
Expressiveness and Static Analysis of
Extended Conjunctive Regular Path QueriesI

Dominik D. Freydenberger, Nicole Schweikardt

Institut für Informatik, Goethe-Universität, Frankfurt am Main, Germany

Abstract

We study the expressiveness and the complexity of static analysis of extended
conjunctive regular path queries (ECRPQs), introduced by Barceló et al. (PODS
’10). ECRPQs are an extension of conjunctive regular path queries (CRPQs), a
well-studied language for querying graph structured databases. Our first main
result shows that query containment and equivalence of a CRPQ in an ECRPQ
is undecidable. This settles one of the main open problems posed by Barceló et
al. As a second main result, we prove a non-recursive succinctness gap between
CRPQs and the CRPQ-expressible fragment of ECRPQs. Apart from this, we
develop a tool for proving inexpressibility results for CRPQs and ECRPQs. In
particular, this enables us to show that there exist queries definable by regular
expressions with backreferencing, but not expressible by ECRPQs.

1. Introduction

Many application areas (e. g., concerning the Semantic Web or biological ap-
plications) consider graph structured data, where the data consists of a finite set
of nodes connected by labeled edges. For querying such data, one usually needs
to specify types of paths along which nodes are connected. A widely studied
class of queries for graph structured databases are the conjunctive regular path
queries (CRPQs) (cf., e. g., [4, 6, 7]), where types of paths can be described by
regular expressions specifying labels along the paths. For modern applications,
however, also more expressive query languages are desirable, allowing not only
to specify regular properties of path labels, but also to compare paths based on,
e. g., their lengths, labels, or similarity.

To start a formal investigation of such concepts, Barceló et al. [3] introduced
the class of extended conjunctive regular path queries (ECRPQs), allowing to use
not only regular languages to express properties of individual paths, but also
regular relations among several paths, capable of expressing certain associations

IThe present paper is a full version of the conference contributen [9].
Email addresses: freydenberger@em.uni-frankfurt.de (Dominik D. Freydenberger),

schweika@informatik.uni-frankfurt.de (Nicole Schweikardt)

Preprint submitted to Elsevier September 26, 2011

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Loughborough University Institutional Repository

https://core.ac.uk/display/288369178?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

between paths. The authors of [3] investigated the complexity of query eval-
uation and static analysis of ECRPQs. While query containment is known to
be decidable and Expspace-complete for CRPQs [7, 4], it was shown to be
undecidable for ECRPQs [3]. However, checking containment of an ECRPQ
in a CRPQ still is decidable and Expspace-complete [3]. (Un)Decidability of
checking containment (or, equivalence) of a CRPQ in an ECRPQ was posed as
an open question in [3].

In the present paper, we answer this question by showing that containment
of a CRPQ in an ECRPQ is undecidable — even if the ECRPQ is, in fact,
a CRPQ extended only by relations for checking equality of path labels (or,
similarly, equal lengths of paths). Our proof proceeds by (a) simulating Turing
machine runs by so-called H-systems, a concept from formal language theory
generalizing pattern languages, and (b) using CRPQs and ECRPQs to represent
languages described by H-systems. Our proof generalizes to (i) the case where
one of the two queries is fixed, (ii) the case where all queries are Boolean and
acyclic, and (iii) the problem of deciding equivalence rather than containment
of CRPQs and ECRPQs.

Apart from the static analysis of queries, the present paper also investigates
the expressiveness and succinctness of ECRPQs. Using the machinery devel-
oped for proving our undecidability results concerning static analysis, we show
that CRPQ-definability of a given ECRPQ is undecidable, and that there is
no recursive function f such that every CRPQ-definable ECRPQ of length n is
equivalent to a CRPQ of length f(n).

Concerning the expressivity of (E)CRPQs, to the best of our knowledge,
tools for showing inexpressibility results have not been presented in the liter-
ature yet. We develop such tools, enabling us to show, for example, that no
ECRPQ-query can return exactly those tuples of nodes between which there is
a path whose length is a composite number (i. e., a number of the form nm for
n,m ≥ 2). Since these paths can be easily described by a regular expression
with backreferencing (cf. [1, 8]) of the form (a a+)%xx+, this refutes a claim of
[3] stating that all regular expressions with backreferencing can be expressed by
ECRPQs.

Structure of the paper. We start with the necessary notations and defi-
nitions in Section 2 where, in particular, the syntax and semantics of ECRPQs
(and restrictions thereof) are defined. Section 3 is devoted to the static analysis
of ECRPQs and CRPQs, showing that containment and equivalence of CRPQs
in ECRPQs are undecidable. Section 4 investigates the relative succinctness be-
tween CRPQs and CRPQ-expressible ECRPQs and provides tools for proving
limitations to the expressive power of CRPQs and ECRPQs.

2. Preliminaries

Let N denote the set of non-negative integers. We denote the empty word
by ε. Let A,B be alphabets. A morphism (between A∗ and B∗) is a function
h : A∗ → B∗ with h(uv) = h(u)h(v) for all u, v ∈ A∗. For every word w ∈ A∗,

2

|w| stands for the length of w, and for every letter a ∈ A, |w|a denotes the
number of occurrences of a in w.

2.1. DB-Graphs and Queries.

A Σ-labeled db-graph is a directed graph G = (V,E), where V is a finite
set of nodes, and E ⊆ V × Σ × V is a finite set of directed edges with labels
from Σ. A path ρ between two nodes v0 and vn in G with n ≥ 0 is a sequence
v0a1v1 · · · vn−1anvn with v0, . . . , vn ∈ V , a1, . . . , an ∈ Σ, and (vi, ai+1, vi+1) ∈ E
for 0 ≤ i < n. We define the label λ(ρ) of the path ρ by λ(ρ) := a1 · · · an.
Furthermore, for every v ∈ V , we define the empty path vεv, with λ(vεv) = ε.

A central concept considered in the present paper are regular relations (cf. [3]
and the references therein). Let Σ be a finite alphabet, let ⊥ be a new symbol
with ⊥/∈ Σ, and let Σ⊥ := Σ ∪ {⊥}. Let w = (w1, . . . , wk) ∈ (Σ∗)k, where
wi = ai,1 · · · ai,|wi| (and all ai,j ∈ Σ). We define the string [w] ∈ (Σ∗⊥)k by
[w] := b1 · · · bn, where n is the maximum of all |wi|, and bj := (bj,1, . . . , bj,k),
with bj,i = ai,j if j ≤ |wi|, and bj,i =⊥ if j > |wi|. In other words, [w] is obtained
by aligning all wi to the left, and padding the unfilled space with ⊥ symbols.
A k-ary relation R ⊆ (Σ∗)k is called regular if the language {[r] | r ∈ R} is
regular.

Obviously, every regular language is a (unary) regular relation. In addition
to this, the present paper focuses on the following k-ary regular relations (k ≥ 2):

1. the equality relation eq := {(w1, . . . , wk) | w1 = . . . = wk},

2. the length equality relation el := {(w1, . . . , wk) | |w1| = . . . = |wk|}.

Note that each of these relations needs to be defined w. r. t. a finite alphabet Σ,
which we usually omit for the sake of brevity.

We now define ECRPQs and CRPQs, following the definitions from [3]. Fix
a countable set of node variables and a countable set of path variables. Let Σ
be a finite alphabet. An extended conjunctive regular path query (ECRPQ) Q
over Σ is an expression of the form

Ans(z, χ)←
∧

1≤i≤m

(xi, πi, yi),
∧

1≤j≤l

Rj(ωj), (1)

such that m ≥ 1, l ≥ 0, and

1. each Rj is a regular expression that defines a regular relation over Σ,

2. x = (x1, . . . , xm) and y = (y1, . . . , ym) are tuples of (not necessarily dis-
tinct) node variables,

3. π = (π1, . . . , πm) is a tuple of distinct path variables,

4. ω1, . . . , ωl are tuples of path variables, such that each ωj is a tuple of
variables from π, of the same arity as Rj ,

5. z is a tuple of node variables among x, y, and

3

6. χ is a tuple of path variables among those in π.

The expression Ans(z, χ) is the head, and the expression to the right of← is the
body of Q. If z and χ are the empty tuple (i. e., the head is of the form Ans()),
Q is a Boolean query. The relational part of an ECRPQ Q is

∧
1≤i≤m(xi, πi, yi),

and the labeling part is
∧

1≤j≤lRj(ωj). We denote the set of node variables in
Q by nvar(Q).

Intuitively, all variables are quantified existentially, and the words formed
by the labels along the paths have to satisfy the respective relations. Formally,
for every Σ-labeled db-graph G, every ECRPQ Q (of the form described in (1))
over Σ, every mapping σ from the node variables of Q to nodes in G, and every
mapping µ from the path variables of Q to paths in G, we write (G, σ, µ) |= Q
if

1. µ(πi) is a path from σ(xi) to σ(yi) for every 1 ≤ i ≤ m,

2. for each ωj = (πj1 , . . . , πjk), 1 ≤ j ≤ l, the tuple (λ(µ(πj1)), . . . , λ(µ(πjk)))
belongs to the relation Rj .

Finally, we define the output of Q (of the form described in (1)) on G by

Q(G) := {
(
σ(z), µ(χ)

)
| σ, µ such that (G, σ, µ) |= Q }.

As usual, ifQ is Boolean, we model the Boolean constants true and false by the
empty tuple () and the empty set ∅, respectively. In other words, Q(G) = true

iff there exist assignments σ and µ with (G, σ, µ) |= Q.
Two queries Q and Q′ are called equivalent (Q ≡ Q′, for short) if Q(G) =

Q′(G) for all db-graphs G. A query Q is said to be contained in a query Q′

(Q ⊆ Q′, for short) if Q(G) ⊆ Q′(G) for all db-graphs G.
With an ECRPQ Q we associate an edge-labeled directed graph H lab

Q whose
vertex set is the set of node variables occurring in Q, and where there is an edge
from x to y labeled π iff (x, π, y) occurs in the relational part of Q. As in [3],
we write HQ to denote the (unlabeled) directed graph obtained from H lab

Q by
deleting the edge-labels (and removing duplicate edges). A query Q is called
acyclic if HQ is acyclic.

In accordance with [3], a conjunctive regular path query (CRPQ) Q over Σ
is an ECRPQ over Σ of the form described in (1), where all relations Rj are
unary relations, and (hence), all tuples ωj are singletons.

Thus, CRPQs can only refer to the languages that are allowed to occur along
the paths, while ECRPQs can also describe relations between different paths.

The present paper devotes special attention to two classes of queries with
an expressive power that lies strictly between CRPQs and ECRPQs: A CRPQ
with equality relations is an ECRPQ where every relation in the labeling part
is either of arity 1 (i. e., a regular language), or a k-ary eq-relation for some
k ≥ 2. Analogously, a CRPQ with equal length relations is an ECRPQ where
every relation in the labeling part is either of arity 1, or a k-ary el-relation.

It is easy to see that ECRPQs and CRPQs can be transformed into queries
in the following normal forms (note, though, that these transformations might
increase the size of the queries):

4

Lemma 2.1. For every ECRPQ Q = Ans(z, χ)←
∧

1≤i≤m

(xi, πi, yi),
∧

1≤j≤l

Rj(ωj),

there exists a regular relation R of arity m such that Q is equivalent to the

ECRPQ Q′ := Ans(z, χ)←
∧

1≤i≤m

(xi, πi, yi), R(π1, . . . , πm).

Proof. As every relation Ri of arity mi can be interpreted as a regular language
over the alphabet {a,⊥}mi that is recognized by some finite automaton Mi, one
can obtain the relation R from these Ri by letting m be the maximum of all the
mi and by constructing a finite automaton M over the alphabet {a,⊥}m that
simulates all Mi in parallel.

Lemma 2.2. For every CRPQ Q = Ans(z, χ) ←
∧

1≤i≤m

(xi, πi, yi),
∧

1≤j≤l

Lj(πij)

(where ij ∈ {1, . . . ,m}), there exist regular languages L′1, . . . , L
′
m ⊆ Σ∗ such that

Q is equivalent to the CRPQ Q′ := Ans(z, χ)←
∧

1≤i≤m

(xi, πi, yi),
∧

1≤i≤m

L′i(πi).

Proof. Let Q be a CRPQ over Σ. For every path variable πi, 1 ≤ i ≤ m, we
define Ii := {j | ij = i}. We construct the labeling part Q′ by defining atoms
L′i(πi) for 1 ≤ i ≤ m in the following way:

1. If Ii is empty, let L′i := Σ∗,

2. if Ii contains exactly one element j, let L′i := Lj ,

3. if Ii contains more than one element, let L′i :=
⋂
j∈Ii Lj . As every language

Lj is regular, L′i is also regular.

The relational part of Q′ is identical to the relational part of Q; and it is easy
to see that Q ≡ Q′ holds.

Hence, for ECRPQs it suffices to consider just one regular relation of arity
m; and for CRPQs, it suffices to consider just one regular language per path
variable.

2.2. Turing Machines and H-Systems

Let M be a (deterministic) Turing machine with state set Q, initial state
q0 ∈ Q, halting state qH ∈ Q, tape alphabet Γ (including the blank symbol),
such that Q ∩ Γ = ∅, and an input alphabet ΓI ⊂ Γ that does not include the
blank symbol. We adopt the conventions that M accepts by halting, and does
not halt in the first step (i. e., q0 6= qH).

A configuration of M is a word w1qw2, with w1, w2 ∈ Γ∗ and q ∈ Q. We
interpret w1qw2 as M being in state q, while the tape contains w1 on the left
side, and w2 on the right side. The head is on the position of the first (leftmost)
letter of w2 (if w2 = ε, M reads the blank symbol). We denote the successor
relation on configurations of M by `M. An accepting run of M is a sequence
C0, . . . , Cn of configurations of M (with n ≥ 1), such that C0 ∈ q0Γ∗I (C0 is

5

an initial configuration), Cn ∈ Γ∗qHΓ∗ (Cn is an accepting configuration), and
Ci `M Ci+1 holds for all 0 ≤ i < n. Let Σ := Γ ∪ Q ∪ {#}, where # is a new
letter that does not occur in Γ or Q. We define the set of valid computations of
M by VALC(M) := {#C0# · · ·#Cn# | C0, . . . , Cn is an accepting run of M},
and denote its complement by INVALC(M) := Σ∗ \ VALC(M). Finally, we
define dom(M) to be the set of all w ∈ Γ∗I such that M halts after a finite
number of steps when started in the configuration q0w.

By definition, INVALC(M) = Σ∗ holds if and only if dom(M) = ∅; and
note that (given M), the question if dom(M) = ∅ is undecidable.

As a technical tool for our proofs, we use the notion of H-systems to describe
the sets INVALC(M) for Turing machines M. Our notion of H-systems can
be viewed as a generalization of pattern languages (cf. Salomaa [15]), or as a
restricted version of the H-systems introduced by Albert and Wegner [2].

Definition 2.3. An H-system (over the alphabet Σ) is a 4-tuple H := (Σ, X,L, α),
where (i) X and Σ are finite, disjoint alphabets, (ii) L is a function that
maps every x ∈ X to a regular language L(x) ⊆ Σ∗ with ε ∈ L(x), and
(iii) α ∈ (X ∪ Σ)+.

A morphism h : (Σ∪X)∗ → Σ∗ is H-compatible if h(a) = a for every a ∈ Σ,
and h(x) ∈ L(x) for every x ∈ X. We then define the language L(H) that is gen-
erated by H = (Σ, X,L, α) as L(H) := {h(α) | h is an H-compatible morphism}.

For every finite, nonempty set of H-systems H = {H1, . . . ,Hk}, we define

L(H) =
⋃k
i=1 L(Hi).

In other words, the letters from Σ are constants, the letters from X are
variables, and L(H) is obtained from α by uniformly replacing every variable x
with a word from L(x). We assume w.l.o.g. that X is chosen minimally; i. e.,
every x ∈ X occurs in α. It is easy to see that H-systems are able to generate
non-regular languages; e. g., the system H = (Σ, {x},L, xx) with L(x) = Σ∗

generates the language of all ww, w ∈ Σ∗.We use unions of H-system languages
to describe the sets INVALC(M):

Lemma 2.4. Given a Turing machine M, one can effectively construct a set
H = {H1, . . . ,Hk} of H-systems (for some k ≥ 1) such that INVALC(M) =
L(H).

Proof. Let M be a Turing machine with state set Q and tape alphabet Γ, and
define Σ := Q ∪ Γ ∪ {#}. We approach the process of defining H from the
following angle: Every word w ∈ INVALC(M) contains at least one error that
prevents w from being an element of VALC(M). Most of these conditions can
be described by a regular languages; e. g, if

w /∈ #q0(ΓI)
∗(#Γ∗QΓ∗)∗#Γ∗qHΓ∗#,

w is not an encoding of a sequence of configurations of M, or it is such an
encoding, but the first configuration is not an initial configuration, or the last
configuration is not a halting configuration. Hence, we can define a H-System

6

H1 := (Σ, {x},L1, x), where L1 maps x to the complement of the language

#q0(ΓI)
∗(#Γ∗QΓ∗)∗#Γ∗qHΓ∗#.

Thus, if w /∈ L(H1), we know that w is an encoding of configurations C0, . . . , Cn
for some n ≥ 1, such that C0 is an initial configuration, and Cn is a halting
configuration. All that remains is to describe all possible transition errors, i. .e,
Ci, Ci+1 for which Ci `M Ci+1 does not hold. Most of these errors can be
described using only regular languages, e. g., if when reading some a ∈ Γ in a
state q ∈ Q,M is supposed to enter a state p ∈ Q, we can describe all errors in
the transition of states using an H-system H = (Σ, {x},L, x), where

L(x) := Σ∗#Γ∗qaΓ∗#Γ∗(Q \ {p})Σ∗.

It is easy to see that w ∈ L(H) \ L(H1) if and only if w includes a sequence
of configurations that contains a transition with the aforementioned error. All
other state transition errors can be described analogously, as can be all errors
regarding the symbols that M is supposed to write. For example, if M reads
some a ∈ Γ while in state q ∈ Q and is supposed to write some b ∈ Γ, move the
head to the right, and enter some state p ∈ Q, the regular language

Σ∗#Γ∗qaΓ∗#Γ∗(Γ \ {b})pΣ∗

describes all errors where a symbol other than b was written.
Of course, as INVALC(M) can be non-regular (if dom(M) is infinite), reg-

ular languages alone are not sufficient to describe all possible errors in a run of
M. More specifically, we cannot handle arbitrary errors in the preservation of
the tape contents from one configuration to the other. Again, assume M reads
some a ∈ Γ while in state q ∈ Q and is supposed to write some b ∈ Γ, move the
head to the right, and enter some state p ∈ Q. In all these cases, a configuration
C = w1qaw2 with w1, w2 ∈ Γ∗ is followed by the configuration C ′ = w1bpw2.

Our goal is to define H-expressions that capture all cases where the encod-
ing of configurations C0, . . . , Cn contains configurations Ci = w1qaw2, Ci+1 =
w3bpw4 where w1 6= w3, or w2 6= w4 holds (with w1, . . . , w4 ∈ Γ∗). Note that, for
all words w,w′ ∈ Γ∗, w 6= w′ holds if and only if there exist words u, v, v′ ∈ Γ∗

and letters c, d ∈ Γ with c 6= d, w = ucv, and w′ = udv′, or exactly one of w,w′

is the empty word.
As errors described in the latter case (i. e., that exactly one of w1, w3 or

of w2, w4 is empty) can be expressed using regular languages, we focus our
explanation on the former case. In order to express these errors, for every
c ∈ Γ, we define languages

Lc,1 :=
⋃
v∈Γ∗

Σ∗# v cΓ∗qaΓ∗# v (Γ \ {c})Σ∗,

Lc,2 :=
⋃
v∈Γ∗

Σ∗#Γ∗qa v cΓ∗#Γ∗bp v (Γ \ {c})Σ∗.

7

These languages can be generated by H-systems, e. g., the system (Σ, X,L, α)
with X = {x1, x2, x3, x4}, α = x1x2x3x2x4 and

L(x1) = Σ∗#, L(x2) = Γ∗,

L(x3) = cΓ∗qaΓ∗#, L(x4) = (Γ \ {c})Σ∗

generates Lc,1. If M is supposed to move to the left instead of to the right,
the corresponding H-expressions can be defined analogously. Hence, by defining
appropriate H-expressions for all possible tape letters a ∈ Γ and states q ∈ Q
and the corresponding actions of M, H can be constructed effectively.

As we shall see in the next section, it is possible to reduce decision problems
on finite unions of H-systems (and, hence, on the domains of Turing machines)
to decision problems on CRPQs and ECRPQs.

3. Query Containment and Equivalence

3.1. Query Containment

The query containment problem is the problem to decide for two input
queries Q and Q′ whether Q ⊆ Q′.

The containment of CRPQs in CRPQs and of ECRPQs in CRPQs is known
to be decidable and Expspace-complete (cf. [7, 4] and [3], resp.). In [3], the
authors proved the undecidability of the containment problem for ECRPQs,
and mentioned the decidability of containment of CRPQs in ECRPQs as an
important open problem. Our first main result states that this problem is
undecidable, even if the ECRPQs are of a comparatively restricted form:

Theorem 3.1. For every alphabet Σ with |Σ| ≥ 2, the containment problem of
CRPQs in CRPQs with equality relations over Σ is undecidable.

The proof is a consequence of Lemma 2.4, the undecidability of the emptiness
of dom(M) for Turing machines M, and the following lemma:

Lemma 3.2. Let Σ be an alphabet. For every set H = {H1, . . . ,Hk} of H-
systems over Σ, one can effectively construct an alphabet Σ′, a CRPQ Q1 over
Σ′, and a CRPQ with equality relations Q2 over Σ′ such that Q1 ⊆ Q2 if and
only if L(H) = Σ∗.

Proof. Let Σ = {a1, . . . , as} for some s ≥ 1. Let H be a set of k H-systems
H = {H1, . . . ,Hk} over Σ (with k ≥ 1). We define Σ′ := Σ ∪ {F, $}, where F
and $ are distinct letters that do not occur in Σ. Next, we define

Q1 := Ans()← (x, π, y), L(π),

where L := $Fa1 · · · asF$FΣ∗F$, and x and y are distinct variables. Thus,
Q1(G) = true if and only if G contains a path ρ with λ(ρ) ∈ L.

The definition of Q2 is more involved. Informally explained, Q2 uses the
structure provided by Q1 to implement the union of the languages L(Hi). We

8

define Q2 such that, for every db-graph G with Q1(G) = true, Q2(G) = true

holds if and only if there is a path ρ in G with λ(ρ) = $Fa1 · · · asF$FwF$,
where w ∈ L(H) (i. e., w ∈ L(Hi) for some Hi ∈ H).

Note that the paths ρ described by Q1 contain exactly three occurrences of
the $ symbol, which can be understood to divide ρ into two parts, where the
left part is labeled Fa1 · · · asF. Likewise, the query Q2 can be understood as
consisting of two parts, which are to be defined in the subqueries

∧
1≤i≤k φ

sel
i and∧

1≤i≤k φ
cod
i , respectively. Our goal is to construct Q2 in such a way that, when

matching Q2 to ρ, the φseli are used to select which H-system Hi is simulated
in Q2, while the actual encoding of that H-system is achieved by φcodi (hence,
the superscripts sel and cod). We define Q2 as

Q2 := Ans()← (x0, c
$
1, x1), (xk+1, c

$
2, x̂1), (x̂k+1, c

$
3, x̂k+2),

L$(c$1), L$(c$2), L$(c$3),
∧

1≤i≤k

φseli ,
∧

1≤i≤k

φcodi

where L$ = {$}, and the φseli and φcodi consist of relational and labeling atoms
that shall be defined further down. As explained above, the subqueries φseli are
used to select which H-system is active when matching Q2 to a graph. These
queries are defined by

φseli := (xi, c
F
i,1, yi,1), (yi,1, c

a1
i , yi,2), . . . , (yi,s, c

as
i , yi,s+1), (yi,s+1, c

F
i,2, xi+1),

LF(cFi,1), La1(ca1i), . . . , Las(casi), LF(cFi,2), eq(cFi,1, c
F
i,2)

where La := {ε, a} for each a ∈ {F, a1, . . . , as}.
In order to define each φcodi , we need to consider the respective H-system

Hi: Let Hi = (Σ, Xi,Li, αi), where αi = βi,1 · · ·βi,mi
for some mi ≥ 1 and

βi,1, . . . , βi,mi
∈ (X ∪ Σ). We define the relational part of φcodi to be

(x̂i, c
F
i,3, zi,1), (zi,1, di,1, zi,2), . . . , (zi,mi

, di,mi
, zi,mi+1), (zi,mi+1, c

F
i,4, x̂i+1),

where cFi,3, cFi,4, and all di,j are (pairwise distinct) new path variables. We

start the construction of the labeling part of φcodi with the labeling atoms

LF(cFi,3), LF(cFi,4), eq(cFi,1, c
F
i,3), and eq(cFi,1, c

F
i,4). Furthermore, we define a reg-

ular language Li,j for every 1 ≤ j ≤ mi by Li,j := Li(βi,j) if βi,j ∈ X, and

Li,j := {ε, βi,j} if βi,j ∈ Σ. In addition to this, we add a label atom eq(c
βi,j

i , di,j)
for every j with βi,j ∈ Σ. Finally, for every j with βi,j ∈ X such that βi,j oc-
curs more than once in αi, we add a relation eq(di,j , di,l) for every l 6= j with
βi,l = βi,j .

Note that the relation graph HQ2
consists only of a path from x0 to x̂k+1,

where each node (except x̂k+1, the last node) has exactly one successor. Thus,
the relation graph is acyclic and has no branches.

We claim that L(H) = Σ∗ holds if and only if Q1 ⊆ Q2, which completes
the proof of Lemma 3.2.

“=⇒”: Assume that L(H) = Σ∗, and let G = (V,E) be a db-graph over
Σ′ with Q1(G) = true. By definition of Q1, G contains a path ρ with λ(ρ) =

9

v0 v1 v2 v3 vs+1 vs+2 vs+3 vs+4 vs+5 vs+6 vt vt+1 vt+2 vt+3

$ F a1 as F $ F b1 bn F $

Figure 1: A graphic representation of the path ρ that is characteristic for all graphs G with
Q1(G) = true. To increase readability, this figure uses t := s+ n+ 4.

$Fa1 · · · asF$FwF$ for some w ∈ Σ∗. Let w = b1 · · · bn with n ≥ 0 and bj ∈ Σ
for 1 ≤ j ≤ n. Accordingly, there are nodes v0, . . . , vs+n+7 ∈ V such that

ρ =v0 $ v1 F v2 a1 v3 . . . vs+1 as vs+2 F vs+3 $ vs+4 F

vs+5 b1 vs+6 · · · vs+n+4 bn vs+n+5 F vs+n+6 $ vs+n+7.

See Figure 1 for a graphic representation of this path. Although this does not
matter for our considerations, note that these vi are not necessarily distinct.

In order to show that Q2(G) = true, we construct a node mapping σ and a
path mapping µ such that (G, σ, µ) |= Q2. We first define

σ(x0) := v0, µ(c$1) := v0 $ v1,

σ(x1) := v1,

σ(xk+1) := vs+3, µ(c$2) := vs+3 $ vs+4,

σ(x̂1) := vs+4,

σ(x̂k+1) := vs+n+6, µ(c$3) := vs+n+6 $ vs+n+7,

σ(x̂k+2) := vs+n+7.

As L(H) = Σ∗, there is an i with 1 ≤ i ≤ k such that w ∈ L(Hi). We now
want to map the path described in φseli to the path between v1 and vs+3 (for
an illustration, see Figure 2). In order to achieve this, we define

σ(xi) := v1, µ(cFi,1) := v1Fv2,

σ(yi,1) := v2, µ(ca1i) := v2 a1 v3,

...
...

σ(yi,s+1) := vs+2, µ(casi) := vs+1 as vs+2,

σ(xi+1) := vs+3, µ(cFi,2) := vs+2 F vs+3.

As all other φselj are not needed, we define

σ(xj) :=

{
v1 if 1 ≤ j < i,

vs+3 if i < j ≤ k,

and σ(yj,l) := σ(xj) for all j 6= i, 1 ≤ j ≤ k and 1 ≤ l ≤ s+ 1. Accordingly, for

all πj ∈ {cFj,1, cFj,2, ca1j ,. . . , casj } with j 6= i, we define

µ(πj) :=

{
v1 ε v1 if 1 ≤ j < i,

vs+3 ε vs+3 if i < j ≤ k.

10

x0 x1 xi yi,1 yi,2 yi,3 xi+1 xk+1 x̂1

v0 v1 v1 v2 v3 v4 v5 v5 v6$

c$1

ε F

cFi,1

a1

ca1i

a2

ca2i

F

cFi,2

ε $

c$2

Figure 2: An illustration of the first half of the path ρ, compared to Q2 under the assignments
σ and µ, for the special case s = 2. The bottom row shows the node and path variables, while
the top row contains the respective nodes and path labels. See also Figure 3 for an illustration
of the second half.

x̂1 x̂i zi,1 zi,2 zi,m zi,m+1 x̂i+1 x̂k+1 x̂k+2

vs+4 vs+4 vs+5 v̂1 v̂m−1 v̂m vs+n+6 vs+n+6 vs+n+7ε F

cFi,3

w1

di,1

wm

di,m

F

cFi,4

ε $

c$2

Figure 3: A graphic representation of the assignments σ and µ that are defined in the only-
if-direction of the proof of Lemma 3.2. As in Figure 2, the bottom row shows the node and
path variables, while the top row contains the respective nodes and path labels.

We can already observe that (G, σ, µ) |= Q2 holds modulo the subquery∧
1≤j≤k φ

cod
j , using the following reasoning: As λ(µ(c$j)) = $ for j ∈ {1, 2, 3},

λ(µ(c$)) ∈ L$ = {$} is true, and L$(c$j) is satisfied. Furthermore, for every
j 6= i with 1 ≤ j ≤ k, we observe

λ(µ(cFj,1)) = λ(µ(ca1j)) = . . . = λ(µ(casj)) = λ(µ(cFj,2)) = ε.

Due to ε ∈ LF, La1 , . . . Las , each of

LF(cFj,1), La1(ca1j), . . . , Las(casj), LF(cFj,2), eq(cFj,1, c
F
j,2)

is satisfied. Similarly, we observe

λ(µ(cFi,1)) = λ(µ(cFi,2)) = F ∈ LF,

λ(µ(ca1i)) = a1 ∈ La1 ,
...

λ(µ(casi)) = as ∈ Las ,

which demonstrates that φseli is satisfied as well.
All that remains is to find a proper assignment of the variables in φcodi that

describes the second half of ρ, while all other variables describe only the empty
path. A graphic representation of the underlying idea can be found in Figure 3.

Accordingly, we define

σ(x̂j) :=

{
vs+4 if 1 ≤ j < i,

vs+n+6 if i < j ≤ k,

11

and, likewise,

σ(zj,l) :=

{
vs+4 if 1 ≤ j < i,

vs+n+6 if i < j ≤ k,

for all l such that zj,l occurs in Q2. Consequently, we define

µ(cFj,3) = µ(cFj,4) = µ(dj,l) = σ(x̂j) ε σ(x̂j)

for all 1 ≤ j ≤ k, j 6= i.
We observe that for all j 6= i with 1 ≤ j ≤ k, φcodj is satisfied: First, observe

that
λ(µ(cFj,3)) = λ(µ(cFj,4)) = ε

holds. As λ(µ(cFj,1)) = ε, all of

LF(cFj,3), LF(cFj,4), eq(cFj,1, c
F
j,3), eq(cFj,1, c

F
j,4)

are satisfied. Furthermore, for all dj,l that occur in φcodj , λ(µ(dj,l)) = ε. There-
fore, every Lj,l(dj,l) is satisfied, as ε ∈ Lj,l holds by Definition 2.3. Moreover,
as each of these paths is an empty path, all relations eq(dj,l, dj,l′) in φcodj are

satisfied as well, which means that φcodj is satisfied.
As the last remaining task, we need to complete the definition of σ and µ

such that φcodi is satisfied. In order to examine Hi in detail, assume that Hi =
(Σ, Xi,Li, αi), and let αi = βi,1 · · ·βi,mi

for some mi ≥ 0 with βi,j ∈ (Xi∪Σ) for
1 ≤ j ≤ mi. By definition of w ∈ L(Hi), there is an Hi-compatible morphism
h : (Xi ∪ Σ)∗ → Σ∗.

As w = h(αi), there is a natural decomposition of w into factors w1 · · ·wmi
,

which are defined by wj := h(βj) for 1 ≤ j ≤ mi. We take special note of the
subpaths of ρ that can be derived from these wj , and define

n0 := s+ 5, v̂0 := vn0
= vs+5,

nj := s+ 5 + |w1 · · ·wj |, v̂j := vnj
= vs+5+|w1···wj |

for each 1 ≤ j ≤ mi. Hence, for each j, the subpath of ρ between v̂j−1 and v̂j is
labeled with wj . Note that v̂j−1 = v̂j might hold, in particular if wj = ε. Also
note that, by definition, v̂mi

= vs+n+5.
Hence, we define

σ(x̂i) := vs+4, µ(cFi,3) := vs+4 F vs+5,

σ(zi,1) := v̂0 = vs+5,

...

σ(zi,mi) := v̂mi−1,

σ(zi,mi+1) := v̂mi
= vs+n+5 µ(cFi,4) = vs+n+5Fvs+n+6,

σ(x̂i+1) := vs+n+6.

12

Finally, we define each µ(di,j) with 1 ≤ j ≤ mi to correspond to the subpath of
ρ between v̂j−1 and v̂j that is labeled with wj .

We now prove that Li,j(di,j) is satisfied for every 1 ≤ j ≤ mi. As in the
definition of Li,j , we distinguish the following cases:

1. If βi,j ∈ Xi, Li,j = Li(βi,j). As wj = h(βi,j), and due to h(βi,j) ∈ Li(βi,j),
λ(µ(di,j)) ∈ Li,j ,

2. if βi,j ∈ Σ, Li,j = Lβi,j . As wj = h(βi,j) = βi,j , λ(µ(di,j)) ∈ Li,j holds.

This also proves that, for every j with βi,j ∈ Σ, λ(µ(di,j)) = βi,j = λ(µ(c
βi,j

i)).

Hence, these relations eq(c
βi,j

i , di,j) are satisfied as well. Finally, for every
βi,j ∈ Xi that occurs more than once in αi, we need to consider the relations
eq(di,j , di,l) for all l, j with l 6= j and βi,l = βi,j . As h is a morphism, βi,j = βi,l
implies h(βi,j) = h(βi,l), and thus,

λ(µ(di,j)) = wj = wl = λ(µ(di,l)).

Obviously, eq(di,j , di,l) is satisfied. We now have demonstrated that (σ, µ,G) |=
Q2. Hence, Q2(G) = true, and as G was chosen arbitrarily with Q1(G) = true,
Q1 ⊆ Q2 follows.

“⇐=”: We prove this direction through its contraposition; i. e., we show
that L(H) 6= Σ∗ implies Q1 6⊆ Q2. Assume there is a w ∈ Σ∗ with w /∈ L(H).
Let w = b1 · · · bn for some n ≥ 0 with bi ∈ Σ for all 1 ≤ i ≤ k. We define
G := (V,E), where V := {v0, . . . , vs+n+6} (and all elements of V are pairwise
distinct), and

E := {(v0, $, v1), (v1,F, v2), (v2, a1, v3), . . . , (vs+1, as, vs+2), (vs+2,F, vs+3),

(vs+3, $, vs+4), (vs+4,F, vs+5), (vs+5, b1, vs+6), . . . , (vs+n+4, bn, vs+n+5),

(vs+n+5,F, vs+n+6), (vs+n+6, $, vs+n+7)}.

In other words, G is an acyclic graph that consists solely of a path from v0 to
vs+n+7 labeled $Fa1 · · · asF$FwF$. As w ∈ Σ∗, Q1(G) = true holds. For
convenience, we denote this path by ρ.

For the sake of contradiction, assume Q1(G) ⊆ Q2(G), which necessarily
implies Q2(G) = true. Thus, there are assignments σ, µ such that (σ, µ,G) |=
Q2. As λ(ρ) contains exactly three occurrences of $, and as L$(c$i) occurs in Q2

for 1 ≤ i ≤ 3, we know that σ and µ must satisfy the following conditions:

σ(x0) = v0, µ(c$1) = v0 $ v1,

σ(x1) = v1,

σ(xk+1) = vs+3, µ(c$2) = vs+3 $ vs+4,

σ(x̂1) = vs+4,

σ(x̂k+1) = vs+n+6, µ(c$3) = vs+n+6 $ vs+n+7,

σ(x̂k+2) = vs+n+7.

13

As eq(cFi,1, c
F
i,2) needs to be satisfied for all 1 ≤ i ≤ k, and as the subpath between

v1 and v5 contains exactly two occurrences of F, there must be exactly one i
with λ(µ(cFi,1)) = F (although this i is not necessarily uniquely defined). We
shall see that our assumption allows us to conclude that w ∈ L(Hi), which leads
to the intended contradiction. Due to our previous observations, the following
must hold:

σ(xi) = v1, µ(cFi,1) = v1Fv2,

σ(yi,1) = v2, µ(ca1i) = v2 a1 v3,

...
...

σ(yi,s+1) = vs+2, µ(casi) = vs+1 as vs+2,

σ(xi+1) = vs+3. µ(cFi,2) = vs+2 F vs+3.

Now, note that Q2 is acyclic. Therefore, the structure of G permits no other
assignments than

σ(xj) =

{
v1 if 1 ≤ j < i,

v5 if i < j ≤ k,

and σ(yj,l) = σ(xj) for all j 6= i and all 1 ≤ l ≤ s+ 1. Accordingly,

µ(cFj,1) = µ(ca1j) = . . . = µ(casj) = µ(cFj,2) = σ(xj) ε σ(xj)

holds for all these j. Thus, only the path variables from φseli are mapped to a
nonempty path. The same phenomenon occurs for the variables of φcodi : As Q2

contains relations eq(cFi,1, c
F
i,3) and eq(cFi,1, c

F
i,4), we conclude that

σ(x̂i) = vs+4, µ(cFi,3) = vs+4 F vs+5,

σ(zi,1) = vs+5,

σ(zi,m+1) = vs+n+5, µ(cFi,4) = vs+n+5 F vs+n+6,

σ(x̂i+1) = vs+n+6

holds. Let the H-system Hi be defined by Hi = (Σ, Xi,Li, αi), where αi =
βi,1 · · ·βi,mi

for some mi ≥ 0. By definition of Q2, we know that φcodi contains

the path variables di,1, . . . , di,mi (in addition to cFi,3 and cFi,4). This implies

λ(µ(di,1)) λ(µ(di,2)) · · ·λ(µ(di,mi
)) = b1 · · · bn.

We define words wj := λ(µ(di,j)) for 1 ≤ j ≤ mi. In order to prove w ∈ L(Hi),
we show that these words can be used to define an Hi-compatible morphism h
with h(αi) = w. First, we distinguish two possible cases for every 1 ≤ j ≤ mi:

1. If βi,j ∈ Xi, Li,j = Li(βi,j) holds by definition of Q2, which implies
wj ∈ Li(βi,j),

14

2. if βi,j ∈ Σ, wj = βi,j must hold, as Q2 contains label atoms Lβi,j (di,j)

and eq(c
βi,j

i , di,j), and λ(µ(c
βi,j

i)) = βi,j .

Furthermore, for all j 6= l with βi,j , βi,l ∈ Xi and βi,j = βi,l, Q2 contains a label
atom eq(di,j , di,l); hence, wj = wl holds. This allows us to define a morphism
h : (Xi ∪ Σ)∗ → Σ∗ by h(βi,j) := wj for all 1 ≤ j ≤ mi.

Furthermore, as shown above for the two possible cases, h is Hi-compatible.
Finally, h(αi) = h(βi,1 · · ·βi,mi

) = w holds by definition.
Thus, w ∈ L(Hi) ⊆ L(H), which contradicts our initial assumption. This

concludes the if-direction of the proof.

By using standard encoding techniques for representing arbitrary finite al-
phabets by an alphabet of size 2, the proof of Theorem 3.1 now easily follows
from Lemma 2.4, the undecidability of the emptiness of dom(M) for Turing
machines M, and Lemma 3.2. By using universal Turing machines instead of
arbitrary Turing machines, we also obtain the following strengthening of Theo-
rem 3.1:

Theorem 3.3. For every alphabet Σ with |Σ| ≥ 2, there are a fixed CRPQ Q1

over Σ and a fixed CRPQ with equality relations Q2 over Σ such that (i) the
containment problem of Q1 in CRPQs with equality relations, and (ii) the con-
tainment problem of CRPQs in Q2 are both undecidable. This holds even if all
queries are Boolean and acyclic.

Proof. The first claim follows from the proof of Theorem 3.1, as Q1 is fixed. In
order to prove the second claim, we choose M to be a certain kind of universal
Turing machine, and use Q1 to choose the program number of the universal
machine we want to simulate.

More precisely, let Ψ : N×N→ N be a universal partially recursive function,
i. e., for every partially recursive function φ : N→ N, there is an m ≥ 0 such that
Ψm(n) := Ψ(m,n) = φ(n) for every n ≥ 0. It is an elementary fact of recursion
theory that such a function exists (cf. Kozen [13]), and moreover, there is a
Turing machine U over some tape alphabet Γ such that

dom(U) = {am bn | Ψ(m,n) is defined},

where a, b are two distinct letters in the input alphabet of U . The machine U
might be understood as simulating partial recursive function number Ψm (in
the numbering that is defined by Ψ) on the input n.

We define Σ := Γ ∪ Q ∪ {#} = {a1, . . . , as} (for some s ≥ 2) and Σ′ :=
Σ ∪ {F, $}, and construct Q2 and H from U as in the proof of Lemma 3.2. For
every m ≥ 0, we define a CRPQ Q1,m by

Q1,m := Ans()← (x, π, y), Lm(π),

where

Lm := $Fa1 · · · asF$F#q0a
mb∗#Σ∗F$,

15

and proceeding as in the proof of Lemma 3.2, mutatis mutandis. In other
words, Q1 does not generate arbitrary sequences, but sequences that start with
the encoding of all possible initial sequences of simulations of the function Ψm.

Then, Q1,m ⊆ Q2 holds if and only if dom(U)∩amb∗ is empty, which holds if
and only if Ψm(n) is undefined on all inputs n. As decidability of this problem
would allow to decide the emptiness of the domain of partial-recursive functions
(an undecidable problem), the second claim follows. Again, the common encod-
ing techniques can be used to replace the alphabet Σ′ with a binary alphabet.

Furthermore, all queries used are Boolean and acyclic by definition.

Applying slight modifications to the proof of Lemma 3.2, we observe the same
situation for ECRPQs that use length equality instead of equality relations:

Theorem 3.4. For every alphabet Σ with |Σ| ≥ 2, there are a fixed CRPQ Q1

over Σ and a fixed CRPQ with length equality relations Q2 over Σ such that
(i) the containment problem of Q1 in CRPQs with length equality relations, and
(ii) the containment problem of CRPQs in Q2, are both undecidable. This holds
even if all queries are Boolean and acyclic.

Proof. As we shall see, it suffices to replace all occurrences of eq in the queries
that are constructed according to the proof of Theorem 3.3 (and the other proofs
referenced therein) with el.

Note that, in order to prove Theorem 3.1, we do not need to express all
possible unions of H-systems, but only those H that are derived from a Tur-
ing machine M as explained in Lemma 2.4. Furthermore, the construction in
Lemma 3.2 uses the eq-predicates in two different contexts: First, on path vari-
ables that are associated with languages {a, ε} for some a ∈ Σ, and second, on
path variables that simulate variables x in H-expressions (Σ, X,L, α) such that
|α|x ≥ 2.

For the first case, we can simply replace eq with el without changing the
behavior of the query: Obviously, for all w,w′ ∈ {a, ε}, w = w′ holds if and
only if |w| = |w′|.

Regarding the second case, note that almost all H-expressions that are de-
rived from the proof of Lemma 2.4 describe regular languages. The only non-
regular languages that are constructed describe cases where w 6= w′ holds for
certain words w,w′ ∈ Γ∗, and characterizes this relation by w 6= w′ if and only
if

1. there exist words u, v, v′ ∈ Γ∗ and letters c, d ∈ Γ with c 6= d, w = ucv,
and w′ = udv′, or

2. exactly one of w,w′ is the empty word.

The first condition holds if and only if there exist words u, u′v, v′ ∈ Γ∗ and letters
c, d ∈ Γ with c 6= d, w = ucv, w′ = u′dv′, and |u| = |u′|, which demonstrate
that in this case, the replacement of eq with el leads to the same results.

16

3.2. Query Equivalence

The query equivalence problem is the problem to decide for two input queries
Q and Q′ whether Q ≡ Q′.

Another question specifically posed in [3] is whether the equivalence prob-
lem for CRPQs and ECRPQs is decidable. Using a variant of the proof of
Theorem 3.3, we can answer this question negatively:

Theorem 3.5. For every alphabet Σ with |Σ| ≥ 2, there are a fixed CRPQ Q1

over Σ and a fixed ECRPQ Q2 over Σ such that (i) the equivalence problem of
Q1 and ECRPQs, and (ii) the equivalence problem of CRPQs and Q2, are both
undecidable. This holds even if all queries are Boolean and acyclic.

Theorem 3.5 can be obtained from the proof of Theorem 3.3 by using the
following lemma instead of Lemma 3.2:

Lemma 3.6. Let Σ be an alphabet. For every regular language L ⊆ Σ∗ and
every set H = {H1, . . . ,Hk} of H-systems over Σ, one can effectively construct
a CRPQ Q1 and an ECRPQ Q2 such that Q1 ≡ Q2 if and only if L(H) = L.

Proof. Let Σ, Σ′, and Q1 be defined as in the proof of Lemma 3.2, and let
L ⊆ Σ∗ be a regular language.

We define Q1 := Ans()← (x, π, y), L′(π), where L′ := $Fa1 · · · asF$FLF$
(as L is regular, L′ is regular as well). In order to define Q2, we introduce the
regular k-ary relation xor(w1, . . . , wk), which is defined by

xor := {(w1, . . . , wk) | there is exactly one 1 ≤ i ≤ k with wi 6= ε}.

We now obtain Q2 by adding xor(cF1,1, . . . , c
F
k,1) to the query Q2 used in the

proof of Lemma 3.2. Then Q2(G) = true holds if and only if G contains a path
ρ with λ(ρ) ∈ $F a1 · · · as F$FL(H)F$.

If query equivalence were decidable, we could use Lemma 3.6 to decide
whether INVALC(M) = L for every Turing machine M and every regular
language L. As this problem is undecidable, query equivalence must be unde-
cidable. Hence, Theorem 3.5 follows.

Note that the ECRPQs in the proof use only one relatively simple relation
in addition to the equality relations that are from the proof of Theorem 3.1.
As in the proof of Theorem 3.4, this construction can be adapted to use length
equality relations instead of equality relations.

4. Expressiveness and Relative Succinctness

4.1. Expressiveness of (E)CRPQs

In this section, we examine the expressive power of CRPQs and ECRPQs.
In particular, we give a classes of query functions for which we characterize
expressibility in CRPQS, and in ECRPQs over unary alphabets.

17

We say that a query function F is CRPQ-expressible (or ECRPQ-expressible)
if there is a CRPQ (or ECRPQ, resp.) Q such that Q(G) = F (G) for every
Σ-labeled db-graph G.

For every language L ⊆ Σ∗, we define a query function FL by

FL(G) := {(x, y) | G contains a path ρ from x to y with λ(ρ) ∈ L}

for every Σ-labeled db-graph G. Analogously, we define a Boolean query func-
tion FBL by FBL (G) := true if and only if FL(G) 6= ∅.

The proofs presented in this section will use specific db-graphs Gw repre-
senting strings w ∈ Σ∗ as follows: If w = b1 · · · b|w| (with all bi ∈ Σ), we define
the db-graph Gw := (Vw, Ew) by Vw := {v0, . . . , v|w|} (where all vi are distinct
nodes), and Ew = {(vi, bi+1, vi+1) | 0 ≤ i < |w|}. Thus, Gw consists of a path
from v0 to v|w| that is labeled with w.

Clearly, if L ⊆ Σ∗ such that FL is expressible by an ECRPQ QL, then for
all words w ∈ Σ∗ we have w ∈ L iff (v0, v|w|) ∈ QL(Gw).

Lemma 4.1. Let Σ be an alphabet, let L ⊆ Σ∗. Then FL is CRPQ-expressible
if and only if L is regular.

Proof. The if -direction is obvious: If L is regular, the CRPQ Q := Ans(x, y)←
(x, π, y), L(π) expresses FL.

To prove the only if -direction, let L ⊆ Σ∗, and assume there exists a CRPQ

QL = Ans(x, y)←
∧

1≤i≤m

(xi, πi, yi),
∧

1≤i≤m

Li(πi)

with QL(G) = FL(G) for every Σ-labeled db-graph G.
We will show that L is regular by considering the restricted class of db-graphs

Gw for words w ∈ Σ∗.
Obviously, QL(Gw) contains the pair (v0, v|w|) if and only if w ∈ L. The

main idea of the proof is as follows: First, we construct a CRPQ Q′L that is of a
certain normal form, and satisfies Q′L(Gw) = QL(Gw) for all w ∈ Σ∗. Then, we
show that the existence of Q′L allows us to construct an NFA M with L(M) = L,
showing that L is regular.

In order to construct Q′L, we define a graph H := (V,E), where V is the
set of all node variables in QL, while E is the set of all (xi, Li, yi) such that
(xi, πi, yi) occurs in the relational part of QL. In other words, we make use
of the normal form for CRPQs, and interpret H lab

QL
as being labeled with the

languages Li instead of the path variables πi.
We now define the relation→ on V by z1 → z2 if, for some j, there is an edge

(z1, Lj , z2) ∈ E, and define
∗→ as the reflexive transitive closure of →. Our goal

is to construct Q′L by turning H into a graph that is acyclic, satisfies x
∗→ z

∗→ y

for every node z, has x as maximum of
∗→, and has y as minimum of

∗→.
We achieve this by executing the following modifications to V and E in

order:

18

1. For all z ∈ V with z
∗→ x, remove z from V , and replace all occurrences

of z in elements of E with x,

2. for all z ∈ V with y
∗→ z, remove z from V , and replace all occurrences of

z in elements of E with y,

3. for all z1, z2 ∈ V with z1
∗→ z2

∗→ z1, remove z2 from V , and replace all
occurrences of z2 in elements of E with z1. Repeat this step as long as
such z1, z2 exist.

4. remove all remaining loops from z, i. e., all (z, Li, z).

Note that, at any point of the construction, we can interpret (V,E) as a CRPQ
by “reversing” the construction; i. e., each edge is interpreted as an atom of the
relational part, while each edge label corresponds to an atom in the labeling
part that expresses the corresponding regular language.

We now prove that for the CRPQ Q′L that is derived according to these
removals, Q′L(Gw) = QL(Gw) holds for all w ∈ Σ∗. First, as Q′L is obtained
from QL by removing relations, Q′L ⊇ QL holds by definition. For the other
direction, we first make the following basic observations. Assume that σ, µ are
assignments with (Gw, σ, µ) |= QL, σ(x) = v0, and σ(y) = v|w| for some w ∈ Σ∗

As v0 is of in-degree 0, we know that σ(z) = σ(x) = v0 must hold for all z

with z
∗→ x. Likewise, as v|w| is of out-degree 0, σ(z) = σ(y) = v|w| holds for all

z with y
∗→ z. Furthermore, as Gw is acyclic, σ(z1) = σ(z2) holds for all z1, z2

with z1
∗→ z2

∗→ z1. Hence, for all languages Li on the edges of H lab
QL

that were
removed during the construction process of Q′L, ε ∈ Li must hold.

Now assume that σ′, µ′ are assignments such that (Gw′ , σ
′, µ′) |= Q′L, σ′(x) =

v0, and σ′(y) = v|w′| hold for some w′ ∈ Σ∗ (in other words, (v0, v|w′|) ∈
Q′L(Gw′) holds). In order to prove (v0, v|w′|) ∈ QL(Gw′), we define σ(z) := σ′(z)
for every node variable z that occurs in Q′L (and, hence, also in QL), and
µ(π) := µ′(π) for every path variable π that occurs in Q′L (and, hence, also
in Q′L). For the remaining node variables z1 ∈ nvar(QL) that do not occur in
Q′L, define σ(z1) := σ(z2), where z2 is a variable with z2 ∈ nvar(QL) (such
a variable must exist, according to the construction procedure). Finally, as
explained above, all remaining path variables can be assigned to the empty
path for the appropriate node. Hence, (v0, v|w′|) ∈ Q′L(G|w′|) holds. As w′ ∈ Σ∗

was chosen freely, this proves QL(Gw′) = Q′L(Gw′) for all w′ ∈ Σ∗.

Note that there might still exist some z ∈ V such that x
∗→ z or z

∗→ y does
not hold. In order to simplify our technical construction further down, for each
such z, we add an edge (x,Σ∗, z) if x

∗→ z does not hold, and (z,Σ∗, y) if z
∗→ y

does not hold. Again, this does not change the result of the corresponding query
on all graphs Gw.

As a last step in our construction of the NFA M with L(M) = L, let
e1, . . . , ek be any numbering of the edges in E. For every z ∈ V , let

in(z) := {i | ei ∈ E, ei ends in z},
out(z) := {i | ei ∈ E, ei starts in z}.

19

Furthermore, for every ei ∈ E, let Mi = (Qi,Σ, δi, q0,i, Fi) be a DFA for the
language that labels ei. We now construct an NFA M = (Q,Σ, δ, q0, F) that
imitates the matching of Q′L to graphs Gw by simulating all Mi in parallel.

In principle, M shall guess nondeterministically how the nodes of V are
assigned to nodes of Gw, and processes the respective edges that are active at
a certain point, simulating all possible paths through (V,E) in parallel. If (and
only if) there is an assignment of nodes in V to nodes in Gw such that all
edges have been processed correctly and all paths end at y at the same time, M
accepts.

We define Q := (Q1 ∪ {w, d}) × . . . × (Qk ∪ {w, d}). At every point of the
simulation, each edge is either active (then the respective automaton Mi is in
some state from Qi), is waiting to be activated (represented by w), or is done
(represented by d).

Hence, the initial state q0 of M is defined by q0 := (q1, . . . , qk), where qi :=
q0,i for all i ∈ out(x), and qi := w for all i /∈ out(x).

In the same spirit, we define δ(q, a) for each q = (q1, . . . , qk) ∈ Q and each
a ∈ Σ according to the following rules:

1. If qi = d for some automaton Mi, that automaton stays in d.

2. For every z ∈ V , M can nondeterministically decide that z has been
reached if the following conditions are met:

(a) δi(qi, a) ∈ F for all i ∈ in(z) (all ingoing edges are allowed to end),
and

(b) qj = w for all j ∈ out(z) (all outgoing edges are ready).

Then, every Mi with i ∈ in(z) enters d (the “done state”) instead of
δ(qi, a), and every Mj with j ∈ out(z) enters its initial state q0,j .

3. All Mi with qi 6= d that are not affected by such a change of active edges
stay in the state w if qi = w, or advance to the respective successor state
δi(qi, a) if qi ∈ Qi.

The construction already suggests that L(M) = L.
We illustrate this by examining the behavior of Q′(L) on all graphs Gw, as

(v0, v|w|) ∈ Q′L(Gw) holds if and only if w ∈ L.
First, assume w ∈ L. Then there exist assignments σ, µ with (Gw, σ, µ) |=

Q′L, σ(x) = v0, and σ(µ) = v|w|. As there is exactly one path ρ from v0 to v|w|,
and as λ(ρ) = w, M is able to process w according to the assignments σ(z) for
all z ∈ nvar(Q′L). This leads to w ∈ L(M).

For the opposite direction, assume w ∈ L(M). The node assignment σ can
be derived from the non-deterministic guesses of M , as every change in active
edges corresponds to a node in Gw. Then µ can be assigned accordingly, and
λ(µ(πi)) holds for all path variables πi in Q′L. Consequently, (Gw, σ, µ) |= Q′L,
σ(x) = v0, and σ(y) = v|w| hold, and as the only possible path from v0 to v|w|
is labeled w, we conclude w ∈ L (by Q′L(Gw) = QL(Gw) = FL(Gw)). Hence, L
is regular.

20

The situation is not strictly the same for Boolean queries (e. g., if L contains
every single letter of Σ, FBL (G) = true holds for all non-empty db-graphs G);
but a similar result can be observed:

Lemma 4.2. Let Σ be an alphabet with |Σ| ≥ 2, let a ∈ Σ, and let L ⊆
(Σ \ {a})∗. Then FBaLa is CRPQ-expressible if and only if L is regular.

For alphabets Σ of size ≥ 2, ECRPQs can express queries FL for non-regular
L ⊆ Σ∗ which, according to Lemma 4.1, are not CRPQ-expressible. For exam-
ple, for L := {anbn | n ∈ N}, FL is not CRPQ-expressible, but is expressed by
the ECRPQ Ans(x, y) ← (x, π1, z), (z, π2, y), L1(π1), L2(π2), el(π1, π2), where
L1 := a∗ and L2 := b∗. For unary alphabets (i. e., alphabets of size 1), however,
we can show the following:

Lemma 4.3. Let Σ be a unary alphabet, let L ⊆ Σ∗. Then FL is ECRPQ-
expressible if and only if it is CRPQ-expressible.

Before giving a proof of this lemma, let us note that, in spite of Lemma 4.3,
there exist ECRPQ-queries over unary alphabets that are not CRPQ-expressible.
For example, consider the ECRPQ

Q := Ans(x, y)← (x, π1, z), (y, π2, z), el(π1, π2),

selecting all pairs of nodes (u, v) in a db-graph G, for which there exists a node
w such that there are paths from u to w and from v to w of the same length.
It should be not too difficult to see that this query is not CRPQ-expressible.

Proof (Lemma 4.3). The if -direction holds by definition, as every CRPQ is an
ECRPQ. Before we proceed to the proof of the other direction, we introduce
some basic definitions. For every k ≥ 1 and every vector a ∈ Nk, define aN :=
{ai | i ∈ N}. For all sets A,B ⊆ Nk, let A + B := {a + b | a ∈ A, b ∈ B}. A
set A ⊆ Nk is linear if there exist a0, . . . , an ∈ Nk for some n ≥ 0 such that
A = a0 + a1N + . . . + anN. A set is semi-linear if it is a finite union of linear
sets.

Let A = {a1, . . . , ak} be a (finite) alphabet. The Parikh mapping (for A)
is the function ψ : A∗ → Nk that is defined as ψ(w) := (|w|a1 , . . . , |w|ak) for
all w ∈ A∗. We extend this to the Parikh image of a language by ψ(L) :=
{ψ(w) | w ∈ L for all L ⊆ A∗, and say that a language L is semi-linear if ψ(L)
is semi-linear.

Let A be any set, and let k ≥ 1. For every (a1, . . . , ak) ∈ Ak, we define
functions proji(a1, . . . , ak) := ai for all 1 ≤ i ≤ k. In other words, the function
proji projects an element of Ak to its i-th component.

For the only if -direction, let Σ := {a}, and assume there is a language
L ⊆ Σ∗ such that FL is ECRPQ-expressible, but not CRPQ-expressible. Then
Lemma 4.1 implies that L is not a regular language.

Assume that QL is an ECRPQ with QL(G) = FL(G) for every Σ-labeled
db-graph G, and assume (recalling Lemma 2.1) that

QL = Ans(x, y)←
∧

1≤i≤k

(xi, πi, yi), R(π1, . . . , πk),

21

We interpret the regular relation R as a regular language over the alphabet
{a,⊥}k. Let ψ : ({a,⊥}k)∗ → N denote the Parikh mapping for A := {a,⊥}k.

As R is regular, its Parikh set ψ(R) ⊆ N2k

is semi-linear (cf. Harrison [11]).
We define the set Rlen ⊆ Nk by

Rlen := {(|w1|, . . . , |wk|) | (w1, . . . , wk) ∈ R}.

In order to show that Rlen is semi-linear, let b1, . . . , b2k be the enumeration
of {a,⊥}k that corresponds to ψ (i. e., for every 1 ≤ i ≤ 2k, bi ∈ {a,⊥}k,
proji(ψ(bi)) = 1, and all other positions of ψ(bi) are 0). We define functions

fi : N2k → N with 1 ≤ i ≤ k by

fi(n1, . . . , n2k) :=
∑

j:proji(bj)=a

nj ,

and extend this to a function f : N2k → Nk by

f(n) := (f1(n), . . . , fk(n))

for every n ∈ N2k

. It is easy to see that Rlen = f(ψ(R)). As ψ(R) is semi-linear,
there exist an m ≥ 1 and linear sets R1, . . . , Rm ⊆ N such that ψ(R) =

⋃m
i=1Ri,

which leads to Rlen =
⋃m
i=1 f(Ri).

Every Ri is a linear set, hence, for every 1 ≤ i ≤ m, there exist an n ≥ 0

and c0, . . . , cn ⊆ N2k

with Ri = c0 + c1N + . . . + cnN. Therefore, f(Ri) =
f(c0) + f(c1)N+ . . .+ f(cn)N, which demonstrates that f(Ri) is a linear subset
of Nk. Hence, Rlen is semi-linear.

The next step is the construction of a relation that extends Rlen by not only
describing the lengths of paths that are obtained from a single path variable,
but to paths that are formed by connecting these single paths.

A label sequence (in QL) is a sequence i1, . . . , im with m ≥ 1, and

1. 1 ≤ ij ≤ k for all 1 ≤ j ≤ m (every ij corresponds to the path variable
πij in QL),

2. ij 6= ij′ if j 6= j′,

3. there exist z0, . . . , zm ∈ nvar(QL) such that (zj , πij+1
, zj+1) is an atom in

QL for every 0 ≤ j < m.

Hence, every label sequence describes an non-empty, acyclic path trough the
relation graph H lab

QL
; moreover, for every labeling sequence, the corresponding

node variables z0, . . . , zm are uniquely defined, as every path variable occurs
exactly once in the relational part of QL.

For every label sequence p with corresponding node variables z0, . . . , zmp ,
we define start(p) := z0, end(p) := zmp , and let lab(p) ⊆ {1, . . . , k} denote all
ij that occur in p.

Let P = {p1, . . . , pl} with l ≥ 1 denote the set of all label sequences in
QL (as there is only a finite number of path variables in QL, and no index ij

22

occurs twice in a labeling sequence, P is finite by definition). Without loss of
generality, assume that start(p1) = x and end(p1) = y hold; i. e., p1 corresponds
to a path from x to y in H lab

QL
.

For each pi in P, we define a function p̂i : Nk → N by

p̂i(r1, . . . , rk) :=
∑

j∈lab(pi)

rj .

Hence, if r ∈ ψ(R) (and, hence, corresponds to the path lengths in an assignment
that satisfies QL), p̂i(r) is the length of the path between the start(pi) and
end(pi) along the edges labeled with πj for j ∈ lab(pi).

We combine these functions p̂i to a function p̂ : Nk → Nl by

p̂(r) := (p̂1(r), . . . , p̂l(r))

for all r ∈ Nk, and define

p̂(Rlen) := {p̂(r) | r ∈ Rlen}.

Using the same approach as for Rlen, we can conclude that p̂(Rlen) is semi-linear.
Projecting p̂(Rlen) to its first component does not yield the intended contra-

diction, as R might permit assignments where the path corresponding to p1 is
not labeled with a word from L, as long as there exists a different path between
the same two nodes, but with a correct length. The problem holds for all other
pairs of nodes that are connected non-uniquely. To overcome this problem, we
need to enforce that for every pair of nodes, all paths between these nodes have
the same length.

We now define the equivalence relation ≡ on P by pi ≡ pj if start(pi) =
start(pj) and end(pi) = end(pj). For every 1 ≤ i ≤ l, let

Si := {(s1, . . . , sl) ∈ Nl | sj = si for all j with pi ≡ pj},
and define

B := {(s1, . . . , sl) ∈ Nl | sj ≤ s1 for all j},

T := p̂(Rlen) ∩Bm ∩
l⋂
i=1

Si.

First, note that B and all Si are linear. Due to the closure of the class of semi-
linear sets under intersection (cf. Ginsburg and Spanier [10]), T is semi-linear.

Intuitively, the sets Si enforce that all paths with the share the same exterior
nodes are assigned paths of the same lengths. Furthermore, the set B ensures
that no path is longer than the path described by p1. We are now able to state
the claim that shall allow us to finish the proof:

Claim: Let T1 := {proj1(t) | t ∈ T}. Then T1 = ψa(L), where ψa : {a}∗ → N
denotes the Parikh mapping of {a}.

As semi-linear sets are closed under projection, this implies that ψ(L) ⊆ N is
semi-linear, which implies that L is regular, which shall yield the contradiction.

23

In order to prove the claim, we examine the behavior of QL on a restricted
class of db-graphs, an approach that is similar to the proof of Lemma 4.1. For
every n ≥ 0, we define the db-graph Gn := Gw with w = an.

Proof of ψa(L) ⊆ T1: Assume an ∈ L for some n ≥ 0. Then (v0, vn) ∈
QL(Gn) holds by definition, and there exist assignments σ, µ such that (Gn, σ, µ) |=
QL, σ(x) = v0, and σ(y) = vn hold. We define

r := (λ(µ(π1)), . . . , λ(µ(πk))),

and observe that r ∈ R holds by definition. Hence, for

rlen := (|λ(µ(π1))|, . . . , |λ(µ(πk))|),

we observe rlen ∈ Rlen, and, consequently, p̂(rlen) ∈ p̂(Rlen). As the path that
corresponds to p1 (the path from v0 to vn) is the longest possible path in Gn,

proji(p̂(rlen)) ≤ proj1(p̂(rlen))

holds for all 1 ≤ i ≤ l. This allows us to conclude p̂(rlen) ∈ B.
Furthermore, for all pi, pj ∈ P with pi ≡ pj , there is exactly one path in Gn

between σ(start(pi)) and σ(end(pi)). Hence, the two paths that result from the
assignment of paths to their paths variables under µ are identical, which means
that p̂(rlen) ⊂ Si holds for all 1 ≤ i ≤ l.

Thus, p̂(rlen) ∈ T , and ψa(an) = n = proj1(p̂(rlen)) ∈ T1.
Proof of ψa(L) ⊇ T1: Assume to the contrary that there exists an n ∈ T1

with n /∈ ψa(L). By definition, there exist a t ∈ T with n = proj1(t) and a
rlen ∈ Rlen with t = p̂(rlen).

We now use rlen to define assignments σ, µ with (Gn, σ, µ) |= QL, σ(x) = v0,
σ(y) = vn as follows: First, we choose σ(x) := v0 and σ(y) := vn. We then
follow p1 and assign paths and nodes according to the respective path lengths
in rlen. We then proceed analogously for all other pi ∈ P with pi ≡ p1. As
t ∈ Sj holds for all 1 ≤ j ≤ l, this process is well-defined.

In order to assign the remaining variables and paths, we first process all
pi ∈ P that start at x, but end in variables z such that there is no pj ∈ P
with start(pj) = z and end(pj) = y. Again, we assign node variables and path
variables accordingly. As t ∈ B, we know that the resulting paths cannot have
a length of more than n; hence, these assignments are possible. Analogously,
we work backwards from y, and process all remaining variables that lead to y.

Next, observe that for all label sequences pi ∈ P with end(pi) = x or
start(pi) = y, proji(t) = 0 must hold, as otherwise, this label sequence and p1

could be concatenated to form a label sequence pj ∈ P with projj(t) > proj1(t),
which would contradict t ∈ B. Hence, all respective node variables can be assign
to x or y, and all these paths are assigned the empty path.

In terms of the relation graph H lab
QL

, this process yields assignments for all
node variables z ∈ nvar(Q) that are connected to x (or y), and the respective
path variables that occur on the edges. Any unassigned variable must occur in
a subgraph of H lab

QL
that is disconnected from the subgraph that contains x. For

24

each such subgraph, pick a node of in-degree 0 and treat it like x, or a node of
out-degree 0 and treat it like y, again working forwards or backwards. Again,
t ∈ B ensures that such an assignment is possible, and t ∈

⋂l
i=1 Si prevents

inconsistencies as well as problems with cycles.
As σ and µ were derived from Rlen (and, hence, R), (Gn, σ, µ) holds. Hence,

(v0, vn) ∈ QL(Gn), which contradicts QL(Gn) = FL(Gn), as an /∈ L.

In Section 3.1 of [3], Barceló et al. mention that ECRPQs are able to express
queries corresponding to regular expressions with backreferencing (or extended
regular expressions) (cf. Aho [1], Freydenberger [8]). These expressions extend
the regular expressions with variable binding and repetition operators; e. g., for
every expression α, the extended expression (α)%x xx generates the language
of all www with w ∈ L(α) (α generates some w ∈ L(α), %x assigns that w to
x, and the subsequent uses of x repeat this w – hence, xx generates ww).

Let L := {an | n ≥ 4, n is a composite number}. According to Lemma 4.3,
FL is not ECRPQ-expressible (as L is not regular). On the other hand, L is
generated by the extended regular expression (a a+)%x x+ (cf. Câmpeanu et
al. [5]). This demonstrates that ECRPQs are not able to express all queries
that correspond to extended regular expressions.

4.2. Relative Succinctness

In this section, we first obtain an undecidability result on the CRPQ-expressibility
of ECRPQs. From this result, we derive a statement of the relative succinctness
of ECPRQs in comparison to CRPQs.

We can adapt Lemma 3.2 to observe the following result on the decidability
of expressibility:

Theorem 4.4. CRPQ-expressibility for ECRPQs is not co-semi-decidable.

Proof. This follows from the proof of Theorem 3.5, a variation of Lemma 4.2,
and the observation that INVALC(M) is regular iff dom(M) is finite. Regarding
the latter, note that if dom(M) is finite, INVALC(M) is co-finite; if dom(M) is
infinite, non-regularity of INVALC(M) can be established using standard tools.
This allows us to effectively construct an ECRPQ Q from a Turing machineM
such that Q is CRPQ-expressible if and only if dom(M) is finite.

Finiteness of dom(M) is a Σ0
2-complete problem in the arithmetical hierarchy

(cf. Kozen [13]); hence, CRPQ-expressibility is Σ0
2-hard, which means that this

problem is neither semi-decidable, nor co-semi-decidable.

Using Theorem 4.4 in conjunction with a technique that is due to Hartma-
nis [12] and has been widely used in Formal Language Theory (cf. Kutrib [14]),
we obtain a result on the relative succinctness of ECRPQs and CRPQs. One
of the benefits of that technique is that it applies to a wide range of different
reasonable definitions of the size of an ECRPQ.

In order to be as general as possible, we define a complexity measure for
ECRPQs as a computable function c from the set of all ECRPQs to N, such
that for every finite alphabet Σ, the set of all ECRPQs Q over Σ (i) can be

25

effectively enumerated in order of increasing c(Q), and (ii) does not contain
infinitely many ECRPQs with the same value c(Q). As the following theorem
demonstrates, no matter which complexity measure we choose, the size tradeoff
between ECRPQs and CRPQs is not bounded by any recursive function:

Theorem 4.5. Let Σ be a finite alphabet with |Σ| ≥ 2. For every recursive
function f : N→ N and every complexity measure c, there exists an ECRPQ Q
over Σ such that Q is CRPQ-expressible, but for every CRPQ Q′ with Q′ ≡ Q,
c(Q′) > f(c(Q)).

Proof. Let Σ be a finite alphabet with |Σ| ≥ 2, and let c be a complexity
measure for ECRPQs. Assume to the contrary that there exists a recursive
function fc : N → N such that, for every CRPQ-expressible ECRPQ Q over
Σ, there is a CRPQ Q′ with Q ≡ Q′ and c(Q′) ≤ f(c(Q)). We shall now
demonstrate that this implies that the set

∆ := {Q | Q is an ECRPQ over Σ that is not CRPQ-expressible}

is semi-decidable. This, in turn, would imply that CRPQ-expressibility for
ECRPQs is co-semi-decidable, and contradict Theorem 4.4.

Under our assumptions, the semi-decision procedure for ∆ can be defined as
follows: Given an ECRPQ Q, compute n := fc(c(Q)), and let Fn be the set of
all CRPQs Q′ over Σ with c(Q′) ≤ n. As c is a complexity measure, Fn is finite.
Furthermore, as we can decide whether an ECRPQ is a CRPQ, we can compute
a list of all elements of Fn (as we can effectively enumerate all ECRPQs Q′′ with
c(Q′′) ≤ n).

For every Q′ ∈ Fn, we semi-decide Q 6= Q′ by searching for a Σ-labeled
db-graph GQ′ with Q(GQ′) 6= Q′(GQ′). If Q′ 6= Q holds, such a GQ′ can be
found in finite time, and if we have found a graph GQ′ for every Q′ ∈ Fn, we
let the procedure return 1.

By our choice of fc (and, hence, Fn), Q is not CRPQ-expressible if and only
if Q 6= Q′ holds for every Q′ ∈ Fn. Hence, this procedure is a semi-decision
procedure for ∆, which implies that CRPQ-expressibility for ECRPQs over Σ
is co-semi-decidable. This contradicts Theorem 4.4.

5. Conclusion

TODO

Acknowledgements

We thank Joachim Bremer for helpful comments on an earlier version of this
article.

26

References

[1] A. Aho. Algorithms for finding patterns in strings. In J. van Leeuwen, ed-
itor, Handbook of Theoretical Computer Science, volume A. Elsevier, 1990.

[2] J. Albert and L. Wegner. Languages with homomorphic replacements.
Theoretical Computer Science, 16:291–305, 1981.

[3] P. Barceló, C. Hurtado, L. Libkin, and P. Wood. Expressive languages for
path queries over graph-structured data. In Proc. PODS ’10, pages 3–14,
2010.

[4] D. Calvanese, G. D. Giacomo, M. Lenzerini, and M. Y. Vardi. Containment
of conjunctive regular path queries with inverse. In KR’00, pages 176–185,
2000.

[5] C. Câmpeanu, K. Salomaa, and S. Yu. A formal study of practical regular
expressions. International Journal of Foundations of Computer Science,
14:1007–1018, 2003.

[6] A. Deutsch and V. Tannen. Optimization properties for classes of conjunc-
tive regular path queries. In Proc. DBPL’01, volume 2397 of LNCS, pages
21–39. Springer, 2001.

[7] D. Florescu, A. Y. Levy, and D. Suciu. Query containment for conjunctive
queries with regular expressions. In Proc. PODS’98, pages 139–148, 1998.

[8] D. D. Freydenberger. Extended regular expressions: Succinctness and de-
cidability. In Proc. STACS 2011, volume 9 of LIPIcs, pages 507–518, 2011.

[9] D. D. Freydenberger and N. Schweikardt. Expressiveness and static analysis
of extended conjunctive regular path queries. In Proc. AMW 2011, volume
749 of CEUR Workshop Proceedings, 2011.

[10] S. Ginsburg and E. Spanier. Bounded ALGOL-like languages. Transactions
of the American Mathematical Society, 113(2):333–368, 1964.

[11] M. Harrison. Introduction to Formal Language Theory. Addison Wesley
Publishing Company, 1978.

[12] J. Hartmanis. On Gödel speed-up and succinctness of language represen-
tations. Theoretical Computer Science, 26(3):335–342, 1983.

[13] D. Kozen. Theory of Computation. Springer-Verlag, London, 2006.

[14] M. Kutrib. The phenomenon of non-recursive trade-offs. International
Journal of Foundations of Computer Science, 16(5):957–973, 2005.

[15] K. Salomaa. Patterns. In Formal Languages and Applications, number 148
in Studies in Fuzziness and Soft Computing, pages 367–379. Springer, 2004.

27

	Introduction
	Preliminaries
	DB-Graphs and Queries.
	Turing Machines and H-Systems

	Query Containment and Equivalence
	Query Containment
	Query Equivalence

	Expressiveness and Relative Succinctness
	Expressiveness of (E)CRPQs
	Relative Succinctness

	Conclusion

