
Heuristic Methods for Optimal
Coalition Structure Generation

Amir Hussin and Shaheen Fatima

Department of Computer Science
Loughborough University

Loughborough
United Kingdom

Abstract. The problem of finding the optimal coalition structure arises frequently
in multiagent systems. Heuristic approaches for solving this problem are needed
because of its computational complexity. This paper studies two such approaches:
tabu search and simulated annealing. Through simulations we show that tabu
search generates better quality solutions than simulated annealing for coalition
games in characteristic function form and those in partition function form.

1 Introduction

In a multi-agent system, the agents work together and take cooperative actions to achieve
complex tasks [18]. The effective formation of coalitions is therefore essential. Many
situations require the formation of not just a single coalition but a coalition structure, i.e,
an exhaustive partition of agents into non-overlapping coalititions. A primary challenge
is to generate a coalition structure in which the entire system performance is maximised.

The optimal coalition structure generation problem is commonly modelled as a co-
operative game in either characteristic function form or in partition function form [3].
The former are called characteristic function games (CFGs) and the latter partition func-
tion games (PFGs). In both CFGs and PFGs, the value of a coalition structure is given
as the sum of the values of its coalitions. For CFGs, the value of a coalition is given
in terms of its members. For PFGs, the value of a coalition depends not only on its
members but also on how the external agents are organized. In other words, some ex-
ternalities are inherent in PFGs.

For CFGs and more so for PFGs, finding an optimal coalition structure is compu-
tationally hard. A number of deterministic methods have been developed for PFGs [1,
9, 22] but they have exponential time complexity. This presents the need for developing
effective heuristic methods for finding a good enough solution as quickly as possible,
especially for games with a large number of agents. Such methods are important for
example in mission critical systems where a group of agents representing emergency
responders need to partition their resources so the emergency situation is handled op-
timally. In these systems the agents need to react quickly and time lost looking for the
absolute optimal can severely impact on handling the emergency. A quick locally opti-
mal solution would be better than a delayed globally optimal one because the situation
may have changed during the time.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Loughborough University Institutional Repository

https://core.ac.uk/display/288369169?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2

In the existing literature on heuristic methods, various approaches such as simulated
annealing, genetic programming, particle swarm and ant colony have been studied for
optimal coalition structure generation for CFGs (see Section 6 for details). However, the
use of tabu search has so far not been studied even for CFGs although tabu search was
previously shown to work well for other search problems such as bin packing [7], power
systems network partitioning [4], crew scheduling [6], quadratic assignment [16], and
vehicle routing [2]. Moreover, the use of heuristics for PFGs has been little explored in
the literature.

Given this, we aim to compare two heuristic methods: tabu search and simulated
annealing for finding an optimal coalition structure for both CFGs and PFGs. A key
difference between tabu search and simulated annealing is that the former has a memory
for recording the moves made during the search while the latter is memory-less and
relies only on a random selection of next move. Since the latter requires less resource
it might be more useful especially when there is a large number of agents provided the
quality of its solution is good enough. Our objective is to determine how its performance
compares to that of tabu search.

For evaluating the performance of a method, we consider the quality of solution
generated and also the time taken to generate it. Since performance depends on the
type of input data, we empirically measure average performance over a range of inputs.
For this, we consider ten different probability distributions (see Section 5 for details)
from which the input data is drawn randomly and then calculate average performance.
Simulation results indicate that tabu search performs better than simulated annealing
for CFGs and PFGs; given the same amount of time, tabu search yields a solution that
is closer to the exact optimum than the solution generated by simulated annealing. Both
tabu search and simulated annealing methods we implemented have anytime property;
the quality of solution generated improves with the running time.

The main contributions of this paper are: i) it provides the first comparative evalu-
ation of tabu search and simulated annealing for coalition structure generation, ii) the
evaluation is done for both CFGs and PFGs, and ii) the evaluation is conducted exten-
sively over a wide range of input data.

The paper is organised as follows. We begin in Section 2 by defining the problem.
Section 3 is a description of tabu search and Section 4 of simulated annealing. Section 5
provides details of simulations set-up and a performance analysis of these two methods.
Section 6 is about related literature and Section 7 draws conclusions.

2 Problem Specification

A coalitional game is a tuple 〈A,v〉 where A = {1, . . . ,n} is a set of n agents and v is
a coalition value function. The definition of v depends on the type of coalition game.
There are two types of coalition games: CFGs and PFGs.

Definition 1. A coalition structure is an exhaustive partition of A into non-overlapping
coalitions.

In accordance with convention, the coalitions in any coalition structure will be ar-
ranged in the increasing order of their smallest members with the agents in the coalition
being arranged in alphabetical order.

3

For example, for A= {1,2,3}, the 5 possible coalition structures are: {{1},{2},{3}},
{{1,2},{3}}, {{1,3},{2}}, {{1},{2,3}}, and {{1,2,3}}.

For n agents, there are Bell(n)∼Θ(nn) possible coalition structures, i.e, the number
of coalition structures is exponential in n. Let Π A denote the set of all possible coalition
structures and |Π A| the cardinality of Π A. We will first introduce CFGs and then PFGs.

CFGs: For these games, the value of a coalition depends solely on its members. v is
a mapping of the form v : 2A → R. It is a function that assigns a utility value to each
subset, i.e., a coalition of A with v(φ) = 0. All non-empty subsets of A are valid coali-
tions. A coalition is denoted by C ⊆ A and the set of all possible coalitions as CA. The
cardinality of the this set is |CA|= 2n−1.
Example 1: For A = {1,2,3}, v is defined as follows: v({φ}) = 0, v({1}) = 1, v({2}) =
2, v({3}) = 1, v({1,2}) = 4, v({1,3}) = 1, v({2,3}) = 3, v({1,2,3}) = 3.

PFGs: For these games, the value of a coalition depends on its members and also on
the coalition structure it is embedded in. v is a mapping of the form v : 2A×Π A→ R.
It is a function that assigns a utility value to each pair comprised of i) a subset C ⊆ A,
i.e., a coalition and ii) a partition in which C is embedded.
Example 2: For A = {1,2,3}, v is defined as follows: v({1},{{1},{2},{3}}) = 1,
v({1},{{1},{2,3}}) = 2, v({2},{{1},{2},{3}}) = 1, v({2},{{1,3},{2}}) = 4,
v({3},{{1},{2},{3}}) = 2, v({3},{{1,2},{3}}) = 1, v({1,2},{{1,2},{3}}) = 7,
v({1,3},{{1,3},{2}}) = 5, v({2,3},{{1},{2,3}}) = 4, v({1,2,3},{{1,2,3}}) = 3.

The value of a structure CS is the sum of the values of its constituent coalitions.
Thus we have:

v(CS) =

 ∑
C∈CS

v(C) for CFGs

∑
C∈CS

v(C,CS) for PFGs

Between all the |Π A| possible coalition structures, the problem is find one with the
highest value, i.e., an optimal coalition structure which is defined as follows:

CS∗ = arg max
CS∈ΠA

v(CS) (1)

Given the exponential number of possible structures, it is computationally infeasible to
search the entire search space exhaustively. We therefore explore two heuristic search
methods: tabu search and simulated annealing.

3 Heuristic search method 1: Tabu search

We begin with a quick overview of tabu search and then describe the method we imple-
mented for optimal coalition structure generation. Tabu search [10] is a general heuristic
method that attempts to quickly find high quality solutions by using a neighbourhood
search guided with tabu memory. The basic concept is to maintain a tabu list of points
already visited in the search space and avoid re-visiting them and those points which

4

are known to be inferior to ones in the tabu list. By avoiding solutions that are already
visited, the method ensures that new parts of the search space are being investigated.
This also helps to avoid local maxima and thus enables better solutions to be found as
the search progresses.

Algorithm 1 TACOS: Tabu search algorithm for finding an optimal coalition structure
1: tabuList← [] {Tabu list initially empty}
2: CS← randomly generated CS; {Generate a random start point}
3: currentBest← CS
4: for iterationCount← 1,maxIterations do {see Table 2 for maxIterations}
5: Generate a neighbourhood N of CS
6: Find the bestCS and the worstCS in N
7: if worstCS not in tabuList then
8: Add worstCS to tabuList
9: end if

10: if v(bestCS)> v(currentBest) then
11: currentBest← bestCS
12: end if
13: if bestCS not in tabuList then
14: add bestCS to tabuList
15: CS← bestCS
16: else
17: CS← A randomly generated coalition structure that is not in tabuList
18: end if
19: end for
20: Return currentBest

The tabu search method we implement is called TACOS (TAbu search for COalition
Structure generation). The algorithm (see Algorithm 1) starts by constructing a random
coalition structure as the initial starting point. The start point is the current best solution.
This start point and its value are added as the first entry in the tabu list. The tabu list is
an array that contains a list of coalition structures that is forbidden from being visited
again as the search progresses. For the starting coalition structure, a neighbourhood is
generated using neighbourhood operators. Four operators (explained in detail at the end
of this section) were tested: Split, Merge, Shift and Extract to enable choosing the best
combination. Between these four, the best combination was Shift and Extract.

Using Shift and Extract, a neighbourhood is generated and a local maximum and
a local minimum are identified within it. The local minimum is added to the tabu list
so that future iterations will rule out these candidates from being visited again (adding
all the other solutions will result in a larger tabu list which will slow down the perfor-
mance). If the local maximum is better than the current best, then the current best is
updated.

5

During any iteration, if the local maximum is not in the tabu list, it is added to the
list and search is continued from this point. On the other hand, if the local maximum is
in the tabu list, it will not be explored as this point and its neighbourhood has already
been visited. A random structure is then repeatedly generated until one that is not in the
tabu list is found. This new structure becomes the continuation point for search.

The above process continues for a fixed number of iterations after which the current
best solution is returned as the optimal one. It must be noted that the choice of neigh-
bourhood operators (see Line 5 of Algorithm 1) is a key determinant of the performance
of tabu search.

Neighbourhood generation: Although tabu search is a general method, the neighbour-
hood operators are problem specific. They must be defined such that the search space is
explored effectively and repeated generation of the same coalition structures is avoided.
Well designed neighbourhood operators are crucial to the success of tabu search. We
defined the following four neighbourhood operators:

Merge The immediate neighbour im(CS) of a coalition structure CS is the grand coali-
tion if CS is the grand coalition. Otherwise, it is the structure obtained by merging
the first two coalitions in CS. The neighbourhood Nm of CS is a set of coalition
structures defined as follows:

Nm(CS) = im(CS)∪ im(im(CS))∪ . . .∪ im(GrandCoalition)

Extract The neighbourhood Ne of a coalition structure CS is a the coalition structure
obtained by making all the agents in the largest coalition of CS singletons.

Split The immediate neighbour is(CS) of a coalition structure CS is CS if CS is com-
prised of all singletons. Otherwise, it is the structure obtained by splitting the largest
coalition in CS into two equal sized coalitions with split occuring in the middle. The
neighbourhood Ns of CS is a set of coalition structures defined as follows:

Ns(CS) = is(CS)∪ is(is(CS))∪ . . .∪ i(AllSingletons)

Shift The immediate neighbour ish(CS) of a coalition structure CS is CS if CS is the
grand coalition. Otherwise, it is the structure obtained by moving the first agent
from the second coalition of CS into the first coalition. The neighbourhood Nsh of
CS is a set of coalition structures defined as follows:

Nsh(CS) = ish(CS)∪ ish(ish(CS))∪ . . .∪ i(GrandCoaliiton)

In order to study the efficacy of the above four operators, Algorithm 1 was tested
for various combinations of these operators on ten different types of input data (de-
tails of input data are in Section 5). Between these combinations, the Shift and Extract
combination yielded the best quality solutions. Thus for comparing the performance of
TACOS with SA, the Shift and Extract combination was used.

4 Heuristic search method 2: Simulated annealing

Simulated annealing (SA) is a randomized local search method analogous to the metropo-
lis algorithm [14]. It is based on the process of annealing in metallurgy [19]. As in

6

gradient descent, this method iteratively generates random solutions. But in contrast to
strict gradient descent, SA allows for a more extensive search for an optimal solution
by accepting inferior solutions with some non-zero probability.

Algorithm 2 Simulated annealing algorithm for finding an optimal coalition structure
1: CS← randomly generated CS; {Generate a random start point}
2: bestCS← CS
3: InitialTemperature← 1.0 {Initialize temperature}
4: α ← 0.99 {Initialize α used to update temperature}
5: for iterationCount← 1,maxIterations do {see Table 2 for maxIterations}
6: Generate the neighbourhood N of CS using Shift and Extract
7: CS′← A structure from N chosen uniformly at random
8: if v(CS′)≥ v(CS) then
9: CS← CS′ {Update CS}

10: else
11: Probability← e

v(CS′)−v(CS)
t {Set probability of accepting an inferior solution}

12: CS← CS′ {Update CS}
13: end if
14: if v(CS)≥ v(bestCS) then
15: bestCS← CS {Update bestCS}
16: end if
17: t← t×α {Update t}
18: end for
19: Return bestCS

The SA method we implemented is given in Algorithm 2. The method starts with
a randomly chosen start point called CS. During each iteration, a random neighbour
CS′ of CS is generated. The structure CS′ is a randomly chosen structure from the
neighbourhood N of CS generated using the combination of Shift and Extract operators
(because as with TACOS, the Shift and Extract combination was found to be the best
for SA). If the value of CS′ is better, then CS′ becomes CS. Otherwise, with probability

e
v(CS′)−v(CS)

t CS′ becomes CS. The temperature is updated. The process is repeated for a
fixed number of iterations and the best solution found is returned as the optimal solution.

5 Performance Evaluation

The TACOS and simulated annealing methods were implemented in Python and their
performance was evaluated in terms of two criteria: solution quality and time to generate
the solution. Let CSTACOS be the coalition structure returned by TACOS, CSSA that for

7

Tabu search Simulated annealing
Moves are random but recorded in tabu Moves are random and there is no
list to guide the search toward record of moves
unexplored space
Advantage: Guided search and structured Advantage: No neighbourhood structure,
neighbourhood so only new solution so search is quicker. Memory-less so
space is explored avoiding repetition requires less resource
Disadvantage: might cause a constrain Disdvantage: Random selection could
on system resources result in repeated moves and unguided

jumps could leave the exploration
stuck in worse parts of search space

Table 1. A comparison of tabu search and simulated annealing.

simulated annealing, and CSOPT be the exact optimal solution. The solution quality for
TACOS (and analogously for SA) was measured as follows:

v(CSTACOS)

v(CSOPT)
×100 (2)

For performance evaluation, the input data, i.e., the values of coalitions (see Equa-
tion 1) is generated from a wide range of probability distributions taken from the liter-
ature [24, 15]:

1. Uniform (Standard): Python Mersenne twister pseudorandom number [13]: for all
C ∈ CA, the value v(C)∼ U(0,1).

2. Uniform (Sandholm): For all C ∈ CA, the value v(C)∼ U(0, |C|).
3. Normal (Rahwan): For all C ∈CA, the value v(C)∼N(µ,σ2) where µ = 10×|C|

and σ = 1.
4. Exponential: For all C ∈ CA, the value v(C)∼ |C|× exp(λ), where λ = 1.
5. Modified Uniform: Each coalition’s value is first drawn from U(0,10× |C|), the

value is then increased by a random number r ∼U(0,50) with a probability of 0.2.
6. Modified Normal: Each coalition’s value is first drawn from N(0,10× |C|), the

value is then increased by a random number r ∼U(0,50) with a probability of 0.2.
7. NDCS: For all C ∈ CA, the value v(C)∼ N(µ,σ2), where µ = |C| and σ =

√
|C|.

8. Beta: For all C ∈ CA, the value v(C)∼ |C|×Beta(α,β), where α = β = 0.5.
9. Gamma: For all C ∈ CA, the value v(C)∼ |C|×Gamma(k,θ), where k = θ = 2.

10. Agent-based Uniform: Each agent a in a coalition C is a given a random power
drawn from ρa ∼ U(0,10) to reflect its average contribution in all the coalitions it
is a member of, then for every coalition C containing agent a, the actual power ρc

a
of a in C is ρc

a ∼ U(0,2ρa). The value of C ∈ CA is the sum of the powers of all
member coalitions. For all C ∈ CA, v(C) = ∑a∈C ρC

a .

For the above distributions, the quality of solution for each method was evaluated
for up to 25 agents for CFGs and 9 agents for PFGs. Note that, although the heuristic
methods can run for larger games, finding the exact optimum (needed for calculating

8

Probability CFGs (for 25 agents) PFGs (for 9 agents)
distribution Number of iterations Avg. time Number of iterations Avg. time

TACOS SA (ms) TACOS SA (ms)
Uniform (Standard) 10000 20000 5500 25 75 9000
Uniform (Sandholm) 750 3000 400 250 375 90000
Normal (Rahwan) 50 150 30 10 20 3500
Exponential 200000 500000 120000 500 1000 180000
Modified Uniform 100000 200000 55000 500 1500 180000
Modified Normal 100000 200000 55000 500 1000 180000
NDCS 7500 30000 4000 500 1000 180000
Beta 600 2400 350 100 150 35000
Gamma 100000 350000 55000 100 250 35000
Agent-based Uniform 200000 400000 120000 500 1500 180000
Table 2. The number of iterations for each distribution. Time is in milliseconds (rounded to the
next decimal).

the solution quality given in Equation 2) for them is computationally impractical. We
present results for 25 agents for CFGs and 9 agents for PFGs. Both TACOS and the SA
method we implemented are oblivious to the type of probability distribution from
which the values of coalitions are drawn randomly. All simulations were run on a PC
equipped with and Intel Xeon E5630 Processor running at 2.53Ghz (2.8Ghz Turbo) and
12GB RAM.

The performance of both TACOS and SA depends on i) the probability distribution
from which the values of coalitions are drawn and ii) the random start point. Some
probability distributions require more iterations than others to reach the same quality of
solution. The number of iterations for each distribution was fixed based on a preliminary
evaluation of TACOS and SA. The number of iterations is listed in Table 2. For each
probability distribution, average performance was measured as follows:

CFGs The value of a coalition depends only on its members.
Step 1 : For a probability distribution, generate a data set comprised of all possible

coalition structures and their associated values. A data set is generated as fol-
lows. For each possible coalition, randomly draw a value from the probability
distribution. The value of a coalition structure is the sum of the values of its
coalitions as given in Equation 1.

Step 2 : For a probability distribution, generate ten different data sets by repeating
Step 1.

Step 3 : Repeat Step 2 for each of the ten probability distributions.
PFGs The value of a coalition depends on the structure it is embedded in.

Step 1 : For a probability distribution, generate a data set comprised of all possi-
ble coalition structures and their associated values. A data set is generated as
follows. For each possible coalition structure, randomly draw a value from the
probability distribution for each constituent coalition. The value of the structure
is the sum of the values of its coalitions as given in Equation 1. The difference
between CFGs and PFGs is that, for the latter, a random value for a coalition

9

is drawn for each structure it is embedded in. But for the former, the value of a
coalition is drawn only once. Thus, for PFGs, depending on the random values
drawn, externalities may be positive or negative [5].

Step 2 : Repeat Step 2 for each of the ten probability distributions.

Since both TACOS and SA are sensitive to the start point which is random, these al-
gorithms were run ten times for each data set. Average solution quality (with solution
quality calculated as per Equation 2) and average running time were then measured
across the ten runs for each data set and across the ten data sets for each probability
distribution.
TACOS versus Simulated Annealing: The average performance of TACOS was com-
pared with the average performance for SA for each of the ten probability distributions.
The results are as shown in Figure 1 for CFGs and in Figure 2 for PFGs.

Consider the results in Figure 1 for CFGs. These results are for a system com-
prised of 25 agents. For each of the ten distributions, TACOS performed better than
SA although the difference in performance varied form distribution to distribution. For
the Normal (Rahwan) distribution, the performance of TACOS and SA was very close
with the solution quality being 99.9% of the exact optimum. For the Beta and Uniform
(Sandholm) distributions, TACOS achieved 99.9% and 98.7% respectively. The quality
of solution was least for the Modified Normal and Modified Uniform distributions.

Consider the results in Figure 2 for PFGs. These results are for a system comprised
of 9 agents. While running the TACOS and SA algorithms for more than 9 agents is
easy, computing the exact optimum is computationally demanding. Although a 9 agent
system is small, its analysis nevertheless helps in a comparative evaluation of TACOS
and SA. For PFGs, TACOS generated better solutions than SA for each of the ten prob-
ability distributions. For the Gamma distribution, the heuristic solution for TACOS co-
incided with the exact optimum, for Normal (Rahwan) TACOS generated 99.96% of
exact optimum while SA performed just fractionally below this level. For the Uniform
(Standard), Beta, and Uniform (Sandholm) TACOS’s solution was over 96% of the ex-
act optimum. TACOS performed worst for the NDCS distribution achieving 80% of the
exact.

Thus for both CFGs and PFGs, TACOS performed better than SA for each of the ten
probability distributions. However, TACOS consumes more resource than SA in terms
of its memory requirements.

Anytime property: A key feature of both TACOS and SA is that their average perfor-
mance improves with execution time; the more the time spent running them, the better
the results for CFGs and PFGs. This anytime property is illustrated in Figure 3 for
TACOS for CFGs for each of the ten probability distributions.

6 Related Work

Existing methods for optimal coalition structure generation can be categorised into two
types: exact and approximate. Exact algorithms return the absolute optimal solution by
systematically exploring the space using methods such as dynamic programming to find
an optimal one. Examples include [28, 23, 20]. Approximation methods that come with

10

a guarantee on the quality of approximation include [26, 24, 1, 22, 9]. These methods in
general have exponential running time (although polynomial time may be achieved by
imposing restrictions on the coalitions that can form) which means that it is difficult
for them to scale to large systems. Heuristic methods also generate approximate solu-
tions but although they generally generate good solutions, there are no guarantees on
the quality of solution. The advantage of these methods is that they typically have poly-
nomial running time. The methods we explore in this paper belong to this class. In the
remainder of this section, we will place our research in the context of existing heuristic
methods that have previously been developed for coalition structure generation.

In their unpublished report Murillo et al. [17] used tabu search for set partitioning.
The problem they addressed is to partition a set of objects so that similar items go into
one class by assuming that the number of distinct classes is given (this is a special case
of CFGs). They showed that tabu search performs better than simulated annealing and
genetic algorithms. However, their simulations are limited to only five classes. There
are two differences between their work and our paper. First, the problem we solve is
much more general; we focus on determining the optimal coalition structure without
knowing the number of partitions in the optimal structure. Thus, in their work, it is
known that the optimal structure will contain, for example, five partitions. We find an
optimal partition without knowing in advance how many coalitions that partition will
contain. Second, they conducted simulations for a very restricted scenario in which the
optimal partition contains at most five classes (i.e., coalitions). We consider CFGs of
up to 25 agents and determine the optimal structure without knowing the number of
coalitions in it. Third, they only considered CFGs while we considered both CFGs and
PFGs.

Sen and Dutta [25] used genetic algorithms to find optimal coalition structures.
They showed empirically that a good enough solution can be achieved. This work is an
exception to other existing literature in that the simulations are conducted for CFGs and
PFGs. They considered a particular search space for simulations by imposing a strict
regularity on it. In contrast to this work, we do not impose any regularity on the search
space. The simulations we conducted are comprehensive; we evaluated the average per-
formance over 10 different probability distributions for the values of coalitions.

Heuristic techniques such simulated annealing [12], greedy search [8], particle swarm
[11], and ant colony optimisation [27] have previously been used for CFGs. Ant colony
and particle swarm optimization are decentralized methods in that a group of entities si-
multaneously search for an optimal solution. In contrast, simulated annealing and tabu
search are centralized methods. See [21] for a detailed survey of coalition structure
generation methods.

In summary, our aim in this paper is to focus on centralized approaches. To date,
tabu search has not been used for coalition structure generation. Given this, we studied
the efficacy of tabu search which is a memory-based method relative to simulated an-
nealing which is a memory-less method. Note that, although simulated annealing was
used in [12], its evaluation was limited in that its performance was evaluated for only
one specific probability distribution where the value of any coalition is a random num-
ber between 0 and 1 was used. In contrast, our evaluation is comprehensive in that we
evaluated and compared tabu search and simulated annealing for the ten different types

11

of probability distributions (listed in Section 5). Furthermore, unlike previous work on
heuristic methods, we consider both CFGs and PFGs.

7 Conclusions

In this paper, we implemented two heuristic methods, tabu search (TACOS) and sim-
ulated annealing and compared their average performance over a range of input data.
Each of the two methods implemented is oblivious to the type of probability distribu-
tion. For both CFGs and PFGs, TACOS performed better than SA for each of the ten
probability distributions. The price to pay for better performance is the extra memory
requirement for TACOS. Both TACOS and SA have anytime property.

This paper evaluated the performance of TACOS and SA for small PFGs. Further
work is needed to extend the results to larger PFGs. In addition, this paper used the same
neighbourhood operators for CFGs and PFGs. A redefinition of operators particularly
suitable for PFGs could improve performance. This too needs further research.

References

1. B. Banerjee and L. Kraemer. Coalition structure generation in multi-agent systems with
mixed externalities. In Proceedings of AAMAS, pages 175–182, 2010.

2. G. Barbarosoglu and D. Ozgur. A tabu search algorithm for the vehicle routing problem.
Computers and Operations Research, 26:255–270, 1999.

3. G. Chalkiadakis, E. Elkind, and M. Wooldrdidge. Computational Aspects of Cooperative
Game Theory. Morgan and Claypool Publishers, 2011.

4. C. Chang, L. Lu, and F. Wen. Power system network partitioning using tabu search. Electric
Power Systems Research, 49(1):55–61, 1999.

5. G. D. Clippel and R. Serrano. Margainal contributions and externalities in the value. Econo-
metrica, 76(6):1413–1436, 2008.

6. T. Combs and J. Moore. A hybrid tabu search set partitioning approach to tanker crew
scheduling. Military Operations Research, 9(1):43–56, 2004.

7. G. Crainic, G. Perboli, and R. Tadei. Ts2pack: A two-level tabu search for the three-
dimensional bin packing problem. Eur. J. Oper. Res, 195:744–760, 2004.

8. N. DiMauro, T. Basile, S. Ferilli, and F. Esposito. Coalition structure generation with grasp.
In Artificial Intelligence: Methodology, Systems, and Applications, pages 111–120. Springer,
2010.

9. A. Epstein and A. Bazzan. Distributed coalition structure generation with positive and neg-
ative externalities. In Lecture Notes in Computer Science, volume 8154, pages 408–419.
Springer, 2013.

10. F. Glover and M. Laguna. Tabu Search. Kluwer Academic Publishers, 1997.
11. B. Guo and D. Wang. Optimal coalition structure based on particle swarm optimization

algorithm in multi-agent system. In Proceedings of the Sixth World Congress on Intelligent
Control and Automation, pages 2494–2497, 2006.

12. H. Keinanen. Simulated annealing for multi-agent coalition formation. In Proceedings of the
Third KES International Symposium on Agent and Multi-Agent Systems: Technologies and
Applications, pages 30–39, 2009.

13. M. Matsumoto and T. Nishimura. Mersenne twister: A 623-dimensionally equidistributed
uniform pseudo-random number generator. ACM Trans. Model. Comput. Simul., 8:3–30,
1998.

12

14. N. Metropolis, A. Rosenbluth, M. Rosenbluth, A. Teller, and E. Teller. Equation of state
calculations by fast computing machines. J. Chem. Phys, 21:1087–1092, 1953.

15. T. Michalak, T. Rahwan, E. Elkind, M. Wooldridge, and N. R. Jennings. A hybrid exact
algorithm for complete set partitioning. Artificial Intelligence, 230:14–50, 2016.

16. A. Misevicius. An implementation of the iterated tabu search algorithm for the quadratic
assignment problem. OR Spectrum, 34:665–690, 2012.

17. A. Murillo, E. Piza, and J. Trejos. A tabu search algorithm for partitioning. Technical report,
1999.

18. M.Wooldridge. An introduction to multiagent systems. John Wiley, 2009.
19. D. Pham and D. Karaboga. Intelligent optimisation techniques: Genetic Algorithms, Tabu

Search, Simulated Annealing and Neural Networks. Springer, 2000.
20. T. Rahwan, T. Michalak, N. R. Jennings, M. Wooldridge, and P. McBurney. Coalition struc-

ture generation in multi-agent systems with positive and negative externalities. In Proceed-
ings of IJCAI, pages 257–263, 2009.

21. T. Rahwan, T. P. Michalak, M. Wooldridge, and N. R. Jennings. Coalition structure genera-
tion: A survey. AI Journal, 229:139–174, 2015.

22. T. Rahwan, M. W. T. Michalak, and N. Jennings. Anytime coalition structure generation in
multi-agent systems with positive or negative externalities. AI Journal, 186:95–122, 2012.

23. M. Rothkopf, A. Pekec, and R. Harstad. Computationally manageable combinational auc-
tions. Management Science, 229:1131–1147, 1998.

24. T. Sandholm, K. Larson, M. Andersson, O. Shehory, and F. Tohme. Anytime coalition struc-
ture generation with worst case guarantees. Artificial Intelligence, 111(1–2):209–238, 1999.

25. S. Sen and P. Dutta. Searching for optimal coalition structures. In Proceedings of AAMAS,
pages 287–292, 2000.

26. O. Shehory and S. Kraus. Methods for task allocation via agent coalition formation. AI
Journal, 101(1–2):165–200, 1998.

27. A. Sukstrienwong. Searching optimal buyer coalition structure by ant colony optimization.
International Journal of Mathematics and Computers in Simulation, 5:352–360, 2011.

28. D. Yeh. A dynamic programming approach to the complete set partitioning problem. BIT
Numerical Mathematics, 26(4):467–474, 1986.

13

Fig. 1. A comparison of TACOS and simulated annealing for CFGs.

14

Fig. 2. A comparison of TACOS and simulated annealing for PFGs.

15

Fig. 3. An illustration of the anytime property of TACOS for CFGs.

