
Expressiveness and Static Analysis of
Extended Conjunctive Regular Path Queries

Dominik D. Freydenberger and Nicole Schweikardt

Institut für Informatik, Goethe-Universität, Frankfurt am Main, Germany,
freydenberger@em.uni-frankfurt.de, schweika@informatik.uni-frankfurt.de

Abstract. We study the expressiveness and the complexity of static
analysis of extended conjunctive regular path queries (ECRPQs), intro-
duced by Barceló et al. (PODS ’10). ECRPQs are an extension of con-
junctive regular path queries (CRPQs), a well-studied language for query-
ing graph structured databases. Our first main result shows that query
containment and equivalence of a CRPQ in an ECRPQ is undecidable.
This settles one of the main open problems posed by Barceló et al. As a
second main result, we prove a non-recursive succinctness gap between
CRPQs and the CRPQ-expressible fragment of ECRPQs. Apart from
this, we develop a tool for proving inexpressibility results for CRPQs
and ECRPQs. In particular, this enables us to show that there exist
queries definable by regular expressions with backreferencing, but not
expressible by ECRPQs.

1 Introduction

Many application areas (e. g., concerning the Semantic Web or biological appli-
cations) consider graph structured data, where the data consists of a finite set of
nodes connected by labeled edges. For querying such data, one usually needs to
specify types of paths along which nodes are connected. A widely studied class
of queries for graph structured databases are the conjunctive regular path queries
(CRPQs) (cf., e. g., [5, 7, 8]), where types of paths can be described by regular
expressions specifying labels along the paths. For modern applications, however,
also more expressive query languages are desirable, allowing not only to specify
regular properties of path labels, but also to compare paths based on, e. g., their
lengths, labels, or similarity.

To start a formal investigation of such concepts, Barceló et al. [4] introduced
the class of extended conjunctive regular path queries (ECRPQs), allowing to
use not only regular languages to express properties of individual paths, but
also regular relations among several paths, capable of expressing certain associ-
ations between paths. The authors of [4] investigated the complexity of query
evaluation and static analysis of ECRPQs. While query containment is known
to be decidable and Expspace-complete for CRPQs [8, 5], it was shown to be
undecidable for ECRPQs [4]. However, checking containment of an ECRPQ in a
CRPQ still is decidable and Expspace-complete [4]. (Un)Decidability of check-
ing containment (or, equivalence) of a CRPQ in an ECRPQ was posed as an
open question in [4].

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Loughborough University Institutional Repository

https://core.ac.uk/display/288369187?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2 Dominik D. Freydenberger and Nicole Schweikardt

In the present paper, we answer this question by showing that containment
of a CRPQ in an ECRPQ is undecidable — even if the ECRPQ is, in fact,
a CRPQ extended only by relations for checking equality of path labels (or,
similarly, equal lengths of paths). Our proof proceeds by (a) simulating Turing
machine runs by so-called H-systems, a concept from formal language theory
generalizing pattern languages, and (b) using CRPQs and ECRPQs to represent
languages described by H-systems. Our proof generalizes to (i) the case where
one of the two queries is fixed, (ii) the case where all queries are Boolean and
acyclic, and (iii) the problem of deciding equivalence rather than containment
of CRPQs and ECRPQs.

Apart from the static analysis of queries, the present paper also investigates
the expressiveness and succinctness of ECRPQs. Using the machinery developed
for proving our undecidability results concerning static analysis, we show that
CRPQ-definability of a given ECRPQ is undecidable, and that there is no recur-
sive function f such that every CRPQ-definable ECRPQ of length n is equivalent
to a CRPQ of length f(n).

Concerning the expressivity of (E)CRPQs, to the best of our knowledge, tools
for showing inexpressibility results have not been presented in the literature yet.
We develop such tools, enabling us to show, for example, that no ECRPQ-query
can return exactly those tuples of nodes between which there is a path whose
length is a composite number (i. e., a number of the from nm for n,m ≥ 2). Since
these paths can be easily described by a regular expression with backreferencing
(cf. [1]) of the form (a a+)%xx+, this refutes a claim of [4] stating that all regular
expressions with backreferencing can be expressed by ECRPQs.

Structure of the paper. We start with the necessary notations and defi-
nitions in Section 2 where, in particular, the syntax and semantics of ECRPQs
(and restrictions thereof) are defined. Section 3 is devoted to the static analysis
of ECRPQs and CRPQs, showing that containment and equivalence of CRPQs
in ECRPQs are undecidable. Section 4 investigates the relative succinctness be-
tween CRPQs and CRPQ-expressible ECRPQs and provides tools for proving
limitations to the expressive power of CRPQs and ECRPQs. Due to space limita-
tions, many technical details of the proofs had to be deferred to the full version.

2 Preliminaries

Let N denote the set of non-negative integers. We denote the empty word by
ε. Let A,B be alphabets. A morphism (between A∗ and B∗) is a function h :
A∗ → B∗ with h(uv) = h(u)h(v) for all u, v ∈ A∗. For every word w ∈ A∗, |w|
stands for the length of w, and for every letter a ∈ A, |w|a denotes the number
of occurrences of a in w.

DB-Graphs and Queries. A Σ-labeled db-graph is a directed graph G =
(V,E), where V is a finite set of nodes, and E ⊆ V × Σ × V is a finite set of
directed edges with labels from Σ. A path ρ between two nodes v0 and vn in G
with n ≥ 0 is a sequence v0a1v1 · · · vn−1anvn with v0, . . . , vn ∈ V , a1, . . . , an ∈ Σ,

Expressiveness and Static Analysis of ECRPQs 3

and (vi, ai+1, vi+1) ∈ E for 0 ≤ i < n. We define the label λ(ρ) of the path ρ by
λ(ρ) := a1 · · · an. Furthermore, for every v ∈ V , we define the empty path vεv,
with λ(vεv) = ε.

A central concept considered in the present paper are regular relations (cf. [4]
and the references therein). Let Σ be a finite alphabet, let ⊥ be a new symbol
with ⊥/∈ Σ, and let Σ⊥ := Σ ∪ {⊥}. Let w = (w1, . . . , wk) ∈ (Σ∗)k, where
wi = ai,1 · · · ai,|wi| (and all ai,j ∈ Σ). We define the string [w] ∈ (Σ∗⊥)k by
[w] := b1 · · · bn, where n is the maximum of all |wi|, and bj := (bj,1, . . . , bj,k),
with bj,i = ai,j if j ≤ |wi|, and bj,i =⊥ if j > |wi|. In other words, [w] is obtained
by aligning all wi to the left, and padding the unfilled space with ⊥ symbols. A
k-ary relation R ⊆ (Σ∗)k is called regular if the language {[r] | r ∈ R} is regular.

Obviously, every regular language is a (unary) regular relation. In addition to
this, the present paper focuses on the following k-ary regular relations (k ≥ 2):

1. the equality relation eq: = {(w1, . . . , wk) | w1 = . . . = wk},
2. the length equality relation el := {(w1, . . . , wk) | |w1| = . . . = |wk|}.

Note that each of these relations needs to be defined w. r. t. a finite alphabet Σ,
which we usually omit for the sake of brevity.

We now define ECRPQs and CPRQs, following the definitions from [4]. Fix
a countable set of node variables and a countable set of path variables. Let Σ be
a finite alphabet. An extended conjunctive regular path query (ECRPQ) Q over
Σ is an expression of the form

Ans(z, χ)←
∧

1≤i≤m

(xi, πi, yi),
∧

1≤j≤l

Rj(ωj), (1)

such that m ≥ 1, l ≥ 0, and

1. each Rj is a regular expression that defines a regular relation over Σ,
2. x = (x1, . . . , xm) and y = (y1, . . . , ym) are tuples of (not necessarily distinct)

node variables,
3. π = (π1, . . . , πm) is a tuple of distinct path variables,
4. ω1, . . . , ωl are tuples of path variables, such that each ωj is a tuple of vari-

ables from π, of the same arity as Rj ,
5. z is a tuple of node variables among x, y, and
6. χ is a tuple of path variables among those in π.

The expression Ans(z, χ) is the head, and the expression to the right of← is the
body of Q. If z and χ are the empty tuple (i. e., the head is of the form Ans()),
Q is a Boolean query. The relational part of an ECRPQ Q is

∧
1≤i≤m(xi, πi, yi),

and the labeling part is
∧

1≤j≤lRj(ωj). We denote the set of node variables in
Q by nvar(Q).

Intuitively, all variables are quantified existentially, and the words formed
by the labels along the paths have to satisfy the respective relations. Formally,
for every Σ-labeled db-graph G, every ECRPQ Q (of the form described in (1))
over Σ, every mapping σ from the node variables of Q to nodes in G, and every
mapping µ from the path variables of Q to paths in G, we write (G, σ, µ) |= Q if

4 Dominik D. Freydenberger and Nicole Schweikardt

1. µ(πi) is a path from σ(xi) to σ(yi) for every 1 ≤ i ≤ m,
2. for each ωj = (πj1 , . . . , πjk), 1 ≤ j ≤ l, the tuple (λ(µ(πj1)), . . . , λ(µ(πjk)))

belongs to the relation Rj .

Finally, we define the output of Q (of the form described in (1)) on G by

Q(G) := {
(
σ(z), µ(χ)

)
| σ, µ such that (G, σ, µ) |= Q }.

As usual, if Q is Boolean, we model the Boolean constants true and false by the
empty tuple () and the empty set ∅, respectively. In other words, Q(G) = true

iff there exist assignments σ and µ with (G, σ, µ) |= Q.
Two queries Q and Q′ are called equivalent (Q ≡ Q′, for short) if Q(G) =

Q′(G) for all db-graphs G. A query Q is said to be contained in a query Q′

(Q ⊆ Q′, for short) if Q(G) ⊆ Q′(G) for all db-graphs G.
With an ECRPQ Q we associate an edge-labeled directed graph H lab

Q whose
vertex set is the set of node variables occurring in Q, and where there is an
edge from x to y labeled π iff (x, π, y) occurs in the relational part of Q. As in
[4], we write HQ to denote the (unlabeled) directed graph obtained from H lab

Q

by deleting the edge-labels (and removing duplicate edges). A query Q is called
acyclic if HQ is acyclic.

In accordance with [4], a conjunctive regular path query (CRPQ) Q over Σ
is an ECRPQ over Σ of the form described in (1), where all relations Rj are
unary relations, and (hence), all tuples ωj are singletons.

Thus, CRPQs can only refer to the languages that are allowed to occur along
the paths, while ECRPQs can also describe relations between different paths.

The present paper devotes special attention to two classes of queries with
an expressive power that lies strictly between CRPQs and ECRPQs: A CRPQ
with equality relations is an ECRPQ where every relation in the labeling part
is either of arity 1 (i. e., a regular language), or a k-ary eq-relation for some
k ≥ 2. Analogously, a CRPQ with equal length relations is an ECRPQ where
every relation in the labeling part is either of arity 1, or a k-ary el-relation.

It is easy to see that ECRPQs and CRPQs can be transformed into queries
in the following normal forms (note, though, that these transformations might
increase the size of the queries):

Lemma 1. For every ECRPQ Q = Ans(z, χ) ←
∧

1≤i≤m

(xi, πi, yi),
∧

1≤j≤l

Rj(ωj),

there exists a regular relation R of arity m such that Q is equivalent to the

ECRPQ Q′ := Ans(z, χ)←
∧

1≤i≤m

(xi, πi, yi), R(π1, . . . , πm).

Lemma 2. For every CRPQ Q = Ans(z, χ) ←
∧

1≤i≤m

(xi, πi, yi),
∧

1≤j≤l

Lj(πij)

(where ij ∈ {1, . . . ,m}), there exist regular languages L′1, . . . , L
′
m ⊆ Σ∗ such that

Q is equivalent to the CRPQ Q′ := Ans(z, χ)←
∧

1≤i≤m

(xi, πi, yi),
∧

1≤i≤m

L′i(πi).

Hence, for ECRPQs it suffices to consider just one regular relation of aritym; and
for CRPQs, it suffices to consider just one regular language per path variable.

Expressiveness and Static Analysis of ECRPQs 5

Turing Machines and H-Systems. Let M be a (deterministic) Turing ma-
chine with state set Q, initial state q0 ∈ Q, halting state qH ∈ Q, tape alphabet
Γ (including the blank symbol), such that Q ∩ Γ = ∅, and an input alphabet
ΓI ⊂ Γ that does not include the blank symbol. We adopt the conventions that
M accepts by halting, and does not halt in the first step (i. e., q0 6= qH).

A configuration of M is a word w1qw2, with w1, w2 ∈ Γ ∗ and q ∈ Q. We
interpret w1qw2 as M being in state q, while the tape contains w1 on the left
side, and w2 on the right side. The head is on the position of the first (leftmost)
letter of w2 (if w2 = ε, M reads the blank symbol). We denote the successor
relation on configurations of M by `M. An accepting run of M is a sequence
C0, . . . , Cn of configurations of M (with n ≥ 1), such that C0 ∈ q0Γ

∗
I (C0 is

an initial configuration), Cn ∈ Γ ∗qHΓ ∗ (Cn is an accepting configuration), and
Ci `M Ci+1 holds for all 0 ≤ i < n. Let Σ := Γ ∪ Q ∪ {#}, where # is a new
letter that does not occur in Γ or Q. We define the set of valid computations of
M by VALC(M) := {#C0# · · ·#Cn# | C0, . . . , Cn is an accepting run of M},
and denote its complement by INVALC(M) := Σ∗ \ VALC(M). Finally, we
define dom(M) to be the set of all w ∈ Γ ∗I such that M halts after a finite
number of steps when started in the configuration q0w.

By definition, INVALC(M) = Σ∗ holds if and only if dom(M) = ∅; and note
that (given M), the question if dom(M) = ∅ is undecidable.

As a technical tool for our proofs, we use the notion of H-systems to describe
the sets INVALC(M) for Turing machines M. Our notion of H-systems can
be viewed as a generalization of pattern languages (cf. Salomaa [15]), or as a
restricted version of the H-systems introduced by Albert and Wegner [3].

Definition 3. An H-system (over the alphabet Σ) is a 4-tuple H := (Σ,X,L, α),
where (i) X and Σ are finite, disjoint alphabets, (ii) L is a function that maps
every x ∈ X to a regular language L(x) ⊆ Σ∗ with ε ∈ L(x), and (iii) α ∈
(X ∪Σ)+.

A morphism h : (Σ∪X)∗ → Σ∗ is H-compatible if h(a) = a for every a ∈ Σ,
and h(x) ∈ L(x) for every x ∈ X. We then define the language L(H) that is gen-
erated by H = (Σ,X,L, α) as L(H) := {h(α) | h is an H-compatible morphism}.

For every finite, nonempty set of H-systems H = {H1, . . . ,Hk}, we define

L(H) =
⋃k
i=1 L(Hi).

In other words, the letters from Σ are constants, the letters from X are variables,
and L(H) is obtained from α by uniformly replacing every variable x with a word
from L(x). We assume w.l.o.g. that X is chosen minimally; i. e., every x ∈ X
occurs in α. It is easy to see that H-systems are able to generate non-regular
languages; e. g., the system H = (Σ, {x},L, xx) with L(x) = Σ∗ generates the
language of all ww, w ∈ Σ∗.We use unions of H-system languages to describe
the sets INVALC(M):

Lemma 4. Given a Turing machineM, one can effectively construct a set H =
{H1, . . . ,Hk} of H-systems (for some k ≥ 1) such that INVALC(M) = L(H).

Proof (sketch). LetM be a Turing machine with state set Q and tape alphabet
Γ , and define Σ := Q∪Γ ∪{#}. We approach the process of defining H from the

6 Dominik D. Freydenberger and Nicole Schweikardt

following angle: Every word w ∈ INVALC(M) contains at least one error that
prevents w from being an element of VALC(M). Most of these error conditions
can be described using regular expressions (similar to the construction used in
the proof of Lemma 10.2 in Aho et al. [2]).

As INVALC(M) might be non-regular (if dom(M) is infinite), regular lan-
guages alone are not sufficient to describe all possible errors in a run of M.
More specifically, we cannot handle arbitrary errors in the preservation of the
tape contents from one configuration to the other. As an example, assume M
reads some a ∈ Γ while in state q ∈ Q and is supposed to write some b ∈ Γ ,
move the head to the right, and enter some state p ∈ Q. In all these cases, a
configuration C = w1qaw2 with w1, w2 ∈ Γ ∗ is followed by the configuration
C ′ = w1bpw2.

Our goal is to construct H-expressions that capture all cases where a word
encodes a sequence of configurations C0, . . . , Cn that contains configurations
Ci = w1qaw2, Ci+1 = w3bpw4 where w1 6= w3, or w2 6= w4 holds (with
w1, . . . , w4 ∈ Γ ∗). Note that, for all words w,w′ ∈ Γ ∗, w 6= w′ holds if and
only if there exist words u, v, v′ ∈ Γ ∗ and letters c, d ∈ Γ with c 6= d, w = ucv,
and w′ = udv′, or exactly one of w,w′ is the empty word.

As errors described in the latter case (i. e., that exactly one of w1, w3 or
of w2, w4 is empty) can be expressed using regular languages, we focus on the
former case. In order to express these errors, for every c ∈ Γ , we define languages

Lc,1 :=
⋃
v∈Γ∗

Σ∗# v cΓ ∗qaΓ ∗# v (Γ \ {c})Σ∗,

Lc,2 :=
⋃
v∈Γ∗

Σ∗#Γ ∗qa v cΓ ∗#Γ ∗bp v (Γ \ {c})Σ∗.

The corresponding H-systems for each c can be constructed straightforwardly.
A more extensive explanation can be found in the full version. ut

As we shall see in the next section, it is possible to reduce decision problems on
unions of H-systems (and, hence, on the domains of Turing machines) to decision
problems on CRPQs and ECRPQs.

3 Query Containment and Equivalence

Query Containment. The query containment problem is the problem to de-
cide for two input queries Q and Q′ whether Q ⊆ Q′.

The containment of CRPQs in CPRQs and of ECRPQs in CRPQs is known
to be decidable and Expspace-complete (cf. [8, 5] and [4], resp.). In [4], the au-
thors proved the undecidability of the containment problem for ECRPQs, and
mentioned the decidability of containment of CRPQs in ECRPQs as an impor-
tant open problem. Our first main result states that this problem is undecidable,
even if the ECRPQs are of a comparatively restricted form:

Theorem 5. For every alphabet Σ with |Σ| ≥ 2, the containment problem of
CRPQs in CRPQs with equality relations over Σ is undecidable.

Expressiveness and Static Analysis of ECRPQs 7

The proof is a consequence of Lemma 4, the undecidability of the emptiness of
dom(M) for Turing machines M, and the following lemma:

Lemma 6. Let Σ be an alphabet. For every set H = {H1, . . . ,Hk} of H-systems
over Σ, one can effectively construct an alphabet Σ′, a CRPQ Q1 over Σ′, and
a CRPQ with equality relations Q2 over Σ′ such that Q1 ⊆ Q2 if and only if
L(H) = Σ∗.

Proof. Let Σ = {a1, . . . , as} for some s ≥ 1. Let H be a set of k H-systems
H = {H1, . . . ,Hk} over Σ (with k ≥ 1). We define Σ′ := Σ ∪ {F, $}, where F
and $ are distinct letters that do not occur in Σ. Next, we define

Q1 := Ans()← (x, π, y), L(π),

where L := $Fa1 · · · asF$FΣ∗F$, and x and y are distinct variables. Thus,
Q1(G) = true if and only if G contains a path ρ with λ(ρ) ∈ L.

The definition of Q2 is more involved. Informally explained, Q2 uses the
structure provided by Q1 to implement the union of the languages L(Hi). We
define Q2 such that, for every db-graph G with Q1(G) = true, Q2(G) = true

holds if and only if there is a path ρ in G with λ(ρ) = $Fa1 · · · asF$FwF$,
where w ∈ L(H) (i. e., w ∈ L(Hi) for some Hi ∈ H).

Note that the paths ρ described by Q1 contain exactly three occurrences of
the $ symbol, which can be understood to divide ρ into two parts, where the
left part is labeled Fa1 · · · asF. Likewise, the query Q2 can be understood as
consisting of two parts, which are to be defined in the subqueries

∧
1≤i≤k φ

sel
i and∧

1≤i≤k φ
cod
i , respectively. Our goal is to construct Q2 in such a way that, when

matching Q2 to ρ, the φseli are used to select which H-system Hi is simulated in
Q2, while the actual encoding of that H-system is achieved by φcodi (hence, the
superscripts sel and cod). We define Q2 as

Q2 := Ans()← (x0, c
$
1, x1), (xk+1, c

$
2, x̂1), (x̂k+1, c

$
3, x̂k+2),

L$(c$1), L$(c$2), L$(c$3),
∧

1≤i≤k

φseli ,
∧

1≤i≤k

φcodi

where L$ = {$}, and the φseli and φcodi consist of relational and labeling atoms
that shall be defined further down. As explained above, the subqueries φseli are
used to select which H-system is active when matching Q2 to a graph. These
queries are defined by

φseli := (xi, c
F
i,1, yi,1), (yi,1, c

a1
i , yi,2), . . . , (yi,s, c

as
i , yi,s+1), (yi,s+1, c

F
i,2, xi+1),

LF(cFi,1), La1(ca1i), . . . , Las(casi), LF(cFi,2), eq(cFi,1, c
F
i,2)

where La := {ε, a} for each a ∈ {F, a1, . . . , as}.
In order to define each φcodi , we need to consider the respective H-system

Hi: Let Hi = (Σ,Xi,Li, αi), where αi = βi,1 · · ·βi,mi for some mi ≥ 1 and
βi,1, . . . , βi,mi

∈ (X ∪Σ). We define the relational part of φcodi to be

(x̂i, c
F
i,3, zi,1), (zi,1, di,1, zi,2), . . . , (zi,mi , di,mi , zi,mi+1), (zi,mi+1, c

F
i,4, x̂i+1),

8 Dominik D. Freydenberger and Nicole Schweikardt

where cFi,3, cFi,4, and all di,j are (pairwise distinct) new path variables. We

start the construction of the labeling part of φcodi with the labeling atoms

LF(cFi,3), LF(cFi,4), eq(cFi,1, c
F
i,3), and eq(cFi,1, c

F
i,4). Furthermore, we define a reg-

ular language Li,j for every 1 ≤ j ≤ mi by Li,j := Li(βi,j) if βi,j ∈ X, and

Li,j := {ε, βi,j} if βi,j ∈ Σ. In addition to this, we add a label atom eq(c
βi,j

i , di,j)
for every j with βi,j ∈ Σ. Finally, for every j with βi,j ∈ X such that βi,j oc-
curs more than once in αi, we add a relation eq(di,j , di,l) for every l 6= j with
βi,l = βi,j .

Note that the relation graph HQ2
consists only of a path from x0 to x̂k+1,

where each node (except x̂k+1, the last node) has exactly one successor. Thus,
the relation graph is acyclic and has no branches.

We claim that L(H) = Σ∗ holds if and only if Q1 ⊆ Q2, which completes
the proof of Lemma 6. Due to space limitations, the proof of this claim has been
omitted from this version. ut

By using standard encoding techniques for representing arbitrary finite al-
phabets by an alphabet of size 2, the proof of Theorem 5 now easily follows from
Lemma 4, the undecidability of the emptiness of dom(M) for Turing machines
M, and Lemma 6. By using universal Turing machines instead of arbitrary Tur-
ing machines, we also obtain the following strengthening of Theorem 5:

Theorem 7. For every alphabet Σ with |Σ| ≥ 2, there are a fixed CRPQ Q1

over Σ and a fixed CRPQ with equality relations Q2 over Σ such that (i) the
containment problem of Q1 in CRPQs with equality relations, and (ii) the con-
tainment problem of CRPQs in Q2 are both undecidable. This holds even if all
queries are Boolean and acyclic.

Applying slight modifications to the proof of Lemma 6, we observe the same
situation for ECRPQs that use length equality instead of equality relations:

Theorem 8. For every alphabet Σ with |Σ| ≥ 2, there are a fixed CRPQ Q1

over Σ and a fixed CRPQ with length equality relations Q2 over Σ such that
(i) the containment problem of Q1 in CRPQs with length equality relations, and
(ii) the containment problem of CRPQs in Q2, are both undecidable. This holds
even if all queries are Boolean and acyclic.

Query Equivalence. The query equivalence problem is the problem to decide
for two input queries Q and Q′ whether Q ≡ Q′.

Another question specifically posed in [4] is whether the equivalence problem
for CRPQs and ECRPQs is decidable. Using a variant of the proof of Theorem 7,
we can answer this question negatively:

Theorem 9. For every alphabet Σ with |Σ| ≥ 2, there are a fixed CRPQ Q1

over Σ and a fixed ECRPQ Q2 over Σ such that (i) the equivalence problem of
Q1 and ECRPQs, and (ii) the equivalence problem of CRPQs and Q2, are both
undecidable. This holds even if all queries are Boolean and acyclic.

Expressiveness and Static Analysis of ECRPQs 9

4 Expressiveness and Relative Succinctness

(E)CRPQ Expressibility. We say that a query function F is CRPQ-expressible
(or ECRPQ-expressible) if there is a CRPQ (or ECRPQ, resp.) Q such that
Q(G) = F (G) for every Σ-labeled db-graph G.

For every language L ⊆ Σ∗, we define a query function FL by

FL(G) := {(x, y) | G contains a path ρ from x to y with λ(ρ) ∈ L}

for every Σ-labeled db-graph G. Analogously, we define a Boolean query function
FBL by FBL (G) := true if and only if FL(G) 6= ∅.

The proofs presented in this section will use specific db-graphs Gw repre-
senting strings w ∈ Σ∗ as follows: If w = b1 · · · b|w| (with all bi ∈ Σ), we define
the db-graph Gw := (Vw, Ew) by Vw := {v0, . . . , v|w|} (where all vi are distinct
nodes), and Ew = {(vi, bi+1, vi+1) | 0 ≤ i < |w|}. Thus, Gw consists of a path
from v0 to v|w| that is labeled with w.

Clearly, if L ⊆ Σ∗ such that FL is expressible by an ECRPQ QL, then for
all words w ∈ Σ∗ we have w ∈ L iff (v0, v|w|) ∈ QL(Gw).

Lemma 10. Let Σ be an alphabet, let L ⊆ Σ∗. Then FL is CRPQ-expressible
if and only if L is regular.

Proof (sketch). The “if-direction” is trivial. For the “only-if-direction”, let L ⊆
Σ∗ and let QL be a CRPQ such that QL(G) = FL(G) for every Σ-labeled
db-graph G. For showing that L is regular, we proceed along the following steps:

(1) Rewrite QL into a CRPQ Q′L such that (i) for all w ∈ Σ∗ we have (v0, v|w|) ∈
Q′L(Gw) iff (v0, v|w|) ∈ QL(Gw) (i. e., in some sense, Q′L is equivalent to QL
on db-graphs representing strings), and (ii) the graph HQ′L

associated with
the relational part of Q′L (cf., Section 2) is a connected directed acyclic graph
with x as its single source node and y as its single sink node, where Ans(x, y)
is the head of Q′L.

(2) Use Q′L and a variant of the product construction to construct a nondeter-
ministic finite automaton that accepts exactly those words w ∈ Σ∗ for which
(v0, v|w|) ∈ Q′L(Gw).

The proof details can be found in the full version of the paper. ut

The situation is not strictly the same for Boolean queries (e. g., if L contains
every single letter of Σ, FBL (G) = true holds for all non-empty db-graphs G);
but a similar result can be observed:

Lemma 11. Let Σ be an alphabet with |Σ| ≥ 2, let a ∈ Σ, and let L ⊆ (Σ \
{a})∗. Then FBaLa is CRPQ-expressible if and only if L is regular.

For alphabets Σ of size ≥ 2, ECRPQs can express queries FL for non-regular
L ⊆ Σ∗ which, according to Lemma 10, are not CRPQ-expressible. For example,
for L := {anbn | n ∈ N}, FL is not CRPQ-expressible, but is expressed by
the ECRPQ Ans(x, y) ← (x, π1, z), (z, π2, y), L1(π1), L2(π2), el(π1, π2), where
L1 := a∗ and L2 := b∗. For unary alphabets (i. e., alphabets of size 1), however,
we can show the following:

10 Dominik D. Freydenberger and Nicole Schweikardt

Lemma 12. Let Σ be a unary alphabet, let L ⊆ Σ∗. Then FL is ECRPQ-
expressible if and only if it is CRPQ-expressible.

Before giving a proof sketch of this lemma, let us note that, in spite of
Lemma 12, there exist ECRPQ-queries over unary alphabets that are not CRPQ-
expressible. For example, consider the ECRPQ

Q := Ans(x, y)← (x, π1, z), (y, π2, z), el(π1, π2),

selecting all pairs of nodes (u, v) in a db-graph G, for which there exists a node
w such that there are paths from u to w and from v to w of the same length. It
should be not too difficult to see that this query is not CRPQ-expressible.

Proof (Sketch of the proof of Lemma 12).
The “if-direction” is trivial. For the “only-if-direction” let Σ := {a}, let L ⊆
{a}∗, and QL be an ECRPQ expressing FL. By Lemma 10 it suffices to show
that L is regular. Due to Lemma 1, w.l.o.g. QL is of the form

Ans(x, y) ←
∧

1≤i≤k

(xi, πi, yi) ∧ R(π1, . . . , πk)

for a k-ary regular relation R over {a}∗. With R we associate a relation Rlen ⊆ Nk
as follows: Rlen := { (|w1|, . . . , |wk|) | (w1, . . . , wk) ∈ R }. The proof of the
lemma proceeds along the following steps:

(1) Note that Rlen is semi-linear (since R is a regular relation over a unary
alphabet). The notion of semi-linear relations is defined as follows (cf., e. g.,
[10]): For every k ≥ 1 and every vector a ∈ Nk, define aN := {ai | i ∈
N}. For all sets A,B ⊆ Nk, let A + B := {a + b | a ∈ A, b ∈ B}. A set
A ⊆ Nk is linear if there exist a0, . . . , an ∈ Nk for some n ≥ 0 such that
A = a0 + a1N+ . . .+ anN. A set is semi-linear if it is a finite union of linear
sets.

(2) Consider all non-empty acyclic directed paths in the labeled query graph
H lab
QL

, and let P = {p1, . . . , pl} be the set of all these paths. For each such
path pj let πj be the sequence of path variables labeling the edges of pj in
H lab
QL

. Furthermore, let start(pj) and end(pj) denote the start node and the
end node of pj . By definition, for each pj , each path variable πi occurs at
most once in πj .

(3) With each pj ∈ P we assume a function p̂j : Nk → N such that p̂j(r1, . . . , rk)
is the sum of all ri for which πi occurs in πj ; and let p̂ : Nk → Nl be defined as
p̂(r1, . . . , rk) :=

(
p̂1(r1, . . . , rk), . . . , p̂l(r1, . . . , rk)

)
for all (r1, . . . , rk) ∈ Nk.

Note that p̂j(r1, . . . , rk) is the length of the path in Gw corresponding to the
path pj in H lab

QL
.

(4) Since Rlen is semi-linear, p̂(Rlen) := {p̂(r) | r ∈ Rlen} is also semi-linear.
(5) Assume w.l.o.g. that for the path p1 we have start(p1) = x and end(p1) = y.

Let T := p̂(Rlen) ∩B ∩
⋂

1≤j≤l Sj ,

for B := {(s1, . . . , sl) ∈ Nl | sj ≤ s1 for all 1 ≤ j ≤ l}

Expressiveness and Static Analysis of ECRPQs 11

and Sj := {(s1, . . . , sl) ∈ Nl | sj′ = sj for all 1 ≤ j′ ≤ l with start(pj′) =
start(pj) and end(pj′) = end(pj)}.
Note that T is semi-linear (since each of the sets p̂(Rlen), B, Sj is semi-linear,
and the class of semi-linear sets is closed under intersection, see [10]).

(6) Show that for all w ∈ {a}∗ we have: |w| ∈ proj1(T) iff (v0, v|w|) ∈ QL(Gw),
where proj1 projects each element of T to its first component.

As a consequence, L = {w ∈ {a}∗ | |w| ∈ proj1(T)} is regular, since proj1(T) is
semi-linear (cf. Harrison [11]). This completes the proof sketch of Lemma 12. A
detailed proof can be found in the full version. ut

In Section 3.1 of [4], Barceló et al. mention that ECRPQs are able to express
queries corresponding to regular expressions with backreferencing (or extended
regular expressions) (cf. Aho [1], Freydenberger [9]). These expressions extend
the regular expressions with variable binding and repetition operators; e. g., for
every expression α, the extended expression (α)%xxx generates the language of
all www with w ∈ L(α) (α generates some w ∈ L(α), %x assigns that w to x,
and the subsequent uses of x repeat this w – hence, xx generates ww).

Let L := {an | n ≥ 4, n is a composite number}. According to Lemma 12,
FL is not ECRPQ-expressible (as L is not regular). On the other hand, L is
generated by the extended regular expression (a a+)%x x+ (cf. Câmpeanu et
al. [6]). This demonstrates that ECRPQs are not able to express all queries that
correspond to extended regular expressions.

Relative Succinctness. We can adapt Lemma 6 to observe the following
result on the decidability of expressibility:

Theorem 13. CRPQ-expressibility for ECRPQs is not co-semi-decidable.

Proof. This follows from the proof of Theorem 9, a variation of Lemma 11, and
the observation that INVALC(M) is regular iff dom(M) is finite. Regarding the
latter, note that if dom(M) is finite, INVALC(M) is co-finite; if dom(M) is
infinite, non-regularity of INVALC(M) can be established using standard tools.
This allows us to effectively construct an ECPRQ Q from a Turing machine M
such that Q is CRPQ-expressible if and only if dom(M) is finite.

Finiteness of dom(M) is a Σ0
2 -complete problem in the arithmetical hierarchy

(cf. Kozen [13]); hence, CRPQ-expressibility is Σ0
2 -hard, which means that this

problem is neither semi-decidable, nor co-semi-decidable. ut

Using Theorem 13 in conjunction with a technique that is due to Hartmanis [12]
and has been widely used in Formal Language Theory (cf. Kutrib [14]), we
obtain a result on the relative succinctness of ECRPQs and CRPQs. One of the
benefits of that technique is that it applies to a wide range of different reasonable
definitions of the size of an ECRPQ.

In order to be as general as possible, we define a complexity measure for
ECRPQs as a computable function c from the set of all ECRPQs to N, such
that for every finite alphabet Σ, the set of all ECRPQs Q over Σ (i) can be

12 Dominik D. Freydenberger and Nicole Schweikardt

effectively enumerated in order of increasing c(Q), and (ii) does not contain
infinitely many ECRPQs with the same value c(Q). As the following theorem
demonstrates, no matter which complexity measure we choose, the size tradeoff
between ECRPQs and CRPQs is not bounded by any recursive function:

Theorem 14. Let Σ be a finite alphabet with |Σ| ≥ 2. For every recursive
function f : N→ N and every complexity measure c, there exists an ECRPQ Q
over Σ such that Q is CRPQ-expressible, but for every CRPQ Q′ with Q′ ≡ Q,
c(Q′) > f(c(Q)).

References

1. A. Aho. Algorithms for finding patterns in strings. In J. van Leeuwen, editor,
Handbook of Theoretical Computer Science, volume A. Elsevier, 1990.

2. A. Aho, J. Hopcroft, and J. Ullman. The Design and Analysis of Computer Algo-
rithms. Addison-Wesley, Reading, MA, 1974.

3. J. Albert and L. Wegner. Languages with homomorphic replacements. Theoretical
Computer Science, 16:291–305, 1981.

4. P. Barceló, C. Hurtado, L. Libkin, and P. Wood. Expressive languages for path
queries over graph-structured data. In Proc. PODS’10, pages 3–14, 2010.

5. D. Calvanese, G. D. Giacomo, M. Lenzerini, and M. Y. Vardi. Containment of
conjunctive regular path queries with inverse. In KR’00, pages 176–185, 2000.

6. C. Câmpeanu, K. Salomaa, and S. Yu. A formal study of practical regular expres-
sions. International Journal of Foundations of Computer Science, 14:1007–1018,
2003.

7. A. Deutsch and V. Tannen. Optimization properties for classes of conjunctive
regular path queries. In Proc. DBPL’01, volume 2397 of LNCS, pages 21–39.
Springer, 2001.

8. D. Florescu, A. Y. Levy, and D. Suciu. Query containment for conjunctive queries
with regular expressions. In Proc. PODS’98, pages 139–148, 1998.

9. D. Freydenberger. Extended regular expressions: Succinctness and decidability. In
Proc. STACS 2011, pages 507–518, 2011.

10. S. Ginsburg and E. Spanier. Bounded ALGOL-like languages. Transactions of the
American Mathematical Society, 113(2):333–368, 1964.

11. M. Harrison. Introduction to Formal Language Theory. Addison Wesley Publishing
Company, 1978.

12. J. Hartmanis. On Gödel speed-up and succinctness of language representations.
Theoretical Computer Science, 26(3):335–342, 1983.

13. D. Kozen. Theory of Computation. Springer-Verlag, London, 2006.
14. M. Kutrib. The phenomenon of non-recursive trade-offs. International Journal of

Foundations of Computer Science, 16(5):957–973, 2005.
15. K. Salomaa. Patterns. In Formal Languages and Applications, number 148 in

Studies in Fuzziness and Soft Computing, pages 367–379. Springer, 2004.

