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Abstract  35 

Obesity is undoubtedly caused by a chronic positive energy balance.  However, the early metabolic 36 

and hormonal responses to overeating are poorly described.  This study determined glycaemic 37 

control and selected gut hormone responses to nutrient intake before and after seven days of high-38 

fat overfeeding.  Nine healthy individuals (5 males, 4 females) performed a mixed meal tolerance 39 

test (MTT) before and after consuming a high-fat (65%) high-energy (+50%) diet for seven days.  40 

Measurements of plasma glucose, NEFA, acylated ghrelin, GLP-1, GIP and serum insulin were 41 

taken before (fasting) and at 30 minutes intervals throughout the 180 min MTT (postprandial).   42 

Body mass increased by 0.79 ± 0.14 kg after high-fat overfeeding (p < 0.0001), and BMI increased 43 

by 0.27 ± 0.05 kg/m2 (p = 0.002).  High-fat overfeeding also resulted in an 11.6% increase in 44 

postprandial glucose AUC (p = 0.007) and a 25.9% increase in postprandial insulin AUC (p = 45 

0.005).  Acylated ghrelin, GLP-1 and GIP responses to the MTT were all unaffected by the high-fat, 46 

high-energy diet.   These findings demonstrate that even brief periods of overeating are sufficient to 47 

disrupt glycaemic control.  However, as the postprandial orexigenic (ghrelin) and 48 

anorexigenic/insulintropic (GLP-1 and GIP) hormone responses were unaffected by the diet 49 

intervention, it appears that these hormones are resistant to short-term changes in energy balance, 50 

and that they do not play a role in the rapid reduction in glycaemic control.       51 

 52 
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Introduction   68 

Changes in human behaviour, such as excessive food intake and/or insufficient physical activity, 69 

have made obesity a worldwide epidemic (1).  Furthermore, obesity is a significant risk factor for the 70 

development of insulin resistance and type II diabetes mellitus (T2DM).  However, despite the 71 

well-known association between obesity and T2DM, obesity may not trigger early metabolic 72 

dysfunction as changes in glycaemic control are often reported before substantial gains in body 73 

mass are observed.  For example, recent human studies report that even brief periods (5-14 days) of 74 

high-fat food intake can impair skeletal muscle insulin signalling (2), and reduce both hepatic (3) and 75 

whole-body insulin sensitivity (4,5).  In each of these studies the experimental diets provided an 76 

excess of energy as well as a high proportion of fat, and it is not yet clear if the observed 77 

impairments in glycaemic control are a result of the additional energy, the high fat content of the 78 

diets provided, or a combination of the two.  Likewise, the effect of overfeeding with mixed 79 

composition diets remains unknown.  However, an overconsumption of carbohydrate-rich foods (5 80 

days; +40% energy intake; 60% of energy from carbohydrate) has been reported to enhance skeletal 81 

muscle insulin signalling, evidenced by increased tyrosine phosphorylation of insulin receptor-1 82 

substrate (IRS-1) as well as increased IRS-1-associated phosphatidylinositol 3 (PI 3)-kinase 83 

activity, whereas high-fat overfeeding (5 days; +40% energy intake; 50% of energy from fat) in the 84 

same subjects was found to increase serine phosphorylation of IRS-1 and total expression of p85α 85 
(2).  Hence it would seem that a lipid overload explains the reduction in insulin sensitivity, rather 86 

than a positive energy balance alone.  This also fits with the hypothesis that it is an accumulation of 87 

reactive intra-myocellular lipid species, such as ceramide and diacylglycerol, that inhibits skeletal 88 

muscle insulin signalling and impairs GLUT4 translocation (6,7-8).     89 

 90 

Of the previous literature, there has been considerable interest in identifying the molecular 91 

mechanisms for peripheral (skeletal muscle) insulin resistance.  However, whole-body glycaemic 92 

control is coordinated by a variety of integrated physiological processes, involving multiple 93 

hormones and their target tissues, and the effects of high-fat food intake on these hormonal 94 

responses have received relatively little attention to date.  Of particular interest are the two primary 95 

incretin hormones: glucagon-like peptide-1 (GLP-1) and gastric inhibitory polypeptide (GIP).  96 

These two hormones are secreted from the intestines in response to nutrient ingestion and it is 97 

suggested that they act to control blood glucose levels by enhancing insulin secretion, suppressing 98 

glucagon release and slowing gastric emptying (9).  Patients with T2DM are known to have a 99 

diminished meal-induced secretion of GLP-1 (10,11).  Not only this, but they can also become 100 

resistant to the insulinotropic actions of GIP (12,13-14).  This loss of an incretin effect may be an 101 

important contributor to postprandial hyperglycaemia in T2DM (15).    Evidence for this also comes 102 
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from the effective use of GLP-1 receptor agonists and dipeptidyl peptidase (DPP)-IV inhibitors in 103 

the treatment of hyperglycaemia (16,17).   104 

 105 

Another gut hormone of interest is ghrelin, which is primarily secreted by the P/D1 cells lining the 106 

fundus of the stomach, and is thought to stimulate hunger via the orexigenic neuropeptide Y (NPY) 107 

and agouti-related peptide (AgRP) neurones of the hypothalamus (18).  Ghrelin levels are elevated 108 

during fasting and reduced following feeding (19), and ghrelin infusion has been shown to stimulate 109 

food intake in both animals (20) and humans (21) alike.  In healthy, normal weight individuals, ghrelin 110 

levels decrease in proportion to the energy content of the meal (22), whereas obese individuals 111 

exhibit both lower fasting levels (23,24-25) and reduced suppression following food intake (25,26).   112 

 113 

While the derangements in ghrelin and GLP-1 secretion have been reported in situations of chronic 114 

positive energy balance (i.e., obesity) and metabolic disease (i.e., insulin resistance), it is not yet 115 

clear whether the reported changes contribute to the development of obesity and insulin resistance, 116 

or are consequent of the disease state itself.  Therefore, the primary purpose of this study was to 117 

determine whether short-term, high-fat overfeeding, an experimental model which impairs whole-118 

body insulin sensitivity, influences gut hormone responses to fasting and feeding.  High-fat foods 119 

were chosen for the overfeeding intervention due to the frequent use of this model in both animal 120 

and human studies of metabolic disease.   121 

 122 

Materials and Methods  123 

Subjects  124 

Nine healthy individuals (5 males and 4 females; their physical characteristics can be seen in Table 125 

1) volunteered to participate in this study. The sample size was based on pilot data from our 126 

laboratory in which the effect size (Cohen’s d) of high-fat overfeeding on glycaemic control was 127 

calculated as 0.9 (i.e., a large effect).  Assuming a similar effect size in this study, α error 128 

probability of 0.05 and statistical power of 0.8, a sample size of at least 5 participants was required. 129 

The inclusion criteria required subjects to be physically active (exercising at least 3 times per week 130 

for more than 30 minutes at a time), non-smokers, free from cardiovascular and metabolic disease, 131 

not taking any medication, weight stable for at least 6 months, and with a normal body mass index 132 

(BMI: 18.5-24.9 kg/m2).  This study was conducted according to the guidelines laid down in the 133 

Declaration of Helsinki and approved by the Loughborough University Ethical Subcommittee for 134 

human participants. The experimental procedures and possible risks were fully explained to the 135 

subjects before their written informed consent was given. 136 

 137 
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Pre-testing  138 

Prior to the start of the study, subjects attended the laboratory for an initial assessment of their 139 

baseline anthropometric characteristics (height, weight and BMI). This information was then used 140 

to estimate their resting energy expenditure (REE) according to the calculations described by 141 

Mifflin et al., (27). A standard correction for physical activity level (1.6 and 1.7 times REE for 142 

females and males, respectively) was applied in order to estimate total daily energy requirements. 143 

This information was then used to determine individual energy intakes for the week-long 144 

overfeeding period (diet details described later).   145 

 146 

Experimental design 147 

After the initial pre-testing visit, subjects attended the laboratory for a mixed meal tolerance test 148 

(MTT) (details of which can be seen in the experimental protocol below). Subjects were then 149 

provided with all food to be consumed for the following 7 days.  The experimental diet was 150 

designed to be high in fat (65% total energy) and provide a severe energy excess (+50% kJ). All 151 

foods were purchased and prepared by the research team. Mean energy and macronutrient intake 152 

during the intervention period can be seen in Table 2 and a detailed example of typical daily food 153 

intake can be seen in Table 3.  Foods such as processed meats, dairy products, and pastries were 154 

used extensively throughout the diet intervention, and cooking instructions required subjects to fry 155 

foods where possible and to avoid wasting any fat left over from the cooking process. Saturated, 156 

monounsaturated and polyunsaturated fats made up 46 ± 0.9%, 37 ± 0.6%, and 9 ± 0.4% of the fat 157 

intake, respectively. Upon completion of the 7-day overfeeding period, subjects returned to the 158 

laboratory for a second MTT.    159 

 160 

Diet records, physical activity and compliance during high-fat overfeeding 161 

During the pre-testing visit, subjects were provided with standardised forms and digital kitchen 162 

scales for the purpose of recording weighed food intake for 3-5 day prior to the first main trial.  163 

Subjects also received detailed written and verbal instructions on how best to complete these 164 

records.  However, due to the well-known issues with self-reporting of energy intake (28), especially 165 

underreporting of food intake (29,30-31), even amongst lean and very well-motivated subjects (32), it 166 

was decided that estimated energy requirements would provide a better overall baseline from which 167 

to design and implement the overfeeding intervention.          168 

 169 

Subjects were expected to eat all of the food provided, and the importance of this was made 170 

explicitly clear to them during initial consultation and recruitment, but were told to report and 171 

return any uneaten foods so that our calculations could be adjusted if need be.  In order to improve 172 
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diet compliance, subjects were asked to complete a food preferences checklist to ensure that they 173 

only received foods that they were willing to eat; thereby increasing the palatability of the diet.  174 

Subjects were also given a copy of their diet plans and asked to tick off individual foods/meals as 175 

they were consumed.  Adherence to the diet was assessed by daily interviews that were conducted 176 

when subjects collected their food bundles.  Only one subject reported any issues with the diet, and 177 

they returned part of an uneaten steak and ale pie from one of the meals.  Other than this we are 178 

confident that the diet was followed; as evidenced by a consistent weight gain in all subjects.      179 

 180 

All subjects participated in physical activity on a regular basis and were required to continue this 181 

throughout the overfeeding period.  The written information and verbal instructions stated that 182 

subjects should expect to gain a small amount of weight and that they should not attempt to offset 183 

the additional energy intake by exercising longer, harder or more frequently.     184 

 185 

Experimental protocol  186 

On the experimental days (before and after overfeeding), subjects reported to the laboratory 187 

between 07.00 and 09.00 h after an overnight fast of at least 10 h. After voiding and being weighed, 188 

a 20 gauge Teflon catheter (Venflon, Becton, Dickinson, Plymouth, UK) was inserted into an 189 

antecubital vein of one arm to allow for repeated blood sampling during the 3 h MTT. A baseline, 190 

fasting blood sample (12.5 mL) was obtained before consumption of a standardized breakfast test 191 

meal (MTT). The MTT consisted of 45 g Rice Krispies, 72 g white bread (toasted), 20 g butter, 30 g 192 

strawberry jam and 300 mL whole milk. The energy intake and macronutrient composition of the 193 

test meal was 3227 kJ; 30 g fat, 112 g carbohydrate, and 19 g protein.  Upon finishing the meal, 194 

further blood samples of 12.5 mL were obtained at 30, 60, 90, 120, 150 and 180 min.   195 

 196 

Blood sampling  197 

For analysis of glucose, non-esterified fatty acids (NEFA), triglyceride, total cholesterol, HDL, 198 

LDL, GLP-1 and GIP, whole blood samples were collected in 4.9 mL ethylenediaminetetraacetic 199 

acid (EDTA; 1.75 mg/mL) treated tubes (Sarstedt, Leicester, UK) and spun at 1,750  g in  a 200 

refrigerated centrifuge (4°C) for 10 min. The resulting plasma was aliquoted into 1.5 mL 201 

Eppendorfs before being stored at -20°C until analysis. For analysis of insulin, whole blood was 202 

collected in 4.5 mL tubes containing a clotting catalyst (Sarstedt, Leicester, UK). Samples were left 203 

at room temperature until complete clotting had occurred; after which they were centrifuged at 204 

1,750 g for 10 min. The resulting serum was then aliquoted into 1.5 mL Eppendorfs and stored at -205 

20°C until analysis. Finally, to prevent the degradation of acylated ghrelin, a 25 µL solution 206 

containing potassium phosphate buffer (PBS), p-hydroxymercuribenzoic acid (PHMB) and sodium 207 
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hydroxide (NaOH) was mixed thoroughly with 2.5 mL of whole blood in 2.5 mL EDTA treated 208 

tubes. Samples were then centrifuged at 1,750 g for 10 min after which 500 µL of the resulting 209 

supernatant was removed and added to 50 µL of 1 M hydrochloric acid. Acidified samples were 210 

centrifuged for a further 5 min at 1,750 g before being stored at -20°C until analysis. 211 

 212 

Analytical procedures  213 

Plasma samples were analysed using commercially available spectrophotometric assays for glucose, 214 

triglyceride, HDL, LDL, total cholesterol (Horiba Medical, Northampton, UK) and NEFA (Randox, 215 

County Antrim, UK) concentrations using a semi-automatic analyzer (Pentra 400; Horiba Medical, 216 

Northampton, UK). The coefficient of variation (CV) for plasma glucose, triglyceride, HDL, LDL, 217 

total cholesterol and NEFA was 0.5, 3.0, 1.6, 0.5, 0.3 and 4.1%, respectively.  Serum insulin 218 

concentrations were determined using an enzyme-linked immuno-sorbent assay (ELISA: EIA-2935, 219 

DRG instruments GmBH, Germany) and the CV was 2%. Acylated ghrelin concentrations were 220 

determined using an ELISA (EIA-A05106, SPI BIO, France) and the CV was 16%. Total plasma 221 

GLP-1 and GIP concentrations were also determined via ELISA (EZGLP1T-36K and EZHGIP-222 

54K, respectively; Merck Millipore, Darmstadt, Germany). The CV was 7% for GLP-1 and 5% for 223 

GIP.  224 

 225 

Area under the curve (AUC)  226 

AUC for glucose and insulin was calculated using the trapezoidal rule with zero as the baseline.  227 

 228 

Statistics  229 

Data are presented as means ± standard error of the mean (SEM). Statistical analysis was performed 230 

using SPSS (V21.0) for windows (SPSS Inc, Chicago, IL). Fasting metabolic responses to high-fat 231 

overfeeding were compared using a paired t-test, whereas the dynamic hormonal and metabolic 232 

responses to the MTT were compared using a two-way (pre vs. post-overfeeding) repeated 233 

measures analysis of variance (ANOVA) and Bonferroni post hoc analysis where appropriate. 234 

Statistical significance was accepted where p < 0.05.  235 
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 236 

Results 237 

Weight gain and BMI  238 

All nine subjects gained body mass following 7 days of high-fat overfeeding (mean, 0.79 ± 0.14 kg; 239 

range, 0.30-1.3 kg; p < 0.0001, Table 1), and their BMI increased by 0.27 ± 0.05 kg/m2 (p = 0.002) 240 

(Table 1).   241 

 242 

Fasting plasma substrates 243 

Fasting substrate, hormone and lipoprotein concentrations before and after high-fat overfeeding are 244 

presented in table 4. Fasting plasma glucose, HDL cholesterol and GIP increased following 245 

overfeeding (p = 0.025, p = 0.012 and p = 0.017, respectively), while fasting plasma triglyceride 246 

and NEFA decreased (p = 0.039 and p = 0.023, respectively). Fasting serum insulin, plasma 247 

acylated ghrelin, total and LDL cholesterol, and GLP-1 were all unaffected by high-fat overfeeding.   248 

 249 

Mixed meal tolerance test 250 

Substrate and hormone responses to the 3 hour MTT are presented in figure 1. Plasma glucose and 251 

serum insulin concentrations increased in response to the MTT, peaking 30 min after meal 252 

ingestion.  Seven days of high-fat overfeeding increased plasma glucose AUC by 11.6% (from 1020 253 

± 74 mmol/L per 180 min to 1138 ± 56 mmol/L per 180 min; p = 0.007; figure 1a) and serum 254 

insulin AUC by 25.9% (from 53267 ± 6375 pmol/L per 180 min to 67046 ± 6849 pmol/L 180 min; 255 

p = 0.005; figure 1b) relative to baseline. Plasma NEFA concentrations decreased following food 256 

consumption. However, there was a more pronounced meal-induced suppression of plasma NEFA 257 

before high-fat overfeeding than afterwards (p < 0.0001; figure 1c).  Plasma acylated ghrelin 258 

concentrations decreased rapidly following food consumption (p < 0.0001; figure 1d), reaching a 259 

nadir at the 60 min sample point and remaining supressed throughout the entire postprandial 260 

measurement period.  This response was not influenced by high-fat overfeeding.  Plasma GLP-1 261 

concentrations peaked 30 min after food ingestion (p = 0.007), returning to fasting levels thereafter, 262 

with no difference before and after high-fat overfeeding (figure 1e).  Plasma GIP concentrations 263 

increased approximately 3-fold immediately following food consumption and remained elevated 264 

throughout the 3 h MTT (p < 0.0001), but again this response was not influenced by adherence to 265 

the high-fat, high-energy diet (figure 1f).     266 

 267 

Discussion  268 

The main finding of the present study was that postprandial responses of selected gut hormones 269 

(acylated ghrelin, GLP-1 and GIP) were unaffected by short-term, high-fat overfeeding, and that 270 
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only fasting levels of GIP were altered (increased) as a result of the dietary intervention.  A 271 

secondary finding was that excessive consumption of high-fat foods impaired glycaemic control, as 272 

evidenced by a significant increase in postprandial glucose and insulin AUC.   273 

 274 

The incretin hormones, GLP-1 and GIP, are thought to be responsible for the augmentation of 275 

insulin secretion that occurs after food intake compared with intravenous nutrient administration.    276 

We chose to investigate the impact of short-term, high-fat overfeeding on meal-induced GLP-1 and 277 

GIP responses as patients with T2DM exhibit a reduced GLP-1 secretion following nutrient 278 

ingestion (10,11)  and may become resistant to the insulinotropic actions of GIP (12,13-14), suggesting 279 

that a diminished incretin effect might be partly responsible for the development of postprandial 280 

hyperglycaemia.  In the present study, however, we report elevated postprandial glucose and insulin 281 

concentrations following 7 days of high-fat overfeeding without any changes in GLP-1 or GIP.  In 282 

this regard, elevated insulin concentrations are most probably a simple compensatory mechanism 283 

for reduced insulin sensitivity (hepatic and/or peripheral tissues) and elevated glucose 284 

concentrations.   Thus, an altered incretin effect does not appear to play a role in the early adaptive 285 

response to overnutrition or the observed impairment in glycaemic control.  Whilst we did observe 286 

a small, but significant, increase in fasting GIP concentrations, the physiological relevance of this 287 

remains unclear as fasting insulin concentrations were seemingly unaffected.   288 

 289 

As mentioned previously, ghrelin concentrations are known to increase during fasting and decrease 290 

following food intake (19).  This, combined with the observation that ghrelin administration 291 

stimulates appetite and food intake (20,21,33), has led to the suggestion that ghrelin is an appetite-292 

regulating hormone that is responsible (at least partially) for eating behaviour. Thus, reduced 293 

ghrelin levels reported in obese (23,24-25) and insulin resistant (34,35) individuals might represent a 294 

feedback loop by which the body attempts to reduce food intake within individuals that have been 295 

exposed to a chronic positive energy balance.  Ghrelin is also known to inhibit insulin secretion (36), 296 

and may, therefore, play a role in glucose homeostasis.  Indeed, ghrelin knock-out mice exhibit 297 

elevated basal insulin concentrations, enhanced glucose-stimulated insulin secretion, and improved 298 

peripheral insulin sensitivity when compared to wild-type mice (37).  With this in mind, reduced 299 

ghrelin levels might also be an attempt to lower glucose concentrations within hyperglycaemic 300 

obese and insulin resistant populations.  Given the discussion points above, we might have expected 301 

to see a high-fat diet-induced decrease in fasting and/or postprandial acylated ghrelin 302 

concentrations, especially as we observed significant gains in body mass (presumably body fat) and 303 

increases in both fasting and postprandial glucose concentrations, but this was clearly not the case 304 

(Figure 1D).   However, our results are in accordance with other overfeeding studies ranging in 305 



10 

duration from 3-100 days (3,38-40).  Thus it would seem that changes in circulating ghrelin 306 

concentrations occur secondary to the development of obesity and/or insulin resistance rather than 307 

in responses to relatively short-term positive energy balance or modest increases in blood glucose 308 

concentrations.    309 

 310 

Whilst the selected gut hormones demonstrated little response to the dietary intervention, high-fat 311 

overfeeding resulted in a significant increase in fasting glucose and postprandial glucose and insulin 312 

concentrations (Figures 1A and 1B), which is consistent with a number of previous human studies 313 
(4,5,41-43).  Others have reported impairments in skeletal muscle insulin signalling without (possibly 314 

before) a corresponding decrease in whole-body insulin sensitivity (2), or reduced hepatic insulin 315 

sensitivity without changes in peripheral glucose uptake (3).  The lack of mechanistic agreement 316 

between some of these studies is most likely explained by differences in the duration of 317 

overfeeding, the varying energy content and/or macronutrient composition of the diets 318 

administered, or the particular method used for assessing insulin action and glycaemic control (oral 319 

glucose tolerance test [OGTT] vs. hyperinsulinaemic euglycaemic clamp vs. mixed meal tolerance 320 

test [MTT]).  Where impairments in postprandial glycaemic control have been observed, it would 321 

be useful to know the processes responsible for such an effect.  Blood glucose concentrations are 322 

governed by the balance between the rate of appearance of glucose from the gut, endogenous 323 

glucose production (primarily from the liver), and peripheral glucose uptake (mainly skeletal 324 

muscle).  Therefore, the high-fat diet-induced increase in postprandial glucose concentration could 325 

be due to a defect in one, or a number, of these processes, which obviously warrants further 326 

investigation.           327 

 328 

In addition to changes in glucose and insulin concentrations, we also observed a significant 329 

decrease in fasting plasma triglyceride and NEFA concentrations after 7 days of high-fat 330 

overfeeding.  This is consistent with previous work by us (5) and others (2,44,45) and most likely 331 

reflects a decrease in endogenous triglyceride production as a result of increased fat consumption 332 
(46) and suppression of adipose tissue lipolysis as a result of consuming larger and/or more frequent 333 

meals.  It has been suggested that elevated NEFA concentrations might be responsible for the 334 

development of insulin resistance and T2DM (47).  This notion has been fuelled by classical reports 335 

of elevated NEFA concentrations in obesity (48) as well as acute studies in which NEFA have been 336 

elevated by means of intravenous lipid-heparin infusion (49).  The later approach elevates NEFA by 337 

activating lipoprotein lipase (LPL) located in the vascular endothelium and supplying a lipid-based 338 

substrate for hydrolysis.  More recently, however, the NEFA hypothesis of insulin resistance has 339 

been questioned as NEFA release per kilogram of adipose tissue is reduced as adipose tissue mass 340 
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increases, and lipid-heparin infusion trials often elicit NEFA concentration in excess of the disease 341 

state that they aim to mimic (50).  Whilst our data tend to support this change in consensus, in that 342 

we observed impaired glycaemic control at a time when fasting NEFA levels were reduced, we 343 

should also point out that frequent consumption of high-fat foods throughout the week-long diet 344 

intervention could have led to a considerable “spill-over” effect, whereby the hydrolysis of diet-345 

derived circulating triglycerides could have driven regular postprandial increases in plasma NEFA.   346 

 347 

It is also interesting to note that the high-fat-diet did not affect total or LDL cholesterol 348 

concentrations as one might have expected, whereas HDL cholesterol actually increased following 349 

the dietary intervention.  In general, saturated fats (that were highly prevalent in the present study) 350 

raise total and LDL cholesterol whereas polyunsaturated fats lower total and LDL cholesterol, and 351 

both types of fat increase HDL cholesterol (51,52).  It is likely that our study did not affect total or 352 

LDL cholesterol levels due to the short duration of the diet intervention.  Large scale population 353 

studies have demonstrated a strong association between low levels of HDL and cardiovascular 354 

disease risk (53,54-56); a risk that is progressively reduced with increasing levels of HDL (57).  This has 355 

been attributed to the potent anti-atherosclerotic properties of HDL (58).  However, it is important to 356 

note that the high-fat diet-induced increase in HDL may not represent an improvement in the 357 

plasma lipoprotein profile, as these diets have also been shown to reduce HDL particle uptake by 358 

the liver through a downregulation in the B1 scavenger receptors, which may explain the apparent 359 

rise in plasma concentrations (59).     360 

 361 

As a last point for consideration, our subjects were all healthy, young, lean and physically active, 362 

and yet they still exhibited a rapid reduction in glycaemic control as a result of excessive 363 

consumption of high-fat foods.  Whilst there is a paucity of information regarding the metabolic 364 

responses to overnutrition in humans, especially within at risk populations, one might expect even 365 

greater deleterious responses in those who are already overweight, sedentary or elderly.       366 

 367 

In conclusion, in this study we have provided further evidence that short-term, high-fat overfeeding 368 

leads to impairments in glycaemic control, as indicated by a significant increase in meal-induced 369 

glucose and insulin responses.  Furthermore, the postprandial responses of GLP-1, GIP and acylated 370 

ghrelin were not affected by the dietary intervention, suggesting that these selected gut hormones 371 

are not responsive to brief periods of positive energy balance and/or severe lipid overload.  372 

Therefore, the incretin hormones, and the gut peptide ghrelin, are not major regulators of the early 373 

adaptive responses to overnutrition.  374 

 375 
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Table legends 581 

Table 1.  Values are mean ± SEM, n = 9. * Denotes significantly different to baseline, p < 0.05 582 

 583 

Table 2.  Values are mean ± SEM, n = 9. * Denotes significantly different to estimated energy 584 

requirement, p < 0.05. † Denotes significantly different to reported intake, p < 0.05 585 

 586 

Table 3.  Reported values are from a single subjects’ food intake on 1 day of the HFD intervention.  587 

Water intake was allowed ad libitum. 588 

 589 

Table 4.  Values are mean ± SEM, n = 9. * Denotes significantly different to before HFD, p < 0.05 590 

 591 

 592 

Figure legends 593 

Figure 1.  Plasma glucose (A), serum insulin (B), plasma NEFA (C), acylated ghrelin (D), total 594 

GLP-1 (E), and total GIP (F) concentrations during a 3 hour meal tolerance test conducted before 595 

and after 7-days of high-fat overfeeding. Values presented are mean ± SEM (n = 9). # Denotes 596 

significant main effect of trial/HFD diet (p < 0.05). * Denotes significant difference between trials 597 

at the annotated time point (p < 0.05).         598 
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Table 1.  Subject characteristics before and after 7 days of high-fat overfeeding 616 

Characteristics Baseline 7-days overfeeding 

Age (years) 23 ± 1 - 

Height (cm) 171.6 ± 2.0 - 

Body mass (kg) 65.6 ± 2.1 66.3 ± 2.0 * 

BMI (kg/m2) 22.3 ± 0.6 22.5 ± 0.6 * 

 617 

 618 

Table 2.  Estimated daily energy requirement and actual energy and macronutrient intake during the 619 

high-fat overfeeding period  620 

 Estimated energy 

requirement 

Self-reported 

habitual intake 

Experimental 

energy intake 

Energy (kJ) 10717 ± 481 8593 ± 749 16075 ± 722 *† 

Fat (g) - 74 ± 10 277 ± 12 † 

Carbohydrate (g) - 263 ± 23 211 ± 9 † 

Protein (g) - 100 ± 12 125 ± 6 † 

 621 

 622 

Table 3. Example food intake for 1 day of high-fat overfeeding  623 

Breakfast 

Foods 3 large pork sausages (175 g), 4 rashers of streaky bacon (80 g), 

2 large fried eggs (120 g), 1 medium slice of fried white bread 

(36 g), whole milk (300 mL) 

Protein (g) 61 

Carbohydrate (g) 47 

Fat (g) 93 

Energy (kJ) 5277 
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% of the days intake 31 

Lunch 

Foods 2 slices of medium white bread (72 g), butter (15 g), cheddar 

cheese (70 g), mayonnaise (15 g) 

Protein (g) 27 

Carbohydrate (g) 36 

Fat (g) 47 

Energy (kJ) 2810 

% of the days intake 16 

Snack 

Foods Potato crisps (50 g), milk chocolate bar (49 g) 

Protein (g) 7 

Carbohydrate (g) 55 

Fat (g) 32 

Energy (kJ) 2238 

% of the days intake 13 

Dinner 

Foods 2 beef burgers (200 g), 4 rashers of streaky bacon (80 g), 

cheddar cheese (60 g), coleslaw (100 g) 

Protein (g) 63 

Carbohydrate (g) 5 

Fat (g) 115 

Energy (kJ) 5411 

% of the days intake 31 
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Dessert 

Foods Chocolate sundae (140 g) 

Protein (g) 4 

Carbohydrate (g) 37 

Fat (g) 21 

Energy (kJ) 1474 

% of the days intake 9 

Total intake 

Protein (g) 162 

Carbohydrate (g) 180 

Fat (g) 308 

Energy (kJ) 17210 

 624 

 625 

Table 4. Fasting plasma substrate and hormone concentrations before and after 7-days of high-fat 626 

overfeeding 627 

 Before HFD After HFD 

Glucose (mmol/L) 5.5 ± 0.1 5.8 ± 0.1 * 

Insulin (pmol/L) 67 ± 8 79 ± 9 

NEFA (mmol/L) 0.60 ± 0.05 0.40 ± 0.06 * 

Triglyceride (mmol/L) 1.0 ± 0.1 0.7 ± 0.1 * 

Total cholesterol (mmol/L) 4.0 ± 0.2 4.0 ± 0.2 

HDL (mmol/L) 1.3 ± 0.1 1.5 ± 0.1 * 

LDL (mmol/L) 1.8 ± 0.2 1.8 ± 0.1 

Acylated ghrelin (pmol/L) 318 ± 57 268 ± 39 

GLP-1 (pmol/L) 31 ± 4 31 ± 4 

GIP (pmol/L) 22 ± 2 36 ± 6 * 

 628 
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