) 

12 ♂ 
10 to 14 y 

Placebo, 6% glucose (G), or 3% 
fructose plus 3% glucose (FG) 

consumed during 90 min CE @ 53% 
+ VO2peak TTex test @ 90% PP 

17% in G 
16% in FG 

↑ CHO oxidation in G and FG 
↓ fat oxidation in G and FG 

↑ lactate in G and FG 
↑ insulin and glucose in G 

 

G↓ TTex 25% 
FG↓ TTex 40% 

Timmons et 
al. 

(2003) 

12 ♂ 
9.8 y 

(PP and EP) 
 

10 men 
22.1 y 

Placebo or 6% CHO drink (4% 
sucrose, 2% glucose) 

consumed during 
60 min CE @ 70% VO2peak 

22% boys 
 

15% men 

↑ CHO oxidation 
↓ fat oxidation 

↑ post-ex blood glucose & lactate 
↓ CHOendo (24% boys; 15% men) 

Age-related effects: 
↑ fat & ↓ CHO oxidation in 

boys vs. men. 
↓ CHOendo and ↑ CHOexo oxidation in 

boys vs. men (CHO trial) 

Not assessed 
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Timmons et 
al. 

(2007a) 

20 ♂ 
12 y 

(7 PP, 7 EP, 
6 M-LP) 

 
9 ♂ 
14 y 

Placebo or 6% CHO drink (4% 
sucrose, 2% glucose) 

consumed during 
60 min CE @ 70% VO2peak 

30% in 
PP and EP 

 
24% in M-LP 
and 14 y boys 

 

↑ CHO oxidation 
↓ fat oxidation 

↑ post-exercise blood glucose and 
lactate 

↓ CHOendo oxidation 
Age and puberty-related effects: 

↑ fat oxidation in younger vs. older 
boys 

↓ CHOendo in younger vs. older boys 
↑ CHOexo oxidation (% total EE) in 

younger vs. older boys and M-LP vs. 
PP and EP 

Not assessed 

Timmons et 
al 

(2007b) 

12 ♀ 
12 y (YG) 

 
10 ♀ 

14 y (OG) 
 

Placebo or 6% CHO drink (4% 
sucrose, 2% glucose) 

consumed during 
60 min CE @ 70% VO2peak 

~19%  
(similar in 

YG and OG) 

↓ fat oxidation in YG (not OG) 
↓ CHOendo oxidation in OG (not YG) 

Age-related effects: 
↓ CHOendo oxidation in YG vs. OG. 

↑ fat oxidation in YG during placebo 

Not assessed 

Riddell et 
al. 

(2000b) 

8 ♂ 
15.7(0.7) y 
with IDDM 

 
6 ♂ 

14.9(0.6) y 
non-diabetic 

Placebo or 8% glucose drink 
consumed during 

60 min CE @ 59% VO2peak 

9% IDDM 
 

12% non-
diabetic 

Similar CHO oxidation 
↓ fat oxidation (tendency) 

↓ CHOendo 
Between-group differences: 

↑ blood glucose and plasma insulin 
concentrations in IDDM vs. controls 

↓ CHOexo in IDDM vs. controls 

Not assessed 

Chu et al. 
(2011) 

7 ♂ 
11(1) y 
obese 

Placebo or 6% glucose drink 
consumed during 

60 min CE @ Fatmax 
23% ↑ CHO oxidation 

↓ fat oxidation Not assessed 

EE – energy expenditure; CHOexo – exogenous carbohydrate oxidation; CHOendo – endogenous carbohydrate oxidation; CE – cycle ergometry; 
TTex – time trial to exhaustion; PP – peak power; ♂ - boys, ♀ - girls; PP – prepubertal, EP- early pubertal, M-LP – mid to late pubertal 


