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Abstract 
 

Here we have developed a mathematical model of a random neuron network with two 
types of neurons: inhibitory and excitatory. Every neuron was modelled as a functional cell 
with three states, parallel to hyperpolarised, neutral and depolarised states in vivo.  These 
either induce a signal or not into their postsynaptic partners. First a system including just 
one network was simulated numerically using the software developed in Python. 

Our simulations show that under physiological initial conditions, the neurons in the network 
all switch off, irrespective of the initial distribution of states. However, with increased 
inhibitory connections beyond 85%, spontaneous oscillations arise in the system. This 
raises the question whether there exist pathologies where the increased amount of 
inhibitory connections leads to uncontrolled neural activity. There has been preliminary 
evidence elsewhere that this may be the case in autism and down syndrome[1-4].  

At the next stage we numerically studied two mutually coupled networks through mean 
field interactions. We find that via a small range of coupling constants between the 
networks, pulses of activity in one network are transferred to the other. However, for high 
enough coupling there appears a very sudden change in behaviour. This leads to both 
networks oscillating independent of the pulses applied. These uncontrolled oscillations 
may also be applied to neural pathologies, where unconnected neuronal systems in the 
brain may interact via their electromagnetic fields. Any mutations or diseases that increase 
how brain regions interact can induce this pathological activity resonance. 

  

Our simulations provided some interesting insight into neuronal behaviour, in particular 
factors that lead to emergent phenomena in dynamics of neural networks. This can be tied 
to pathologies, such as autism, down's syndrome, the synchronisation seen in parkinson's 
and the desynchronisation seen in epilepsy. The model is very general and also can be 
applied to describe social network and social pathologies. 
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Introduction: 
  
 The Ising model is  a well known in physics to describe magnetic matter. It considers the 
spin states of each atom, which change over time with respect to the spin states of its neighbours. It 
is often used to analyse and predict dual opinion distributions in a model population of people. The 
Ising model itself is well described; however, the steps in changing the model to handle neuronal 
behaviour have not been tested previously. Here we systematically alter the Ising model to move it 
closer to a neuronal model, and look at the effect of each change. The 3 steps we look at are: 
 1. Randomising the neighbours. 
 2. Introducing a threshold. 
 3. Changing the polarity of the connection. 
 
 
Methods: 
 The Ising model we will begin with has 3 connections for each element in the network, 
creating a regular lattice. We sum the states of the neighbours to determine the new state of the 
element using the signum function. The states can be either +1 or -1. 20 time step iterations were 
applied, since the final state was always seen before 15t. Any changes that we applied will be 
described in each subsection. 
 
The Hamiltonian of the classical Ising model is shown in equation 1: 
 
H!!"#$ = J!! σ!σ! − H! σ!   (1) 
where Jij is the coupling constant between spins at sites i and j. σ is the spin state, which takes the 
value of ±1. Hi is the magnetic field acting on the spin located at site i. This model normally 
describes the magnetic states in condensed matter.  
 
We now will alter the traditional Ising model, to bring it closer to neuronal style behaviour. For this 
we added a threshold (µ) into the signum function, as well as the state σ having 3 possible states. 
These states can be: +1 for active, -1 for hyperpolarised, 0 for inactive. Therefore the state σ for 
neuron α can be written as follows: 
 

σ! sig =
+1 ifsig > µ
0 if0 ⩽ sig ⩽ µ
−1 ifsig < 0

    (2) 

 
Sig here is the signal received from neuron α's inputs. The signal is the sum of the weighted states 
of its inputs. For example the signal applied to neuron α is shown in equation 3: 
sig! = C!!

!!!
!!!!!

σ!       (3) 
where Cαj is the coupling constant between the input j and the neuron α. This signal then affects the 
new state of the neuron following equation 2. This can be succinctly written as equation 4, by the 
average of 2 signum functions (for the case where all 3 states are correctly implemented): 
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σ! sig = !

!
Sgn sig! + Sgn sig! − µ   (4) 

 
These equations can be combined into equation 5, which is similar to a discretised Hopfield model.  
 
σ! t+ 1 = Sgn C!!!

!!! H σ! t − µ   (5) 
 
Where H(x) is the Heaviside step function, and µ is the action potential threshold. The next step in 
progression of this model would be to correctly implement a functional hyperpolarised state. This 
will lead to the threshold being dependent on the prior state of a neuron (equation 6). A 
hyperpolarised cell is harder to activate than a cell at resting potential. 
 

µ σ t = 0.136 ifσ t ≥ 0
0.227 ifσ t < 0 

 
These values are calculated based on the resting potential of a neuron being -70mV, the threshold 
being -55mV, hyperpolarised potential being -80mV and the fully depolarised state being +55mV. 
 
For each experiment, a network of 1000 neuronal objects was built. Each neuron is randomly 
assigned 3 inputs from the 1000 objects, and each connection is given a polarity. A positive polarity 
reflects an excitatory glutamatergic synapse, and a negative connection is an inhibitory cholinergic 
synapse. The initial states are randomly picked from a uniform distribution, according to a fixed 
ratio of ±1. The same is done with the polarity.  The inter-neuronal coupling constant is set at 0.1, 
and the threshold is set at 0.136. This threshold is equivalent to a neuron reaching threshold in vivo. 
A zero state in our model corresponds to -70mV, threshold -55mV, and +1 state being fully 
depolarised at +30mV in vivo. The states are then iterated with accordance to equations 2-4 above. 
This simulates the evolution of the neuronal states after we set their initial conditions. There are two 
possible outcomes for the system. Either the neurons reach some constant final distribution of 
states, or oscillations arise. A constant final arrangement is where there is no information transfer in 
the system, whereas oscillations indicates that there are dynamic signals at play. We predict that the 
final behaviour of the system can be controlled by varying the initial conditions. We will test which 
initial variables affect the final evolution most strongly.  
 
Following a pilot simulation, it was seen that the system reaches a final behaviour, whether 
stationary or oscillatory, after 25 time step iterations. Therefore that was the maximum number of 
time steps we used in future runs. 50 experiments were created for each set of initial ratios, and the 
results collected on the same graphs to visualise clearer averages. 
 
 
 
Results: 
 
1.Randomising the neighbours: 
 Here instead of using 3 neighbours that are fixed with respect to each element, we used a 
random number generator with a uniform distribution to select a neighbour from anywhere in the 
network. Here we found that having random connections increases the magnitude of divergence in 
the system. Where the original Ising model only spreads out slightly dependent on the initial 
conditions, our version diverges greatly even when we initialise with a 50:50 state split. In the 
symmetric case, both 1 and -1 can win out, seen by a mean of 50 (out of 100 elements) across 100 
experiments. The final states do not oscillate, tested by running 200 iterations on each experiment. 
Increasing the connectivity has no visible effect on the divergence. 



 
 
 
Figure 1: Following the states of the 
neurons with each iteration step from 
at initial 50:50 state distribution. All 
experiments diverge fully, seen more 
clearly in the histogram figure 2a. 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 2: a (above) A histogram with the final states of 1000 experiments. The magenta and cyan 
peaks are the initial state distributions, and as we can see the final states either all become 1 or all 
become -1. In contrast, figure 2b (below) shows the same results but for the original Ising model. 
Here the final states have barely diverged. 
 
 
2. Adding  a threshold: 



 Adding just a threshold whilst keeping the fixed connections of the original Ising model 
causes an even faster full divergence (Figure 3b), where the -1 state always takes over the whole 
system. This makes sense, since a threshold adds in an asymmetry, and so an initial 1:1 distribution 
is off center from the threshold point. For the 1000 experiments, the means for the -1 state was 1000 
out of 1000 elements, with a variance of 0 (Figure 3a). 
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the -1 state takes over all 1000 elements, seen by the very fine lines at 1000 and 0 respective to the -
1 and 1 states. The variance for both final peaks is 0. b (below) shows that the rate of divergence is 
a lot faster and stronger than with just the random connections (figure 1). 
 
 
 Adding both the threshold and random connections gives results very similar to just the 
threshold Ising results, as seen in figure 4. Therefore, we can assume the threshold effect is stronger 
and dominates the effect of the random connections. However, we will still test both random and 
fixed neighbours in later tests for completion. 
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3. Adding connections with negative polarity. 
 We now induced a connection polarity at each input, acting multiplicatively upon the inputs 
to an element. Looking at the histograms, there wasn't much information seen. However, some 
interesting phenomena arose when looking at their progression with respect to time. First we looked 
at only adding the polarity to the Ising model. Here, as the amount of negative connections 
increases, a phase-like phenomenon appeared, flipping the states of the system with every iteration 
(Figure 5). 
 
 
 
Figure 5: a,b,c going top to bottom. 5A is the Ising model with 30% inhibitory connections. The 
state frequencies remain more or less constant. B Here the model has 70% negative connections, 
and an oscillatory phenomenon can now be seen. This is further emphasized in figure 5c (next 
page), where all the connections are inhibitory. 
 

 



 
 
 
 
 
 
 
 
 
 
 
 
Now we add in having random neighbours into the model. Having 30% negative connections 
suppresses the divergences seen in prior runs, shown in Figure 6a. However, with 100% negative 
connections, divergence is seen alongside the oscillatory behaviour (Figure 6b). 
 
 Adding in the threshold so that all 3 factors are in play, we seen a return of the strong 
divergence of state frequencies. With 30% negative connections, the -1 state still fully wins out 
(Figure 7a). But as the negative connections increase up to 70%, this separation is reduced. At 
100% negative connections, the oscillatory behaviour wins out again. 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
 
 
 
 
 
 
Figure 6a (above) and b (below): a, The progression of states of 50 experiments with random 
neighbours and 30% negative connections. The negative connections seem to suppress the 
divergent activity seen from Figure 1 and 2a. B, The progression of states with random neighbours, 
but now with 100% negative connections. Hence the divergence is seen partnered together with the 
state flipping phenomenon. 
 
 
 
 
 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 7 a,b top to bottom previous page, c above:  Progression of states of 50 experiments, all 
with random neighbours, having a threshold and varying the amount of negative connections of 
30% (a), 70% (b) and 100% (c). At 30% the -1 state wins out. At 70%, the negative connections 
seem to suppress this winning state. At 100%, the oscillations return that were seen in Figure 6. 
 
(Note: I have altered the code to make each population of states it's own separate colour. With more 
time I'd redo these results to produce clearer graphs.) 
 
These oscillations found here occur at unphysiological amounts of inhibitory connections, when 
85% of coupling constants C are negative (equation 5). However, this raises the question if there 
exists a pathology that could increase the amount of inhibitory synapses in a particular brain region. 
This would lead to any signal causing uncontrolled oscillatory activity spike, such as those we see 
in simulations. There has been evidence that increased inhibitory activity can disrupt the excitatory-
inhibitory balance in the brain, leading to the neurological diseases of autism and down's syndrome 
(Baroncelli et al., 2011; Zikopoulos and Barbas 2013). 
 
From these tests, it appears under normal physiological inhibitory ratios, any initial signal decays 
rapidly till the system is at rest. Therefore a good next step is to apply pulses of activity to our 
model network, and follow their evolution. There are 4 features that can be tested when pulses are 
applied to the networks: pulse rate, inhibitory ratio, intra-network coupling, and finally how pulses 
can be transferred via meanfield coupling to the other network. We'll start with looking at a single 
network. 
 
Figure 8a,b,c top to bottom next page. Following a network's evolution with a pulse applied every 5 
time steps. The blue network has the pulse applied, the black network is the control without pulse. 
From top to bottom, the networks have 20% (a), 15% (b) and 10%(c) inhibitory connections. The 
lower the amount of inhibitory connections, the slower the activity decays in the system. This is 
similar to the saturation seen in real neurons under tetanic stimulation.  
 
 



 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 9a,b (top): 

Simulations ran with increased pulse rate of every 2 time steps. A, This simulation has 20% 
inhibitory connections, but with pulses every 2 time steps. As you can see there is not enough time 
for the signal to decay fully, leading to activity similar to unfused tetanus. B, here is the same 
experiment as in a, but the 2 networks are allowed to interact with meanfield with strength 0.1. 
Here the second network seems to increase the recovery rate of neurons in network 1, almost via a 
dampening effect. This will be investigated later. C (below), Here the pulse rate in only every 5 time 
steps, with an inhibitory ratio of 15%, like in figure 8b. The difference is that the 2 networks are 
allowed to interact via meanfield. This leads to tetanus in both networks. This tetanus is lost when 
the inhibitory ratio is 20%, as in 9b, even with increased pulse rate. 

 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
Before investigating the meanfield interaction between two networks further, we will test the 
couping constant with in a single network first. There are 3 possible useful coupling constants C 
when using 3 input neurons, as we are using. These are when you only need 1, 2 or 3 inputs to be 
excitatory to fully activate the neuron respectively. In example, they are C > µ (10c), C > µ/2 (10b), 
C > µ/3 (10a). The results here are unusual however. You'd expect that when µ/2 > C > µ/3, the 
decay rate would be faster than for the other 2 cases. However, there are appears to be a sweet spot 
when C = 0.1, that leads to the fastest signal decay, similar to when C < µ/3 (10d) 
 
 
 



Figure 10a-d (left to right). Simulations altering the intra-network coupling constant C. Pulses are 
applied every 10 time steps, inhibitory ratio in 20%. The black lines are the control, non pulsating 
networks, and pulses are applied to the blue network. The constants tested were 0.05 (a), 0.1 (b), 
0.2 (c) and (0.01, control) with a threshold of 0.136. The fastest decay rates are observed for b and 
d. This results seem odd. 
 
 
 



 
 
Figure 11a-d (left to right). Simulations with increasing inter-network coupling constants. 
Inhibitory ratio was 20%, pulses every 10 time steps into network A (blue). The constants tested 
here were 0.01 (a), 0.05 (b), 0.995 (c) and 0.100 (d). a: The coupling is too weak, so only a small 
reaction is seen in network B. As the coupling constant increases through to 0.99, the reaction 
signal in network B gets stronger, as well as both activation peaks getting narrower. The narrowing 
seen is not intuitive, and facilitates a faster recovery rate. Between c and d, the very small increase 
in coupling constant leads to a much larger increase in Network B activity. Therefore the coupling 
of 0.1 appears to be a threshold for effective cross network signalling. 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 12 (above): This is a plot following the 3 state populations in the simulation from figure 
11d. The positive state mirrors the meanfield seen in previous figures. The neutral “0” state 
appears to have a quicker reaction speed, and acts as the intermediate state moving neurons from 
state +1 to state -1. 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 13a (left), b(right): Simulations with higher inter-network coupling. Inhibitory ratio is 20%, 
pulses every 10 time steps. A: The coupling constant here was 0.145. The reaction signal in 
Network B is only slightly higher than seen in figure 11d. This further suggests that a constant of 
0.1 is all that is required for clean signalling. However, a slight increase to a coupling of 0.1475 
between networks (b) shows uncontrolled resonance between both networks, masking the pulse 
activity completely. This suggests another route for pathological action. 
 
Conclusions. 
 
	Here	we	studied	Ising	like	model		applying	to	a	broad	range	of	system.	We	found	some	
uUnderstanding the emergent phenomena in interacting neural networks that, we  believe, 
would open up new possibilities to characterize various neural conditions. 	Recent	research	
on	social	networks	shows	similar	phenomena	such	as	for	example	that	our	mood	is	far	more	
strongly	influenced	by	those	around	us	than	we	tend	to	think.	Not	only	that,	we	are	also	
beholden	to	the	moods	of	friends,	or	friend	of	friends,	and	of	friends	of	friends	of	friends	-	that	
is,	 people	three	degrees	of	separation	away	from	us.	The	disposition	of	people	around	us	can	
pass	through	our	social	network	like	a	virus	and	we	influence	each	other	at	least	on	a	distance	
of	three	degree	of	separation. 

A	whole	range	of	phenomena	such 	as	happiness	and	depression,	obesity,	drinking	and	smoking	
habits,	ill-health,	the	inclination	to	turn	out	and	vote	in	elections,	a	taste	for	certain	music	or	
food,	a	preference	for	online	privacy,	even	the	tendency	to	attempt	or	think	about	suicide	  are	
transmitted	through	networks	of	friends. 	The	ways	how	this	Is	transmitted	has	psychological	
routes	and	are	not	entirely	understood.	 One	thing	is	clear	that	the	 information	about	mood,	
habits	and	other	staff	we	or	our 	friends	or	friends	of	friends	have	propagate	through	the	
network	like	electricity	through	a	power	network.		Although	we	have	studied	here	the	
neuron	excitations	the	model	also	shows	how	the	social	viruses	are		propagating		
through	the	social	network	and	became	dominant.,For	more	detail	about	this	aproach	,	
see	the	Refs[5-12].	 
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 Opinion dynamics  and decision making processes based on a binary 
 network  model, International Journal of Modern Physics B (IJMPB) 
Volume:  22 No: 25/26, Year:  2008 pp. 4482-4494  
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