
Inclusion Problems for Patterns
With a Bounded Number of VariablesI

Joachim Bremer1, Dominik D. Freydenberger∗

Goethe-University, Frankfurt am Main, Germany

Abstract

We study the inclusion problems for pattern languages that are generated by
patterns with a bounded number of variables. This continues the work by Frey-
denberger and Reidenbach (Information and Computation 208 (2010)) by show-
ing that restricting the inclusion problem to significantly more restricted classes
of patterns preserves undecidability, at least for comparatively large bounds.
For smaller bounds, we prove the existence of classes of patterns with compli-
cated inclusion relations, and an open inclusion problem, that are related to the
Collatz Conjecture. In addition to this, we give the first proof of the undecid-
ability of the inclusion problem for NE-pattern languages that, in contrast to
previous proofs, does not rely on the inclusion problem for E-pattern languages,
and proves the undecidability of the inclusion problem for NE-pattern languages
over binary and ternary alphabets.

1. Introduction

Patterns – finite strings that consist of variables and terminals – are compact
and natural devices for the definition of formal languages. A pattern generates
a word by a substitution of the variables with arbitrary strings of terminals from
a fixed alphabet Σ (where all occurrences of a variable in the pattern must be
replaced with the same word), and its language is the set of all words that can
be obtained under substitutions. In a more formal manner, the language of a
pattern can be understood as the set of all images under terminal-preserving
morphisms; i. e., morphisms that map variables to terminal strings, and each
terminal to itself. For example, the pattern α = x1x1 a bx2 (where x1 and x2

are variables, and a and b are terminals) generates the language of all words
that have a prefix that consists of a square, followed by the word a b.

IA preliminary version of this article appeared at DLT 2010 [2].
∗Corresponding author
Email addresses: bremer@cs.uni-frankfurt.de (Joachim Bremer),

freydenberger@em.uni-frankfurt.de (Dominik D. Freydenberger)
1This author acknowledges the financial support by the German Research Foundation

(DFG) under grant SCHW 837/3-3

Preprint submitted to Elsevier September 20, 2011

The study of patterns in strings goes back to Thue [22] and is a central topic
of combinatorics on words (cf. the survey by Choffrut and Karhumäki [4]), while
the investigation of pattern languages was initiated by Angluin [1]. Angluin’s
definition of pattern languages permits only the use of nonerasing substitutions
(hence, this class of pattern languages is called NE-pattern languages). Later,
Shinohara [21] introduced E-pattern languages (E for ‘erasing’ or ‘extended’),
were erasing substitutions are permitted.

This small difference in the definitions leads to immense differences in the
properties of these two classes. For example, while the equivalence problem
for NE-pattern languages is trivially decidable, the equivalence problem for E-
pattern languages is a hard open problem. Although both classes were first
introduced in the context of inductive inference (which deals with the problem
of learning patterns for given sets of strings, for a survey see Ng and Shinohara
[17]), they have been widely studied in Formal Language Theory (cf. the sur-
veys by Mitrana [14], Salomaa [20]). Due to their compact definition, patterns
or their languages occur in numerous prominent areas of computer science and
discrete mathematics, including unavoidable patterns (cf. Jiang et al. [9]), prac-
tical regular expressions (cf. Câmpeanu et al. [3]), or word equations and the
positive theory of concatenation (cf. Choffrut and Karhumäki [4]).

One of the most notable results on pattern languages is the proof of the
undecidability of the inclusion problem by Jiang et al. [10], a problem that was
open for a long time and is of vital importance for the inductive inference of
pattern languages. Unfortunately, this proof heavily depends on the availability
of an unbounded number of terminals, which might be considered impractical,
as pattern languages are mostly used in settings with fixed (or at least bounded)
alphabets. But as shown by Freydenberger and Reidenbach [7], undecidability
holds even if the terminal alphabet is bounded. As the proof by Jiang et al.
and its modification by Freydenberger and Reidenbach require the number of
variables of the involved patterns to be unbounded, we consider it a natural
question whether the inclusion problems remain undecidable even if bounds are
imposed on the number of variables in the pattern; especially as bounding the
number of variables changes the complexity of the membership problem from
NP-complete to P (cf. Ibarra et al. [8]). Similar restrictions have been studied
in the theory of concatenation (cf. Durnev [5]).

Apart from potential uses in inductive inference or other areas, and the
search for an approach that could provide the leverage needed to solve the
equivalence problem for E-pattern languages, our main motivation for deeper
research into the inclusion problems is the question how strongly patterns and
their languages are connected. All known cases of (non-trivial) decidability of
the inclusion problem for various classes of patterns rely on the fact that for
these classes, inclusion is characterized by the existence of a terminal-preserving
morphism mapping one pattern to the other. This is a purely syntactical con-
dition that, although NP-complete (cf. Ehrenfeucht and Rozenberg [6]), can be
straightforwardly verified. Finding cases of inclusion that are not covered by this
condition, but still decidable, could uncover (or rule out) previously unknown
phenomena, and be of immediate use for related areas of research.

2

Our results can be summarized as follows: We show that the inclusion prob-
lems for E- and NE-patterns with a bounded (but large) number of variables
are indeed undecidable. For smaller bounds, we prove the existence of classes of
patterns with complicated inclusion relations, and an open inclusion problem.
Some of these inclusions can simulate iterations of the Collatz function, while
others could (in principle) be used to settle an important part of the famous
Collatz Conjecture. In contrast to the aforementioned previous proofs, our proof
of the undecidability of the inclusion problem for NE-pattern languages is not
obtained through a reduction of the inclusion problem for E-pattern languages.
Apart from the technical innovation, this allows to prove the undecidability of
the inclusion problem for NE-pattern languages over binary and ternary alpha-
bets, which was left open by Freydenberger and Reidenbach.

2. Preliminaries

2.1. Basic Definitions and Pattern Languages

Let N1 := {1, 2, 3, . . .} and N0 := N1 ∪ {0}. The function div denotes the
integer division, and mod its remainder. The symbols ⊆, ⊂, ⊇ and ⊃ refer to
subset, proper subset, superset and proper superset relation, respectively. The
symbol \ denotes the set difference, and ∅ the empty set.

For an arbitrary alphabet A, a string (over A) is a finite sequence of symbols
from A, and λ stands for the empty string. The symbol A+ denotes the set of
all nonempty strings over A, and A∗ := A+ ∪ {λ}. For the concatenation of
two strings w1, w2 we write w1 · w2 or simply w1w2. We say a string v ∈ A∗ is
a factor of a string w ∈ A∗ if there are u1, u2 ∈ A∗ such that w = u1vu2. If
u1 = λ (or u2 = λ), then v is a prefix of w (or a suffix, respectively).

For any alphabet A, a language L (over A) is a set of strings over A, i. e.
L ⊆ A∗. A language L is empty if L = ∅; otherwise, it is nonempty.

The notation |K| stands for the size of a set K or the length of a string K;
the term |w|a refers to the number of occurrences of the symbol a in the string
w. For any w ∈ Σ∗ and any n ∈ N0, wn denotes the n-fold concatenation of w,
with w0 := λ. Furthermore, we use · and the regular operations ∗ and + on sets
and strings in the usual way.

For any alphabets A,B, a morphism is a function h : A∗ → B∗ that satisfies
h(vw) = h(v)h(w) for all v, w ∈ A∗. A morphism h : A∗ → B∗ is said to be
nonerasing if h(a) 6= λ for all a ∈ A. For any string w ∈ C∗, where C ⊆ A and
|w|a ≥ 1 for every a ∈ C, the morphism h : A∗ → B∗ is called a renaming (of
w) if h : C∗ → B∗ is injective and |h(a)| = 1 for every a ∈ C.

Let Σ be a (finite or infinite) alphabet of so-called terminals and X an
infinite set of variables with Σ ∩ X = ∅. We normally assume {a, b, . . .} ⊆ Σ
and {x1, x2, x3 . . .} ⊆ X. A pattern is a string over Σ ∪ X, a terminal-free
pattern is a string over X and a terminal-string is a string over Σ. For any
pattern α, we refer to the set of variables in α as var(α). The set of all patterns
over Σ ∪X is denoted by PatΣ; the set of all terminal-free patterns is denoted
by Pattf . For every n ≥ 0, let Patn,Σ denote the set of all patterns over Σ that
contain at most n variables; that is, Patn,Σ :={α ∈ PatΣ | | var(α)| ≤ n}.

3

A morphism σ : (Σ ∪X)
∗ → (Σ ∪X)

∗
is called terminal-preserving if σ(a) =

a for every a ∈ Σ. A terminal-preserving morphism σ : (Σ ∪X)
∗ → Σ∗ is called

a substitution. The E-pattern language LE,Σ(α) of α is given by

LE,Σ(α) := {σ(α) | σ : (Σ ∪X)∗ → Σ∗ is a substitution},

and the NE-pattern language LNE,Σ(α) of a pattern α ∈ PatΣ is given by

LNE,Σ(α) := {σ(α) | σ : (Σ ∪X)∗ → Σ∗ is a nonerasing substitution}.

If the intended meaning is clear, we write L(α) instead of LE,Σ(α) or LNE,Σ(α)
for any α ∈ PatΣ. Furthermore, let ePATΣ denote the class of all E-pattern
languages over Σ, and nePATΣ the class of all NE-pattern languages over Σ.
Likewise, we define ePATtf,Σ as the class of all LE,Σ(α) with α ∈ Pattf , and,
for any n ≥ 0, ePATn,Σ as the class of all LE,Σ(α) with α ∈ Patn,Σ. The
classes nePATtf,Σ and nePATn,Σ are defined accordingly. Let P1, P2 be two
classes of patterns, and PAT1,PAT2 be the corresponding classes of pattern
languages (either the class of all E-pattern languages or the class of all NE-
pattern languages over some alphabet Σ that are generated by patterns from
P1 or P2). We say that the inclusion problem for PAT1 in PAT2 is decidable if
there exists a total computable function χ such that, for every pair of patterns
α ∈ P1 and β ∈ P2, χ decides on whether or not L(α) ⊆ L(β). If no such
function exists, this inclusion problem is undecidable. If both classes of pattern
languages are the same class PAT?,Σ, we simple refer to the inclusion problem
of PAT?,Σ.

2.2. The Universal Turing Machine U

Let U be the universal Turing machine U15,2 with 2 symbols and 15 states
described by Neary and Woods [16]. This machine has the state set Q =
{q1, . . . , q15} and operates on the tape alphabet Γ = {0, 1} (where 0 is the
blank symbol). Its transition function δ : Γ×Q→ (Γ×{L,R} ×Q)∪HALT is
depicted in Figure 1.

q1 q2 q3 q4 q5 q6 q7 q8

0 0, R, q2 1, R, q3 0, L, q7 0, L, q6 1, R, q1 1, L, q4 0, L, q8 1, L, q9

1 1, R, q1 1, R, q1 0, L, q5 1, L, q5 1, L, q4 1, L, q4 1, L, q7 1, L, q7

q9 q10 q11 q12 q13 q14 q15

0 0, R, q1 1, L, q11 0, R, q12 0, R, q13 0, L, q2 0, L, q3 0, R, q14

1 1, L, q10 HALT 1, R, q14 1, R, q12 1, R, q12 0, R, q15 1, R, q14

Figure 1: The transition table of the universal Turing machine U which is defined in Sec-
tion 2.2. This machine is due to Neary and Woods [16] and is, to the author’s knowledge, the
smallest currently known universal Turing machine over a two letter tape alphabet.

In order to discuss configurations of U , we adopt the following conventions.
The tape content of any configuration of U is characterized by the two infinite
sequences tL = (tL,n)n≥0 and tR = (tR,n)n≥0 over Γ. Here, tL describes the

4

content of what we shall call the left side of the tape, the infinite word that
starts at the position of the machine’s head and extends to the left. Likewise,
tR describes the right side of the tape, the infinite word that starts immediately
to the right of the head and extends to the right (cf. Figure 2).

0 0 0 1 1 1 0 1 1 1 0 0 1 0 0 0 0.

tR →← tL

Figure 2: An illustration of tape words of some configuration of the universal Turing machine
U (as defined in Section 2.2). The arrow below the tape symbolizes the position of the head,
while the dashed lines show the borders between the left tape side and the right tape side.
Assuming that all tape cells that are not shown contain 0, we observe the left tape word
tL = 1101110ω and the right tape word tR = 10010ω .

Encoding Computations of U . Next, we define the function e : Γ → N0 as
e(0):=0 and e(1):=1, and extend this to an encoding of infinite sequences t =
(tn)n≥0 over Γ by e(t):=

∑∞
i=0 2i e(ti). As we consider only configurations where

all but finitely many cells of the tape consist of the blank symbol 0 (which is
encoded as 0), e(t) is always finite and well-defined. Note that for every side t
of the tape, e(t) mod 2 returns the encoding of the symbol that is closest to the
head (the symbol under the head for tL, and the symbol to the right of the head
for tR). Furthermore, each side can be lengthened or shortened by multiplying
or dividing (respectively) its encoding e(t) by 2. The encodings encE and encNE

of configurations of U are defined by

encE(qi, tL, tR):=0 0e(tR)#0 0e(tL)#0i,

encNE(qi, tL, tR):=07 0e(tR)#07 0e(tL)#0i+6,

for every configuration (qi, tL, tR). Note that both functions are almost identical;
the only difference is that encNE adds six additional occurrences of 0 to each of
the three continuous blocks of 0.

We extend each of these encodings to an encoding of finite sequences of
configurations C = (Ci)

n
i=1 by enc(C):=## enc(C1)## . . .## enc(Cn)## for

enc = encE or enc = encNE. Let I be any configuration of U . A valid compu-
tation from I is a finite sequence C = (Ci)

n
i=1 (with n ≥ 2) of configurations

of U such that C1 = I, Cn is a halting configuration, and Ci+1 is a valid suc-
cessor configuration of Ci for every i with 1 ≤ i < n. We adopt the convention
that any possible configuration where both tape sides have a finite value under
e is a valid successor configuration of a halting configuration. This extended
definition of succession does not change the acceptance behavior of U . Finally,

5

let

VALCE(I):={encE(C) | C is a valid computation from I},
VALCNE(I):={encNE(C) | C is a valid computation from I}.

Each of the two sets is nonempty if and only if U accepts the input of the initial
configuration I, and can thus be used to decide the halting problem of U . As U
is universal, there can be no recursive function that, on input I, decides whether
VALCE(I) is empty or not (the same holds for VALCNE(I)).

2.3. Collatz Iterations

The Collatz function C : N1 → N1 is defined by C(n):= 1
2n if n is even,

and C(n) := 3n + 1 if n is odd. For any i ≥ 0 and any n ≥ 1, let C0(n):=n
and Ci+1(n):=C(Ci(n)). A number n leads C into a cycle if there are i, j with
1 ≤ i < j and Ci(n) = Cj(n). The cycle is non-trivial if Ck(n) 6= 1 for every
k ≥ 0; otherwise, it is the trivial cycle.

The Collatz Conjecture states that every natural number leads C into the
trivial cycle 4, 2, 1. Regardless of the considerable effort spent on this problem
(see the bibliographies by Lagarias [11, 12]), the conjecture remains unsolved, as
the iterated function often behaves rather unpredictably. For this reason, iter-
ations of the Collatz function have been studied in the research of small Turing
machines. Margenstern [13] conjectures that every class of Turing machines (as
characterized by the number of states and symbols) that contains a machine
that is able to simulate the iteration of the Collatz function, also contains a
machine that has an undecidable halting problem.

Encoding Collatz Iterations. Similar to the definition of VALCE(I) and VALCNE(I),
we encode those iterations of the Collatz function that lead to the number 1
(and thus, to the trivial cycle) in languages over the alphabet {0,#}. For every
N ∈ N1, let

TRIVE(N):={#0C
0(N)#0C

1(N)# . . .#0C
n(N)# | n ≥ 1, Cn(N) = 1},

TRIVNE(N):={#06+C0(N)#06+C1(N)# . . .#06+Cn(N)# | n ≥ 1, Cn(N) = 1}.

By definition, TRIVE(N) (and TRIVNE(N)) are empty if and only if N does
not lead C into the trivial cycle. As we shall see, our constructions are able
to express an even stronger problem, the question whether there are any num-
bers that lead C to a non-trivial cycle. We define NTCCE as the set of all
strings #0C

0(N)#0C
1(N)# . . .#0C

n(N)#, where n,N ≥ 1, Ci(N) 6= 1 for all
i ∈ {0, . . . , n}, and Cj(N) = Cn(N) for some j < n. Analogously, NTCCNE is

defined to be the set of all strings #06+C0(N)#06+C1(N)# . . .#06+Cn(N)#, with
the same restrictions on n and N . Obviously, both sets are nonempty if and
only if there exist non-trivial cycles in the iteration of C. This is one of the two
possible cases that would disprove the Collatz Conjecture, the other being the
existence of a number N with Ci(N) 6= Cj(N) for all i 6= j.

6

3. Main Results

In this section, we study the inclusion problems of various classes of pattern
languages generated by patterns with a bounded number of variables.

As shown by Jiang et al. [10], the general inclusion problem for pattern
languages is undecidable, both in the case of E- and NE-patterns:

Theorem 3.1 (Jiang et al. [10]). Let Z ∈ {E,NE}. There is no total computable
function χZ which, for every alphabet Σ and for every pair of patterns α, β ∈
PatΣ, decides on whether or not LZ,Σ(α) ⊆ LZ,Σ(β).

The proof for the E-case uses an involved construction that relies heavily on
the unboundedness of the terminal alphabet Σ. For the NE-case, Jiang et al.
give a complicated reduction of the inclusion problem for ePATΣ to the inclusion
problem for nePATΣ2 , where Σ2 is an alphabet with two additional terminals.
As shown by Freydenberger and Reidenbach [7], the inclusion problem remains
undecidable for most cases of a fixed terminal alphabet:

Theorem 3.2 (Freydenberger and Reidenbach [7]). Let Σ be a finite alphabet.
If |Σ| ≥ 2, the inclusion problem of ePATΣ is undecidable. If |Σ| ≥ 4, the
inclusion problem of nePATΣ is undecidable.

The proof for the E-case consists of a major modification of the construction
for the general inclusion problem for E-pattern languages, and relies on the
presence of an unbounded number of variables in one of the patterns. The NE-
case of the result follows from the same reduction as in the proof of Theorem 3.1
(thus, the difference in |Σ|), and also relies on an unbounded number of variables.

As patterns with an arbitrarily large number of variables might seem some-
what artificial for many applications, we consider it natural to bound this num-
ber in order to gain decidability of (or at least further insights on) the inclusion
of pattern languages. We begin our considerations with an observation from
two classical papers on pattern languages:

Theorem 3.3 (Angluin [1], Jiang et al. [9]). The inclusion problem for nePATΣ

in nePAT1,Σ and the inclusion problem for ePATΣ in ePAT1,Σ are decidable.

The proofs for both cases of this theorem rely on the following sufficient
condition for inclusion of pattern languages:

Theorem 3.4 (Jiang et al. [9], Angluin [1]). Let Σ be an alphabet and α, β ∈
PatΣ. If there is a terminal-preserving morphism φ : (Σ∪X)∗ → (Σ∪X)∗ with
φ(β) = α, then LE,Σ(α) ⊆ LE,Σ(β). If φ is also nonerasing, then LNE,Σ(α) ⊆
LNE,Σ(β).

In fact, the proofs of both parts of Theorem 3.3 show that, for every alpha-
bet Σ and all patterns α ∈ PatΣ, β ∈ Pat1,Σ, L(α) ⊆ L(β) holds if and only
if there is a terminal-preserving (and, in the NE-case, nonerasing) morphism
φ with φ(β) = α. As the existence of such a morphism is a decidable prop-
erty (although in general NP-complete, cf. Ehrenfeucht and Rozenberg [6]), the
respective inclusion problems for these classes are decidable.

7

There are numerous other classes of pattern languages where this condition is
not only sufficient, but characteristic; e. g. the terminal-free E-pattern languages
(cf. Jiang et al. [10]), some of their generalizations (cf. Ohlebusch and Ukkonen
[18]), and pattern languages over infinite alphabets (cf. Freydenberger and Rei-
denbach [7]). As far as we know, all non-trivial decidability results for pattern
languages over non-unary alphabets rely on this property2. Contrariwise, the
existence of patterns where inclusion is not characterized by the existence of an
appropriate morphism between them is a necessary condition for an undecidable
inclusion problem for this class.

The same phenomenon as in Theorem 3.3 does not occur if we swap the
bounds. For the nonerasing case, this is illustrated by the following example:

Example 3.5 (Reidenbach [19], Example 3.2). Let Σ = {a1, . . . , an} with
n ≥ 2, and consider the pattern αn:=x a1 x a2 x . . . x an x, β:=xyyz. Then there
is no terminal-preserving morphism φ with φ(β) = αn, but every word from
LNE,Σ(αn) contains an inner square. Thus, LNE,Σ(αn) ⊆ LNE,Σ(β). 3

Using a less straightforward approach, we observe an even tighter bound:

Proposition 3.6 (Angluin [1]). For every finite alphabet Σ, there exist patterns
α ∈ Pat1,Σ and β ∈ Pat2,Σ such that LNE,Σ(α) ⊆ LNE,Σ(β), but there is no
nonerasing terminal-preserving morphism φ : (Σ∪X)+ → (Σ∪X)+ with φ(β) =
α.

Proof. The proof for the case of binary terminal alphabets is due to Angluin [1]
(Example 3.8). As Angluin only sketches the extension to ternary terminal al-
phabets and mentions that the construction can be extended to larger alphabets
in a straightforward way, we give the whole proof.

First, we define the infinite terminal alphabet Σ∞:={a1, a2, . . .}, where all
ai are pairwise different. Next, we define an infinite sequence of patterns (α̂i)

∞
i=1

by

α̂1:= a1 x,

α̂i+1:=α̂i ai+1 α̂ix

for every i ≥ 1. In addition to this, we define a second sequence (αi)
∞
i=1 by

αi:=α̂i ai for every i ≥ 1. Thus, the first three patterns in the two sequences
are

α̂1:= a1 x, α1:= a1 x a1,

α̂2:= a1 x a2 a1 xx, α2:= a1 x a2 a1 xx a2,

α̂3:= a1 x a2 a1 xx a3 a1 x a2 a1 xxx, α3:= a1 x a2 a1 xx a3 a1 x a2 a1 xxx a3 .

We shall now show that, for every alphabet Σ = {a1, . . . , an} ⊂ Σ∞ (with n ≥
1), the patterns αn and β:=xxy prove the claim – i. e., LNE,Σ(αn) ⊆ LNE,Σ(β),

2Non-trivial meaning that the involved classes are neither finite, nor restricted in some
artificial way that leads to trivial decidability.

8

but there is no nonerasing terminal-preserving morphism φ with φ(β) = α. The
proof relies on the following two claims:

Claim 1. For every n ≥ 1, no nonempty prefix of α̂n is a square.

Proof of Claim 1. We prove this claim by induction. For n = 1, α̂n = a1 x. The
only nonempty prefix of α̂n is α̂n itself, and this pattern is not a square.

Now assume the claim holds for some n ≥ 1 (i. e., no nonempty prefix of
α̂n is a square). By definition, α̂n+1 = α̂n an+1 α̂nx. Due to the definition of
α̂n, we know that the letter an+1 does not occur therein, and by the induction
assumption, no nonempty prefix of α̂n is a square. Thus, the claim holds for
α̂n+1 as well. (Claim 1)

In order to state the next claim, for every i ≥ 1, we define Si to be the set
of all nonerasing substitutions σ : (Σ∞ ∪X)+ → (Σ∞)+ for which the leftmost
letter of σ(x) is ai.

Claim 2. For every n ≥ 1, every i with 1 ≤ i ≤ n and every σ ∈ Si, σ(α̂n) has
a nonempty prefix that is a square.

Proof of Claim 2. Again, we show the claim by induction. First, let n = 1. In
this case, we only need to consider the case of σ ∈ S1. For every such σ, there is
a w ∈ (Σ∞)∗ such that σ(x) = a1 w. Accordingly, as σ(α̂1) = a1 a1 x, the claim
holds.

Now assume that, for some n ≥ 1 and all i with 1 ≤ i ≤ n, σ(α̂n) has a
nonempty prefix that is a square. As α̂n is a prefix of α̂n+1, this implies that,
for every σ ∈ S1 with 1 ≤ i ≤ n, σ(α̂n+1) has a nonempty square as a prefix.
Therefore, we only need to consider the substitutions σ ∈ Sn+1. For every such
σ, there is a w ∈ (Σ∞)∗ such that σ(x) = an+1 w, and

σ(α̂n+1) = σ(α̂n an+1 α̂nx)

= σ(α̂n) an+1 σ(α̂n) an+1 w.

Thus, (σ(α̂n) an+1)2 is a (nonempty) prefix of σ(α̂n+1). (Claim 2)

Now, for every n ≥ 1, consider the terminal alphabet Σ:={a1, . . . , an} and the
patterns α:=αn and β:=xxy (where x and y are distinct variables).

For every word w ∈ LNE,Σ(α), there is a nonerasing substitution σ : (Σ ∪
X)+ → Σ+ with σ(α) = w. Therefore, σ ∈ Si for some i with 1 ≤ i ≤ n,
depending on the leftmost letter of σ(x). By Claim 2, σ(α̂n) has a nonempty
prefix that is a square; i. e., there are a u ∈ Σ+ and a v ∈ Σ∗ such that w = uuv.
We now define the substitution τ : (Σ∪X)+ → Σ+ by τ(x):=u and τ(y):=v an.
Thus, τ(β) = uuv an = σ(α̂n) an = σ(αn) = w, and LNE,Σ(α) ⊆ LNE,Σ(β).

On the other hand, assume that there is a nonerasing morphism φ : X+ →
(Σ ∪ X)+ with φ(β) = α = α̂n an. As τ is nonerasing, the rightmost letter of
τ(y) must be an. More formally, there is some γ ∈ (Σ ∪X)∗ with τ(y) = γ an.
Thus, α̂n = (τ(x))2γ; by definition of τ , this means that α̂n has a nonempty
square as a prefix, which contradicts Claim 1. Therefore, no such φ exists.

9

Thus, regardless of the size of |Σ|, even the inclusion problem of nePAT1,Σ

in nePAT3,Σ is too complex to be characterized by the existence of a nonerasing
terminal-preserving morphism between the patterns. A similar phenomenon can
be observed for E-pattern languages:

Proposition 3.7. For every finite alphabet Σ with |Σ| ≥ 2, there are patterns
α ∈ Pat1,Σ and β ∈ Pat2|Σ|+2,Σ such that LE,Σ(α) ⊆ LE,Σ(β), but there is no
terminal-preserving morphism φ : (Σ ∪X)∗ → (Σ ∪X)∗ with φ(β) = α.

Proof. The patterns α and β can be straightforwardly obtained from the pat-
terns in the proof of Theorem 6 in [7], by replacing each variable in α with a
single variable x, and removing a common prefix.

Let Σ = {a1, . . . , an} (where all ai are distinct, i. e., |Σ| = n). Let m:=n if
n is odd, and m:=n+ 1 if n is even. If n is even, we also define am := an.

Next, we define

α:= a1 x a1 x · a2 x a2 x · . . . · am x am x,
β:= a1 β1 a1 z1 · a2 β2 a2 z2 · . . . · am βm am zm,

with, for 1 ≤ i ≤ m,

βi:=

{
yiyi+1 if 1 ≤ i < m,

yny1 if i = m,

where y1, z1, . . . , ym, zm are pairwise distinct variables.
In order to show LE,Σ(α) ⊆ LE,Σ(β), we prove that, for every substitution

σ, there is a substitution τ with τ(β) = σ(α). If σ(x) = λ, it is easy to see that
σ(α) can be created from β by erasing all variables. Therefore, we can safely
assume σ(x) = aj u with 1 ≤ j ≤ n and u ∈ Σ∗.

We define the substitution τ by

τ(zi):=

{
σ(x) if i 6= j,

u aj σ(x) if i = j,

for every zi ∈ var(β), and by

τ(yi):=

{
λ if i ∈ ERASEj ,

aju if i /∈ ERASEj ,

for every yi ∈ var(β), where the set ERASEj ⊂ var(β) is defined as

ERASEj :={ys ∈ var(β) | s = j − 2i or s = j + 1 + 2i for some i ≥ 0}.

Note that, due to our definition of ERASEj and τ , τ(βj) = λ and τ(βi) = σ(x)
for every i 6= j hold, as ERASEj contains exactly those xs with either s ≤ j,
and s has the same parity as j, or s > j, where s and j have different parities.

In order to prove φ(β) = σ(α), it suffices to show that φ(ai βi ai zi) =
σ(ai x ai x) for every i with 1 ≤ i ≤ m – then the claim follows by definition of
α and β.

10

For every i with 1 ≤ i ≤ m and i 6= j, we use τ(βi) = σ(x) to conclude

τ(ai βi ai zi) = ai σ(x) ai σ(x)

= σ(ai x ai x).

Likewise, for the special case of i = j, τ(βj) = λ leads to

τ(aj βj aj zj) = aj ·λ · aj u · aj σ(x)

= aj σ(x) aj σ(x)

= σ(aj x aj x).

Thus, φ(β) = σ(α), and – as σ was chosen freely – LE,Σ(α) ⊆ LE,Σ(β).
We proceed to show that there is no terminal-preserving morphism φ : (Σ∪

X)∗ → (Σ ∪ X)∗ with φ(β) = α. Assume to the contrary that there is a
terminal-preserving morphism φ with φ(β) = α. As α and β contain exactly
the same occurrences of terminals, φ(βi) = x and φ(zi) = x must hold for
every i ∈ {1, . . . ,m}. We define β′:=β1 · . . . · βm, and observe φ(β′) = xm. By
definition of βi, |β′|zi = 2 for 1 ≤ i ≤ m, and thus, |β′| is even. This contradicts
the fact that m (and, thus, |xm|) is odd by definition.

The proof also shows that, if Σ has an odd number of letters, the bound on
the number of variables in the second class of patterns can be lowered to 2|Σ|.
We do not know whether this lower bound is strict, or if there are patterns
α ∈ Pat1,Σ, β ∈ Patn,Σ with n < 2|Σ| such that LE,Σ(α) ⊆ LE,Σ(β), but there
is no terminal-preserving morphism mapping β to α.

For |Σ| = 2, according to Proposition 3.7, the inclusion of ePAT1,Σ in
ePAT6,Σ is not characterized by the existence of such a morphism. As this
bound (and the bound on NE-patterns from Example 3.5) are the lowest known
bounds for ‘morphism-free’ inclusion, we want to emphasize the following prob-
lem:

Open Problem 1. Let |Σ| = 2. Is the inclusion problem of ePAT1,Σ in ePAT6,Σ

decidable? Is the inclusion problem of nePAT1,Σ in nePAT3,Σ decidable?

In principle, both inclusion problems might be undecidable; but comparing
these bounds to the ones in the following results, this seems somewhat improb-
able, and suggests that if these problems are undecidable, the proof would need
to be far more complicated than the proofs in the present paper. On the other
hand, these classes are promising candidates for classes of pattern languages
where the inclusion is decidable, but not characterized by the existence of an
appropriate morphism.

As evidenced by our first two main theorems, bounding the number of vari-
ables preserves the undecidability of the inclusion problem:

Theorem 3.8. Let |Σ| = 2. The following problems are undecidable:

1. The inclusion problem of ePAT3,Σ in ePAT2854,Σ,

2. the inclusion problem of ePAT2,Σ in ePAT2860,Σ.

11

Theorem 3.9. Let |Σ| = 2. The following problems are undecidable:

1. The inclusion problem of nePAT3,Σ in nePAT2554,Σ,

2. the inclusion problem of nePAT2,Σ in nePAT2558,Σ.

Note that the cases of all larger (finite) alphabets are handled in Section 5.1.
The bounds presented in these two theorems are not optimal. Through addi-
tional effort and some encoding tricks, it is possible to reduce each bound on
the number of variables in the second pattern by a few hundred variables. As
the resulting number would still be far away from the bounds presented in the
theorems further down in this section, we felt that these optimizations would
only add additional complexity to the proofs, without providing deeper insight,
and decided to give only the less optimal bounds present above.

The proofs for both theorems use the same basic approach as the proofs of
the E-case in Theorems 3.1 and 3.2. We show that, for a given configuration
I of U , one can effectively construct patterns α, β in the appropriate classes of
patterns such that L(α) ⊆ L(β) if and only if U halts after starting in I. As
this would decide the halting problem of the universal Turing machine U , the
inclusion problems must be undecidable.

For the E-case, we show this using a nontrivial but comparatively straight-
forward modification of the proof for the E-case of Theorem 3.2. As this con-
struction is still very complicated, a brief sketch can be found in Section 3.1,
while the full construction is omitted due to space constraints.

For the NE-case, we show that a comparable construction can be realized
with NE-patterns. This observation is less obvious than it might appear and
requires extensive modifications to the E-construction. As previous results on
the non-decidability of the inclusion problem for NE-patterns rely on an in-
volved construction from [10], we consider the construction used for our proof
of Theorem 3.9 a significant technical breakthrough; especially as this result (to-
gether with its extension following from the modification in Section 5.1) allows
us to solve Open Problem 1 in [7], concluding that the inclusion problem for
NE-patterns over binary and ternary alphabets is undecidable. Some remarks
on the construction are sketched in Section 3.2, while the full construction is
omitted.

Although encoding the correct operation of a Turing machine (or any sim-
ilar device) in patterns requires a considerable amount of variables, the simple
structure of iterating the Collatz function C can be expressed in a more compact
form. With far smaller bounds, we are able to obtain the following two results
using the same constructions as for the proof of Theorems 3.8 and 3.9:

Theorem 3.10. Let Σ be a binary alphabet. Every algorithm that decides the
inclusion problem of ePAT2,Σ in ePAT74,Σ can be converted into an algorithm
that, for every N ∈ N1, decides whether N leads C into the trivial cycle.

Theorem 3.11. Let Σ be a binary alphabet. Every algorithm that decides the
inclusion problem of nePAT2,Σ in nePAT97,Σ can be converted into an algorithm
that, for every N ∈ N1, decides whether N leads C into the trivial cycle.

12

The proofs are sketched in Sections 3.1 and 3.2. As mentioned in Section 2.3,
this demonstrates that, even for these far tighter bounds, the inclusion prob-
lems are able to express comparatively complicated sets. Moreover, a slight
modification of the result allows us to state the following far stronger results:

Theorem 3.12. Let Σ be a binary alphabet. Every algorithm that decides the
inclusion problem for ePAT4,Σ in ePAT80,Σ can be used to decide whether any
number N ≥ 1 leads C into a non-trivial cycle.

Theorem 3.13. Let Σ be a binary alphabet. Every algorithm that decides the
inclusion problem for nePAT4,Σ in nePAT102,Σ can be used to decide whether
any number N ≥ 1 leads C into a non-trivial cycle.

The proofs are sketched in Sections 3.1 and 3.2. These two results need to
be interpreted very carefully. Of course, the existence of non-trivial cycles is
trivially decidable (by a constant predicate); but these results are stronger than
mere decidability, as the patterns are constructed effectively. Thus, deciding the
inclusion of any of the two pairs of patterns defined in the proofs would allow us
to prove the existence of a counterexample to the Collatz Conjecture, or to rule
out the existence of one important class of counterexamples, and thus solve ‘one
half’ of the Collatz Conjecture. More pragmatically, we think that these results
give reason to suspect that the inclusion problems of these classes of pattern
languages are probably not solvable (even if effectively, then not efficiently), and
definitely very complicated.

3.1. Sketch of the Construction for E-Patterns

As the construction is rather involved, we only give a basic sketch, and
omit the full technical details. In each of the proofs, our goal is to decide the
emptiness of a set V, which is one of TRIVE(N) (for some N ≥ 1), NTCCE,
or VALCE(I) (for some configuration I). For this, we construct two patterns
α and β such that LE,Σ(α) \ LE,Σ(β) 6= ∅ if and only if V 6= ∅. The pattern α
contains two subpatterns α1 and α2, where α2 is a terminal-free pattern with
var(α2) ⊆ var(α1)∪ {y}, and y is a variable that occurs exactly once in α2, but
does not occur in α1.

Glossing over details (and ignoring the technical role of α2), the main goal is
to define β in such a way that, for every substitution σ, σ(α) ∈ LE,Σ(β) if and
only if σ(α1) ∈ V. More explicitly, the subpattern α1 generates a set of possible
strings, and β encodes a disjunction of predicates on strings that describe the
complement of V through all possible errors. If one of these errors occurs in
σ(α1), we can construct a substitution τ with τ(β) = σ(α). If V = ∅, every
σ(α) belongs to LE,Σ(β). Otherwise, any element of V can be used to construct
a word σ(α) /∈ LE,Σ(β). The proof of Theorem 3.2 in [7] can be interpreted
as a special case of this construction, using α1:=x and α2:=y. Through our
modification, we are able to exert more control on the elements of LE,Σ(α1),
and use this to define required repetitions, prefixes or suffixes for all σ(α1) with
σ(α) /∈ LE,Σ(β). The variables in var(α2) \ {y} are even further restricted, and
can only be mapped to 0∗.

13

3.2. Sketch of the Construction for NE-Patterns

Describing the NE-construction on the same level of detail as the E-construction,
both appear to be identical, including the presence and the role of subpatterns
α1 and α2 in α. But as evidenced in the full proof, the peculiarities of NE-
patterns require considerable additional technical effort. For example, the E-
construction heavily depends on being able to map most variables in β to the
empty word; dealing with these ‘superfluous’ variables is the largest difficulty
for the modification. In order to overcome this problem, the pattern α contains
long terminal-strings, which makes it possible to map every variable in β to at
least one terminal. These terminal-strings complicate one of the main proofs, as
we have to ensure that these terminal-strings do not prevent a necessary map-
ping, while not allowing any unintended mappings. The E-construction uses a
set of variables xi of which, under some preconditions, all but one have to be
mapped to the empty word. That variable is then used to enforce certain de-
compositions of β in a way that allows us to encode the predicates in a system of
word equations. In the NE-construction, we use a different prefix-construction
to obtain a set of variables, which (again under some preconditions) all but one
have to be mapped to the terminal 0, while the single remaining variable has to
be mapped to the terminal #. Sometimes the NE-construction needs additional
variables in contrast to the E-construction. Some minor changes make sure that
the number of different variables in β does not increase too much – this is one
reason for the different definitions of the encoding sets for the erasing and the
nonerasing case in Sections 2.2 and 2.3. As we use more often terminals in the
NE-construction instead of variables, the number of different variables can be
even smaller than in the E-construction. Through this displacement the number
of different variables in Theorem 3.9 is less than in Theorem 3.8. Furthermore
the modifications of the construction and the use of nonerasing substitutions
make the implementation of the extensions in Section 5 simpler than for the
erasing case.

4. Proofs of the Main Theorems

4.1. The Construction for E-Patterns

In this section, we describe the construction that is common to the proofs of
Theorems 3.8, 3.10 and 3.12, and describe how the number of necessary variables
can be derived from each actual instantiation of the construction. The actual
proofs for Theorems 3.8, 3.10 and 3.12 can be found in Section 4.2, 4.3 and 4.4,
respectively.

Let Σ = {0,#}. For each of the proofs, the goal is to decide the emptiness
of a set V, which is one of TRIVE(N) (for some N ≥ 1), NTCCE, or VALCE(I)
(for some configuration I). For this, we construct two patterns α and β such
that LE,Σ(α) \ LE,Σ(β) = ∅ if and only if V 6= ∅.

Basically, α generates a list of possible strings and provides some technical
infrastructure, while β encodes a list of predicates π1 to πµ that describe all
possible errors in the strings generated by α by describing the complement of

14

V. Due to the right choice of α and β, LE,Σ(α) ⊂ LE,Σ(β) holds if some word
in LE,Σ(α) satisfies none of the predicates.

Depending on the intended proof, we choose a structural parameter κ ∈
{2, 3} and a µ ≥ 4. The parameter κ has two purposes: First, it determines
the maximal number of parameters in each predicate, and second, if none of the
predicates is satisfied, the encoded word must not contain a factor #κ.

In addition to this, also depending on the actual proof, we select patterns
α1 and α2, where α1 is a pattern that does not contain #κ as a factor, and α2

is a terminal-free pattern with var(α2) ⊆ var(α1) ∪ {y}, where y is a variable
that occurs exactly once in α2, but does not occur in α1.

We define
α:=v v #4 v α1 v α2 v #4 v u v,

where v = 0#30 and u = 0##0. The pattern α1 will be used to generate the
set of possible members of V, while α2 serves more technical purposes.

Note that the construction in [7] can be seen as a special case of the present
construction, by selecting α1:=x, α2:=y and κ:=3. Our more general approach
allows us describe the intended starting and ending values of the encoded com-
putation in α1 without the use of additional predicates. Furthermore, as we
shall see soon, the variables in var(α1)∩var(α2) provide us with greater control
on the shape of the images of α1.

Furthermore, let

β:=(x1)2 . . . (xµ)2#4β̂1 . . . β̂µ#4β̈1 . . . β̈µ,

with, for all i ∈ {1, . . . , µ}, β̂i:=xi γi xi δi xi and β̈i:=xi ηi xi, where x1, . . . , xµ
are pairwise distinct variables and all γi, δi, ηi ∈ X∗ are terminal-free patterns.
The patterns γi and δi shall be defined later; for now, we only mention:

1. ηi:=zi(ẑi)
2zi and zi 6= ẑi for all i ∈ {1, . . . , µ},

2. var(γiδiηi) ∩ var(γjδjηj) = ∅ for all i, j ∈ {1, . . . , µ} with i 6= j,

3. xk /∈ var(γiδiηi) for all i, k ∈ {1, . . . , µ}.

Thus, for every i, the elements of var(γiδiηi) appear nowhere but in these three
factors. Let H be the set of all substitutions σ : (Σ ∪ var(α1α2))

∗ → Σ∗. We
interpret each triple (γi, δi, ηi) as a predicate πi : H → {0, 1} in such a way
that σ ∈ H satisfies πi if there exists a morphism τ : var(γiδiηi)

∗ → Σ∗ with
τ(γi) = σ(α1), τ(δi) = σ(α2) and τ(ηi) = u. As we shall see, LE,Σ(α) \LE,Σ(β)
exactly contains those σ(α) for which σ does not satisfy any of π1 to πµ. Our
goal is a selection of predicates that describe the complement of V, where the
predicates π4 to πµ provide an exhaustive list of sufficient criteria for ‘non-
membership’ in V. We continue with further technical preparations.

A substitution σ is of κ-E-bad form if σ(α1) contains #κ as a factor, or if
σ(α2) contains #. Otherwise, σ is of κ-E-good form. For κ = 3, this notion is
equivalent to the concept of bad form and good form in [7].

15

The predicates π1 and π2 describe the cases where σ is of κ-E-bad form and
are defined by

γ1:=y1,1(ẑ1)κy1,2, γ2:=y2,

δ1:=ŷ1, δ2:=ŷ2,1 ẑ2 ŷ2,2,

where y1,1, y1,2, y2, ŷ1, ŷ2,1, ŷ2,2, ẑ1 and ẑ2 are pairwise distinct variables.
Recall that ηi = zi(ẑi)

2zi for all i. It is not very difficult to see that π1 and
π2 characterize the morphisms that are of κ-E-bad form:

Lemma 4.1. A substitution σ ∈ H is of κ-E-bad form if and only if σ satisfies
π1 or π2.

Proof. Apart from the changed definition of α1 and α2, this proof is identical
to the proof of Lemma 1 in [7].

We begin with the only if direction. If σ(α1) = w1#κw2 for some w1, w2 ∈
Σ∗, choose τ(y1,1):=w1, τ(y1,2):=w2, τ(ẑ1):=#, τ(ŷ1):=σ(α2) and τ(z1):=0.
Then τ(γ1) = σ(α1), τ(δ1) = σ(α2) and τ(η1) = u; thus, σ satisfies π1.

If σ(α2) = w1#w2 for some w1, w2 ∈ Σ∗, let τ(y2):=σ(α1), τ(ŷ2,1):=w1,
τ(ŷ2,2):=w2 and τ(ẑ2):=#, and τ(z2):=0. It is easy to see that σ satisfies π2.

For the if direction, if σ satisfies π1, then there exists a morphism τ with
τ(γ1) = σ(α1) and τ(η1) = 0#20. Thus, τ(ẑ1) = # and τ(z1) = 0 must hold.
Then, by definition of γ1, σ(α1) = τ(y1,1)#κτ(y1,2), which means that σ is of
κ-E-bad form.

Analogously, if σ satisfies π2, then σ(α2) contains the letter #, and σ is of
κ-E-bad form.

Note that, if σ is of κ-E-good form, σ(x) ∈ 0∗ for all variables x ∈ var(α1)∩
var(α2). Thus, these variables provide us with greater control on the shape of
σ(α1) for the remaining predicates.

As in the original, Lemma 4.1 leads us to the central part of the construction:

Lemma 4.2. For every substitution σ ∈ H, σ(α) ∈ LE,Σ(β) if and only if σ
satisfies one of the predicates π1 to πµ.

Proof. This proof is also almost identical to the proof of Lemma 2 in [7]. We
begin with the if direction. Assume σ ∈ H satisfies some predicate πi. Then
there exists a morphism τ : (var(γiδiηi))

∗ → Σ∗ such that τ(γi) = σ(α1),
τ(δi) = σ(α2) and τ(ηi) = u. We extend τ to a substitution τ ′ defined by

1. τ ′(x):=τ(x) for all x ∈ var(γiδiηi),

2. τ ′(xi):=0#30 = v,

3. τ ′(0):=0 and τ ′(#):=#,

4. τ ′(x):=λ in all other cases.

16

By definition, none of the variables in var(γiδiηi) appears outside of these fac-
tors. Thus, τ ′ can always be defined this way. We obtain

τ ′(β̂i) = τ ′(xi γi xi δi xi)

= v τ(γi) v τ(δi) v

= v σ(α1) v σ(α2) v,

τ ′(β̈i) = τ ′(xi ηi xi)

= v τ(η) v

= v u v.

As τ ′(γj) = τ ′(δj) = τ ′(ηj) = τ ′(β̂j) = τ ′(β̈j) = λ for all j 6= i, this leads to

τ ′(β) = τ ′
(

(x1)2 . . . (xµ)2#4β̂1 . . . β̂µ#4β̈1 . . . β̈µ

)
= τ ′

(
(xi)

2
)

#4τ ′(β̂i)#
4τ ′(β̈i)

= v v #4 v σ(α1) v σ(α2) v #4 v u v

= σ(α).

This proves σ(α) ∈ LE,Σ(β).
For the other direction, assume σ(α) ∈ LE,Σ(β). If σ is of κ-E-bad form,

then by Lemma 4.1, σ satisfies π1 or π2. Thus, assume σ(α1) does not contain
#κ as a factor, and σ(α2) ∈ 0∗. Let τ be a substitution with τ(β) = σ(α).

Now, as σ is of κ-E-good form, σ(α) contains exactly two occurrences of #4,
and these are non-overlapping. As σ(α) = τ(β), the same holds for τ(β). Thus,
the equation σ(α) = τ(β) can be decomposed into the system consisting of the
following three equations:

0#30 0#30 = τ
(
(x1)2 . . . (xµ)2

)
, (1)

0#30 σ(α1) 0#30 σ(α2) 0#30 = τ(β̂1 . . . β̂µ), (2)

0#30 u 0#30 = τ(β̈1 . . . β̈µ). (3)

First, consider equation (1) and choose the smallest i for which τ(xi) 6= λ. Then
τ(xi) has to start with 0, and as

τ
(
(xi)

2 . . . (xµ)2
)

= 0#30 0#30,

it is easy to see that τ(xi) = 0#30 = v and τ(xj) = λ for all j 6= i must hold.
Note that u does not contain 0#30 as a factor, and does neither begin with

#30, nor end on 0#3. But as τ(β̈i) begins with and ends on 0#30, we can use
equation (3) to obtain 0#30 u 0#30 = τ(β̈i) and τ(β̈j) = λ for all j 6= i. As

β̈i = xiηixi and τ(xi) = 0#30, τ(ηi) = u must hold.
As σ is of κ-E-good form, σ(0#30 α1 0#30 α2 0#30) contains exactly three

occurrences of #3. But there are already three occurrences of #3 in τ(β̂i) =

0#30 τ(γi) 0#30 τ(δi) 0#30. This, and equation (2), lead to τ(β̂j) = λ for all
j 6= i and, more importantly, τ(γi) = σ(α1) and τ(δi) = σ(α2). Therefore, σ
satisfies the predicate πi.

17

Thus, we can select predicates π1 to πµ in such a way that LE,Σ(α) \
LE,Σ(β) = ∅ if and only if V = ∅ by describing V through a disjunction of
predicates on H. The proof of Lemma 4.2 shows that if σ(α) = τ(β) for sub-
stitutions σ and τ ; where σ is of κ-E-good form, there exists exactly one i
(3 ≤ i ≤ µ) such that τ(xi) = 0#30.

Due to technical reasons, we need a predicate π3 that, if unsatisfied, sets a
lower bound to the length of σ(α2), defined by

γ3:=y3,1 ŷ3,1 y3,2 ŷ3,2 y3,3, δ3:=ŷ3,1 ŷ3,2,

if κ = 2, or by

γ3:=y3,1 ŷ3,1 y3,2 ŷ3,2 y3,3 ŷ3,3 y3,4, δ3:=ŷ3,1 ŷ3,2 ŷ3,3,

if κ = 3; where in either case all of y3,1 to y3,4 and ŷ3,1 to ŷ3,3 are pairwise
distinct variables.

Clearly, if some σ ∈ H satisfies π3, σ(α2) is a concatenation of κ (possibly
empty) factors of σ(α1). Thus, if σ satisfies none of π1 to π3, σ(α2) has to
be longer than the κ longest non-overlapping sequences of 0s in σ(α1). This
allows us to identify a class of predicates definable by a rather simple kind of
expression, which we use to define π4 to πµ in a less technical way. Note that any
meaningful use of this construction requires α2 to contain at least one variable
that does not occur in α1, as otherwise, π3 would always be satisfied.

Let Xκ:={x̂1, . . . , x̂κ} ⊂ X, let Gκ denote the set of those substitutions
in H that are of κ-E-good form and let R be the set of all substitutions ρ :
(Σ ∪Xκ)

∗ → Σ∗ for which ρ(x̂i) ∈ 0∗ for all i with 1 ≤ i ≤ κ. For patterns
ζ ∈ (Σ ∪Xκ)

∗
, we define R(ζ):={ρ(ζ) | ρ ∈ R}.

Definition 1. A predicate π : Gκ → {0, 1} is called a κ-simple predicate for
α1 if there exist a pattern ζ ∈ (Σ ∪Xκ)

∗
and languages L1, L2 ∈ {Σ∗, {λ}}

such that a substitution σ satisfies π if and only if σ(α1) ∈ L1 R(ζ) L2. If
L1 = L2 = Σ∗, we call π an infix-predicate. If only L1 = Σ∗ and L2 = {λ}, π is
called a suffix-predicate, and if L1 = {λ} and L2 = Σ∗, a prefix-predicate.

¿From a slightly different point of view, the elements of Xκ can be understood
as numerical parameters describing (concatenational) powers of 0, with substi-
tutions ρ ∈ R acting as assignments. For example, if σ ∈ Gκ satisfies a κ-simple
predicate π if and only if σ(α1) ∈ Σ∗R(#x̂1#x̂20#x̂1), we can also write that
σ satisfies π if and only if σ(α1) has a suffix of the form #0m#0n0#0m (with
m,n ∈ N0), which could also be written as #0m#0∗0#0m, as n occurs only once
in this expression. Although these predicates do not explicitly allow arithmeti-
cal operations on the numerical parameters, we use expressions like 0m+2n+1 as
a shorthand for 0m0n0n0.

As in the original construction, the predicate π3 allows us to express all
κ-simple predicates:

Lemma 4.3. For every κ-simple predicate πS having n numerical parameters
with n ≤ κ, there exists a predicate π defined by terminal-free patterns γ, δ, η
such that for all substitutions σ ∈ Gκ:

18

1. if σ satisfies πS, then σ also satisfies π or π3,

2. if σ satisfies π, then σ also satisfies πS.

Proof. This proof is a variation of the proof of Lemma 3 in [7].
We first consider the case of L1 = L2 = Σ∗. Assume πS is a κ-simple

predicate, and ζ ∈ (Σ ∪Xκ)
∗

is a pattern such that σ ∈ Gκ satisfies πS if and
only if σ(α1) ∈ L1R(ζ)L2. Then define γ:=y1 ζ

′ y2, where ζ ′ is obtained from ζ
by replacing all occurrences of 0 with a new variable z and all occurrences of #
with a different variable ẑ, while leaving all present elements of Xκ unchanged.
Furthermore, δ:=x̂1 . . . x̂κŷ. Finally, in order to stay consistent with the ηi
appearing in β, let η:=z(ẑ)2z. Note that x̂1, x̂2, x̂3, y1, y2, z and ẑ are pairwise
distinct variables.

Now, assume σ ∈ Gκ satisfies πS . Then there exist words w1, w2 ∈ Σ∗ and
a substitution ρ ∈ R such that σ(α1) = w1 ρ(ζ) w2. If σ(α2) is not longer than
any κ non-overlapping factors of the form 0∗ of σ(α1) combined, π3 is satisfied.
Otherwise, we can define τ by setting τ(y1):=w1, τ(y2):=w2, τ(z):=0, τ(ẑ):=#,
τ(x̂i):=ρ(x̂i) for all i ∈ {1, . . . , k} where x̂i appears in ζ and τ(x̂i):=λ where x̂i
does not appear in ζ. Finally, let τ(ŷ):=0m, where

m:=|σ(α2)| −
∑

x̂∈var(ζ)

|τ(x̂)|

(m > 0 holds, as σ does not satisfy π3). Then τ(ζ ′) = ρ(ζ), and

τ(γ) = τ(y1) τ(ζ ′) τ(y2)

= w1 ρ(ζ) w2 = σ(α1),

τ(δ) = 0|σ(α2)| = σ(α2),

τ(η) = τ(z (ẑ)2 z)

= 0##0 = u.

Therefore, σ satisfies π, which concludes this direction.
For the other direction, assume σ ∈ Gκ satisfies π. Then there is a morphism

τ such that σ(α1) = τ(γ), σ(α2) = τ(δ) and τ(η) = u. As η = z (ẑ)2 z and
u = 0##0, τ(z) = 0 and τ(ẑ) = # must hold. By definition τ(y1), τ(y2) ∈ Σ∗.
If we define ρ(x̂i):=τ(x̂i) for all x̂i ∈ var(δ), we see that σ(α1) ∈ L1R(ζ)L2

holds. Thus, σ satisfies πS as well.
The other three cases for choices of L1 and L2 can be handled analogously

by omitting y1 or y2 as needed. Note that this proof also works in the case
ζ = λ.

Intuitively, if σ does not satisfy π3, then σ(α2) (which is in 0∗, due to σ ∈ Gκ)
is long enough to provide building blocks for κ-simple predicates using variables
from Xκ.

All that remains for each of the proofs is to choose an appropriate set of
predicates.

19

Then it is easy to see how many variables each predicate in β requires. First,
every predicate πi has a corresponding variable xi, for µ variables in total. The
predicates π1 and π2 each use five further variables, π3 uses 2κ + 3 additional
variables. In total, β contains µ+ 2κ+ 13 variables for the predicates π1 to π3

and the variables xi, and the additional variables that are required to encode
the remaining predicates π4 to πµ.

Each of these predicates requires:

1. three variables for yi, zi and ẑi,

2. one variable for each numerical parameter (or star),

3. one additional variable if it is a prefix or a suffix predicate,

4. two additional variables if it is an infix predicate.

Thus, each predicate requires at least 3 and at most 8 variables.

4.2. Proof of Theorem 3.8.

Proof. For both claims of the proof, we show that, given any configuration I of
U , we can construct patterns α and β from the appropriate classes such that
LE,Σ(α) \ LE,Σ(β) = ∅ if and only if VALCE(I) = ∅. The predicates for the
proofs of the two claims of this theorem are very similar, they differ only at the
choice of α1 and α2, and an additional predicate that is required for the second
case. For the first claim, we chose µ = 333, for the second, µ = 334. In either
case, we choose κ = 3.

For the first claim of the theorem, we choose

α1:=## encE(I)##x1#00x2x2#010##, α2:=x2y,

where x1, x2 and y are pairwise distinct variables; for the second,

α1:=## encE(I)##x#010##, α2:=y,

where x and y are distinct variables. Ultimately, if σ(α) /∈ LE,Σ(β), σ(α1)
is supposed to contain an encoding of a valid computation that starts in the
configuration I, and leads to an accepting configuration. The variable x2 in the
subpattern α1 of the first claim will have an image from 0∗, which means that
the left tape of the final configuration has an odd encoding, and thus contains
1, while the machine is in state q10. For the second claim, this condition will be
checked by an additional predicate, which requires 6 additional variables in β.

Our first intermediate goal is a set of predicates that (if unsatisfied) forces
σ(α1) into a basic shape common to all elements of VALCE(I). In other words,
we want to remove all cases where

σ(α1) /∈ (##0+#0+#0+)+##,

or σ(α1) contains a factor 016## and thus, an encoding of a state qn with
n > 15 (such a state does not exist in U).

20

To achieve this goal, we define predicates π4 to π7 by κ-simple predicates as
follows:

π4 : σ(α1) contains a factor ##0+##,

π5 : σ(α1) contains a factor ##0+#0+##,

π6 : σ(α1) contains a factor ##0+#0+#0+#0,

π7 : σ(α1) contains a factor 016##.

Due to Lemma 4.3, the predicates π1 to π7 do not strictly give rise to a charac-
terization of substitutions with images that are not an encoding of a sequence of
configurations of U , as there are σ ∈ Gκ where σ(α1) is of the right shape, but
π3 is satisfied due to σ(α2) being too short. But this problem can be avoided
by choosing σ(α2) long enough to leave π3 unsatisfied.

Thus, if σ satisfies none of the predicates π1 to π7, σ(α1) is an encoding
of a sequence of configurations of U that starts with I, and ends in a halting
configuration (for the first claim we prove), or a configuration in state q10 (for
the second claim).

The remaining predicates will describe all errors where one of the encoded
configurations is not a valid successor of its preceding configuration3. We will
first consider all errors in state transitions, and then all errors in the tape
contents.

In principle, we could now define predicates that, for every state qi ∈ Q,
every input letter a ∈ Γ, list all states that are not the successor state of qi on
input a. In order to save predicates (and thereby variables), our approach is a
little bit more involved. Every state has at most two legal successor states, and
the states q6, q10 and q15 have only one successor. Thus, we can first exclude
forbidden successor states regardless of the input letter, and then handle the few
remaining cases. Furthermore, we are able to express the fact that a successor
state has a larger number than possible.

In order to determine a good choice of predicates, it helps to visualize the
relations of possible predecessor and successor states in a matrix. We define the
15× 15 matrix S = (si,j)

15
i,j=1 by

si,j :=

{
1 if there is an a ∈ Γ with δ(qi, a) = qj ,

0 otherwise.

For a graphical representation of S and the predicate that are derived from it,
see Figure 3. Intuitively, si,j equals 0 if and only if qj can never be a valid
immediate successor of qj , regardless of the input letter.

3Note that, at this point, the construction uses 5 infix predicates (in addition to π1 to π3);
one for each possible number of numerical parameters from 0 to 3. Even this small number of
predicates requires 52 variables in β, and is only able to express the basic shape of encoded
configurations.

21

1 1 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 0 1 0 0 0 0 0 0 0 0

0 0 0 0 1 1 0 0 0 0 0 0 0 0 0

1 0 0 1 0 0 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 1 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0 1 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 1 0 1 0

0 0 0 0 0 0 0 0 0 0 0 1 1 0 0

0 1 0 0 0 0 0 0 0 0 0 1 0 0 0

0 0 1 0 0 0 0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

S =

Figure 3: The matrix S, listing the possible (and impossible) immediate successors and pre-
decessors of the states. Lines denote the sets of impossible state pairs that are described by
the predicates π8 to π34. The remaining occurrences of 0 are handled by the predicates π35
to π66.

First, we construct a predicate

π8 : σ(α1) contains a factor #01##0+#0+#03.

This predicates handles all cases where the encoding contains a configuration
with state q1, where the next state is some qj with j ≥ 3. In the same spirit,
we can define a predicate that handles all configurations where q1 is preceded
by a state qj with j ≥ 10, which is also impossible in a valid computation:

π9 : σ(α1) contains a factor 010##0+#0+#01#.

Intuitively, π8 describes all occurrences of 0 in the first row of S, while π9

describes the bottom block of 6 occurrences of 0 in the first column.
We define similar predicates π10 to π33 for all states q2 to q13; each predicate

handles the longest continuous block of 0s when reading a row from the right,
or a column from the bottom.

Using the matrix S it is easy to see that this is not possible for q14, as this
state has q15 as successor and as predecessor. Similarly, the state q15 is handled
by a single predicate

π34 : σ(α1) contains a factor #015##0+#0+#015#

that describes the lone 0 in the bottom right corner of S. Each of the 27
predicates π8 to π34 is an infix predicate with 2 numerical parameters.

22

It seems like reordering the states could transform the matrix and reduce
the number of predicates for single occurrences of 0. But after some experi-
mentation, we decided that the expected small savings would not warrant the
considerable effort. Further (but still comparatively small) savings might be
achieved by the use of a machine with a different matrix.

There are still 32 occurrences of 0 that have at least one 1 between them
an the right side or the bottom of S. Thus, for each si,j with this property, we
define a predicate

πk : σ(α1) contains #0i##0+#0+#0j#

for an appropriate k. This leads to the 32 predicates π35 to π66, also infix
predicates with 2 numerical parameters.

Now, only 24 possible errors need to be considered. For every state qi ∈
Q \ {q6, q10, q15}, and every input letter a ∈ Γ, we need to describe the error
that the succeeding state is the one possible successor state that would have been
reached from qi by reading the complement of a. This leads to the predicates
π67 to π90; as an example, we define the two predicates that handle the invalid
successor states of q1:

π67 : σ(α1) contains #002m#01##0+#0+#01#; m ∈ N0,

π68 : σ(α1) contains #002m+1#01##0+#0+#02#; m ∈ N0.

The first of these two predicates describes all cases where the machine is in the
state q1, reads 0 (as enc(tL) mod 2 = 0 = e(0)) and stays in the state q1, while
π68 describes all cases where the machine transitions to q2 upon reading 1 in
state q1.

No such predicates are required for the states q6 and q15, as these have only
one possible successor state. As we permitted the machine to continue working
after reaching a halting computation, the same applies to q10. The 24 predicates
π67 to π90 are infix predicates with three numerical parameters (as the starts
count as numerical parameters that occur only once).

Thus, if σ satisfies none of the predicates π1 to π90, σ(α1) encodes a sequence
of configurations that starts with the initial configuration I and ends on the state
q10 (as mentioned before, we also know that in the proof of the first claim, the
final configuration is an accepting configuration, but this fact will be discussed
later). Furthermore, we know that all transitions of the states are correct.
Therefore, all that remains is to define a set of predicates that handle errors in
the handling of the tape.

For this, we need to distinguish between left movements and right move-
ments. Before we proceed to the definition of the predicates for tape error in
each of these cases, we take a closer look at the intended behavior of valid com-
putations, and their encodings in VALCE(I). Assume U is in some state qi,
while the tape contains tL on the left and tR on the right side. Let a denote the
input letter, i. e., e(a) = (e(tL) mod 2). Let t′L and t′R denote the left and the
right tape side of the succeeding valid configuration, respectively.

23

First, consider the case that δ(qi, a) = (d, L, qj) for some state qj ∈ Q and
an output letter d ∈ Γ. In this case,

e(t′L) = e(tL) div 2,

e(t′R) = 2(e(tR)) + e(d).

Thus, every tape error can be understood as a difference between the supposed
e-value of the encoded side, and the actual e-value. As we shall see, all these
differences can be described by a finite number of simple predicates, simulating
arithmetic operations with the numerical parameters.

We begin with predicates for values that are too large, which can be defined
more straightforwardly than for too small values. For some appropriate k > 90,
define the predicates

πk : σ(α1) contains #002m+e(a)#0i##0+#00m+1; m ∈ N0,

πk+1 : σ(α1) contains #00m#002n+e(a)#0i##002m+e(d)+1; m,n ∈ N0.

These capture all cases where, upon reading a in state qi, the left or the right
side of the tape (respectively) in the succeeding configuration contains more
than it is supposed to (more meaning that its image under e is larger).

The following predicate describes all cases where the encoding of the left
side of tape is too small:

πk+2 : σ(α1) contains #002(m+n+1)+e(a)#0i##0+#00m#; m,n ∈ N0.

We capture the same case for the right side of the tape by the following two
cases:

πk+3 : σ(α1) contains #002m+e(a)#0i##002n+(1−e(d))#; m,n ∈ N0,

πk+4 : σ(α1) contains #00l+m+1#002n+e(a)#0i##002m+e(d)#; l,m, n ∈ N0.

As e(t′R) = 2(e(tR)) + e(d) holds, we know that every case with e(t′R) mod 2 6=
e(d) contains an error, which is described by πk+3. Assuming that this predicate
is not satisfied, we can use πk+4 to capture all cases where e(t′R) mod 2 equals
e(d) mod 2, but is too small.

This concludes the definitions of tape error for L movements. Every com-
bination of qi and a that results in an L-movement requires 5 infix predicates
πk to πk+4; the first two use 2 parameters, the other three use 3 parameters.
In total, U has 15 combinations (qi, a) that lead to an L-movement. Therefore,
we need 75 predicates for tape errors of L-movements, which brings us to an
intermediate total of 165 predicates.

Next, assume δ(qi, a) = (d,R, qj) for some state qj ∈ Q and an output letter
d ∈ Γ. Then

e(t′L) = 2(2(e(tL) div 2) + e(d)) + (e(tR) mod 2)

= 4(e(tL) div 2) + 2 e(d) + (e(tR) mod 2),

e(t′R) = e(tR) div 2.

24

Although the second of these equations should be clear, the first is compara-
tively involved and is best understood by examining it from the inside. The
intermediate result 2(e(tL) div 2) + e(d) sets the tape cell under the head to the
letter d, multiplying this number by 2 shifts the whole left side of the tape one
cell to the left and appends a new cell containing the blank symbol 0. This
symbol is then overwritten with the first letter of the right side of the tape by
adding (e(tR) mod 2). Thus, e(t′L) is indeed an encoding of the left side of the
tape after the step (d,R, qj).

For fixed qi and a, encoding R-steps is more involved than encoding L-
steps, as we need to distinguish the two possible cases for tR mod 2. This is
the reason we chose to count the head of U to the left side of the tape, as
we have only 14 R-movements, but 15 L-movements. Larger savings could be
achieved by using a different machine with a larger difference in the number
of L- and R-movements; but as mentioned before, we do not think that these
slight improvements warrant the effort.

For an appropriate k > 165, we define the following four predicates for cases
where one of the sides of the tapes contains too much:

πk : σ(α1) contains #002m#002n+e(a)#0i##0+#002(2n+e(d))+1; m,n ∈ N0,

πk+1 : σ(α1) contains #002m+1#002n+e(a)#0i##0+#002(2n+e(d))+2; m,n ∈ N0,

πk+2 : σ(α1) contains #002m#002n+e(a)#0i##00m+1; m,n ∈ N0,

πk+3 : σ(α1) contains #002m+1#002n+e(a)#0i##00m+1; m,n ∈ N0.

The first two describe the cases where t′L is too large (with e(tR) being even or
odd, respectively), the second two the cases where e(t′R) is too large.

Next, we define two predicates that are satisfied if t′R is too small:

πk+4 : σ(α1) contains #002(l+m+1)#002n+e(a)#0i##00l#; l,m, n ∈ N0,

πk+5 : σ(α1) contains #002(l+m+1)+1#002n+e(a)#0i##00l#; l,m, n ∈ N0.

Again, we need to distinguish whether e(tR) is even (πk+4) or odd (πk+5). This
concludes the definition of predicates for t′R.

As t′L = 4(e(tL) div 2) + 2 e(d) + (e(tR) mod 2), we know that for every R-
movement in a valid computation, the congruence class of e(t′L) modulo 4 is
either 2 e(d) or 2 e(d) + 1, depending on tR,0 (recall that tR,0 is the first cell
to the right of the head). Thus, regardless of that tape cell, the congruence
classes of 2− e(d) and 3− e(d) modulo 4 can be excluded with the following two
predicates:

πk+6 : σ(α1) contains #002m+e(a)#0i##0+#004n+(2−e(d))#; m,n ∈ N0,

πk+7 : σ(α1) contains #002m+e(a)#0i##0+#004n+(3−e(d))#; m,n ∈ N0.

Furthermore, depending on tR,0, we can also exclude the class 2 e(d) + (1 −
e(tR,0)) modulo 4. For this, we need to distinguish the two possible cases for

25

e(tR,0) and define the predicates

πk+8 : σ(α1) contains #002l#002m+e(a)#0i##00l#004n+2 e(d)+1#; l,m, n ∈ N0,

πk+9 : σ(α1) contains #002l+1#002m+e(a)#0i##00l#004n+2 e(d)#; l,m, n ∈ N0.

Finally, the last two predicates handle the case where e(t′L) is of the right con-
gruence class modulo 4, but too small. Again, we need to distinguish the two
possible values of e(tR,0):

πk+10 : σ(α1) contains #002l#002(m+n+1) e(a)#0i##00l#004m+2 e(d)#; l,m, n ∈ N0,

πk+11 : σ(α1) contains #002l+1#002(m+n+1) e(a)#0i##00l#004m+2 e(d)+1#; l,m, n ∈ N0.

Note that the last four predicates already assume t′R has transitioned correctly.
This is acceptable, as errors on this side of the tape are handled by the previous
predicates.

We see that every one of the 14 R-movements of U requires 12 infix pred-
icates πk to πk+11. Of these, πk+2 and πk+3 use 2 parameters, all others use
3 parameters. Adding these 168 predicates allows us to conclude that µ = 333
was indeed a correct choice for the first claim.

For the second claim, we also add the suffix predicate

π334 : σ(α1) ends on #02n+1#010##; n ∈ N0.

This predicate eliminates all computations where the last configuration is not
accepting.

Now, if there is a σ(α) /∈ LE,Σ(β), σ(α1) encodes a computation of U that
starts in I and reaches the state q10, while e(tL) is odd. That means that
the machine reads 1 in q10 and halts. On the other hand, if there is a valid
computation (Ci)

n
i=0 with C0 = I, we can define σ by σ(α1):= enc(C) and

(for example) σ(α2):=0|σ(α1)|. Then none of the predicates is satisfied, and
σ(α) /∈ LE,Σ(β).

Thus, for both claims, LE,Σ(α) \ LE,Σ(β) = ∅ if and only if VALCE(I) = ∅.
As I was chosen freely, this question must be undecidable.

All that remains is to count the number of variables in β. For the first claim,
the types of predicates are distributed as follows:

1. 1 infix predicate with no parameter (π7),

2. 1 infix predicate with one parameter (π4),

3. 133 infix predicates with two parameters (π5, π8 to π66, 3 per L-instruction,
2 per R-instruction),

4. 195 infix predicates with three parameters (π6, π67 to π90, 2 per L-
instruction, 10 per R-instruction).

Therefore, in the first case, we have

| var(β)| = µ+ 2κ+ 13 + 5 + 6 + 133 · 7 + 195 · 8
= 333 + 6 + 13 + 5 + 6 + 931 + 1560 = 2854.

26

Thus, our construction proves that the inclusion problem for ePAT3,Σ in ePAT2854,Σ

is undecidable.
The suffix predicate π334 uses one parameter and requires 6 additional vari-

ables (as µ needs to be increased by one), bringing the total amount of variables
in β to 2860. This demonstrates undecidability of the inclusion problem for
ePAT2,Σ in ePAT2860,Σ.

4.3. Proof of Theorem 3.10

Proof. Here, for any given N ≥ 1, we use the construction to decide the empti-
ness of TRIVE(N).

Let κ:=2, µ:=10, α1:=#0N# x #0# and α2:=y, where x and y are dis-
tinct variables. Due to the results in Section 4.1, we know that if there is a
substitution σ with σ(α) /∈ LE,Σ(β), then

σ(α1) ⊆ #0N# (0+#)+ 0#.

Therefore, every word from this set difference is already an encoding of a finite
sequence over N1, with N as the first, and 1 as the last number. All that remains
is to choose predicates π4 to πµ that describe every pair of successive numbers
ni and ni+1 where ni+1 6= C(ni).

We begin with the cases where ni+1 > C(ni), which are handled by the
following two predicates:

π4 : σ(α1) contains a factor #02m#0m+1 for some m ∈ N0,

π5 : σ(α1) contains a factor #02m+1#06m+3+2 for some m ∈ N0.

It is easy to see that π4 is satisfied if and only if the encoded sequence contains
successive numbers ni and ni+1 where ni is even, and ni+1 > 1

2ni = C(ni).
Likewise, π5 does the same for odd ni: If ni is odd, there is an m ∈ N0 with
ni = 2m+ 1, and C(ni) = 3ni + 1 = 6m+ 3 + 1.

Next, we define a predicate that describes all cases where ni is even, and
ni+1 < C(ni):

π6 : σ(α1) contains a factor #02m+2n+2#0m# for some m,n ∈ N0.

Obviously, if this predicate is satisfied, ni is even, and ni+1 < C(ni). For the
other direction, let ni be even, ni+1 < C(ni), and define m:=ni, n:= 1

2ni−ni+1−
1. Then 2m + 2n + 2 = ni, which means that the corresponding substitution
satisfies this predicate.

Capturing all cases where ni is odd and ni+1 < C(ni) is a little bit more
involved. We define the following four predicates:

π7 : σ(α1) contains a factor #02m+1#02n+1# for some m,n ∈ N0,

π8 : σ(α1) contains a factor #02m+1#06n# for some m,n ∈ N0,

π9 : σ(α1) contains a factor #02m+1#06n+2# for some m,n ∈ N0,

π10 : σ(α1) contains a factor #02m+2n+3#06n+4# for some m,n ∈ N0.

27

By definition of the Collatz function, if ni is odd, then C(ni) must be congruent
to 4 modulo 6. The first three of these predicates handle all the cases where ni
is odd, but ni+1 is in the wrong congruence class modulo 6; i. e., either ni+1 is
odd (π7) or division by 6 leads to a remainder of 0 or 2 (π8 and π9, respectively).
The remaining predicate π10 is satisfied if and only if ni is odd, ni+1 is congruent
to 4 modulo 6, and ni+1 < C(ni).

Thus, if there is a σ(α) /∈ LE,Σ(β), σ(α1) contains an encoding of a sequence
n0, . . . , nl for some l ≥ 2 with ni = Ci(N) for every i, and nl = 1. This means
that N leads the Collatz function to the trivial cycle, and thus, TRIVE(N) 6= ∅.

On the other hand, assume TRIVE(N) 6= ∅. Then there is an l ≥ 2 with

Cl(N) = 1. Let σ(x):=0C
1(N)#0C

2(N)# . . .#0C
l−1(N) and σ(y):=0m, where

m:=|σ(α1)|. As we have seen, σ satisfies none of the predicates π1 to π10,
and thus, σ(α) /∈ LE,Σ(β).

The total number of variables in β can be calculated as follows: First, we
require µ + 2κ + 13 variables from the basic construction and π1 to π3. As π4

and π5 are infix predicates with one numerical parameter, they each require 6
additional variables. Likewise, the predicates π6 to π10 require 7 variables each.
Thus, β contains µ+ 2κ+ 13 + 12 + 35 = 74 different variables.

4.4. Proof of Theorem 3.12

Proof. In order to decide the emptiness of NTCCE, we choose κ:=2, µ:=11
α1:=#x1#x2#x3#x2# and α2:=x2y, where x1, x2, x3 and y are pairwise dis-
tinct variables.

We use the same predicates π4 to π10 as in the previous section for the
encoding of TRIVE(N), and the additional predicate

π11 : σ(α1) contains the factor #0#.

Considering the previous section, it is easy to see that LE,Σ(α) \ LE,Σ(β) 6= ∅
if and only if there is a number leading to a non-trivial cycle: Assume there is
a substitution σ with σ(α) /∈ LE,Σ(β). This substitution satisfies none of the
predicates π1 to π10, and must be of 2-E-good form. Therefore, σ(x2) ∈ 0+,
which means that the sequence encoded in σ(α1) contains the number |σ(x2)|
at least twice. Due to π11, this sequence does not contain the number 1, which
means that the encoded sequence contains a non-trivial cycle of the Collatz
function. Thus, NTCCE is empty if and only if LE,Σ(α) \ LE,Σ(β) is empty.

As π11 is a 2-simple infix predicate with no numerical parameters, its sub-
patterns require five new variables in β (in addition to x11), bringing the total
number of variables in β to 80.

Therefore, any algorithm that decides the inclusion problem of ePAT4,Σ in
ePAT80,Σ can be used to determine in finite time whether there exists any non-
trivial cycle of the Collatz function by deciding whether LE,Σ(α) ⊆ LE,Σ(β).

4.5. The Construction for NE-Patterns

This construction is used by the proofs of Theorem 3.9, Theorem 3.11 and
Theorem 3.13, which can be found in Section 4.6, 4.7 and 4.8 (respectively).

28

Let Σ:={0,#} and let V be the respective set of valid computations, i. e.,
TRIVNE(N), NTCCNE or VALCNE(I), and let V denote the corresponding com-
plement. Our goal is to construct patterns α, β ∈ PatΣ such that LNE,Σ(α) ⊆
LNE,Σ(β) if and only if V = ∅.

In this section, β is defined first, because a part of β is needed to define α.
We define

β:=a b #5 a x1 . . . xµ b #5 r1 β̂1 r2 β̂2 . . . rµ β̂µ rµ+1

and for all i ∈ {1, . . . , µ},

β̂i:=0x4
i 0 γi 0x4

i 0 δi 0x4
i 0,

where a, b, rµ+1 and all ri and xi are distinct variables and all γi, δi ∈ PatΣ are
patterns. All variables ri and rµ+1 occur only once and the variables a and b
occur only twice in the whole pattern β. The patterns γi and δi shall be defined
later; for now we only mention:

1. var(γiδi) ∩ var(γjδj) = ∅ for all i, j ∈ {1, . . . , µ} with i 6= j,

2. xk /∈ var(γiδi) for all i, k ∈ {1, . . . , µ}.

Any variable in var(γiδi) does not appear outside these two factors. In contrast
to the E-construction, the patterns γi and δi are not terminal-free, and the
patterns ηi are not used.

Now define

α:=0µ+1 #5 0µ#0µ #5 t v 0 α1 0 v 0 α2 0 v t,

where v:=0#50, t is another terminal-string, α1 is a pattern not containing
#3 as a factor, and α2 is a pattern not containing #. To define t we need the
nonerasing substitution ψ : (var(β)∪Σ)∗ → Σ∗ with ψ(x) = 0 for all x ∈ var(β).

Now t:=ψ(r1β̂1 . . . rµβ̂µrµ+1).

Lemma 4.4. All ψ(β̂i) with i ∈ {1, . . . , µ} and t begin and end with 0 and do
not contain #4 as a factor.

Proof. For this proof all predicates have to be already defined.
Outside of γi and δi with i ∈ {1, . . . , µ} no # occurs in β̂i. The only δi with

a factor # is δ2 and the factor occurs only once. The γi with the longest factor
of #s is γ1 with one factor #κ and κ ∈ {2, 3}. None of the ψ(β̂i) contains the
factor #4, as ψ maps all variables to 0s, and thus,

ψ(β̂i) = ψ
(
0x4

i 0 γi 0x4
i 0 δi 0x4

i 0
)

= 06 ψ(γi) 06 ψ(δi) 06.

Thus, t also does not contain the factor #4 and begins and ends with 0.

Let H+ be the set of all nonerasing substitutions σ : (Σ ∪ var(α1α2))
∗ →

Σ∗. We interpret each pair (γi, δi) as a predicate πi : H+ → {0, 1} in such
a way that σ ∈ H+ satisfies πi if there exists a nonerasing substitution τ :

29

(var(γiδi) ∪ Σ)
∗ → Σ∗ with τ(γi) = σ(0α10) and τ(δi) = σ(0α20). Later,

we shall see that LNE,Σ(α)\LNE,Σ(β) contains exactly those σ(α) for which σ
does not satisfy any of π1 to πµ, and choose these predicates to describe V.
The encoding of V shall be handled by π4 to πµ, as these predicates describe
a complete list of sufficient criteria for membership in V. Again we need a
considerable amount of technical preparations.

Choose a fixed κ ∈ {2, 3}. A nonerasing substitution σ is of κ-NE-bad form
if σ(0α10) contains #κ as a factor, or if σ(0α20) contains #. Otherwise, σ is of
κ-NE-good form.

The predicates π1 and π2 handle all cases where σ is of κ-NE-bad form and
are defined by

γ1:=y1,1 #κ y1,2, γ2:=0y20,

δ1:=0ŷ10, δ2:=ŷ2,1 # ŷ2,2,

where y1,1, y1,2, ŷ1, y2, ŷ2,1 and ŷ2,2 are pairwise distinct variables.

Lemma 4.5. A nonerasing substitution σ ∈ H+ is of κ-NE-bad form if and
only if σ satisfies π1 or π2.

Proof. We begin with the only if direction. If σ(0α10) = w1#κw2 for some w1 ∈
0Σ∗ and w2 ∈ Σ∗0, choose τ(y1,1):=w1, τ(y1,2):=w2 and τ(0ŷ10):=σ(0α20).
Then τ(γ1) = σ(0α10) and τ(δ1) = σ(0α20); thus, σ satisfies π1.

If σ(0α20) = w1#w2 for some w1 ∈ 0Σ∗ and w2 ∈ Σ∗0, let τ(0y20):=σ(0α10),
τ(ŷ2,1):=w1 and τ(ŷ2,2):=w2. It is easy to see that σ satisfies π2.

For the if direction, if σ satisfies π1, then there exists a nonerasing substi-
tution τ with τ(γ1) = σ(0α10). Then, by definition of γ1,

σ(0α10) = τ(y1,1)#κτ(y1,2,),

which means that σ is of κ-NE-bad form.
Analogously, if σ satisfies π2, then σ(0α20) contains the terminal #, and σ

is of κ-NE-bad form.

The reason for putting the additional 0 left and right of α1 and α2 is to
ensure that the predicates can be almost the same as in the erasing case. In the
erasing case, γi and δi often had separate variables at the borders. For example,
γ1 has the border-variables y1,1 and y1,2. If π1 is satisfied by σ, then one factor
#κ in σ(α1) can be chosen and y1,1 can be mapped to the terminal-string in
σ(α1) to the left of this #κ, and y1,1 to the terminal-string to the right of this
#κ. In the erasing case, the variables can even be mapped to the empty word,
which is obviously not possible in the nonerasing case. If we now used the same
predicate π1 for nonerasing substitutions without the additional 0 to the left
and to the right of α1, and if the only factor #κ in σ(α1) were on a border of
σ(α1), then π1 would not be satisfied by σ.

With the additional 0s, the border-variable for such σ could be mapped to
only 0 and σ satisfies π1. If we want to reuse a predicate πi, where a separate
border-variable does not exist, we have to add a 0 at the left and/or right end

30

of the corresponding patterns γi or δi. For example in δ1, 0 was added at the
left and at the right end.

Lemmas 4.4 and 4.5 allow us to make the following observation, which –
as in the E-construction – serves as the central part of the construction and is
independent of the exact shape of π3 to πµ:

Lemma 4.6. For every nonerasing substitution σ ∈ H+, σ(α) ∈ LNE,Σ(β) if
and only if σ satisfies one of the predicates π1 to πµ.

Proof. We begin with the if direction. Assume σ ∈ H+ satisfies some pred-
icate πi with i ∈ {1, . . . , µ}. Then there exists a nonerasing substitution
τ : (var(γiδi) ∪ Σ)

∗ → Σ∗ with

τ(γi) = σ(0α10), τ(δi) = σ(0α20).

We extend τ to a nonerasing substitution τ ′ defined by

1. τ ′(x):=

{
τ(x) for all x ∈ var(γiδi)
0 for all x ∈ var(γjδj) with j 6= i ,

2. τ ′(xj):=

{
for j = i
0 for j 6= i ,

3. τ ′(rj):=

 ψ(riβ̂i . . . rµβ̂µrµ+1) for j = i

ψ(r1β̂1 . . . riβ̂iri+1) for j = i+ 1
0 else ,

4. τ ′(a):=0µ−i+1 ,

5. τ ′(b):=0i .

By definition, none of the variables in var(γiδi) appears outside the factors γi
and δi. Thus, τ ′ can always be defined in this way. We obtain

τ ′(γi) = τ(γi) = σ(0α10)

and

τ ′(δi) = τ(δi) = σ(0α20).

In addition, it follows that

τ ′(a b #5 a x1 . . . xµ b #5) = 0µ−i+1 0i #5 0µ−i+1 0i−1 # 0µ−i 0i #5

= 0µ+1 #5 0µ # 0µ #5.

Also

τ ′(β̂i) = τ ′(0x4
i 0 γi 0x4

i 0 δi 0x4
i 0)

= 0#40 τ ′(γi) 0#40 τ ′(δi) 0#40

= v σ(0α10) v σ(0α20) v.

31

As τ ′(x) = ψ(x) for all x ∈ var(β̂j) with j 6= i, we get for all j 6= i

τ ′(β̂j) = ψ(β̂j).

Now we obtain

τ ′(β) = τ ′(ab#5ax1 . . . xµb#
5 r1 β̂1 . . . rµ β̂µ rµ+1)

= 0µ+1#50µ#0µ#5 τ ′(r1 β̂1 . . . rµ β̂µ rµ+1)

= 0µ+1#50µ#0µ#5 τ ′(r1β̂1 . . . ri−1β̂i−1) τ ′(ri) τ
′(β̂i) . . .

. . . τ ′(ri+1) τ ′(β̂i+1 . . . rµβ̂µrµ+1)

= 0µ+1#50µ#0µ#5 ψ(r1β̂1 . . . ri−1β̂i−1) τ ′(ri) τ
′(β̂i) . . .

. . . τ ′(ri+1) ψ(β̂i+1 . . . rµβ̂µrµ+1)

= 0µ+1#50µ#0µ#5 ψ(r1β̂1 . . . ri−1β̂i−1) ψ(riβ̂i . . . rµβ̂µrµ+1) τ ′(β̂i) . . .

. . . ψ(r1β̂1 . . . riβ̂iri+1) ψ(β̂i+1 . . . rµβ̂µrµ+1)

= 0µ+1#50µ#0µ#5 ψ(r1β̂1 . . . rµβ̂µrµ+1) τ ′(β̂i) ψ(r1β̂1 . . . rµβ̂µrµ+1)

= 0µ+1#50µ#0µ#5 t τ ′(β̂i) t

= 0µ+1#50µ#0µ#5 t v σ(0α10) v σ(0α20) v t

= σ(α).

This proves σ(α) ∈ LNE,Σ(β).
For the other direction, assume σ(α) ∈ LNE,Σ(β). If σ is of κ-NE-bad form,

then by Lemma 4.5, σ satisfies π1 or π2. Thus, assume σ(0α10) does not contain
#κ as a factor, and σ(0α20) ∈ 00+0. Let τ be a nonerasing substitution with
τ(β) = σ(α).

Now, as σ is of κ-NE-good form and, by Lemma 4.4, t begins and ends with
0 and does not contain #4 as a factor, σ(α) contains the factor #5 exactly twice.
As σ(α) = τ(β), the same holds for τ(β). Thus the equation σ(α) = τ(β) can
be decomposed into the system consisting of the following three equations:

0µ+1 = τ(a b), (1)

0µ # 0µ = τ(a x1 . . . xµ b), (2)

t v σ(0α10) v σ(0α20) v t = τ(r1 β̂1 . . . rµ β̂µ rµ+1). (3)

In equation (2) the image τ(x1 . . . xµ) hast to contain the single # and has to
be of length µ, as else equation (1) would not be satisfied. Then each τ(xi) with
i ∈ {1, . . . , µ} is a single terminal and thus there exist an i ∈ {1, . . . , µ} with
τ(xi) = # and τ(xj) = 0 for all j 6= i. Now this i we obtain

τ(β̂i) = τ(0x4
i 0 γi 0x4

i 0 δi 0x4
i 0)

= 0#40 τ(γi) 0#40 τ(δi) 0#40

= v τ(γi) v τ(δi) v.

32

The right side of equation (3) can be converted to

τ(r1 β̂1 . . . rµ β̂µ rµ+1) = τ(r1 β̂1 . . . ri−1 β̂i−1 ri) τ(β̂i) τ(ri+1 β̂i+1 . . . rµ β̂µ rµ+1)

= τ(r1 β̂1 . . . ri−1 β̂i−1 ri) v τ(γi) v τ(δi) v τ(ri+1 β̂i+1 . . . rµ β̂µ rµ+1),

and thus,

t v σ(0α10) v σ(0α20) v t =

τ(r1 β̂1 . . . ri−1 β̂i−1 ri) v τ(γi) v τ(δi) v τ(ri+1 β̂i+1 . . . rµ β̂µ rµ+1).

As σ is of κ-NE-good form and t does not contain the factor #4, the left side
of the equation contains exactly three times the factor v = 0#40. As the right
side also contains three times this factor, the equation can be decomposed into
the system consisting of the following four equations:

t = τ(r1 β̂1 . . . ri−1 β̂i−1 ri), (4)

σ(0α10) = τ(γi), (5)

σ(0α20) = τ(δi), (6)

t = τ(ri+1 β̂i+1 . . . rµ β̂µ rµ+1). (7)

Due to equations (5) and (6), σ satisfies the predicate πi.

Thus, we can select predicates π1 to πµ such that LNE,Σ(α)\LNE,Σ(β) = ∅ if
and only if V = ∅. As in the E-construction, the corresponding complement V
of V can be described by a disjunction of predicates. The proof of Lemma 4.6
shows that if σ(α) = τ(β) for nonerasing substitutions σ and τ , where σ is
of κ-NE-good form, there exists exactly one i with i ∈ {3, . . . , µ} fulfilling
τ(0x4

i 0) = 0#40 = v.
Again due to technical reasons, we need a predicate that, if unsatisfied, sets

a lower bound to the length of σ(α2). If κ = 2, the predicate π3 is defined by

γ3:=y3,1 ŷ3,1 y3,2 ŷ3,2 y3,3,

δ3:=0 ŷ3,1 ŷ3,2 0.

Recall that the 0s in δ3 are necessary due to the additional 0s to the left and to
the right of α1 and α2. In γ3 the 0s are missing; the reason is that the images of
the border-variables will include the 0s. Hence no problem occurs if the longest
sequences of 0s are on the borders of σ(α1).

If κ = 3, we use a different predicate π3 defined by

γ3:=y3,1 ŷ3,1 y3,2 ŷ3,2 y3,3 ŷ3,3 y3,4,

δ3:=0 ŷ3,1 ŷ3,2 ŷ3,3 0.

In either case, all of y3,1 to y3,4 and ŷ3,1 to ŷ3,3 are pairwise distinct variables.
We do not need to cover cases of less than κ non-overlapping and non-

touching strings of 0s in σ(α1), as the predicates π1 and π2 and the later defined

33

exact construction of α1 ensure that there are at least κ non-overlapping, non-
touching, nonempty factors of 0s in σ(α1). The special case |σ(α2)| < κ, has
not to be covered, because |α2| shall be at least κ.

If some σ ∈ H+ satisfies π3, σ(α2) is a concatenation of κ nonempty factors
of σ(α1). Thus, if σ does not satisfy any of π1 to π3, then σ(α2) has to be longer
than the κ longest non-overlapping, non-touching sequences of 0s in σ(α1). This
again allows to create a class of predicates definable by a rather simple kind of
expression, which we shall use to define π4 to πµ in a less technical way. Note
that any reasonable use of this construction requires α2 to contain at least one
variable that does not occur in α1, as otherwise, every σ of κ-NE-good form
would satisfy π3.

Let Xκ:={x̂1, . . . , x̂κ} ⊂ X, let G+
κ denote the set of those nonerasing substi-

tutions in H+ that are of κ-NE-good form and let R be the set of all nonerasing
substitutions ρ : (Σ ∪ Xκ)∗ → Σ∗ for which ρ(x̂i) ∈ 0+ for all i ∈ {1, . . . , κ}.
For patterns ζ ∈ (Σ ∪Xκ)∗, we define R(ζ):={ρ(ζ)|ρ ∈ R}.

Definition 2. A predicate π : G+
κ → {0, 1} is called a κ-NE-simple predicate

for 0α10, if there exists a pattern ζ ∈ (Σ∪Xκ)∗ and languages L1 ∈ {0Σ∗, {0}}
and L2 ∈ {Σ∗0, {0}} such that a nonerasing substitution σ satisfies π if and
only if σ(0α10) ∈ L1 R(ζ) L2. If L1 = 0Σ∗ and L2 = Σ∗0, we call π an infix-
predicate. If only L1 = {0} or L2 = {0}, we call π a prefix-predicate or a
suffix-predicate, respectively.

Again, the elements of Xκ can be understood as numerical parameters de-
scribing (concatenational) powers of 0, with now nonerasing substitutions ρ ∈ R
acting as assignments. In contrast to the E-construction, the power 00 is not
allowed. For example, σ ∈ G+

κ satisfies a κ-NE-simple predicate π if an only if
σ(0α10) ∈ 0Σ∗R(#x̂1#x̂20#x̂1)0, means σ satisfying π if and only if σ(α1) has
a suffix of the form #0m#0n0#0m, but now with m,n ∈ N1. This could also be
written as #0m#0+0#0m, as n occurs only once in this expression. To replace
the simple predicates which were used in the erasing case, where for the above
example m,n ∈ N0, we could use multiple simple predicates in the nonerasing
case. In the above example, this could be done by three additional simple predi-
cates where m = 0 and n ∈ N1 or m ∈ N1 and n = 0 or m,n = 0. Later we shall
see how these simple predicates can be regardless combined into one predicate,
which will lead to almost the same predicates as in the E-construction.

Using π3, our construction is able to express all κ-NE-simple predicates:

Lemma 4.7. For every κ-NE-simple predicate πS over n numerical parameters
with n ≤ κ, there exists a predicate π defined by patterns γ and δ such that for
all nonerasing substitutions σ ∈ G+

κ :

1. if σ satisfies πS, then σ also satisfies π or π3,

2. if σ satisfies π, then σ also satisfies πS.

Proof. We first consider the case of L1 = 0Σ∗ and L2 = Σ∗0. Assume πS is a
κ-NE-simple predicate, and ζ ∈ (Σ∪Xκ)∗ is a pattern such that σ ∈ G+

κ satisfies
πS if and only if σ(0α10) ∈ L1R(ζ)L2. Then define γ:=y1ζy2. Furthermore, let

34

δ:=0θŷ0, whereas θ is the concatenation of all x̂ ∈ var(ζ). Note that x̂1, x̂2, x̂3,
y1 and y2 are pairwise distinct variables.

Now, assume σ ∈ G+
κ satisfies πS . Then there exist words w1 ∈ 0Σ∗ and

w2 ∈ Σ∗0 and a nonerasing substitution ρ ∈ R such that σ(0α10) = w1ρ(ζ)w2.
If σ(α2) is not longer than any κ non-overlapping, non-touching factors of the
form 0+ of σ(α1) combined, π3 is satisfied. Otherwise, we can define τ by
setting τ(y1):=w1, τ(y2):=w2 and τ(x̂i):=ρ(x̂i) for all i ∈ {1, . . . , κ}. Finally,
let τ(ŷ):=0m, where

m:=|σ(α2)| −
∑

x̂∈var(ζ)

|τ(x̂)|

(m > 0 holds, as σ does not satisfy π3). Then

τ(γ) = τ(y1)τ(ζ)τ(y2) = w1ρ(ζ)w2 = σ(0α10),

τ(δ) = 00|σ(α2)|0 = σ(0α20).

Therefore, σ satisfies π, which concludes this direction.
For the other direction, assume σ ∈ G+

κ satisfies π. Then there is a noneras-
ing substitution τ such that σ(0α10) = τ(γ) and σ(0α20) = τ(δ). By definition
τ(y1) ∈ 0Σ∗ and τ(y2) ∈ Σ∗0. If we define ρ(x̂i):=τ(x̂i) for all x̂i ∈ var(δ), we
see that σ(0α10) ∈ L1R(ζ)L2 holds. Thus, σ satisfies πS as well.

The other three cases for choices of L1 and L2 can be handled analogously
by omitting y1 or y2 as needed.

Roughly speaking, if σ does not satisfy π3, σ(α2) (which is in 0+, due to
σ ∈ G+

κ) is long enough to provide building blocks for κ-NE-simple predicates
using variables from Xκ.

Using almost the same predicates as in the E-construction, we need six
additional predicates. These predicates are necessary, as we use some slightly
different definitions. Numbers i ∈ N0 or j ∈ N1 are encoded as 00i or 0j in the
erasing case, but shall be encoded as 0600i or 060j in the present, nonerasing
case. Because of these changes we need predicates, which are satisfied by all
σ ∈ H+ with κ-NE-good form, whereas σ(α1) contains a factor #0n# with
1 ≤ n ≤ 6. Only factors of this form have to be covered, considering the κ-NE-
good form of σ and the exact construction of α1. Each of the six predicates π4

to π9 covers one of the six options of n:

π4 : σ(α1) contains #01#,

π5 : σ(α1) contains #02#,

π6 : σ(α1) contains #03#,

π7 : σ(α1) contains #04#,

π8 : σ(α1) contains #05#,

π9 : σ(α1) contains #06#.

35

If σ ∈ H+ is of κ-NE-good form and does not satisfy any predicate π4 to π9,
then every nonempty string of 0s between two #s in σ(α1) has at least a length
of seven.

The predicates π4 to π9 are the only predicates that were newly defined,
instead of being obtained by modifying predicates from the E-construction.

The additional six 0s in every nonempty factor of 0s, cause additional 0s
in the definition of the predicates π10 to πµ. For example, the predicate π8 in
Section 4.3 was defined to be

σ(α1) contains a factor #02m+1#06n# for some m,n ∈ N0.

In the nonerasing case we add six 0s to every nonempty factor of 0s. Note that
06n does not count as possibly empty, as n 6= 0 if σ is of 2-E-good form. We
now would like to define the corresponding predicate by

σ(α1) contains a factor #0602m+1#0606n# for some m,n ∈ N0,

but, as said before, only m,n ∈ N1 is possible in the nonerasing case. Normally
we would have to split the predicate into multiple predicates, but thanks to the
additional 0s we can define the predicate by

σ(α1) contains a factor #06−202m+1#06−606n# for some m,n ∈ N1.

Whenever using a numerical parameter, we reduce the additional 0s by one
and the numerical parameters are in N1. In all cases of the E-construction,
the number of occurrences of numerical parameters in a factor of 0s is never
larger than six (for example, 02n+203m would have five occurrences). So with
six additional 0s we can use almost the same predicates as in the erasing case.

Now we can count the number of different variables outside the predicates
π10 to πµ. Every predicate has corresponding xi and ri. Additional we have the
variables rµ+1, a and b. Each of the predicates π1, π2 and π4 to π9 uses three
more variables, π3 uses 2κ + 1 additional variables. In total, β without γ10 to
γµ and δ10 to δµ contains 2µ+ 2κ+ 28 variables.

Each of the remaining predicates π10 to πµ requires:

1. one variable for yi,

2. one variable for each numerical parameter (or star/plus),

3. one additional variable if it is a prefix or a suffix predicate,

4. two additional variables if it is an infix predicate.

Thus every predicate requires at least 1 and at most 6 variables.

4.6. Proof of Theorem 3.9

Proof. Let I be any configuration of U . Analogously to the proof of Theo-
rem 3.8, we construct patterns to decide whether VALCNE(I) = ∅. The predi-
cates for the proofs of the two claims of this theorem are almost similar, they
differ only in the choice of α1 and α2 and in an additional predicate for the
second claim. In either case, we choose κ:=3.

36

For the first claim of the theorem, we choose

α1:=##enc(I)##x1#x2x2#06010##, α2:=x2y0,

where x1, x2 and y are pairwise distinct variables; for the second,

α1:=##enc(I)##x#06010##, α2:=y00,

where x and y are distinct variables.
The 0s in α2 in both cases ensure σ(α2) having a length of at least κ = 3.

This does not affect the proofs.
As explained in Section 4.5, all predicates of Section 4.2 can be converted

into predicates for the nonerasing case. The reasoning does not change and the
results of Section 4.2 can be transfused to nonerasing pattern languages. Again
the only difference from the erasing case lies in the additional 0s in the definition
of VALCNE(I), in parts of α1 and in the predicates.

Thus, the inclusion problems for nePAT3,Σ in nePAT2554,Σ and for nePAT2,Σ

in nePAT2558,Σ are undecidable.

4.7. Proof of Theorem 3.11.

Proof. Let N ≥ 1. As in the proof of Theorem 3.10, we construct patterns to
decide whether TRIVNE(I) = ∅. Let κ:=2, α1:=#060N#x#060# and α2:=y0,
where x and y are distinct variables and N ∈ N1. The 0 in α2 ensures σ(α2)
having a length of at least κ. This does not affect the proofs. Due to the
results of Section 4.5, we know that if there is a nonerasing substitution σ with
σ(α) /∈ LNE,Σ(β), then

σ(α1) ⊆ #060N#
(
060+#

)+
060#.

Without the six additional 0s in every string of 0s, each word of this set would
be the same word as in Section 4.3. The predicates π4 to π10 of Section 4.3
can be converted into predicates π10 to π16 as seen in Section 4.5. The whole
reasoning is the same as in the erasing case, apart from six additional 0s in the
encoding.

Assume σ(α) /∈ LNE,Σ(β), thus, none of the predicates π1 to π16 is satisfied
by σ. Then σ(α1) has to be the encoding of a sequence n0, . . . , nl for some
l ≥ 2 with ni = Ci(N) for all i ∈ {0, . . . , l} and especially nl = 1. This is
possible only if N leads the Collatz function into the trivial cycle, and thus,
TRIVNE(N) 6= ∅. Now assume TRIVNE(N) 6= ∅. This means that N leads the
Collatz function into a trivial cycle, and thus, there is an l ≥ 2 with Cl(N) = 1.

If we choose σ(x):=0C
1(N)#0C

2(N)# . . .#0C
l−1(N) and σ(y):=0m, where m is big

enough (for example, m:=|σ(α1)|), none of the predicates π1 to π16 is satisfied
by σ and thus, σ(α) /∈ LNE,Σ(β).

The pattern α contains only two variables. The number of predicates µ is
16. We can determine the number of different variables in β. As each of the
predicates π10 to π16 needs two variables less than the corresponding erasing
predicate, β contains (2µ+ 2κ+ 28) + 8 + 25 = 97 different variables.

37

4.8. Proof of Theorem 3.13

As in the proof of Theorem 3.12, we construct patterns to decide whether
NTCCNE = ∅.

For this theorem, we choose κ:=2, α1:=#x1#x2#x3#x2# and α2:=x2y,
where x1, x2, x3 and y are pairwise distinct variables.

We use the same predicates π10 to π16 as in Section 4.7. The additional
predicate π11 in Section 4.4 can be converted into the predicate π17 as seen in
Section 4.5.

As in Section 4.7, the remaining reasoning is equal to the reasoning in the
erasing case.

Thus, NTCCNE = ∅ if and only if LNE,Σ(α) ⊆ LNE,Σ(β).
The pattern α contains four different variables. The additional predicate π17

uses three new variables and generates two additional variables outside of γ17

and δ17, differing from Section 4.7. Thus, the number of different variables in β
is 102.

5. Extensions of the Main Theorems

In this section, we extend the main theorems of the previous section to larger
alphabets (Section 5.1), and show that all patterns from the second class can
be replaced with terminal-free patterns (Section 5.2).

5.1. Larger Alphabets

As mentioned in Lemma 5 in [7], the construction for E-patterns can be
adapted to all finite alphabets |Σ| with |Σ| ≥ 3. This modification is compara-
tively straightforward, but would require 2(|Σ| − 2) additional predicates, and
increase the number of required variables in β by |Σ| − 2 for each predicate.
With additional effort, both constructions can be adapted to arbitrarily large
alphabets:

Theorem 5.1. Let Σ be a finite alphabet with |Σ| ≥ 3. The following problems
are undecidable:

1. The inclusion problem of ePAT2,Σ in ePAT2882,Σ,

2. the inclusion problem of nePAT2,Σ in nePAT2580,Σ.

The required modifications and the proof of their correctness for the E- and
the NE-construction can be found in Section 5.1.1 and Section 5.1.2. Using the
same modifications to the constructions, the remaining cases from Theorems 3.8
and 3.9 and Theorems 3.10 to 3.13 can also be adapted to ternary (or larger)
alphabets, using only 22 additional variables.

38

5.1.1. E-Construction for Larger Alphabets

The patterns α̃ and β̃ are defined by

α̃:=α #4 w #4 w

with

w:= (a1 . . . an) #4 (0 a2 . . . an) . . . (0 a1 . . . aj−1 aj+1 . . . an) . . . (0 a1 . . . an−1) (0 a1 . . . an) 0#30

and

β̃:=β #4 β′′1 #4 β′′2

with

β′′1 :=ỹ1,1 x̃1 ỹ1,2 #4 z̃1,1 0 ỹ1,1 ỹ1,2 0 z̃1,2 xµ+1,

β′′2 :=ỹ2,1 x̃2 ỹ2,2 #4 z̃2,1 0 ỹ2,1 ỹ2,2 0 z̃2,2 xµ+2,

where ỹ1,1 to ỹ2,2, z̃1,1 to z̃2,2, x̃1 and x̃2 are new pairwise distinct variables
and xµ+1 and xµ+2 are the additional two new xi-variables corresponding to
the later defined two new predicates.

Lemma 4.1 still applies. But with the larger Σ, σ(α1) and σ(α2) can contain
factors ai with i ∈ {1, . . . , n}. The two new predicates shall be satisfied by
those σ, where such a factor occurs. To be able to do this with only two new
predicates, without caring about |Σ|, we need the already defined additional
suffixes and some observations:

Both α̃ and β̃ contain exactly six times the factor #4. As Lemma 4.1 is not
affected by the changes, σ(α̃) also contains exactly six times the factor #4, if σ
is of κ-E-good form.

Hence for all substitutions τ : (Σ ∪ var(β̃))∗ → Σ∗ with τ(β̃) = σ(α̃) and
σ of κ-E-good form, τ(β̃) = σ(α̃) can be decomposed into a system of seven
equations:

τ((x1)2 . . . (xµ+2)2) = 0#30 0#30, (1)

τ(β̂1 . . . β̂µ+2) = 0#30 σ(α1) 0#30 σ(α2) 0#30, (2)

τ(β̈1 . . . β̈µ+2) = 0#30 0##0 0#30, (3)

τ(ỹ1,1 x̃1 ỹ1,2) = a1 . . . an, (4)

τ(z̃1,10ỹ1,1ỹ1,20z̃1,2xµ+1) = (0 a2 . . . an) . . . (0 a1 . . . an−1) (0 a1 . . . an) 0#30,
(5)

τ(ỹ2,1 x̃2 ỹ2,2) = a1 . . . an, (6)

τ(z̃2,10ỹ2,1ỹ2,20z̃2,2xµ+2) = (0 a2 . . . an) . . . (0 a1 . . . an−1) (0 a1 . . . an) 0#30.
(7)

The equations (2) and (3) are of no further interest in this part, but note that
x1 to xµ+2, x̃1 and x̃2 are the only variables in the left sides of these equations

39

that also occur in other equations. For exactly one i ∈ {1, . . . , µ + 2} we get
τ(xi) = 0#30 and τ(xj) = λ for all j 6= i by equation (1), as already seen in the
proof of Lemma 4.2.

Because of equation (4), τ(ỹ1,1ỹ1,2) does not contain 0 or # as a factor. To-
gether with equation (5) we obtain |τ(ỹ1,1ỹ1,2)| ∈ {n−1, n}. If τ(xµ+1) = 0#30,
then |τ(ỹ1,1ỹ1,2)| = n−1, and thus, τ(x̃1) = ai with i ∈ {1, . . . , n}. If τ(xµ+1) =
λ, τ(ỹ1,1ỹ1,2) could also be a1 . . . an, and thus, τ(x̃1) ∈ {λ, a1, . . . , an}.

There are no other restrictions for τ(x̃1), as for every choosen i the equa-
tions (4) and (5) can be satisfied without additional restrictions for other equa-
tions. As the variables ỹ1,1, ỹ1,2, z̃1,1 and z̃1,2 do not occur outside these equa-
tions, their images do not affect the other proofs.

By equations (6) and (7) we obtain the same results for τ(x̃2) with the two
other possible choices of τ(xµ+2).

Now we can define the two additional predicates πµ+1 and πµ+2:

γµ+1:=yµ+1,1 x̃1 yµ+1,2, γµ+2:=yµ+2,

δµ+1:=ŷµ+1, δµ+2:=ŷµ+2,1 x̃2 ŷµ+2,2,

where yµ+1,1, yµ+1,2, yµ+2, ŷµ+1, ŷµ+2,1 and ŷµ+2,2 are new pairwise distinct
variables.

If σ ∈ H of κ-E-good form satisfies πµ+1 or πµ+2, then σ(α1) or σ(α2)
contains a factor ai with i ∈ {1, . . . , n}, respectively. If σ of κ-E-good form does
not satisfy πµ+1 and/or πµ+2, we have to choose τ(x̃1) = λ and/or τ(x̃2) = λ,

else σ(α̃) 6= τ(β̃). We can not choose τ(x̃1) = λ, if πµ+1 is the only of the µ+ 2
predicates satisfied by σ. Because then we would have to choose τ(xµ+1) =
0#30, and thus, τ(x̃2) 6= λ. The corresponding follows if only πµ+2 is satisfied
by σ. The predicates πµ+1 and πµ+2 break the rule that none of the elements of
var(γiδiηi) occurs outside these three factors, as x̃1 and x̃2 do occur in the new
suffix. But in this special case it leads to no problem in the proof of Lemma 4.2,
as τ(x̃1) and τ(x̃2) are adequate delimited by the suffix and can only be λ if the
corresponding patterns are not mapped to σ(α1) and σ(α2).

The functionality of πµ+1 and πµ+2 is the same as of π1 and π2 and can be
shown in the same way as Lemma 4.1.

With these two additional predicates, Lemma 4.2 can again be proved with-
out greater changes. In the whole proof µ is changed to µ+ 2. In the first half
of the proof the definition of τ ′ is longer, as the images of the variables, which
only occur in the suffix, also have to be defined.

The additional parts of τ ′ with k ∈ {1, 2}, and πi is the predicate that is to
be satisfied, are defined by

1. τ ′(ỹk,1) :=

{
a1 . . . aj−1 if i = µ+ k and τ(x̃k) = aj
a1 . . . an else ,

2. τ ′(ỹk,2) :=

{
aj+1 . . . an if i = µ+ k and τ(x̃k) = aj
λ else ,

3. τ ′(z̃k,1) :=

{
ṽj if i = µ+ k and τ(x̃k) = aj
(0 a2 . . . an) . . . (0 a1 . . . an−1) else ,

40

4. τ ′(z̃k,2) :=

{
w̃j if i = µ+ k and τ(x̃k) = aj
#30 else ,

where

ṽj := (0 a2 . . . an) . . . (0 a1 . . . aj−2 aj . . . an),

w̃j := (a1 . . . aj aj+2 . . . an) . . . (0 a1 . . . an−1)(0 a1 . . . an)

are factors of w depending on j.
In the second half we can presume that σ(α1) and σ(α2) do not contain ai

with i ∈ {1, . . . , n} as a factor, as else πµ+1 or πµ+2 would be satisfied. Also
we get the above seven equations instead of only three, but the four additional
equations do not affect the proof.

Nothing after Lemma 4.2 has to be changed in the E-construction to transfer
the results to Σ with |Σ| ≥ 3.

But, because of the additional suffix and the two new predicates, the pattern
β̃ has 22 variables more than β in the E-construction.

5.1.2. NE-Construction for Larger Alphabets

In the nonerasing case the additional suffixes are simpler than in the erasing
case. The pattern α̃ and β̃ are defined by

α̃:=α #5 0 a1 . . . an 0 #5 0 a1 . . . an 0,

β̃; = β #5 ỹ1x̃1z̃1 #5 ỹ2x̃2z̃2,

where x̃1, x̃2, ỹ1, ỹ2, z̃1 and z̃2 are new pairwise distinct variables.
In addition to this, we have to change the definition of the nonerasing sub-

stitution ψ :
(
var(β̂1 . . . β̂µ+2) ∪ Σ

)∗
→ Σ∗, to ψ(x̃1) = ψ(x̃2) = a1 . . . an and

ψ(x) = 0 for x ∈ var(β̂1 . . . β̂µ+2)\{x̃1, x̃2}. This affects the terminal-strings t

in α, as t:=ψ(β̂1 . . . β̂µ+2).
Lemmas 4.4 and 4.5 are not affected by the changes. Thus, for a σ ∈ H+ of

κ-NE-good form, σ(α̃) contains exactly three times the factor #5. As β̃ already
contains the factor #5 three times, the equation τ(β̃) = σ(α̃), with a nonerasing
substitution τ : (var(β̃) ∪ Σ)∗ → Σ∗, can be decomposed into a system of four
equations. To define the two additional predicates we need observations from
the third and fourth equation:

τ(ỹ1x̃1z̃1) = 0 a1 . . . an 0,

τ(ỹ2x̃2z̃2) = 0 a1 . . . an 0.

As ỹ1, ỹ2, z̃1 and z̃2 do not occur outside of these equations and τ is a nonerasing
substitution, we get τ(x̃1), τ(x̃2) = ai . . . aj with 1 ≤ i ≤ j ≤ n. The images
τ(x̃1) and τ(x̃2) are nonempty factors of a1 . . . an. This includes factors ai with
i ∈ {1, . . . , n}. The longer factors are not needed for the proofs, and do not
increase the set of σ satisfying the new predicates.

41

Now we can define the two additional predicates πµ+1 and πµ+2:

γµ+1:=yµ+1,1 x̃1 yµ+1,2, γµ+2:=0 yµ+2 0,

δµ+1:=0 ŷµ+1 0, δµ+2:=ŷµ+2,1 x̃2 ŷµ+2,2,

where yµ+1,1, yµ+1,2, yµ+2, ŷµ+1, ŷµ+2,1 and ŷµ+2,2 are new pairwise distinct
variables.

As τ(x̃1) and τ(x̃2) can be any ai with i ∈ {1, . . . , n}, all σ ∈ H+ of κ-
NE-good form, where σ(α1) or σ(α2) contains a factor ai with i ∈ {1, . . . , n},
satisfies πµ+1 and/or πµ+2. This can be proved in the same way as Lemma 4.5.

The changes in the proof of Lemma 4.6 are similar to the changes in the
erasing case. The factors a1 . . . an in the terminal-string t of α do not affect the
proof, as the variables x̃1 and x̃2 can be mapped to the whole factor a1 . . . an,
if the corresponding γµ+1, δµ+1 and γµ+2, δµ+2 are not mapped to σ(0α10),
σ(0α20).

The additional parts in the definition of τ ′ with k ∈ {1, 2} in the first half
of the proof of Lemma 4.6, where πi is the satisfied predicate, would be

1. τ ′(x̃k):= a1 . . . an if i 6= µ+ k,

2. τ ′(ỹk):=

{
0 a1 . . . aj−1 if i = µ+ k and τ(x̃k) = aj
0 else ,

3. τ ′(z̃k):=

{
aj+1 . . . an 0 if i = µ+ k and τ(x̃k) = aj
0 else .

In the second half we can presume that σ(0α10) and σ(0α20) do not contain ai
with i ∈ {1, . . . , n} as a factor, as else πµ+1 or πµ+2 would be satisfied. Also we
get four equations instead of only two, but the two additional equations do not
affect the proof.

Nothing after Lemma 4.5 has to be changed in Section 4.5 to transfer the
results to Σ with |Σ| ≥ 3.

Because of the additional suffix and the two new predicates, the pattern β̃
has 22 variables more than the pattern β from the original NE-construction.

5.2. Inclusion in ePATtf,Σ or nePATtf,Σ

Both constructions can also be adapted to use terminal-free patterns β:

Theorem 5.2. Let |Σ| = 2. The following problems are undecidable:

1. The inclusion problem of ePAT2,Σ in ePATtf,Σ,
2. the inclusion problem of nePAT2,Σ in nePATtf,Σ.

We explain these modifications in Sections 5.2.2 and 5.2.1.
Note that the number of different variables in the patterns from Pattf remains

bounded. Although one might expect that this result could be modified to
show that the open inclusion problem for nePATtf,Σ is undecidable, we consider
this doubtful, as the modified NE-construction relies heavily on the terminal
symbols in α. Furthermore, although it is considerably easier to modify the
NE-construction, the fact that the inclusion problem for ePATtf,Σ is decidable
casts further doubt on that expectation. As in Section 5.1, all other results that
are based on one of the two constructions can be adapted as well.

42

5.2.1. Construction for Inclusion in ePATtf,Σ

As in the nonerasing case, all terminals # and 0 are changed into the new
variables c and d. We extend each of the patterns α and β with an additional
prefix, which has to be extremely long compared to the rest of the pattern.

As now the new variables could be mapped to the empty word and β ∈
Pattf , LE,Σ(β) would be Σ∗, if any variable in β occurs only once. To avoid

this problem all patterns β̂i with i ∈ {1, . . . , µ} shall be redefined, as the only
variables, which occurred only once, where in these patterns. Analogously, the
middle section of α shall be redefined.

The new pattern α is defined by

α:=w v v #4 v α1 v α1 v α2 v α2 v #4 v u v,

with u:=0#20 and v:=0#30 (as before), and the new additional prefix

w:=#ν0#ν−10#ν−20 . . .#30#20#0 0,

where ν ∈ N1 shall be specified after the definition of β. Note that in the middle
part of α, α1v and α2v were doubled.

Now we define the new pattern β by

β := β′ (x1)2 . . . (xµ)2 c4 β̂1 . . . β̂µ c
4 β̈1 . . . β̈µ,

where for all i ∈ {1, . . . , µ}

β̂i := xi γi xi γi xi δi xi δi xi,

β̈i := xi ηi xi

and the new additional prefix

β′ := cνdcν−1dcν−2d . . . c3dc2dcd d.

The number ν has to be at least |β| − |β′| + 6. We do not exactly define this
number, as it is sufficient if ν is large enough.

This is used to restrict the images of the new variables. As ν affects |β| and
|β′| by the same amount, |β| − |β′|+ 6 is independent of ν.

As in the nonerasing case, the new prefixes are equal if c is mapped to # and
d is mapped to 0. In the definition of the original E-construction, only variables
from the subpatterns γi and δi with i ∈ {1, . . . , µ} can occur only once in β.
Now all variables are occur at least twice in β, as all γi and δi were doubled in
β̂i. Note that β′ and the two factors c4 in the definition of β are all occurrences
of the new variables, as all other parts of β were terminal-free in the original
E-construction.

Similar to the nonerasing case we can formulate a lemma, which shows that
σ has to be of κ-E-bad-form, if the new variables are not mapped to the cor-
responding terminals. But to prove this, we need that every element of var(β)
occurs at least twice in β.

43

Lemma 5.3. Let σ ∈ H, and let τ : (var(β))∗ → Σ∗ be a substitution with
τ(β) = σ(α). If τ(c) 6= # or τ(d) 6= 0, then σ(α1) or σ(α2) contains the factor
#3.

Proof. As α begins with a long sequence of terminals, the prefix of σ(α) is equal
to the prefix of α in this proof.

Remember the prefixes w and β′ defined above and that τ(β) = σ(α) holds.
Case 1: τ(c) /∈ {λ,#}. Now τ(cν) is not a prefix of σ(α), as α begins with #ν0
and this factor occurs only once in σ(α), if σ(α1) and σ(α2) do not contain #3

as a factor. Thus, τ(c) ∈ {λ,#}
Case 2: τ(c) = λ. Then

τ(β′) = τ(cνdcν−1dcν−2d . . . c3dc2dcdd)

= τ(dν+1),

and thus, τ(d) = λ, as α has the prefix #ν0 and this factor occurs only once in
σ(α), if σ(α1) and σ(α2) do not contain #3 as a factor.

If ν is larger than |β|− |β′|+ 5, then there has to exist a variable x ∈ var(β)
with

τ(x) = w1 0 #j 0 w2,

w1, w2 ∈ Σ∗ and j ∈ {5, . . . , ν − 1}. But a variable with such an image cannot
exist, if σ(α1) and σ(α2) do not contain #3 as a factor, as each factor 0#j0
with j ∈ {5, . . . , ν − 1} occurs exactly once in σ(α), but each variable occurs at
least twice in β.

Thus, τ(c) 6= λ, if ν is big enough.
Case 3: τ(c) = #. Then τ(d) = 0, as else τ(cνdcν−1) would not be prefix of
σ(α) if σ(α1) and σ(α2) did not contain #3 as a factor.

If ν is large enough, then only Case 3 is possible, and thus, τ(c) = # and
τ(d) = 0.

With Lemma 5.3, we can formulate a new version of Lemma 4.1.

Lemma 5.4. Let τ : (var(β))∗ → Σ∗ be a substitution. A substitution σ ∈ H
is of κ-E-bad form if and only if τ(c) 6= #, τ(d) 6= 0 or σ satisfies π1 or π2.

Proof. The proof is identical to the proof of Lemma 5.6, mutatis mutandis.

The doubled parts in α and β barely affect the proof of Lemma 4.2. In the
first half of the proof we extend the definition of the morphism τ ′ by τ ′(c):=#
and τ ′(d):=0. This change leads to an almost identical proof. In the second
half, as this direction is already shown for all σ ∈ H of κ-E-bad form, τ(c) = #
and τ(d) = 0 follow. The equation in the proof can again be decomposed, as
now the prefixes of τ(β) and σ(α) are equal. The doubled parts do not affect
the reasoning. As Lemma 4.2 can also be proved for the special case β ∈ Pattf ,
all results can be transferred.

Note that these changes increase | var(β)| by 2. These modifications can be
combined with the results of Section 5.1. This adds another 22 variables to
var(β), and the additional suffix used in Section 5.1.1 has to be doubled as well.

44

5.2.2. Construction for Inclusion in nePATtf,Σ

With the additional prefixes we shall get for all σ ∈ H+ of κ-NE-good form
and nonerasing substitutions τ : (var(β))∗ → Σ∗ the limitations τ(c) = # and
τ(d) = 0, if σ(α) = τ(β). As under this condition the image of the new prefix
of β shall be equal to the new prefix of α, all results of the prior sections shall
be transfered to the case β ∈ Pattf .

The new pattern β is defined by

β:=(c3 d)2 a b c5 a x1 . . . xµ b c
5 r1 β̂1 . . . rµ β̂µ rµ+1,

where (c3d)2 is the new additional prefix. Note that the #5 in the middle

part of β has changed into c5. The patterns β̂1 to β̂µ and β′ are defined as in
Section 4.5, but the terminals are changed into the corresponding new variables
c and d. Note, these are also the only changes in the patterns γi and δi with
i ∈ {1, . . . , µ}.

The pattern α is defined by

α:=(#3 0)2 0µ+1 #5 0µ#0µ #5 t v 0α10 v 0α20 v t,

where (#30)2 is the new additional prefix and the rest of the pattern did not
change in contrast to Section 4.5. Even the terminal-string t did not change,
as the nonerasing substitution ψ : (var(β̂1 . . . β̂µ))∗ → Σ∗ now is defined by

ψ(c) = # and ψ(x) = 0 for all x ∈ var(β̂1 . . . β̂µ)\c. Thus, Lemma 4.4 still
holds.

Now we can show how, by the additional prefixes, σ(0α10) and σ(0α20) are
restricted, if the new variables are not mapped to the corresponding terminals.

Lemma 5.5. Let σ ∈ H+ and τ : (var(β))∗ → Σ∗ be a nonerasing substitution
with τ(β) = σ(α). If τ(c) 6= # or τ(d) 6= 0, then σ(0α10) or σ(0α20) contains
the factor #3.

Proof. The pattern α contains the factor #3 less than 17 times. (Proof: All
parts, where the factor #3 occurs or can occur: #3 occurs two times in the new
prefix; the factor #5 occurs twice in α; each of the three factors v contains once
the factor #4; each of the two factors t contains once the factor #κ.) Outside
of α1 and α2 no variable occurs in α. The variables c and d both occur more
than 17 times in β. (Proof: The variable c occurs six times in the new prefix
(#30)2, ten times in the two factors c5 and κ times in γ1. The variable d occurs
21 times in γ4 to γ9.) Thus, σ(0α10) or σ(0α20) has to contain the factor #3 if
τ(c) or τ(d) contains the factor #3.

As α begins with a long sequence of terminals, the prefix of σ(α) is equal to
the prefix of α in this proof.

Remember, τ(β) = σ(α) holds and the substitutions are nonerasing.
At first we examine τ(c). As #3 is prefix of α and c is prefix of β, τ(c) ∈

{#,#2}, if τ(c) does not contain #3 as a factor. But as #30 is prefix of α and
c2 is prefix of β, τ(c) 6= #2. Thus, τ(c) = # if σ(0α10) and σ(0α20) do not
contain the factor #3.

45

Note that c3dc3 is a prefix of β. As τ(c) = #, we get τ(c3dc3) = #3τ(d)#3.
Furthermore, #30#3 is a prefix of α, and thus, τ(d) ∈ {0, 0#, 0#2} if τ(d) does
not contain #3 as a factor. But τ(d) /∈ {0#, 0#2}, as #30#30 is prefix of α
and if τ(d) ∈ {0#, 0#2} then τ(c3dc3) ∈ {#30#4,#30#5}. Thus, τ(d) = 0 if
σ(0α10) and σ(0α20) do not contain the factor #3.

If τ(c) = # and τ(d) = 0, then the only difference of τ(β) in contrast to
Section 4.5 is the additional prefix, which then is equal to the additional prefix
of α, and thus, do not affect the rest of the patterns.

Now we can formulate a new version of Lemma 4.5, which includes the results
of Lemma 5.5.

Lemma 5.6. Be τ : (var(β))∗ → Σ∗ a nonerasing substitution. A nonerasing
substitution σ ∈ H+ is of κ-NE-bad form if and only if τ(c) 6= #, τ(d) 6= 0 or
σ satisfies π1 or π2.

Proof. If τ(c) 6= # or τ(d) 6= 0, then σ(0α10) or σ(0α20) contains the factor
#3, because of Lemma 5.5, and thus, σ is of κ-NE-bad form.

If τ(c) = # and τ(d) = 0, then the predicates π1 and π2 are equal to the
predicates π1 and π2 used in Section 4.5, and thus, Lemma 4.5 holds.

Now all results can be transfered to the special case β ∈ Pattf in the non-
erasing case, as – by Lemmas 5.5 and 5.6 – Lemma 4.6 can be transfered to
the special case β ∈ Pattf . Roughly speaking, the replacement of # and 0 by c
and d enlarges the language LNE,Σ(β), but none of the additional elements in
LNE,Σ(β) is also in LNE,Σ(α).

The needed changes to transfer Lemma 4.6 are marginal. In the first half
of the proof in the definition of τ ′ the images of c and d have to be defined
separately by τ ′(c) = # and τ ′(d) = 0. In the second half of the proof follows
immediately τ(c) = # and τ(d) = 0, as in this direction, σ ∈ H has to be of
κ-NE-good form.

The changes enlarged | var(β)| only by two. The results of Section 5.1 can
also be transfered to the special case β ∈ Pattf , which would increase | var(β)|
in addition by 22.

References

[1] D. Angluin. Finding patterns common to a set of strings. Journal of
Computer and System Sciences, 21:46–62, 1980.

[2] J. Bremer and D.D. Freydenberger. Inclusion problems for patterns with a
bounded number of variables. In Proc. DLT 2010, volume 6224 of LNCS,
pages 100–111, 2010.

[3] C. Câmpeanu, K. Salomaa, and S. Yu. A formal study of practical regular
expressions. Int. J. Found. Comput. Sci., 14:1007–1018, 2003.

46

[4] C. Choffrut and J. Karhumäki. Combinatorics of words. In G. Rozen-
berg and A. Salomaa, editors, Handbook of Formal Languages, volume 1,
chapter 6, pages 329–438. Springer, 1997.

[5] V.G. Durnev. Undecidability of the positive ∀∃3-theory of a free semigroup.
Siberian Math. J., 36(5):917–929, 1995.

[6] A. Ehrenfeucht and G. Rozenberg. Finding a homomorphism between two
words is NP-complete. Inform. Process. Lett., 9:86–88, 1979.

[7] D.D. Freydenberger and D. Reidenbach. Bad news on decision problems
for patterns. Inform. and Comput., 208(1):83–96, 2010.

[8] O.H. Ibarra, T.C. Pong, and S.M. Sohn. A note on parsing pattern lan-
guages. Pattern Recognit. Lett., 16(2):179–182, 1995.

[9] T. Jiang, E. Kinber, A. Salomaa, K. Salomaa, and S. Yu. Pattern languages
with and without erasing. Int. J. Comput. Math., 50:147–163, 1994.

[10] T. Jiang, A. Salomaa, K. Salomaa, and S. Yu. Decision problems for pat-
terns. J. Comput. Syst. Sci., 50:53–63, 1995.

[11] J.C. Lagarias. The 3x+1 problem: An annotated bibliography (1963–1999),
Aug 2009. http://arxiv.org/abs/math/0309224.

[12] J.C. Lagarias. The 3x+1 problem: An annotated bibliography, II (2000–
2009), Aug 2009. http://arxiv.org/abs/math/0608208.

[13] M. Margenstern. Frontier between decidability and undecidability: a sur-
vey. Theor. Comput. Sci., 231(2):217–251, 2000.

[14] V. Mitrana. Patterns and languages: An overview. Grammars, 2(2):149–
173, 1999.

[15] T. Nagell, editor. Selected mathematical papers of Axel Thue. Universitets-
forlaget, Oslo, 1977.

[16] T. Neary and D. Woods. Four small universal Turing machines. Fundam.
Inform., 91(1):123–144, 2009.

[17] Y.K. Ng and T. Shinohara. Developments from enquiries into the learn-
ability of the pattern languages from positive data. Theor. Comput. Sci.,
397:150–165, 2008.

[18] E. Ohlebusch and E. Ukkonen. On the equivalence problem for E-pattern
languages. Theor. Comput. Sci., 186:231–248, 1997.

[19] D. Reidenbach. The Ambiguity of Morphisms in Free Monoids and its
Impact on Algorithmic Properties of Pattern Languages. PhD thesis, Fach-
bereich Informatik, Technische Universität Kaiserslautern, 2006. Logos
Verlag, Berlin.

47

[20] K. Salomaa. Patterns. In C. Martin-Vide, V. Mitrana, and G. Păun, edi-
tors, Formal Languages and Applications, number 148 in Studies in Fuzzi-
ness and Soft Computing, pages 367–379. Springer, 2004.

[21] T. Shinohara. Polynomial time inference of extended regular pattern lan-
guages. In Proc. RIMS Symposia on Software Science and Engineering,
Kyoto, volume 147 of Lecture Notes in Computer Science, pages 115–127,
1982.

[22] A. Thue. Über unendliche Zeichenreihen. Kra. Vidensk. Selsk. Skrifter. I
Mat. Nat. Kl., 7, 1906. In German. Reprinted in [15].

48

