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Abstract Most modern implementations of regular expression engines allow
the use of variables (also called backreferences). The resulting extended regular
expressions (which, in the literature, are also called practical regular expressions,
rewbr, or regex) are able to express non-regular languages.

The present paper demonstrates that extended regular-expressions cannot
be minimized effectively (neither with respect to length, nor number of vari-
ables), and that the tradeoff in size between extended and “classical” regular
expressions is not bounded by any recursive function. In addition to this, we
prove the undecidability of several decision problems (universality, regularity,
and cofiniteness) for extended regular expressions. Furthermore, we show that
all these results hold even if the extended regular expressions contain only a
single variable.

Keywords extended regular expressions, regex, decidability, non-recursive
tradeoffs

1 Introduction

Since being introduced by Kleene [23] in 1956, regular expressions have devel-
oped into a central device of theoretical and applied computer science. On one
side, research into the theoretical properties of regular expressions, in particular

A preliminary version of this article appeared as [15].

D. D. Freydenberger
Institute for Computer Science
Goethe-University
Postfach 11 19 32
60054 Frankfurt am Main, Germany
Tel.:+49-69-79828250
Fax: +49-69-79828334
E-mail: freydenberger@em.uni-frankfurt.de

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Loughborough University Institutional Repository

https://core.ac.uk/display/288369177?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


2 Dominik D. Freydenberger

various aspects of their complexity, is still a very active area of investigation
(see Holzer and Kutrib [20] for a survey with numerous recent references). On
the other side, almost all modern programming languages offer regular expres-
sion matching in their standard libraries or application frameworks, and most
text editors allow the use of regular expressions for search and replacement
functionality.

But, due to practical considerations (cf. Friedl [16]), most modern matching
engines have evolved to use an extension to regular expressions that allows the
user to specify non-regular languages. In addition to the features of regular
expressions as they are mostly studied in theory (which we, from now on,
call proper regular expressions), and apart from the (regularity preserving)
“syntactic sugar” that most implementations use, these extended regular expres-
sions contain backreferences, also called variables, which specify repetitions
that increase the expressive power beyond the class of regular languages. For
example, the (non-regular) language L =

{
ww | w ∈ {a, b}∗

}
is generated by

the extended regular expression α:=
(
(a | b)

∗)
%x x.

This expression can be understood as follows (for a more formal treatment,
see Definition 4): For any expression β, (β)%x matches the same expression
as β, and binds the match to the variable x. In the case of this example, the
subexpression

(
(a | b)

∗)
%x can be matched to any word w ∈ {a, b}∗, and

when it is matched to w, the variable x is assigned the value w. Any further
occurrence of x repeats w, leading to the language of all words of the form ww
with w ∈ {a, b}∗. Analogously, the expression

(
(a | b)

∗)
%x xx generates the

language of all www with w ∈ {a, b}∗.
Although this ability to specify repetitions is used in almost every modern

matching engine (e. g., the programming languages PERL and Python), the
implementations differ in various details, even between two versions of the same
implementation of a programming language (for some examples, see Câmpeanu
and Santean [7]). Nonetheless, there is a common core to these variants, which
was first formalized by Aho [2]. Later, Câmpeanu et al. [9] introduced a different
formalization that is closer to the real world syntax, which addresses some
questions of semantics that were implicitly left open in [2]. In addition to this,
the pattern expressions by Câmpeanu and Yu [8] and the H-expressions by
Bordihn et al. [5] use comparable repetition mechanisms and possess similar
expressive power.

Still, theoretical investigation of extended regular expressions has been
comparatively rare (in particular when compared to their more prominent
subclass); see e. g., Larsen [25], Della Penna et al. [14], Câmpeanu and Santean
[7], Carle and Narendran [10], and Reidenbach and Schmid [30].

In contrast to their widespread use in various applications, extended reg-
ular expressions have some undesirable properties. Most importantly, their
membership problem (the question whether an expression matches a word)
is NP-complete (cf. Aho [2]); the exponential part in the best known upper
bounds depends on the number of different variables in the expression. Of
course, this compares unfavorably to the efficiently decidable membership
problem of proper regular expressions (cf. Aho [2]). On the other hand, there
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are cases where extended regular expressions express regular languages far more
succinctly than proper regular expressions. Consider the following example:

Example 1 For n ≥ 1, let Ln:={www | w ∈ {a, b}+, |w| = n}. These languages
Ln are finite, and hence, regular. For the sake of this example, we define the
length of an extended regular expression α as the total number of symbols that
occur in α (in literature, this measure is often called size, cf. [21]).

With some effort, one can prove that every proper regular expression for
Ln is at least of length exponential in n, e. g., by using the technique by
Glaister and Shallit [17] to prove that every NFA for Ln requires at least O(2n)
states. Due to the construction used in the proof of Theorem 2.3 in Hopcroft
and Ullman [22], this also gives a lower bound on the length of the regular
expressions for Ln.

In contrast to this, Ln is generated by the extended regular expression

αn:=((a | b) · · · (a | b)︸ ︷︷ ︸
n times (a | b)

)%x xx,

which is of a length that is linear in n. 3

Due to the repetitive nature of the words of languages Ln in Example 1, it is
not surprising that the use of variables provides a shorter description of Ln.
The following example might be considered less straightforward:

Example 2 Consider the expression α:=(a | b)∗((a | b)+)%x x(a | b)∗. It is a
well-known fact that every word w ∈ {a, b}∗ with |w| ≥ 4 can be expressed in
the form w = uxxv, with u, v ∈ {a, b}∗ and x ∈ {a, b}+ (as is easily verified
by examining all four letter words). Thus, the expression α matches all but
finitely many words; hence, its language L(α) is regular. 3

Example 2 demonstrates that the use of variables can lead to languages that are
(non-trivially) regular. The phenomenon that an expression like α can generate
a cofinite language is strongly related to the notion of avoidable patterns
(cf. Cassaigne [11]), and involves some very hard combinatorial questions (in
particular, Example 2 illustrates this connection for the pattern xx over a
binary alphabet).

We observe that extended regular expressions can be used to express
regular languages more succinctly than proper regular expressions do, and
that it might be hard to convert an extended regular expression into a proper
regular expression for the same language.

The two central questions studied in the present paper are as follows: First,
how hard is it to minimize extended regular expressions (both with respect
to their length, and with respect to the number of variables they contain),
and second, how succinctly can extended regular expressions describe regular
languages? These natural questions are also motivated by practical concerns: If
a given application reuses an expression many times, it might pay off to invest
resources in the search for an expression that is shorter, or uses fewer variables,
and thus can be matched more efficiently.
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We approach this question through related decidability problems (e. g., the
universality problem) and by studying lower bounds on the tradeoff between
the size of extended regular expressions and proper regular expressions.

The main contribution of the present paper is the proof that all these
decision problems are undecidable (some are not even semi-decidable), even
for extended regular expressions that use only a single variable. Thus, while
bounding the number of variables in extended regular expressions (or, more
precisely, the number of variable bindings) reduces the complexity of the
membership problem from NP-complete to polynomial (cf. Aho [2]), we show
that extending proper regular expressions with only a single variable already
results in undecidability of various problems.

As a consequence, extended regular expressions cannot be minimized effec-
tively, and the tradeoff between extended and proper regular expressions is not
bounded by any recursive function (a so-called non-recursive tradeoff, cf. Sec-
tion 2.3 for additional context). Thus, although the use of the “right” extended
regular expression for a regular expression might offer arbitrary advantages in
size (and, hence, parsing speed), these optimal expressions cannot be found
effectively. These results highlight the power of the variable mechanism, and
demonstrate that different restrictions than the number of variables ought to
be considered.

The structure of the further parts of the paper is as follows: In Section 2, we
introduce most of the technical preliminaries. Section 3 consists of Theorem 10
(the main undecidability result), its proof, and the required additional technical
preliminaries, while Section 4 discusses the consequences and some extensions
of Theorem 10.

2 Preliminaries

This paper is largely self-contained. Unexplained notions can be found in
Hopcroft and Ullman [22], Cutland [13], and Minsky [27].

2.1 Basic Definitions

Let N be the set of natural numbers, including 0. The function div denotes
integer division, and mod denotes its remainder (e. g., 5 div 3 = 1 and 5 mod 3 =
2). The symbol ∞ denotes infinity.

The symbols ⊆, ⊂, ⊇ and ⊃ refer to the subset, proper subset, superset
and proper superset relation, respectively. The symbol ∅ denotes the empty set,
\ denotes the set difference (defined by A \ B:={x ∈ A | x /∈ B}). For every
set A, P(A) denotes the power set of A.

We denote the empty string by λ. For the concatenation of two strings w1

and w2, we write w1 ·w2 or simply w1w2. We say a string v ∈ A∗ is a factor of
a string w ∈ A∗ if there are u1, u2 ∈ A∗ such that w = u1vu2. The notation
|K| stands for the size of a set K or the length of a string K.
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If A is an alphabet, a (one-sided) infinite word over A is an infinite sequence
w = (wi)

∞
i=0 with wi ∈ A for every i ≥ 0. We denote the set of all one-sided

infinite words over A by Aω and, for every a ∈ A, let aω denote the word
w = (wi)

∞
i=0 with wi = a for every i ≥ 0. We shall only deal with infinite words

w ∈ Aω that have the form w = u aω with u ∈ A∗ and a ∈ A. Concatenation
of words and infinite words is defined canonically: For every u ∈ A∗ and every
v ∈ Aω with v = (vi)

∞
i=0, u · v := w ∈ Aω, where w0 · . . . · w|u|−1 = u and

wi+|u| = vi for every i ≥ 0, while vu is undefined. In particular, note that
a aω = aω for every a ∈ A.

2.2 Extended Regular Expressions

We now introduce syntax and semantics of extended regular expressions. Apart
from some changes in terminology, the following definition of syntax is due to
Aho [2]:

Definition 3 Let Σ be an infinite set of terminals, let X be an infinite set
of variables, and let the set of metacharacters consist of λ, (, ), |, ∗, and %,
where all three sets are pairwise disjoint. We define the set of extended regular
expressions to be the smallest set that satisfies the following conditions:

1. Every a ∈ Σ ∪X ∪ {λ} is an extended regular expression.
2. If α1 and α2 are extended regular expression, then

(a) (α1)(α2) (concatenation),
(b) (α1) | (α2) (alternation),
(c) (α1)∗ (Kleene star)
are extended regular expressions.

3. For every extended regular expression α and every variable x ∈ X such that
%x is not a factor of α, (α)%x is an extended regular expression (variable
binding).

We denote the set of all extended regular expressions by RegEx. A proper
regular expression is an extended regular expression that contains neither %,
nor any variable (hence, proper regular expressions are those expressions that
are commonly called “regular expressions” in theoretical computer science).

If an extended regular expression β is a factor of an extended regular expres-
sion α, we call β a subexpression of α. We denote the set of all subexpressions
of α by SUB(α).

We shall use the notation (α)+ as a shorthand for α(α)∗, and freely omit
parentheses whenever the meaning remains unambiguous. When doing this, we
assume that there is a precedence on the order of the applications of operations,
with ∗ and + ranking over concatenation ranking over the alternation operator
|.

In Aho [2], an informal definition of the semantics of extended regular
expressions is given. In Aho’s approach, extended regular expressions are
interpreted as language generators in the following way: An extended regular



6 Dominik D. Freydenberger

expression α is interpreted from left to right. A subexpression of the form
(β)%x generates the same language as the expression β; in addition to this,
the variable x is bound to the word w that was generated from β (if x already
has a value, that value is overwritten). Every occurrence of x that is not in the
context of a variable binding is then replaced with w.

When following this approach, there are some cases where the semantics are
underspecified. For example, Aho [2] does not explicitly address the rebinding
of variables (cf. Example 5, further down), and the semantics of expressions
like ((a)%x | b)x are unclear.

Although the proofs in the present paper are not affected by the ambiguities
that arise from the informal approach, we include a formal definition of the
semantics, which is an adaption of the semantics of Câmpeanu et al. [9] to the
syntax from Definition 3:

Definition 4 A match tree of an extended regular expression α is a finite
(directed, ordered) tree Tα, where the nodes of Tα are labeled with elements of
Σ∗ × SUB(α), and Tα is constructed according to the following rules:

1. The root of Tα is labeled with some (w,α), w ∈ Σ∗.
2. If a node v of Tα is labeled by some (w, a) with a ∈ Σ ∪ {λ}, then v is a

leaf, and w = a holds.
3. If a node v of Tα is labeled by some (w, β) with β = (β1)(β2), then v has

exactly two children v1 and v2 (as left and right child, respectively), with
respective labels (w1, β1) and (w2, β2), where w1, w2 ∈ Σ∗, and w = w1w2.

4. If a node v of Tα is labeled by some (w, β) with β = (β1) | (β2), then v has
exactly one child v′, that is labeled (w, β1) or (w, β2).

5. If a node v of Tα is labeled by some (w, β) with β = (β1)∗, we distinguish
two cases:
(a) If w = λ, v has exactly one child v1 that is labeled (λ, β), and v1 is a

leaf of Tα.
(b) If w 6= λ, v has k ≥ 1 children that are labeled by (w1, β1), . . . , (wk, β1)

(from left to right), where w1, . . . , wk ∈ Σ+ and w = w1 · · ·wk.
6. If a node v of Tα is labeled by some (w, β) with β = (β1)%x, then v has

exactly one child that is labeled (w, β1).
7. If a node v of Tα is labeled by some (w, x), where x is a variable, we let ≺

denote the post-order on the nodes of Tα (that results from a left-to right,
depth-first traversal), and distinguish the following two cases:
(a) If there is no node v1 of Tα with v1 ≺ v such that v1 is labeled with

some (w1, (β1)%x), v is a leaf, and w = λ.
(b) Otherwise, let v1 denote that node with v1 ≺ v that is ≺-maximal

among the nodes that have some (β′)%x as the second component of
their label. Then v is a leaf, and w = w1, where w1 is the first component
of the label of v1.

We define the language L(α) that is generated by an extended regular expression
α as

L(α):={w ∈ Σ∗ | (w,α) labels the root of some match tree Tα of α}.
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Example 5 Consider the following extended regular expressions:

α1:=
(
(a | b)

∗)
%x xx

(
(a | b)

∗)
%x x,

α2:=
((

(a | b)
∗)

%x x
)+
,

α3:= ((a)%x | b)x,

α4:=(a)%x(λ(λ)%x)∗x.

These expressions generate the following languages:

L(α1) =
{
vvvww | v, w ∈ {a, b}∗

}
,

L(α2) =
{
w1w1 · · ·wnwn | n ≥ 1, wi ∈ {a, b}∗

}
,

L(α3) = {a a, b} ,
L(α4) = {a a}.

Note that in the case of α4, which was pointed out by one of the anonymous
referees, the semantics given in Definition 4 might be considered counterintuitive,
as one could expect L(α4) = {a, a a}. The results in the present paper do not
rely on such pathological cases, which shall be excluded by Definition 6 a little
further down. 3

In general, the membership problem for RegEx is NP-complete, as shown in
Theorem 6.2 in Aho [2]. As explained in that proof, this problem is solvable in
polynomial-time if the number of different variables is bounded. It is not clear
how (or if) Aho’s reasoning applies to expressions like α2 in our Example 5;
therefore, and in order to exclude problematic expressions like α4 Example 5, in
we formalize a slightly stronger restriction than Aho, and consider the following
subclasses of RegEx:

Definition 6 For k ≥ 0, let RegEx(k) denote the class of all extended regular
expressions α that satisfy the following properties:

1. α contains at most k occurrences of the metacharacter %,
2. if α contains a subexpression (β)∗, then the metacharacter % does not occur

in β,
3. for every x ∈ X that occurs in α, α contains exactly one occurrence of %x.

Intuitively, these restrictions on extended regular expressions in RegEx(k) limit
not only the number of different variables, but also the total number of possible
variable bindings, to at most k.

Note that RegEx(0) is equivalent to the class of proper regular expressions;
furthermore, observe that RegEx(k) ⊂ RegEx(k + 1) for every k ≥ 0.

Referring to the extended regular expressions given in Example 5, we
observe that, as %x occurs twice in α1, α1 is not element of any RegEx(k) with
k ≥ 0, but the extended regular expression α′1:=

(
(a | b)

∗)
%xxx

(
(a | b)

∗)
%y y

generates the same language as α1, and α′1 ∈ (RegEx(2)\RegEx(1)). In contrast
to this, α2 /∈ RegEx(k) for all k ≥ 0, as % occurs inside a ()∗ subexpression
(as we defined + through ∗).
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For any k ≥ 0, we say that a language L is a RegEx(k)-language if there is
some α ∈ RegEx(k) with L(α) = L.

We also consider the class FRegEx of all extended regular expressions that
do not use the operator ∗ (or +), and its subclasses

FRegEx(k):= FRegEx∩RegEx(k)

for k ≥ 0. Thus, FRegEx contains exactly those expressions that generate
finite (and, hence, regular) languages. Analogously, for every k ≥ 0, we define a
class CoFRegEx(k) as the class of all α ∈ RegEx(k) such that L(α) is cofinite.
Unlike the classes FRegEx(k), these classes have no straightforward syntactic
definition – as we shall prove in Theorem 10, cofiniteness is not semi-decidable
for RegEx(k) (if k ≥ 1).

2.3 Decision Problems and Descriptional Complexity

Most of the technical reasoning in the present paper is centered around the
following decision problems:

Definition 7 Let Σ denote a fixed terminal alphabet. For all k, l ≥ 0, we
define the following decision problems for RegEx(k):

Universality: Given α ∈ RegEx(k), is L(α) = Σ∗?
Cofiniteness: Given α ∈ RegEx(k), is Σ∗ \ L(α) finite?
RegEx(l)-ity: Given α ∈ RegEx(k), is there a β ∈ RegEx(l) with L(α) =

L(β)?

As we shall see, Theorem 10 – one of our main technical results – states that
these problems are undecidable (to various degrees). We use the undecidability
of the universality problem to show that there is no effective procedure that
minimizes extended regular expressions with respect to their length, and the
undecidability of RegEx(l)-ity to conclude the same for minimization with
respect to the number of variables. Furthermore, cofiniteness and RegEx(l)-ity
help us to obtain various results on the relative succinctness of proper and
extended regular expressions. As a side note, note that cofiniteness for RegEx
is a more general case of the question whether a pattern is avoidable over a
fixed terminal alphabet, an important open problem in pattern avoidance (cf.
Currie [12]).

By definition, RegEx(l)-ity holds trivially for all RegEx(k) with k ≤ l. If
l = 0, we mostly use the more convenient term regularity (for RegEx(k)),
instead of RegEx(0)-ity. Note that, even for RegEx(0), universality is already
PSPACE-complete (see Aho et al. [3]).

In order to examine the relative succinctness of RegEx(1) in comparison to
RegEx(0), we build on well-established notions from descriptional complexity
(see Holzer and Kutrib [21] and the less recent Goldstine et al. [18] for survey
articles on the area). In particular, we use the following notion of complexity
measures, which is based on the more general notion of complexity measures
for descriptional systems from [24]:
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Definition 8 Let R be a class of extended regular expressions. A complexity
measure for R is a total recursive function c : R → N such that, for every
alphabet Σ, the set of all α ∈ R with L(α) ⊆ Σ∗

1. can be effectively enumerated in order of increasing c(α), and
2. does not contain infinitely many extended regular expressions with the

same value c(α).

This definition includes the canonical concept of the length (as used in Exam-
ple 1), as well as most of its natural extensions – for example, in our context,
one could define a complexity measure that gives additional weight to the
number or distance of occurrences of variables, or their nesting level. Kutrib
[24] provides more details on (and an extensive motivation of) complexity
measures.

Using this definition, we are able to define the notion of tradeoffs between
classes of extended regular expressions, which is again based on the more
general definition from [24]:

Definition 9 Let k > l ≥ 0 and let c be a complexity measure for RegEx(k)
(and thereby also for RegEx(l)). A recursive function fc : N → N is said to
be a recursive upper bound for the tradeoff between RegEx(k) and RegEx(l) if,
for all those α ∈ RegEx(k) for which L(α) is a RegEx(l)-language, there is a
β ∈ RegEx(l) with L(β) = L(α) and c(β) ≤ fc(c(α)).

If no recursive upper bound for the tradeoff between RegEx(k) and RegEx(l)
exists, we say that the tradeoff between RegEx(k) and RegEx(l) is non-recursive.

The first non-recursive tradeoffs where demonstrated by Meyer and Fischer
[26]; since then, there has been a considerable amount of results on a wide
range of non-recursive tradeoffs between various description mechanisms. For a
survey on non-recursive tradeoffs, see Kutrib [24].

2.4 Extended Regular Expressions in the Real World

In this section we take a brief closer look at the relation between our definition
of extended regular expressions, and the variable-like mechanisms in the real-
world regex dialects that inspired that definition. This section is supposed to
provide a wider context of the theoretical model discussed in the present paper
and can be skipped without loss of continuity.

While the syntax in Câmpeanu et al. [9] is based on the backreferences that
can be found in Perl Compatible Regular Expressions, POSIX, and various
related implementations (cf. Friedl [16]), our definition is syntactically closer to
the named capture groups that originated from Python (ibid.). As an example,
consider the extended regular expression

α:=(a) |
(
(a a+)%x x+

)
,

which is due to Abigail [1]. It is easy to see that this expression generates the
language

L(α) = {an | n ≥ 1, n is not a prime number}.
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In Python, the same language can be expressed using the expression

(a)|((?P=<x>(aa+))(?P=x)+)

where the (prefix) operator ?P=<x> acts like our (postfix) variable binding
operator %x, while (?P=x) repeats that variable and corresponds to our use of
x (without %). A similar syntax is used in .NET, see p. 137 in Friedl [16].

Although this method of explicit naming and referencing of capture groups
is also supported in newer versions of PERL (from version 5.10 onwards),
traditionally, PERL allows only implicit naming of capture groups, using the
aforementioned backrefences. Using these, α would be written

(a)|((aa+)(\3)+)

Here, the backreference \3 repeats the match of the third pair of parentheses
(as defined by the third opening parenthesis when reading from the left). To the
author’s knowledge, there is no valid way of expressing pathological examples
like α1 from Example 5 in these programming languages — in particular, the
reuse of capture group names is forbidden. Nonetheless, all expressions from
RegEx(1) can be easily converted to each of this dialects. Hence, all “negative”
results in the present paper apply not only to our theoretical model of RegEx,
but to each of these real world regex dialects.

As an unrelated side note, the author wishes to point out that L(α) is an
example of an extended regular expression over a unary terminal alphabet that
generates a non-regular language (another example of such a language can be
found in Carle and Narendran [10]).

3 The Main Theorem and Its Proof

As mentioned in Section 1, the central questions of the present paper are
whether we can minimize extended regular expressions under any complexity
measure as defined in Definition 8, or with respect to the number of variables,
and whether there is a recursive upper bound on the tradeoff between extended
and proper regular expressions. We approach these questions by proving various
degrees of undecidability for the decision problems given in Definition 7, as
shown in the main theorem of this section:

Theorem 10 For RegEx(1), universality is not semi-decidable; and regularity
and cofiniteness are neither semi-decidable, nor co-semi-decidable.

The proof of Theorem 10 requires considerable technical preparation and takes
up the remainder of the present section. Readers who are more interested
in implications and applications of Theorem 10 are invited to skip over to
Section 4.

On a superficial level, we prove Theorem 10 by using Theorem 14 (which we
introduce further down in the present section) to reduce various undecidable
decision problems for Turing machines to appropriate problems for extended
regular expressions (the problems from Definition 7). This is done by giving



Extended Regular Expressions: Succinctness and Decidability 11

an effective procedure that, given a Turing machine M, returns an extended
regular expression that generates the complement of a language that encodes
all accepting runs of M.

On a less superficial level, this approach needs to deal with certain technical
peculiarities that make it preferable to study a variation of the Turing machine
model. Most importantly, when applied to “standard” Turing machines, the
construction procedure and the encoding we shall use in the proof do not
preserve the finiteness of the domain of the encoded machine. As the distinction
between Turing machines with finite and infinite domain is a central element of
the proofs further down, we introduce the notion of an extended Turing machine
as an intermediate step in the construction of extended regular expressions
from Turing machines.

An extended Turing machine is a 3-tuple X = (Q, q1, δ), where Q and q1 de-
note the state set and the initial state. All extended Turing machines operate on
the tape alphabet Γ :={0, 1} and use 0 as the blank letter. The transition func-
tion δ is a function δ : Γ×Q→ (Γ×{L,R}×Q)∪{HALT}∪({CHECKR}×Q).
The movement instructions L and R and the HALT-instruction are interpreted
canonically – if δ(a, q) = (b,M, p) for some M ∈ {L,R} (and a, b ∈ Γ , p, q ∈ Q),
the machine replaces the symbol under the head (a) with b, moves the head
to the left if M = L (or to the right if M = R), and enters state p. If
δ(a, q) = HALT, the machine halts and accepts.

The command CHECKR works as follows: If δ(a, q) = (CHECKR, p) for
some p ∈ Q, X immediately checks (without moving the head) whether the
right side of the tape (i. e., the part of the tape that starts immediately to
the right of the head) contains only the blank symbol 0. If this is the case, X
enters state p; but if the right side of the tape contains any occurrence of 1,
X remains in q. As the tape is never changed during a CHECKR-instruction,
this leads X into an infinite loop, as it will always read a in q, and will neither
halt, nor change its state, head symbol, or head position. Although it might
seem counterintuitive to include an instruction that allows our machines to
search the whole infinite side of a tape in a single step and without moving the
head, this command is expressible in the construction we use in the proof of
Theorem 14, and it is needed for the intended behavior.

We partition the tape of an extended Turing machine X into three disjoint
areas: The head symbol, which is (naturally) the tape symbol at the position
of the head, the right tape side, which contains the tape word that starts
immediately to the right of the head symbol and extends rightward into infinity,
and the left tape side, which starts immediately left to the head symbol and
extends infinitely to the left. When speaking of a configuration, we denote the
head symbol by a and refer to the contents of the left or right tape side as the
left tape word tL or the right tape word tR, respectively. For an illustration
and further explanations, see Figure 1.

A configuration of an extended Turing machine X = (Q, q1, δ) is a tuple
(tL, tR, a, q), where tL, tR ∈ Γ ∗0ω are the left and right tape word, a ∈ Γ is
the head symbol, and q ∈ Q denotes the current state. The symbol `X denotes
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0 0 0 1 1 1 0 1 1 1 0 0 1 0 0 0 0. . . . . .

← tL tR →a

Fig. 1 An illustration of tape words of an extended Turing machine (as defined in Section 3).
The arrow below the tape symbolizes the position of the head, while the dashed lines show
the borders between the left tape side, the head position and the right tape side. Assuming
that all tape cells that are not shown contain 0, we observe the left tape word tL = 10111 0ω ,
the right tape word tR = 1001 0ω , and the head letter a = 1.

the successor relation on configurations of X , i. e., C `X C ′ if X enters C ′

immediately after C.
We define domX(X ), the domain of an extended Turing machine X =

(Q, q1, δ), to be the set of all tape words tR ∈ Γ ∗0ω such that X , if started in
the configuration (0ω, tR, 0, q1), halts after finitely many steps.

The definition of domX is motivated by the properties of the encoding
that we shall use. Usually, definitions of the domain of a Turing machine rely
on the fact that the end of the input is marked by a special letter $ or an
encoding thereof (cf. Minsky [27]). As we shall see, our use of extended regular
expressions does not allow us to express the fact that every input is ended
by exactly one $ symbol. Without the CHECKR-instruction in an extended
Turing machine X , we then would have to deal with the unfortunate side
effect that a nonempty domX(X ) could never be finite: Assume w ∈ Γ ∗ such
that w 0ω ∈ domX(X ). The machine can only see a finite part of the right
side of the tape before accepting. Thus, there is a v ∈ Γ ∗ such that both
wv1 0ω ∈ domX(X ) and wv0 0ω ∈ domX(X ), as X will not reach the part
where wv1 and wv0 differ. This observation leads to wvx 0ω ∈ domX(X ) for
every x ∈ Γ ∗, and applies to various other extensions of the Turing machine
model. As Lemma 13 – and thereby most of the main results in Section 4 –
crucially depends on the fact that there are extended Turing machines with a
finite domain, we use CHECKR to allow our machines to perform additional
sanity checks on the input and to overcome the limitations that arise from the
lack of the input markers ¢ and $.

Using a classical coding technique for two-symbol Turing machines (see
Minsky [27]) and the corresponding undecidability results, we establish the
following negative results on decision problems for extended Turing machines:

Lemma 11 Consider the following decision problems for extended Turing
machines:

Emptiness: Given an extended Turing machine X , is domX(X ) empty?
Finiteness: Given an extended Turing machine X , is domX(X ) finite?

Then emptiness is not semi-decidable, and finiteness is neither semi-decidable,
nor co-semi-decidable.
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Proof We show these results on extended Turing machines by reducing each
of these problems for “non-extended” Turing machines (or, as we call them,
general Turing machines, to its counterpart for extended Turing machines.
A general Turing machine is a 7-tuple M = (Q, q1, Γ̂ , 0, ¢, $, δ), where Q is
a finite set of states, q1 is the initial state, 0 ∈ Γ̂ is the blank tape symbol,
¢, $ ∈ Γ̂ are distinct special symbols (with ¢, $ 6= 0) that are used to mark the
beginning and end (respectively) of an input of M, and

δ : Γ̂ ×Q→ (Γ̂ × {L,R} ×Q) ∪ {HALT}

is the transition function. We interpret δ as for extended Turing machines, and
us the same notion of tape words and configurations as for extended Turing
machines.

The domain domT(M) of a general Turing machineM = (Q, q1, Γ̂ , 0, ¢, $, δ),
is defined to be the set of all w ∈ (Γ̂ \ {¢, $})∗ such that M, if started in the
configuration (0ω, tR, 0, q1) with tR = ¢w$ 0ω, halts after finitely many steps.

The definition of domT(M) corresponds to the definition of the language
of a Turing machine as given by Hopcroft and Ullman [22] and Minsky [27].
As for extended Turing machines, we consider the following decision problems
for general Turing machines:

Emptiness: Given a general Turing machine M, is domT(M) empty?
Finiteness: Given a general Turing machine M, is domT(M) finite?

Emptiness of domT is undecidable due to Rice’s Theorem; as it is obviously
co-semi-decidable, it cannot be semi-decidable. Furthermore, due to the Rice-
Shapiro Theorem, finiteness of domT is neither semi-decidable, nor co-semi-
decidable (cf. Cutland [13], Hopcroft and Ullman [22] – in the latter reference,
the Rice-Shapiro Theorem is called “Rice’s Theorem for recursively enumerable
index sets” (Chapter 8.4)).

In order to prove the present lemma’s claims on extended Turing machines,
we now define an effective procedure that, given a general Turing machine M,
returns an extended Turing machine X such that domT(M) is empty (or finite)
if and only if domX(X ) is empty (or finite).

First, assume that M is defined over some tape alphabet Γ̂ ⊇ {$, ¢, 0}.
Using the common technique to simulate Turing machines with larger tape
alphabets on Turing machines with a binary tape alphabet (cf. Chapter 6.3.1
in Minsky [27]), we choose a k ≥ 1 with 2k ≥ |Γ̂ | and fix any injective function
bk : Γ̂ → Γ k (every letter from Γ̂ is encoded by a block of k letters from Γ ),
with bk(0) = 0k (the blank symbol of M is mapped to k successive blank
symbols of X ). We extend this function bk canonically to an injective morphism
bk : Γ̂ ∗0ω → Γ ∗0ω. Moreover, we partition the tape of X into non-overlapping
blocks of k tape cells, each representing a single tape cell of M as encoded by
bk.

The main idea of the construction is that X works in two phases. First,
it checks that its right tape word is bk(¢ŵ$ 0ω) = bk(¢ŵ$) 0ω for some ŵ ∈
(Γ̂ \ {¢, $})∗. If this is the case, X simulates M, always reading blocks of k
letters at a time and interpreting every block bk(a) as input a for M.
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More explicitly, the first phase works as follows: If started on an input
w ∈ Γ ∗0ω, X scans w and checks whether the first block of k letters is bk(¢)
(using its finite control to store the k − 1 letters of the block, and evaluating
the whole block after reading its k-th letter). If this is not the case, X enters
an infinite loop (and thus, rejects implicitly). Otherwise, X continues scanning
to the right, evaluating every block of k letters until a block with bk($) is
encountered. On its way to the right, X performs the following checks: If a
block contains some bk(a) with a ∈ (Γ̂ \ {¢, $}), X examines the next block. If
a block contains bk(¢) or some sequence of k letters that is not an image of
any letter from Γ̂ , X enters an infinite loop. If a k-letter block containing bk($)
is found, X moves the head to the last letter of this block and executes the
CHECKR-command. This leads the machine to enter an infinite loop if any
occurrence of the non-blank symbol 1 ∈ Γ follows.

Thus, if there is no ŵ ∈ (Γ̂ \ {¢, $})∗ such that w = bk(¢ŵ$) 0ω, X will
never find a block bk($), and will never halt. Intuitively, X (implicitly) rejects
any input that does not satisfy its sanity criteria by refusing to halt.

But if w = bk(¢ŵ$) 0ω for some ŵ ∈ (Γ̂ \ {¢, $})∗, no tape cell containing 1
is found by CHECKR. Then X enters its second phase: The machine returns
to the left side of w (which it recognizes by the unique block containing bk(¢)),
and simulatesM on the corresponding input ¢ŵ$ with bk(¢ŵ$) 0ω = w, always
using the finite control to read blocks bk(a) of length k which represent a tape
letter a ∈ Γ̂ as input for M, and halting if and only if M halts. By definition,
the left tape side is initially empty; hence, due to bk(0) = 0k, and due to the
sanity check using CHECKR, we do not even need to keep track which part of
the tape X has already seen.

Thus, if w ∈ domX(X ), there is exactly one ŵ ∈ (Γ \ {¢, $})∗ with ŵ ∈
domT(M) and bk(¢ŵ$) = w. Likewise, for every ŵ ∈ domT(M) (which, by
definition, implies that ŵ does not contain any ¢ or $), bk(¢ŵ$) 0ω ∈ domX(X ).
Thus, domT(M) = ∅ if and only if domX(X ) = ∅, and likewise, domT(M) is
finite if and only if domX(X ) is finite.

As the whole construction process can be realized effectively, any algorithm
that (semi-)decides any of these two problems for extended Turing machines
could be converted into an algorithm that (semi-)decides the corresponding
problem for general Turing machines.

Due to the fact that emptiness of the domain for general Turing machines
is not semi-decidable, and as finiteness is neither semi-decidable nor co-semi-
decidable, the claim follows. ut

Those who are interested in these problems’ exact position in the arithmeti-
cal hierarchy (cf. Odifreddi [28]) can use Propositions X.9.5 and X.9.6 from
Odifreddi [29] and the canonical reasoning on the order of quantifiers for the
respective levels to observe that – for general and for extended Turing machines
– emptiness of the domain is Π0

1 -complete, while finiteness of the domain is
Σ0

2 -complete (hence, its complement is Π0
2 -complete).

In order to simplify some technical aspects of our further proofs below, we
adopt the following convention on extended Turing machines:
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Convention 12 Every extended Turing machine

1. has the state set Q = {q1, . . . , qν} for some ν ≥ 1, where q1 is the initial
state,

2. has δ(0, q1) = (0, L, q2),
3. has δ(a, q) = HALT for at least one pair (a, q) ∈ Γ ×Q.

Obviously, every extended Turing machine can be straightforwardly (and
effectively) adapted to satisfy these criteria.

As every tape word contains only finitely many occurrences of 1, we can
interpret tape sides as natural numbers in the following (canonical) way: For
sequences t = (ti)

∞
i=0 over Γ , define e(t):=

∑∞
i=0 2i e(ti), where e(0):=0 and

e(1):=1. Most of the time, we will not distinguish between single letters and
their values under e, and simply write a instead of e(a) for all a ∈ Γ . It is easily
seen that e is a bijection between N and Γ ∗0ω, the set of all tape words over
Γ . Intuitively, every tape word is read as a binary number, starting with the
cell closest to the head as the least significant bit, extending toward infinity.

Expressing the three parts of the tape (left and right tape word and
head symbol) as natural numbers allows us to compute the tape parts of
successor configurations using elementary integer operations. The following
straightforward observation shall be a very important tool in the proof of
Theorem 14:

Observation 1 Assume that an extended Turing machine X = (Q, q1, δ) is
in some configuration C = (tL, tR, a, qi), and δ(a, qi) = (b,M, qj) for some
b ∈ Γ , some M ∈ {L,R} and some qj ∈ Q. For the (uniquely defined) successor
configuration C ′ = (t′L, t

′
R, a

′, qj) with C `X C ′, the following holds:

If M = L: e(t′L) = e(tL) div 2, e(t′R) = 2 e(tR) + b, a′ = e(tL) mod 2,

if M = R: e(t′L) = 2 e(tL) + b, e(t′R) = e(tR) div 2, a′ = e(tR) mod 2.

These equations are fairly obvious – when moving the head in direction M , X
turns the tape cell that contained the least significant bit of e(tM ) into the
new head symbol, while the other tape side gains the tape cell containing the
new letter b that was written over the head symbol as new least significant bit.

Using the encoding e, we define an encoding enc of configurations of X by

enc (tL, tR, a, qi) :=00e(tL)#00e(tR)#00e(a)#0i

for every configuration (tL, tR, a, qi) of X . We extend enc to an encoding of
finite sequences C = (Ci)

n
i=1 (where every Ci is a configuration of X ) by

enc(C):=## enc(C1)## enc(C2)## · · · ## enc(Cn)##.

A valid computation of X is a sequence C = (Ci)
n
i=1 of configurations of X

where C1 is an initial configuration (i. e. some configuration (0ω, w, 0, q1) with
w ∈ Γ ∗0ω), Cn is a halting configuration, and for every i < n, Ci `X Ci+1.
Thus, let

VALC(X ) = {enc(C) | C is a valid computation of X} ,
INVALC(X ) = {0, #}∗ \VALC(X ).
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The main part of the proof of Theorem 10 is Theorem 14 (still further down),
which states that, given an extended Turing machine X , one can effectively
construct an expression from RegEx(1) that generates INVALC(X ). Note
that in enc(C), ## serves as a boundary between the encodings of individual
configurations, which will be of use in the proof of Theorem 14. Building on
Convention 12, we observe the following fact on the regularity of VALC(X ) for
a given extended Turing machine X :

Lemma 13 For every extended Turing machine X , VALC(X ) is regular if
and only if domX(X ) is finite.

Proof The if direction follows immediately: As X is deterministic and accepts
by halting, every word in VALC(X ) corresponds to exactly one word from
domX(X ) (and the computation of X on that word). Thus, if domX(X ) is finite,
VALC(X ) is also finite, and thus, regular.

For the only if direction, let X = (Q, q1, δ), and assume that domX(X ) is
infinite, while VALC(X ) is regular. The main idea of the proof is to show that
this assumption implies the regularity of the language

LX :={0e(tR)#0e(tR) | tR ∈ domX(X )}.

Due to LX being an infinite subset of {0n#0n | n ≥ 0}, we can then obtain a
contradiction using the Pumping Lemma. In order to achieve this result, we
use our convention that M does not halt on the very first configuration (cf.
Convention 12).

As X is deterministic, every word w ∈ VALC(X ) corresponds to exactly
one tape word tR ∈ domX(X ) and its accepting computation. This means
that w has a prefix that encodes the initial configuration (tL, tR, a, q1) with
tL = 0ω and a = 0, and its successor configuration (t′L, t

′
R, a

′, qj). Recall that,
by Convention 12, δ(0, q1) = (0, L, q2). Using the first equation in Observation 1,
we conclude e(t′L) = 0, e(t′R) = 2 e(tR), and a′ = 0. This means that there are
wp, w

′ ∈ {0, #}∗ such that w = wpw
′, and

wp = ##0 ︸︷︷︸
e(tL)

#0 0e(tR)︸ ︷︷ ︸
e(tR)

#0 ︸︷︷︸
a

# 0︸︷︷︸
q1

##0 ︸︷︷︸
e(t′L)

#0 0e(t
′
R)︸ ︷︷ ︸

e(t′R)

#0 ︸︷︷︸
a′

# 02︸︷︷︸
q2

##. (1)

We now define a GSM (generalized sequential machine, cf. Hopcroft and
Ullman [22]) M to transform VALC(X ) into the language LX . Basically, general-
ized sequential machines can be understood as an extension to nondeterministic
finite automata. In addition to the usual behavior of an NFA, a GSM supple-
ments every transition with an output; i. e., whenever a GSM reads a symbol,
it also emits a string (as specified by its transition relation). Thus, every path
through a GSM also yields the concatenation of the emitted strings as an out-
put. Applying a GSM M to a word w yields the language M(w) that consists
of every string emitted by M along an accepting path for w. Likewise, for
every language L, M(L):=

⋃
w∈LM(w). As M maps L to M(L), this process is

called a GSM mapping. As regular languages are closed under GSM mappings,
the regularity of LX then follows from the assumed regularity of VALC(X ).



Extended Regular Expressions: Succinctness and Decidability 17

q1 q2 q3 q4

q5

q6
##0#0|λ #|#

0|0

0#0##0#0|λ

0|0

#|λ

0|λ

0|λ, #|λ

Fig. 2 The GSM M that is used in the proof of Lemma 13. Every transition shows the
string that is read to the left of the | symbol, and the emitted string to the right. First, M
erases ##0#0 and keeps the following continuous block of 0s and the # after it. It then erases
0#0##0#0 and halves the number of 0s in the next continuous block of 0s (using the loop
between q4 and q5). After that block (as recognizable by #), all following letters are erased.
Note that M relies on the fact that it is only used on words w = wpw′, where wp of the form
that is described in (1). For all such words, w′ is completely erased in the loop in q6.

The GSM M is defined by the transition diagram in Figure 2. Compared
to Hopcroft and Ullman [22], this definition of M uses a slightly streamlined
notation by allowing M to read multiple letters in the transition between q1
and q2 and between q3 and q4. By introducing additional states, one can easily
convert M into a GSM that reads one letter after the other.

It is easily seen that M(VALC(X )) = LX . By our initial assumption,
VALC(X ) is regular, and as the class of regular languages is closed under GSM
mappings, LX must be regular as well. Also by our initial assumption, domX(X )
is infinite, which means that LX is an infinite subset of {0n#0n | n ≥ 0}. Using
the Pumping Lemma (cf. Hopcroft and Ullman [22]), we can obtain the intended
contradiction, as pumping any sufficiently large word from LX would lead to a
word that is not a subset of 0∗#0∗, or to a word 0m#0n with m 6= n. ut

We are now ready to state the central part of our proof of Theorem 10:

Theorem 14 For every extended Turing machine X , one can effectively con-
struct an extended regular expression αX ∈ RegEx(1) such that L(αX ) =
INVALC(X ).

Proof Let X = (Q, q1, δ) be an extended Turing machine. Let ν ≥ 2 denote
the number of states of X ; by Convention 12, Q = {q1, . . . , qν} for some ν ≥ 2.
Intuitively, each element w of INVALC(X ) contains at least one error that
prevents w from being an encoding of a valid computation of X . We distinguish
two kinds of errors:

1. structural errors, where a word is not an encoding of any sequence (Ci)
n
i=1

over configurations of X for some n, or the word is such an encoding, but
C1 is not an initial, or Cn is not a halting configuration, and

2. behavioral errors, where a word is an encoding of some sequence of configu-
rations (Ci)

n
i=0 of X , but there is an i < n such that Ci `X Ci+1 does not

hold.
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The extended regular expression αX is defined by

αX :=αstruc | αbeha,

where the subexpressions αstruc and αbeha describe all structural and all
behavioral errors, respectively. Both expressions shall be defined later. Note
that the variable reference mechanism shall be used only for some extended
regular expressions in αbeha; most of the encoding of INVALC(X ) can be
achieved with proper regular expressions. In order to define αstruc, we take a
short detour and consider the language

SX :=
(
##0+#0+#0{λ, 0}#

{
0i | 1 ≤ i ≤ ν

})+
##

∩ ##0#0+#0#0##{0, #}∗

∩ {0, #}∗#
{

00a#0i## | a ∈ Γ, δ(a, qi) = HALT
}
.

Note that SX is exactly the set of all enc(C), where C = (Ci)
n
i=1 (with n ≥ 2)

is a sequence of configurations of X ; with C1 being an initial configuration
(where neither the left tape side nor the head cell contain any 1), and Cn being
a halting configuration (n ≥ 2 follows from our Convention 12 that X cannot
halt in the first step). In other words, all that distinguishes SX from VALC(X )
is that for SX , we do not require that Ci `X Ci+1 holds for all i < ν. Thus,
VALC(X ) ⊆ SX .

Furthermore, SX is a regular language, as it is obtained by an intersection
of three regular languages. Thus, {0, #}∗ \SX is also a regular language, and we
define αstruc to be any proper regular expression with L(αstruc) = {0, #}∗ \SX .
It is easy to see that such an αstruc can be constructed effectively solely from
X , for example by constructing a deterministic finite automaton A for SX ,
complementing A (by turning accepting into non-accepting states, and vice
versa), and converting the resulting nondeterministic automaton into a proper
regular expression. The DFA A depends only on ν and the halting instructions
occurring in δ and can be constructed effectively, as can all the conversions
that lead to αstruc (again, cf. Hopcroft and Ullman [22]). The exact shape of
αstruc is of no significance to this proof, as we require only that the expression
is a proper regular expression, and can be obtained effectively.

As mentioned above, VALC(X ) ⊆ S, and thus, INVALC(X ) ⊇ L(αstruc).
Furthermore, all elements of INVALC(X ) \ L(αstruc) are elements of SX and
encode a sequence (Ci)

n
i=1 (n ≥ 2) of configurations of X such that Ci `X Ci+1

does not hold for at least one i, 1 ≤ i < n.
Thus, INVALC(X ) \ L(αstruc) contains exactly those words from SX that

encode a sequence of configurations with at least one behavioral error. Therefore,
when defining αbeha to describe all these remaining errors, we can safely assume
that the word in question is an element of SX , as otherwise, it is already
contained in L(αstruc). This allows us to reason about the yet to be defined
elements of INVALC(X ) purely in terms of the execution of X , as the encoding
is already provided by the structure of SX , and to understand all errors that
are yet to be defined as incorrect transitions between configurations.
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We distinguish three kinds of behavioral errors in the transition between a
configuration C = (tL, tR, a, qi) and a configuration C ′ = (t′L, t

′
R, a

′, qj), where
C `X C ′ does not hold:

1. state errors, where qj has a wrong value,
2. head errors, where a′ is wrong, and
3. tape side errors, where t′L or t′R contains an error (characterized by e(t′L)

or e(t′R) being different from the value that is expected according to Obser-
vation 1).

Each of these types of errors shall be handled by an expression αstate, αhead
or αtape (respectively, of course), and we define

αbeha:=(αstate | αhead | αtape).

Basically, each of these expressions lists all combinations of a ∈ Γ and qi ∈ Q,
and describes the corresponding errors of the respective kind. The error that X
continues its computation after encountering a HALT-instruction is considered
a state error and handled in αstate (thus, we do not need to consider HALT-
instructions in αhead and αtape). We can already note that αhead and αstate
are proper regular expressions, as variables and the % metacharacter occur
only in αtape (recall that, as αX ∈ RegEx(1), we are only allowed to use %
once in the whole expression).

State errors: We begin with the definition of αstate. For every a ∈ Γ and every
i with qi ∈ Q, we define a proper regular expression αstatea,i , and let

αstate:=
(
αstate0,1 | αstate1,1 | αstate0,2 | αstate1,2 | · · · | αstate0,ν | αstate1,ν

)
,

where each αstatea,i lists all ‘forbidden’ follower states for qi on a. More formally,
if δ(a, qi) = HALT, let

αstatea,i :=(0 | #)∗#00a#0i##0(0 | #)∗.

For all words in SX , this expression describes all cases where X reads a in state
qi, and continues instead of halting. First, as mentioned above, we only need
to consider words from SX , as all other words are already matched by αstruc.
Due to the definition of enc, every ## in words from SX marks the boundary
between two encoded configurations, and every string #0i immediately to the
left of such a ## encodes a state qi. Likewise, when continuing to the left,
#00a encodes the head letter a. Thus, whenever a word from SX contains a
string #00a#0i##, there is a configuration where X is in state qi and reads a.
As δ(a, qi) = HALT, there may not be a succeeding configuration, and this
definition of αstatea,i describes all cases where X continues after reading a in qi.
Note that we do not need to deal with cases where ## is followed by yet another
#, as such words are not contained in SX and, thus, contained in L(αstruc).

For those cases where δ(a, qi) = (b,M, qj) for some M ∈ {L,R}, some
b ∈ Γ , and some qj ∈ Q, we define

αstatea,i :=(0 | #)∗#00a#0i##0+#0+#0+#αnotj ##(0 | #)∗,
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where αnotj is any proper regular expression with

L(αnotj ) = {0k | 1 ≤ k ≤ ν and k 6= j}.

Again, we use #00a#0i## to identify an encoding of a configuration with head
letter a in state qi. To the right of ##, the subexpression 0+#0+#0+# is used
to skip over the encodings of t′L, t′R and a′, as we only deal with state errors
(for now). By definition, the invalid successor states are exactly all states from
Q \ {qj}, and these are described by αnotj . Thus, if a word from SX contains
any state error when reading a in qi, the whole word belongs to αstatea,i , and
αstatea,i only matches such words.

Finally, if δ(a, qi) = (CHECKR, qj) for some qj ∈ Q, we define

αstatea,i :=
(
(0 | #)∗#0#00a#0i##0+#0+#0+#αnotj ##(0 | #)∗

)
|
(
(0 | #)∗#00+#00a#0i##0+#0+#0+#αnoti ##(0 | #)∗

)
,

where αnotj is defined as in the preceding paragraph. This expression is slightly
more complicated, as it needs to distinguish two cases. Recall that the CHECKR-
instruction is to be interpreted as follows: If tR = 0ω, X is supposed to change
into state qj ; and if tR 6= 0ω, X is supposed to remain in qi, which will lead to
an infinite loop. The first line of the definition handles all cases where tR = 0ω,
while the second handles those where tR 6= 0ω. Again, both cases use #00a#0i##
to identify configurations where X is in state qi reading a.

In the first case, the string #0#00a#0i## contains the additional information
that e(tR) = 0, and thus, tR = 0ω. The correct successor state would be qj , and
the expression skips over the encodings of t′L, t′R and a′ (using 0+#0+#0+#αnotj #)
and then matches all states but qj .

Likewise, in the second case, #00+#00a#0i## matches all cases where (when
reading a in qi) e(tR) > 0, which is equivalent to tR 6= 0ω. Again, the expression
skips over the encodings of t′L, t′R and a′ and uses αnoti to identify all states
that are not the correct successor state qi.

Head errors: As αstate handles all cases where a halting configuration is followed
by any other configuration, we can restrict our definition of the various head
errors to cases where a non-halting instruction should be executed. We define

αhead:=
(
αhead0,1 | αhead1,1 | αhead0,2 | αhead1,2 | · · · | αhead0,ν | αhead1,ν

)
,

omitting those αheada,i with δ(a, qi) = HALT. For all a ∈ Γ , qi ∈ Q with

δ(a, qi) 6= HALT, we define αheada,i as follows.
If δ(a, qi) = (b, L, qj) (for some qj ∈ Q), let

αheada,i :=
(
(0 | #)∗#0(00)∗#0+#00a#0i##0+#0+#00#(0 | #)∗

)
|
(
(0 | #)∗#00(00)∗#0+#00a#0i##0+#0+#0#(0 | #)∗

)
.

According to the first equation in Observation 1, after a left movement of the
head, a′ = e(tL) mod 2 must hold. The two lines in the αheada,i distinguish the
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two possible cases for e(tL) mod 2. In both cases, we once again identify a and
qi in the encoding using #00a#0i#. In the first line, the expression ignores e(tR)
(using the 0+ to the left of #00a#), and describes all cases where e(tL) is even
(by the (00)∗ part of #0(00)∗). To the right of ##, the expression skips t′L and
t′R and finds a′ = 1, thus exactly those cases where e(tL) is even, but a′ = 1.
Likewise, the second line handles the cases where e(tL) is odd, but a′ = 0. As
a′ ∈ {0, 1} is ensured by SX , these expressions describe exactly the head errors
after L-movements.

Likewise, if δ(a, qi) = (b, R, qj) (for some qj ∈ Q), let

αheada,i :=
(
(0 | #)∗#0(00)∗#00a#0i##0+#0+#00#(0 | #)∗

)
|
(
(0 | #)∗#00(00)∗#00a#0i##0+#0+#0#(0 | #)∗

)
.

This expression uses the second equation in Observation 1, a′ = e(tR) mod 2,
and works like the expression for L-moves, the only difference being that it
does not skip over the encoding of tR.

Finally, if δ(a, qi) = CHECKR(qj) for some qj ∈ Q, we define

αheada,i :=(0 | #)∗#00a#0i##0+#0+#001−a#(0 | #)∗.

As CHECKR-instructions do not change the tape or the head symbol, we just
need to describe the case where a′ 6= a. The expression identifies an encoding of
a configuration with head symbol a in state qi (again using ## as a navigation
tool), skips over t′L and t′R, and finds a head symbol a′ = 1 if a = 0, or a′ = 0
if a = 1. As a is fixed within every αheada,i , we can use the shorthand notation

01−a without any formal problems (as it is just another notation for 0 or λ,
depending on a).

Tape side errors: As mentioned above, αtape shall be the only expression in
this proof that uses variables and variable bindings. In fact, as we operate in
RegEx(1), we are only allowed to use a single variable (which shall be called
x), and bind it only once in all of αtape.

In order to increase the readability, we shall define αtape using numerous
subexpressions. As most of these expressions contain the binding operator %,
simply connecting them with | (as we did with the proper regular expressions in
the previous cases) would force us out of RegEx(1). The main idea of this part
of the proof is that, in all these expressions, the binding occurs only in a prefix
that they all have in common. This allows us ‘factor out’ the variable binding,
and to capture all tape side errors without leaving RegEx(1). Therefore, we do
not need to be worried about the fact that most of the following definitions
contain %x; as we shall see, the resulting expression αtape contains only a
single %x.

In this section, we do not follow our usual order, as we discuss tape side errors
for L- and R-instructions after the tape side errors for CHECKR-instructions.
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If δ(a, qi) is a CHECKR-instruction, we define

αa,iL,>:=(0 | #)∗#0(0∗)%x#0+#00a#0i##0x0+#(0 | #)∗,

αa,iL,<:=(0 | #)∗#0(0∗)%x0+#0+#00a#0i##0x#(0 | #)∗,

αa,iR,>:=(0 | #)∗#0(0∗)%x#00a#0i##0+#0x0+#(0 | #)∗,

αa,iR,<:=(0 | #)∗#0(0∗)%x0+#00a#0i##0+#0x#(0 | #)∗.

Intuitively, for M ∈ {L,R}, αa,iM,> is used to describe all successor configurations

(after reading a in qi), where e(t′M ) > e(tM ). Likewise, αa,iM,< handles all those
cases where e(t′M ) < e(tM ). We discuss the correctness of these expressions

using αa,iL,> as an example, the three other expressions behave analogously. If

αa,iL,> matches a word from SX , x is bound to some word 0n with n ≥ 0 (due
to (0∗)%x). As this 0n belongs to the fourth block of 0s when counting from
## to the left, 0(0)n corresponds to 00e(tL) for a configuration (tL, tR, a, qi).
Analogously, the subexpression ##0x0+# matches the block that encodes e(t′L).
As ##00n0+# is expanded to some ##00n0m (with m ≥ 1), we know that
e(t′L) = 0m0n > e(tL). Likewise, for every e(t′L) > e(tL), we can find an

appropriate m ≥ 1 and expand 0+ to 0m. Thus, αa,iL,> matches exactly those
cases in which X reads a in qi, and the resulting e(t′L) is larger than it should
be (i. e., larger than e(tL), as CHECKR-instructions do not change the tape).

The three other expressions behave analogously; but note that for αa,iR,>
and αa,iR,<, the subexpression 0(0∗)%x matches the coding of e(tR) instead of
e(tL), as can be seen by the location of ##.

Handling tape side errors for configurations that lead to a left or right
movement of the head follows the same basic principle, but is a little more
complicated, as we have to deal with changes to the tape. First, recall that the
equations given in Observation 1 allow us to compute e(t′L) and e(t′R) from
e(tL), e(tR) and δ(a, qi).

If δ(a, qi) ∈ (b, L, qj) for some qj ∈ Q, we define

αa,iL,>:=(0 | #)∗#0(0∗)%xx(0 | λ)#0+#00a#0i##0x0+#(0 | #)∗,

αa,iL,<:=(0 | #)∗#0(0∗)%xx000∗#0+#00a#0i##0x#(0 | #)∗,

αa,iR,>:=(0 | #)∗#0(0∗)%x#00a#0i##0+#0xx0b0+#(0 | #)∗,

αa,iR,<:=(0 | #)∗#0(0∗)%x0+#00a#0i##0+#0xx0b#(0 | #)∗,

αa,imod:=(0 | #)∗#00a#0i##0+#0(00)∗01−b#(0 | #)∗.

These expressions fulfill the same purpose as their equally named counterparts
we defined to handle tape side errors for configurations in which a CHECKR-
instruction is executed, i. e., they describe the cases where e(t′L) or e(t′R)
contains too much or too little. For technical reasons that shall be explained a
little later, we also use a proper regular expression αa,imod to describe the errors
where e(tR) has the wrong parity.
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We begin with the expressions that handle errors on the left tape side.
According to the first equation in Observation 1, the correct t′L is characterized
by e(t′L) = e(tL) div 2.

First, we consider αa,iL,>. As before, a and qi are matched in #00a#0i##. To
the left of that block, the expression skips the encoding of e(tR), and matches
00e(tL) with the expression 0(0∗)%xx(0 | λ). Note that x is bound to 0e(tL) div 2,
and 0e(tL)mod 2 matches 0 or λ in (0 | λ). To the right of ##, 0x0+ matches
the encoding of 00e(t

′
L). It is easily seen that this describes exactly those cases

where e(t′L) > (e(tL) div 2), as the 0+ is used to match all possible values of
e(t′L)− (e(tL) div 2).

Next, consider αa,iL,<. Note that if e(t′L) = (e(tL) div 2), either e(tL) =
2 e(t′L) or e(tL) = 2 e(t′L) + 1 holds. Thus, e(t′L) is too small if and only if
e(tL) > 2 e(t′L) + 1, which holds if and only if e(tL) = 2 e(t′L) + 2 +m for some

m ≥ 0. We can easily see that (for words from SX ), αa,iL,< matches exactly
those encodings of successive configurations (tL, tR, a, qi) and (t′L, tR, a

′, qj),
where e(tL) = 2n+ 2 +m and e(t′L) = n for some m,n ≥ 0, as x binds to 0n,
and 0(0∗)%xx000∗ corresponds to 00n0n000m = 00e(tL). Thus, this expression
handles exactly those cases where e(t′L) is too small.

Hence, αa,iL,> and αa,iL,< handle all errors on the left tape side (for given a, qi
with δ(a, qi) = (b, L, qj)). As we still need to handle errors on the right tape
side, recall that (according to the first equation in Observation 1), the correct
right tape word t′R is characterized by e(t′R) = 2 e(tR) + b.

It is easy to see that αa,iR,> handles exactly those words (from SX , with X
reading a in qi) where e(t′R) is too large. First, x is bound to 0e(tR). For t′R,
we have 0 xx0b0+, and thus, e(t′R) = 2 e(tR) + b + n, with n ≥ 1, where 0+

expresses the difference between e(t′R) and its intended value.

The final case, where t′R is too small, is more complicated. We handle this
case with two expressions. First, note that e(t′R) mod 2 = b must hold. The

expression αa,imod describes those cases where this condition is not satisfied; i. e.,
X reads a in qi, but e(t′R) mod 2 6= b. Therefore, we can restrict our definition

of αa,iR,< to those cases where e(t′R) and b have the same parity. In these cases,
e(t′R) = 2n+ b for some n ≥ 0, but e(tR) > n, which holds if and only if there

is an m ≥ 0 with e(tR) = n+m+ 1. The words from SX that match αa,iR,< (but

not αa,imod) are exactly those that satisfy this condition: The variable x is bound

to 0n, while 0+ corresponds to m + 1. Thus, αa,imod | α
a,i
R,< handles the cases

where e(t′R) is too small (but not exactly those cases, even when restricted to

SX , as αa,imod also matches encodings of computations where e(t′R) is too large
and of the wrong parity).

As we have seen, these five expressions describe all tape side errors occurring
during left movements of the head. Analogously, if δ(a, qi) ∈ (b, R, qj) for some
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qj ∈ Q, we define

αa,iR,>:=(0 | #)∗#0(0∗)%xx(0 | λ)#00a#0i##0+#0x0+#(0 | #)∗,

αa,iR,<:=(0 | #)∗#0(0∗)%xx000∗#00a#0i##0+#0x#(0 | #)∗,

αa,iL,>:=(0 | #)∗#0(0∗)%x#0+#00a#0i##0xx0b0+#(0 | #)∗,

αa,iL,<:=(0 | #)∗#0(0∗)%x0+#0+#00a#0i##0xx0b#(0 | #)∗,

αa,imod:=(0 | #)∗#00a#0i##0(00)∗01−b#(0 | #)∗.

As already suggested by the similarities (of the equations in Observation 1,
and of the definitions of the five expressions), tape side errors for R-movements
can be handled analogously to tape side errors for L-movements. Thus, it can
be easily verified that these expressions describe exactly the tape side errors
for all transitions where X reads a in state qi (again assuming that we only
consider words from SX ).

We can now combine all these expressions to define αtape. First, note that

whenever it is defined, αa,imod is a proper regular expression. We define

αmod:=α
0,1
mod | α

1,1
mod | α

0,2
mod | α

1,2
mod | · · · | α

0,ν
mod | α

1,ν
mod,

omitting those αa,imod that are undefined (i. e., δ(a, qi) is a HALT- or a CHECKR-
instruction).

Next, note that all other expressions for tape side errors use exactly one
variable binding, and start with the common prefix (0 | #)∗#0(0∗)%x. For every
αa,iM,c (with M ∈ {L,R} and c ∈ {>,<}), let α̂a,iM,c be the (uniquely defined)
extended regular expression that satisfies

αa,iM,c = (0 | #)∗#0(0∗)%x α̂a,iM,c.

In other words, α̂a,iM,c is obtained from αa,iM,c by factoring out the prefix that
contains the variable binding. We then combine all this expressions into a single
expression αvar ∈ RegEx(1) by

αvar = (0 | #)∗#0(0∗)%x

(
α̂0,1
L,> | α̂

0,1
L,< | α̂

0,1
R,> | α̂

0,1
R,< | α̂

1,1
L,> | α̂

1,1
L,< | α̂

1,1
R,> | α̂

1,1
R,< |

. . .

|α̂0,ν
L,> | α̂

0,ν
L,< | α̂

0,ν
R,> | α̂

0,ν
R,< | α̂

1,ν
L,> | α̂

1,ν
L,< | α̂

1,ν
R,> | α̂

1,ν
R,<

)
,

omitting all subexpressions that refer to (a, qi) where δ(a, qi) = HALT. Finally,
we set

αtape:=αmod | αvar.

As discussed before, it is easy to see that L(αtape) is the union of all the
languages that are generated by the various regular expressions we defined to
handle tape side errors, and thus, L(αtape) contains exactly those words from
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SX that encode a tape side error at some point of the encoded computation.
Therefore, for every word w ∈ {0, #}∗, w ∈ L(αX ) if and only if

w ∈ L(αstruc) ∪ L(αstate) ∪ L(αhead) ∪ L(αtape),

and this holds if and only if w contains a structural or behavioral error.
Hence, we observe that w ∈ L(αX ) if and only w ∈ INVALC(X ), and thereby,
L(αX ) = INVALC(X ).

Finally, as this proof defines αX constructively, using only ν and δ, it also
describes an effective procedure to compute αX from X . This concludes the
proof of Theorem 14. ut

Theorem 10 follows almost immediately from Theorem 14, and Lemmas 11
and 13:

Proof (of Theorem 10) We prove each of the claims by reduction from one of
three problems for extended Turing machines that are listed in Lemma 11 (these
being emptiness, finiteness, and the complement of finiteness). Each reduction
uses the same construction: Given an extended Turing machine X , we construct
an extended regular expression αX ∈ RegEx(1) with INVALC(X ) = L(αX )
(this is possible according to Theorem 14).

Then domX(X ) = ∅ if and only if VALC(X ) = ∅, which holds if and only if
INVALC(X ) = {0, #}∗, which holds if and only if L(αX ) = {0, #}∗, which holds
if and only if L(α) ⊇ {0, #}∗. Thus, any algorithm that decides universality for
RegEx(1) could be used to decide the emptiness of the domain for extended
Turing machines, which is undecidable according to Lemma 11.

Furthermore, domX(X ) is finite if and only if VALC(X ) is finite, which
holds if and only if VALC(X ) is regular (according to Lemma 13), which holds
if and only if INVALC(X ) is regular (as the class of regular languages is closed
under complementation), which holds if and only if L(αX ) is regular. Hence,
semi-decidability of regularity for RegEx(1) would lead to semi-decidability
of finiteness of domX, a problem that is not semi-decidable (according to
Lemma 11)

Likewise, as domX(X ) is finite if and only if L(αX ) is regular, domX(X )
is infinite if and only if L(αX ) is not regular. Therefore, semi-decidability
of non-regularity for RegEx(1) contradicts the fact that the complement of
finiteness of domX is not semi-decidable (see Lemma 11).

As INVALC(X ) is cofinite if and only if INVALC(X ) is regular, the results
for regularity and non-regularity also show that neither cofiniteness nor non-
cofiniteness is semi-decidable for RegEx(1). ut

Those who are interested in the exact position of these problems in the arithmeti-
cal hierarchy (cf. Odifreddi [28]) can conclude that universality is Π0

1 -complete,
while regularity and co-finiteness are Σ0

2 -complete. For each of these problems,
hardness for the respective class follows from the respective completeness of each
of the problems on extended Turing machines used in the proof of Theorem 10
(see the remark after the proof of Lemma 11). Membership in the respective level
of the hierarchy is easily proved using the appropriate representation for that
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class; e. g., universality of some L(α) can be expressed as ∀w ∈ Σ∗ : w ∈ L(α).
As the membership problem for extended regular expressions is decidable, this
proves that universality is in Π0

1 . Likewise, non-regularity can be expressed
as ∀β ∈ RegEx(0) : ∃w ∈ Σ∗ : [w ∈ L(α) ⇔ w /∈ L(β)], which shows that
non-regularity is in Π0

2 . Actually, under a strict interpretation of the definition
given by Odifreddi [28], we would need to quantify over natural numbers; but
as there are computable bijections between N and Σ∗, as well as between N
and RegEx(0), we can omit this technical detail.

4 Consequences of Theorem 10

In Section 3, we introduced and proved Theorem 10, which states that for
RegEx(1), universality is not semi-decidable; and regularity and cofiniteness
are neither semi-decidable, nor co-semi-decidable.

Of course, all these undecidability results also hold for every RegEx(k)
with k ≥ 2, and for the whole class RegEx of extended regular expressions (as
RegEx(1) is contained in all these classes).

Theorem 10 also demonstrates that inclusion and equivalence are undecid-
able for RegEx(1) (and, hence, all of RegEx). We also see, as an immediate
consequence to Theorem 10, that there is no algorithm that minimizes the
number of variables in an extended regular expression, as such an algorithm
could be used to decide regularity.

Note that in the proof of Theorem 10, the single variable x is bound only to
words that match the expression 0∗. This shows that the “negative” properties
of extended regular expressions we derive from Theorem 10 hold even if we
restrict RegEx(1) by requiring that the variable can only be bound to a very
restricted proper regular expression. Furthermore, the proof also applies to the
extension of proper regular expressions through numerical parameters that is
proposed by Della Penna et al. [14]. We discuss an adaption to another model
in Section 4.2.

In addition to this, the construction from Theorem 14 (which we used to
prove Theorem 10, and consequently, all other results in the present paper) can
be refined to also include bounds on the number of occurrences of the single
variable – see Section 4.1.

From the undecidability of universality, we can immediately conclude that
RegEx(1) cannot be minimized effectively:

Corollary 15 Let c be a complexity measure for RegEx(1). Then there is
no recursive function mc that, given an expression α ∈ RegEx(1), returns
an expression mc(α) ∈ RegEx(1) with 1. L(mc(α)) = L(α), and 2. c(β) ≥
c(mc(α)) for every β ∈ RegEx(1) with L(β) = L(α).

Proof Let c be a complexity measure for RegEx(1) and assume there is such a
function mc. Let Σ be any finite alphabet with |Σ| ≥ 2, and let

Uc:= {mc(α) | L(α) = Σ∗} .
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By definition of c, Uc is a finite set, and therefore recursive. As L(α) = Σ∗

if and only if mc(α) ∈ Uc, mc and the characteristic function of Uc can be
used to decide universality for RegEx(1), a problem that is not decidable (cf.
Theorem 10). This is a contradiction. ut

Following the classic proof method of Hartmanis [19] (cf. Kutrib [24]), we can
use the fact that non-regularity is not semi-decidable to obtain a result on the
relative succinctness of extended and proper regular expressions:

Corollary 16 There are non-recursive tradeoffs between RegEx(1) and RegEx(0).
This holds even if we consider only the tradeoffs between CoFRegEx(1) and
CoFRegEx(0), using a complexity measure for RegEx(1).

Proof The result for RegEx(1) and RegEx(0) follows immediately from Theo-
rem 10 and Theorem 4 in Hartmanis [19]: As non-regularity is not semi-decidable
for RegEx(1), the tradeoff between RegEx(1) and RegEx(0) is non-recursive
(see also Kutrib [24] for more detailed explanations than in Hartmanis [19]).

Applied to RegEx(1) and RegEx(0), Hartmanis’ proof scheme gives the
following proof: As non-regularity is not semi-decidable for RegEx(1), the set

∆:={α ∈ RegEx(1) | L(α) is not regular}

is not partially recursive. Now assume that, for a given complexity measure
c, the tradeoff from RegEx(1) to RegEx(0) is recursively bounded by some
recursive function fc. We can then use fc to construct a semi-decision procedure
for ∆ as follows: Given some α ∈ RegEx(1), we compute n:=fc(c(α)), and let

Fn:={β ∈ RegEx(0) | c(β) ≤ n}.

As c is a complexity measure, Fn is finite, and we can effectively list all its
elements (as we can effectively list all β ∈ RegEx(1) with c(β) ≤ n, and we
can decide whether β ∈ RegEx(0) by searching β for occurrences of variables
or the metacharacter %). For each β ∈ Fn, we then semi-decide L(β) 6= L(α)
by checking w ∈ L(α) and w ∈ L(β) for all w ∈ Σ∗ successively.

If L(α) is not regular, then for every β ∈ Fn, we find some wβ in finite time
that proves L(β) 6= L(α) (as wβ is not contained in one of the two languages,
but in the other), and we can proceed to the next expression in Fn. If L(α) is
regular, and fc is a bound on the tradeoff from RegEx(1) to RegEx(0), there
is a β ∈ Fn with L(β) = L(α), and the procedure will never terminate. If no
such β can be found, we know that α ∈ ∆, and the procedure can return 1.
Thus, we can construct a semi-decision procedure for ∆, which contradicts the
established fact that ∆ is not partially recursive.

Likewise, we can obtain the same result if we restrict the claim to ex-
pressions from CoFRegEx(1) and CoFRegEx(0). According to Theorem 10,
non-cofiniteness for RegEx(1) is not semi-decidable. Thus, given a complexity
measure c for RegEx(1), a bound fc on the tradeoff from CoFRegEx(1) to
CoFRegEx(0) could be used to give a semi-decision algorithm for the set

∆C :={α ∈ RegEx(1) | L(α) is not cofinite}.
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First, note that the use of a complexity measure for RegEx(1) instead of
CoFRegEx(1) is intentional and serves to avoid complications with the fact
that cofiniteness is not decidable for RegEx(1) (recall Theorem 10). We can
construct a semi-decision procedure for ∆C from fc using almost the same
reasoning as above: Given an α ∈ RegEx(1), we define n:=f(c(α)), and let

FC,n:={β ∈ RegEx(0) | c(β) ≤ n,L(β) is cofinite}.

Enumerating all elements of FC,n is slightly more difficult than enumerating all
elements of Fn (see above), as we also need to decide whether L(β) is cofinite
for every β ∈ Fn. Luckily, this is not a problem, as cofiniteness is decidable for
RegEx(0) (e. g., given a β ∈ RegEx(0), one could convert β into an equivalent
DFA, compute its complement, and check the resulting DFA for loops that
contain a final state and are reachable from the initial state). From here on,
the proof continues as above, mutatis mutandis. ut

Thus, no matter which complexity measure and which computable upper bound
we assume for the tradeoff, there is always a regular language L that can be
described by an extended regular expression from RegEx(1) so much more
succinctly that every proper regular expression for L has to break that bound.
Obviously, this has also implications for the complexity of matching regular
expressions: Although membership is “easier” for proper regular expressions
than for extended regular expressions, there are regular languages that can
be expressed far more efficiently through extended regular expressions than
through proper regular expressions.

Recall Example 1, where we consider extended regular expressions that de-
scribe finite languages. In this restricted case, there exists an effective conversion
procedure – hence, the tradeoffs are recursive:

Lemma 17 For every k ≥ 1, the tradeoff between FRegEx(k) and FRegEx(0)
is recursive (even when considering complexity measures for RegEx(k) instead
of FRegEx(k)).

Proof Let k ≥ 1, and let c be a complexity measure for RegEx(k). By definition,
no α ∈ FRegEx(k) contains a Kleene star (or Kleene plus). Thus, given an
α ∈ FRegEx(k), we can effectively compute the finitely many words in L(α)
by exhausting all possible combinations of choices for each alternation symbol
in α, and computing the corresponding word for each combination, handling
all bindings accordingly.

For example, the expression α:=(a | b)(a | b)%x(a | b)%y x y contains three
alternation symbols, totaling 23 = 8 possible combinations of choices, each
corresponding to one of the words in L(α). More generally, if α ∈ FRegEx(k)
contains n alternation symbols, L(α) contains at most 2n words w1, . . . , wi
(i ≤ 2n), and we can compute an α̂ ∈ FRegEx(0) with L(α̂) = L(α) simply by
computing these words w1, . . . , wi and defining α̂:=w1 | · · · | wi.

Fixing an effective procedure that computes α̂, we can straightforwardly
define the recursive bound fc : N→ N as follows: For n ≥ 0, we define

Fn:={α̂ ∈ FRegEx(0) | α ∈ FRegEx(k), c(α) = n}.
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By definition of complexity measures, every Fn is finite, and given any n, we
can effectively list all expressions from Fn (again, as c is a complexity measure,
and membership in FRegEx(k) is straightforwardly decidable for RegEx(k)).
For any n ≥ 0, we define

fc(n):= max{c(α̂) | α̂ ∈ Fn}.

As every Fn can be listed effectively, every Fn is finite, and as c(α̂) can be
computed effectively, fn is a recursive function. Furthermore, fc is a bound on
the tradeoff from FRegEx(k + 1) to FRegEx(k) by definition. ut

Although the class of RegEx-languages is not closed under complementation
(Lemma 2 in Câmpeanu et al. [9]), there are languages L such that both L
and its complement Σ∗ \ L are RegEx-languages (e. g., all regular languages).
Combining Lemma 17 and Corollary 16, we can straightforwardly conclude
that there are cases where it is far more efficient to describe the complement
of a RegEx(1)-language, as opposed to the language itself:

Corollary 18 Let Σ be a finite alphabet. Let c be a complexity measure for
RegEx(1). For any recursive function fc : N→ N, there exists an α ∈ RegEx(1)
such that Σ∗ \ L(α) is a RegEx(1)-language, and for every β ∈ RegEx(1) with
L(β) = Σ∗ \ L(α), c(β) ≥ fc(c(α)).

Proof Assume to the contrary that, for some complexity measure c for RegEx(1),
there is a recursive function f1 : N → N such that for every α ∈ RegEx(1),
if Σ∗ \ L(α) is a RegEx(1)-language, there is a β ∈ RegEx(1) with L(β) =
Σ∗ \ L(α) and c(β) ≤ f1(c(α)) (in other words, f1 is a recursive bound on the
blowup of complementation for RegEx(1)).

We can now use f1 and Lemma 17 to obtain a recursive bound on the tradeoff
between CoFRegEx(1) and CoFRegEx(0), which contradicts Corollary 16.

First, note that according to Lemma 17, there is a recursive bound f2 :
N→ N on the tradeoff between FRegEx(1) and FRegEx(0).

Furthermore, we can easily prove that there is a recursive bound f3 : N→ N
on the blowup that occurs in the complementation for FRegEx(1), as f3 might
be computed as follows: For every input n, there are finitely many α ∈ RegEx(0)
with c(α) = n. Finiteness for RegEx(0) is obviously decidable; thus, we can
effectively construct the finite set

Fn:={α ∈ FRegEx(0) | c(α) = n}.

For every α ∈ Fn, we (effectively) construct an α ∈ RegEx(0) with L(α) =
Σ∗ \ L(α), for example, by converting α into a DFA, complementing it, and
converting the resulting DFA into a proper regular expression, all using the
standard techniques as described in Hopcroft and Ullman [22]. We then check
all β ∈ RegEx(0), ordered by growing size of c(β), until we find the smallest
β (w.r.t. c) with L(β) = Σ∗ \ L(α), and refer to this β as α̃ (again, this is
possible due to the decidability of equivalence for RegEx(0), cf. Hopcroft and
Ullman [22]), and define

Cn:={α̃n | αn ∈ Fn}.
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CoFRegEx(1) CoFRegEx(0)

FRegEx(1) FRegEx(0)

f

f1

f2

f3

Fig. 3 An illustration of the functions that are used in the proof of Corollary 18.

Finally, we define f3(n) to be the maximum of all c(β̃) with β ∈ Cn. By
definition, f3 is recursive, and serves as an upper bound for the blowup that
occurs when complementing expressions from FRegEx(0).

Now, consider the function f : N→ N that is defined by f(n):=f3(f2(f1(n)))
for every n ∈ N. We shall see that our assumption implies that f is a recur-
sive bound on the tradeoff between CoFRegEx(1) and CoFRegEx(0), which
contradicts Corollary 16. An illustration of this argument can be found in
Figure 3.

First, observe that f is a recursive function, as f1, f2, and f3 are recursive
functions. Due to Corollary 16, there is an αfc ∈ CoFRegEx(1) such that
L(αfc) is regular, but for every β ∈ RegEx(0) (and hence, β ∈ CoFRegEx(0))
with L(αfc) = L(β), c(β) > f(c(αfc)).

By our assumption, there is an αfc ∈ RegEx(1) with L(αfc) = Σ∗ \L(αfc)
and c(αfc) ≤ f1(c(αfc)). As αfc ∈ CoFRegEx(1), L(αfc) is cofinite, hence,
L(αfc) is finite, and αfc ∈ FRegEx(1).

According to Lemma 17, there is a βfc ∈ FRegEx(0) with L(βfc) =

L(αfc) = Σ∗ \ L(αfc), and c(βfc) ≤ f2(c(αfc)).
Finally, as explained above, there is a βfc ∈ CoFRegEx(0) with L(βfc) =

Σ∗ \ (βfc) = L(αfc) and

c(βfc) ≤ f3(c(βfc))

≤ f3(f2(c(αfc)))

≤ f3(f2(f1(c(αfc))))

= f(c(αfc)).

This contradicts our choice of αfc and concludes the proof. ut

With some additional technical effort, we can extend the previous results
on undecidability of RegEx(l)-ity and on tradeoffs between RegEx(k) and
RegEx(0) to arbitrary levels of the hierarchy of RegEx(k)-languages:

Lemma 19 Let k ≥ 1. For RegEx(k + 1), RegEx(k)-ity is neither semi-
decidable, nor co-semi-decidable.

Proof We adapt the construction from the proof of Theorem 14 to the larger
alphabet Σk:={0, #, $, a1, b1, . . . , ak, bk}, where 0, #, $, all ai, and all bi are
pairwise distinct letters. For every i with 1 ≤ i ≤ k, let Σi:={ai, bi}. Given
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an extended Turing machine X , we construct the extended regular expression
αX ∈ RegEx(1) as in the proof of Theorem 14. For every i with 1 ≤ i ≤ k, we
define an expression αi ∈ RegEx(1) by

αi:=((ai | bi)∗)%xixi,

where every xi is distinct from the variable x in αX , and from all xj with j 6= i.
Finally, we define αX ,k ∈ RegEx(k + 1) by

αX ,k:=αX $α1$ · · · $αk
= αX $((a1 | b1)+)%x1x1$ · · · $((ak | bk)+)%xkxk.

Thus, αk,X ∈ RegEx(k + 1). It suffices to show that L(αk,X ) is a RegEx(k)-
language if and only if L(αX ) is regular, as neither regularity nor non-regularity
is semi-decidable for RegEx(1), cf. Theorem 10.

The if direction is obvious: If L(αX ) is regular, we can (non-effectively)
replace that part of αX ,k with an appropriate proper regular expression, and
obtain an expression from RegEx(k) for L(αX ,k).

For the only if direction, first note that, for every i, L(αi) = {ww | w ∈
{ai, bi}+}, a language that is well known to be not regular (as can be easily
verified with the Pumping Lemma, cf. Hopcroft and Ullman [22]). Likewise,
note that Lk:=L(α1$ · · · $αk) is not a RegEx(k − 1) language, as can be seen
by the following line of reasoning: Assume there is an α ∈ RegEx(k − 1) with
L(α) = Lk. By definition, α contains at most k − 1 different variables. Note
that, whenever α is matched to a w ∈ Lk, every variable x in α that is bound
and also referenced when matching w contains only terminals from a single
set Σi ∪ {$}, as Lk ⊂ {a1, b1}+$ · · · ${ak, bk}+, and repeating any string that
contains some aj or bj with j 6= i would break this structure. As every L(αi)
needs to use at least one variable, and no variable that is matched to a letter
other than $ can cross the boundaries between the different L(αi), there can
be no α ∈ RegEx(k − 1) with L(α) = Lk.

If L(αX ) is not regular, this reasoning extends to L(αk,X ) and RegEx(k),
as we need at least one variable to generate L(αX ), and k variables for Lk, for
a total of k + 1 variables.

Thus, L(αX ,k) is a RegEx(k)-language if and only if αX is regular. As seen
in the proof of Theorem 10, this proves that for RegEx(k), RegEx(k)-ity is
neither semi-decidable, nor co-semi-decidable. ut

Non-recursive tradeoffs between RegEx(k + 1) and RegEx(k) for every k ≥
1 follow immediately, using Hartmanis’ proof technique as in the proof of
Corollary 16.

Although the proof of Lemma 19 uses an unbounded terminal alphabet
Σk:={0, #, $, a1, b1, . . . , ak, bk}, the construction can be adapted to an alphabet
Σ of constant size in the following way. First, let Σ:={0, #, $, a, b, c}, and define
a morphism hk : Σ∗k → Σ∗ by h(ai):= c ai c and h(bi):= c bi c for all 1 ≤ i ≤ k,
and h(a) = a for all a ∈ {0, #, $}. Instead of the languages L(αX ,k), we then
consider the languages hk(L(αX ,k)). The reasoning then proceeds as in the
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original proof, with the sole exception that, instead of arguing that the variables
must contain characteristic letters ai and bi, they now contain characteristic
segments c ai c and c bi c.

Using the same approach, the proof can be adapted to binary terminal
alphabets.

4.1 A Technical Note on Bounded Occurrences of Variables

Although the extended regular expressions αX that follow from the construction
in the proof of Theorem 14 use only one variable x, there is no bound on the
number of occurrences of x in αX . In fact, the number of occurrences grows
with the number of fields in the transition table δ of X , and limiting that
number would not allow to simulate infinitely many extended Turing machines,
which is required to obtain the results in the present paper.

Nonetheless, similar to the proofs for the undecidability of inclusion for
pattern languages in Bremer and Freydenberger [6], these limitations can be
overcome by using a single universal Turing machine: First, let ψ : N× N→ N
be a universal partially recursive function, i. e., for every partially recursive
function φ : N → N, there is an m ≥ 0 such that ψ(m,n) = φ(n) for every
n ≥ 0. Note that it is an elementary fact of recursion theory that such a function
(which is often called a numbering) exists and can be defined constructively
(cf. Cutland [13], Odifreddi [28]). For every m ≥ 0, we define the function
ψm : N → N by ψm(n):=ψ(m,n) for all n ≥ 0. Furthermore, we define the
function

dom(ψm):={n ∈ N | ψm(n) is defined},
from which we derive the index sets

Eψ:={m | dom(ψm) is empty}, and

Fψ:={m | dom(ψm) is finite}.

As in Lemma 11, one can use Rice’s Theorem and its extension (again, cf.
[13, 28]) to show that Eψ is not semi-decidable, and Fψ is neither semi-decidable,
nor co-semi-decidable.

Moreover, there is a Turing machine U over some tape alphabet Γ̂ ⊆
{0, ¢, $, a, b} such that

domT(U) = {am 0 bn | ψ(m,n) is defined}.

Again, this machine can be defined constructively (e. g. from the constructive
definition of ψ). Using the same construction as in the proof of Lemma 11,
we can build an extended Turing machine Û = (Q, q1, δ) that simulates U ,
using an appropriate injective function bk : Γ̂ → Γ k with bk(0) = 0k, for some
appropriate k ≥ 3. Instead of constructing a single extended regular expression
αÛ , we construct an expression αÛ,m for every natural number m, using a
slight modification of the proof of Theorem 14. Instead of allowing arbitrary
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contents for the right tape word in the initial configuration (as can be seen in
the second line of the definition of the language SX ), we define

SÛ,m:=
(
##0+#0+#0{λ, 0}#

{
0i | 1 ≤ i ≤ ν

})+
##

∩ ##0#0e(bk(¢ am 0))
(

02
(2+m)k

)+
#0#0##{0, #}∗

∩ {0, #}∗#
{

00a#0i## | a ∈ Γ̂ , δ(a, qi) = HALT
}
.

The only difference to the definition of SX is the second line. Evidently,
the new definition allows exactly those initial right tape sides tR for which
e(tR) = e(bk(¢ am 0)) + i(2(2+m)k) for some i ≥ 0. As |bk(¢ am 0)| = (2 +m)k,
these are exactly those tR that have bk(¢ am 0) as a prefix.

The construction of αÛ,m then uses SÛ,m to construct αstruc, and proceeds

as in the original proof. Thus, {0, #}∗ \ L(αÛ,m) is exactly that set that corre-
sponds to the valid computations of U on some input that starts with am 0.
Furthermore, the number of occurrences of x in every αÛ,m depends only on δ,
not on m, which means that we can bound that number.

Hence, given an m ∈ N, we can effectively construct an expression αÛ,m
such that the language L(αÛ,m) is

– universal iff dom(ψm) is empty iff m ∈ Eψ,
– regular iff dom(ψm) is finite iff m ∈ Fψ,
– cofinite iff dom(ψm) is finite iff m ∈ Fψ,

which holds following the same reasoning as for L(αX ). Hence, a procedure that
decides one of these problems for RegEx(1) with a bounded number of variable
occurrences to some degree can be effectively transformed into procedure that
decides one of the index sets Eψ and Fψ to the same degree.

As mentioned above, Eψ and Fψ are not semi-decidable, and Fψ is also not
co-semi-decidable. Hence, we arrive at the same conclusions as in Theorem 10
and Corollaries 16 and 18 for RegEx(1) with a bounded number of occurrences
of the single variable.

4.2 A Note on H-Systems

As mentioned multiple times above, Theorem 14 — and hence, Theorem 10
and the resulting consequences — can be easily adapted to various other
models that use similar repetition mechanisms. One of these models are the
so-called H-expressions by Bordihn et al. [5]. These H-expressions are based on
H-systems, which were introduced by Albert and Wegner [4].

In fact, instead of H-expressions, the construction can be implemented using
these (less expressive) H-systems. An H-system is a 4-tuple H = (X,Σ,L1, φ),
whereX andΣ are finite alphabets (the meta alphabet and the terminal alphabet,
respectively), L1 ⊆ X∗ is called the meta language, and φ : X → P(Σ∗) is a
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function that assigns to each x ∈ X a language φ(x) = Lx ⊆ Σ∗. The language
of H is defined as

L(H):={h(w) | w ∈ L1, h is a homomorphism with h(x) ∈ φ(x) for all x ∈ X}.

Less formally, every letter x from the meta alphabet is replaced uniformly with
a word from φ(x).

Furthermore, if L1 and L2 are classes of languages, H(L1,L2) denotes the
class of H-system languages of L1 and L2, i. e., the class of all languages that
are generated by H-systems that use a language L1 ∈ L1 as metalanguage, and
have φ(x) ∈ L2 for every x in their meta alphabet X.

It is easy to see that, for every extended Turing machine X , the expressions
αX that are constructed in the proof of Theorem 14 can be easily converted
into an H-system H = (XH , ΣH , L1, φ) with L(H) = INVALC(X ) and L(H) ∈
H(REG,REG) by proceeding as follows.

First, we select XH :={0, #, x} and ΣH :={0, #}. We then replace the single
occurrence of (0∗)%x in αX with x, and obtain a proper regular expression
α̂X over the alphabet ΣH . This allows us to choose L1:=L(α̂X ), while L1 ∈
REG holds. Next, we define φ(0) = {0}, φ(#) = {#}, and φ(x):={0}∗. Hence,
L(H) = L(αX ) = INVALC(X ) follows immediately.

Thus, we can adapt these proofs to the class H(REG,REG) of H-system
languages, and conclude the same levels of undecidability of the respective de-
cision problems for H(REG,REG). As H(REG,REG) is a subclass of the class
of H-expression languages, this also proves that equivalence for H-expression
languages is undecidable, a problem that was explicitly mentioned as open
by Bordihn et al. [5].

5 Conclusions

The present paper shows that extending regular expressions with only a single
variable already leads to an immense increase in succinctness and expressive
power. The good part of this news is that in certain applications, using the
right extended regular expression instead of a proper regular expression can
lead to far more efficient running times, even with the same matching engine.
The bad part of this news is that this additional power can only be harnessed
in full if one is able to solve undecidable problems, which greatly diminishes
the usefulness of extended regular expressions as more efficient alternative to
proper regular expressions.

Due to underlying undecidable problems, some questions of designing op-
timal extended regular expressions are of comparable difficulty to designing
optimal programs. For applied computer scientists, it could be worthwhile to de-
velop heuristics and good practices to identify cases where the non-conventional
use of extended regular expressions might offer unexpected speed advantages.
As regular expressions are often precompiled, this heuristics might be em-
ployed as compiler-level optimization features, comparable to the compilation
of programming languages.
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For theoretical computer scientists, the results in the present paper highlight
the need for appropriate restrictions other than the number of variables;
restrictions that lead to large and natural subclasses with decidable decision
problems. One possible approach that does not extend the expressive power of
proper regular expressions beyond regular languages would be a restriction of
the length of the words on which variables can be bound. As the results in the
present paper show, any extension of proper regular expressions that includes
some kind of repetition operator needs to be approached with utmost care.

On the other hand, the author wishes to point out that the enormous
relative succinctness of extended regular expressions should be considered an
advantage, especially as the existence of an effective minimization procedure
for proper regular expressions is probably of little practical use, considering the
fact that there is no efficient minimization procedure (unless P=PSPACE). In
particular, the author is convinced that the results on descriptional complexity
emphasize the potential usefulness of large and natural subclasses of RegEx
for which the membership problem can be decided efficiently, as opposed to
the NP-completeness of the general problem. One possible example of such
restrictions can be found in Reidenbach and Schmid [30].
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