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Abstract 

Graphite and graphene particles were used to reinforce the electrical conductivity and 

anti-corrosion properties of polyurethane (PU) coatings. The effect of graphite and 

graphene were compared. Hybrid filler using carbon nanotube was adopted as well 

and the performance in electrical conductivity was much superior to single filler 

system. At the same filler loading, the electrical conductivity of hybrid filler system 

was significantly higher than single filler system (0.77 S/m at 5 wt% while single 

filler system was not conductive). The conductive mechanism was revealed. In terms 

of anti-corrosion properties, the coatings with low filler loading had better anti-

corrosion properties. The resistance values obtained from EIS (Electrochemical 

Impedance Spectroscopy) and four point probe method were compared and discussed.  

 

Key words: Graphene, PU coating, Electrical conductivity, Anti-corrosion, Steel, EIS 

 

 

 

 

 

 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Loughborough University Institutional Repository

https://core.ac.uk/display/288369155?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


2 

 

1. Introduction 

Electricity Energy Storage (EES) is a process that converts electrical energy from 

generating plants into other forms that can be stored and convert back to electrical 

energy when needed. The EES technologies are widely used for either potable 

(mobile phone batteries) or stationary energy resources (pump hydroelectric storage) 

[1,2]. The technologies development is very fast which urge the EES industries to 

revolve. Apart from the traditional applications in utility and consumer use, there are 

a lot of new applications arisen such as renewable energy generation, smart house and 

electrical vehicles [3]. The future market potential of EES, driven by the extended 

utilization of renewable energy and the transformation of the energy sector, expands 

rapidly and will be much larger than the existing market which requires the EES 

industries to advance their technologies and products very fast. The general properties 

of EES are energy capacity, power, discharge time, lifetime and unit sizes. The 

electrical conductivity of the components in the EES devices relates to the energy 

capacity, power, discharge time and even unit sizes while the corrosion resistance of 

the components is one of the factors that determine the lifetime of EES devices [3,4].  

 

When EESs are in service, the materials of the EES contact different environments, 

some of which are very corrosive (i.e. metal panels in fuel cell). The reactions 

between the materials and the environments will destroy or deteriorate the materials 

and this process is defined as corrosion [5].  Corrosion causes tremendous economic 

loss and it is a significant part of the gross national production every year in USA [6]. 

and the estimated annual cost is about 2000-3000 dollars per inhabitant in 1985 [7]. 

The protection against corrosion is vital to reduce the cost of the products. There are 

several methods to protect the materials against corrosion (metals substrate in EES 

devices. The use of coating is the most popular one and about 90% of all metal 

surfaces are covered with protective coatings. The protection efficiency of the organic 

coating is magnificent due to the fact that they are very thin (thickness ranges from 5 

microns to 250 microns depend on the applications) [8]. There are three mechanisms 

of organic coating systems against corrosion: the physicochemical (barrier) 

mechanism, the electrochemical mechanism (inhibition or cathodic protection) and 

the adhesion mechanism [9]. Although organic coatings are ideal to protect metal 
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substrates from corrosion, they may not suitable for the protection of EES devices as 

their electrical conductivities are very low which will affect the performance of the 

devices. The protective coatings used for EES should process good electrical 

conductivity and anti-corrosion properties [10]. Although the organic coatings have 

excellent anti-corrosion properties, they do not process acceptable electrical 

conductivity. In terms of EIS measurement, the electrical resistance of the coating is 

used as the indication of its efficiency to block the ions that damage the metal 

substrates [8]. Therefore, an organic coating with excellent anti-corrosion properties 

may not have good electrical conductivity.  

 

Graphene is a miracle material that has been received widely attentions from the 

researchers and it has been utilised in many apparitions including conductive 

nanocomposites. Polypyrrole (PPy)/reduced graphene oxide nanocomposite had been 

prepared successfully with enhanced electrical conductivity [11]. The electrical 

conductivity of pure PPy was 0.19S/cm while the 1wt%, 2 wt% and 3wt% PPy/GO 

nanocomposite showed 0.51 S/cm, 1.41 S/cm and 1.64 S/cm, respectively. After 

reduction, the nanocomposites could exhibit better electrical conductivity. The 

electrical conductivity of thermal plastic PU was improved by adding reduced 

graphene oxide into the PU matrix by Canales and his colleagues. The highest 

electrical conductivity achieved was 6.1 × 10-4 S/cm [12]. ABA (4-aminobenzoic acid) 

functionalized graphene was incorporated in PANI for corrosion protection coatings 

[13]. The coatings could protect the steel effectively because of the excellent O2 and 

H2O barrier. Due to the high aspect ratio of graphene, it can be a more efficient gas 

brier than other nanofillers. Parasai and his co-workers developed single-layer and 

multi-layer graphene films to serve as anti-corrosion coatings  [14]. The coatings can 

be applied on different metallic substrates. The impedance values of the graphene 

coated metal were much higher than pure metal. From the previous work, graphene is 

promising to be utilised to improve the electrical conductivity and anti-corrosion 

properties of polymer.  
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It is not easy to develop an organic coating with excellent electrical conductivity and 

anti-corrosion properties at the same time. The coating industry has been undergoing 

a continual change in technology in the last few decades. With the discovery of new 

materials and the change in international legislation, the formulation of coatings has 

been changed significantly. Graphene is a promising materials and its potential use in 

coating is huge. The wide utilisation and excellent properties of PU make it excellent 

candidate as anti-corrosion coatings. The combination of graphene and PU may able 

to produce a coating with good electrical conductivity and anti-corrosion properties. 

The porous surface of the EPD coated metal substrates in our previous published 

paper can be covered by PU/graphene nanocomposite coatings [15]. The researches 

reporting anti-corrosion properties and electrical conductivity at the same time are 

limited. The multi-layers coating system will be discussed in this chapter as well. The 

coated samples will be characterised by EIS and four point probe test for anti-

corrosion property and electrical conductivity respectively. The coating resistance 

obtained with different technique will be discussed. In this paper, EIS is used to 

predict the anti-corrosion properties of the prepared coatings and reveal the effect of 

graphene on the anti-corrosion properties.  
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2. Experiments 

2.1 Materials 

TIMREX PP10 natural graphite (PP10) which supplied by TATA steel was purchased 

from TIMCAL Ltd. The expandable graphite was purchased from China Qing Dao 

Graphite Company. MWCNT was purchased from a company in China. PU topcoat 

and primer were supplied by TATA steel. Cold rolled steel ‘Black Plate’, which was 

used as substrates, was provided by TATA Steel R&D. Acetone (99.5% purity) and 

iodine were purchased from Sigma Aldrich. NaCl was purchased from Fisher Ltd 

(UK).The graphene used was the same as our previous work [15]. 

 

2.2 Sample preparation 

For the fabrication of nanocomposite coatings PP10, MWCNT and TEG were used. 

Initially, topcoat was stirred by a glass rod to let the polymer particles disperse 

uniformly in the suspension and then a calculated amount of PU topcoat was poured 

into a glass bottle for latter mechanical stirring. The total weight of the composite was 

6g. A calculated amount of filler was added into the PU topcoat during mechanical 

stirring. The duration of mechanical stirring was 4 hours 

 

For hybrid filler filled coating, the total weight of the composite was 6g. According to 

the filler ratio, calculated amount of TEG, G or PP10 and MWCNTs were added into 

a glass bottle and a suitable amount of acetone was added as well. The resulted 

suspension was ultrasonicated for 30 minutes. After ultrasonication, the glass bottle 

was put into a fume cupboard to evaporate the acetone until a filler paste was resulted. 

Calculated amount of topcoat was added into the glass bottle and the mixture was 

mechanical stirred at 1000 rpm for 4 hours. The preparation procedure of primer 

based nanocomposite coatings was similar. 

 

All the resulted mixtures were coated onto the BP steel by hand draw bar which 

performed with a glass rod. Before coating, The BP substrates were cleaned by 
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acetone and then they were degreased in 5% alkaline solution at 70 ⁰C for 3 minutes. 

The coated samples were put into an oven at 290 ⁰C for 4 minutes 40s for fully cured. 

For EPD + topcoat system, topcoat was directly coated onto EPD deposited layer by 

hand draw bar. The as-prepared sample was cured at the same conditions as other 

samples. For multi-layer system, epoxy primer was directly coated onto EPD 

deposited layer by hand draw bar and cured in the oven at 290 ⁰C for 3 minutes. PU 

top coat was subsequently coated onto the coated sample by hand draw bar and the 

resulted multi-layers coating was punt into the oven for 4 minutes 40s. The EPD 

coated sample was produced according to previous paper. The coating thickness limit 

of EPD coating is 10 µm and the coating thickness limit of the polymeric coatings are 

4 µm. 

 

Characterization 

The electrical conductivity of the coated samples was measured by using a FLUKE 

PM6306 programmable automatic RCL meter with a four point probe. Relative 

electrical conductivity Cc/Cs was used show the electrical conductivity enhancement, 

where Cc represents the measured electrical conductivity of the coated samples and Cs 

represents the measured electrical conductivity of bare steel. Optical microscopy 

(Leica DFC480) and FEGSEM (Carl Zeis (Leo) 1530VP) were used to characterize 

the surface of the coated samples. EIS was used to characterize the corrosion 

resistance of the coatings. The thicknesses of the coatings were measured by calliper.  
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3. Results and Discussion 

3.1 The electrical conductivity of the nanocomposite coatings 

3.1.1 The conductivity of PU topcoat composites 
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Figure 1 shows the electrical conductivity versus stirring rate of 8 wt% PP10 filled PU 

topcoat. The stirring rates are selected according to general stirring rates used in 

TATA Steel. It seems that 750 rpm stirring rate is an ideal stirring rate to achieve 

higher conductivity.  However, the conductivity only changed from 0.0032 to 0.0046 

which indicates that stirring rate does not affect the electrical conductivity 

significantly. In addition, the electrical conductivity may actually near the same when 

the standard deviation is considered. Therefore, stirring rate did not have a profound 

effect on the electrical conductivity and the function of stirring is to disperse the 

particles uniformly in the coating.  

 

 

Figure 1 Plot of electrical conductivity versus stirring rate (topcoat trials) 
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Code name PPPU7500 PPPU8500 PPPU10500 PPPU12500 PPPU14500 PPPU17500 

Electrical 

conductivity 

(S/m) 

7.42E-4 ± 

1E-4 

3.2E-3 ± 

3E-4 

0.21 ± 0.01 907.75 ± 82 2816.9 ± 

201.3 

1336.2 ± 

290.6 

 

Figure 2 and Table 1 show the electrical conductivity of the coatings in PPPU trial. 

From the results, 14 wt% PP10/PU coating has the highest conductivity and the 

percolation threshold of this system is 7 wt%. The reason why 14 wt% PP10/PU 

coating has best conductivity is that the contact resistance and tunnelling resistance 

between the PP10 particles are the lowest. The distance between the dispersed PP10 

particles in the PU matrix is the key factor that affects the electrical conductivity. A 

polymer composite can only be conductive when the distance between two conductive 

filler particles less than 2~3 nm [16]. With more PP10 particles added into the matrix, 

current can pass through the coating layer with less resistance which lead to higher 

electrical conductivity. However, if excessive amount of PP10 is added, the contact 

resistance between PP10 particles has a detrimental effect on the resulted coating’s 

conductivity. This is the reason why the electrical conductivity begins to drop when 

the PP10 loading is larger than 14 wt%.  

Figure 2 Plot of electrical conductivity versus PP10 weight percent for PPPU trials 

Table 1 Electrical conductivity values of PPPU system 
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Code name EPPPU7500 EPPPU8500 EPPPU10500 EPPPU12500 EPPPU14500 EPPPU17500 

Electrical 

conductivity 

(S/m) 

0 0 
7E-4 ± 1.2E-

4 

3.4 E-3± 

1.9E-3 
0.22 ± 0.056 

0.086 ± 

0.019 

 

Figure 3 and Table 2 show the electrical conductivity of EPPPU coating systems. 

EPPPU system is a two layers coating system where primer is underneath the top 

coating. Compared to PPPU system, similar trend of electrical conductivity versus 

PP10 weight percent is observed. In addition, the electrical conductivity of EPPPU 

coated samples are much lower than PPPU coated samples which indicate that the 

application of primer significantly reduce the electrical conductivity due to the 

insulation effect. 

Coating system PU top coat EPD + PU top coat 

Electrical conductivity (S/m) 0.0032 ± 0.0003 0.31 ± 0.02 

 

From Table 3, the application of EPD coating layer prior to PU topcoat can 

significantly enhance the electrical conductivity of the coating system. PU topcoat 

acts as barrier layer in this system. As a result of the deposited graphite layer has very 

Figure 3 Plot of electrical conductivity versus PP10 weight percent for EPPPU trials 

Table 2 Electrical conductivity values of EPPPU system 

Table 3 Electrical conductivity of PPPU topcoat 
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high electrical conductivity, the electrical conductivity of the topcoat is improved 

because more electrical conductance is presented in the system. In addition, the 

distance between the EPD layer and the PU topcoat is very close and, therefore, the 

tunnelling resistance is very low.  

 

3.1.2 The conductivity of PU primer composites 
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Code name EPP6500 EPP8500 EPP10500 

Electrical conductivity (S/m) 0 4.21E-5 ± 7.4E-6 6.13E-4 ± 2.16E-4 

 

Figure 4 and Table 4 show the electrical conductivity of the coatings in EPP trial. 

From the results, the percolation threshold of this system is 8wt%. Compared to the 

electrical conductivity of conductive top coat, the electrical conductivity values of 

primer/PP10 composite coating are generally lower. The reason is that the primer has 

higher viscosity than PU top coat.  Agglomerates of PP10 particles were formed 

during stirring and the particles could not be dispersed effectively. As discussed 

before, the distance between the dispersed PP10 particles in the coating is the key 

factor that affects the electrical conductivity. With agglomerates of PP10 particles 

Figure 4 Plot of electrical conductivity versus PP10 weight percent for EPP primer trials 

Table 4 Electrical conductivity EPP system 
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formed, the distance between each particle will be larger and the tunnelling resistance 

will be increased. Higher viscosity of primer system leads to poorer electrical 

conductivity performance than PU top coat system. 

3.1.3 The conductivity of hybrid filler system and multi-layer coating 

Code name HIPU81000 HIIPU81000 HIIIPU81000 

Electrical conductivity (S/m) 0.14 ± 0.01 2567.4 ±235 2E-3 ± 2.8E-4 

 

In hybrid filler system, the addition of CNTs can improve the electrical conductivity 

of the system significantly as shown in Table 5. The tube shape CNT can act as a 

bridge between PP10 particles to form a conductive network. Therefore, the 

tunnelling resistant of this coating system is reduced significantly and the resistance 

of this system is mainly the contact resistance between filler particles. The addition of 

graphene does not show obvious enhancing effect. The addition of CNT can improve 

the electrical conductivity of the coating significantly. The role of PP10 particles act 

as the island of the conductive network. Therefore, the combination of these bridges 

and islands allow the current to flow without high resistance. 

Coating system HIIEPP4500 HIIEPP8500 

Electrical conductivity (S/m) 4.2E-3 ± 5E-4 0.4 ± 0.12 

 

From Table 6, the addition of MWCNTs into the system can significantly improve the 

electrical conductivity of primer system. However, the electrical conductivity hybrid 

filler epoxy primer is poorer than hybrid filler PU top coat with the same weight 

percent of hybrid filler incorporated. The results are as expected. With the addition of 

MWCNTs, the percolation threshold of epoxy primer system was much lower than 

the system where only PP10 was added. The high aspect ratios and tube shape of 

MECNTs can facilitate the formation of conductive network in the coating system. As 

a result of MWCNTs’ structure, the tunnelling resistance in the coating system is 

reduced significantly.    

Table 5 Electrical conductivity of hybrid filler PU topcoat system  

Table 6 Electrical conductivity of hybrid filler primer system  
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After the trials of hybrid filler system, the produced coatings were used to investigate 

the performance of multi-layers coating. The electrical conductivity of the multi-layer 

coating systems are shown in Table 7. From both trials, the systems (MI(1) and 

MII(2)) containing EPP8500 primer have higher conductivity. Comparing the three 

layers and two layers coatings (MII), the three layers coating systems (MI) have 

higher conductivity due to the EPD coating layer. However, multi-layers coating 

systems have much lower electrical conductivity than single layer coating system. 

With the application of second coating layer, the tunnelling resistant and contact 

resistance of the whole system will be increased because the addition of extra 

insulation polymeric component in the system. In addition, the interface between two 

coatings may act as insulated layer because they polymers near the interface act as 

barrier to separate the conductive particles between the two coatings. The tunnelling 

resistance of the whole system will be increase significantly as the conductive 

particles are not close enough to each other to let the current pass through without 

much resistance. The application of EPD layer can only improve the electrical 

conductivity of the whole coating system a little because the insulation effect resulted 

from the polymeric component is too significant.  

Code name HIVE 21000 HVE21000 HVIE21000 

Electrical conductivity 

(S/m) 
1.96E-3±3.6E-4 4.8E-4 ±7.2E-4 2.26E-3 ± 5.34E-4 

 

In order to improve the electrical conductivity of the coating further, a new filler TEG 

was utilized. Table 8 shows the electrical conductivity of coating contained different 

ratios of hybrid fillers. From the results, the sample with the TEG to MWCNTs ratios 

of 2:1 (HIVE21000) has the lowest electrical conductivity while the electrical 

conductivity of HIVE21000 and HVIE21000 is the nearly same. MWCNTs could act 

as bridge between TEG particles so the current can pass through the sample with less 

Code name MI(1) MI(2) MII(1) MII(2) 

Electrical conductivity (S/m) 4.92 ± 0.78 1.71 ±0.28 2.54 ± 0.29 1.14 ±0.18 

Table 8 Electrical conductivity of second set of hybrid filler primer 

Table 7 Electrical conductivity of hybrid filler primer system 
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resistance and, therefore, the electrical conductivity of the samples increases with 

more MWCNTs in the hybrid filler. However, the bridging effect of MWCNTs 

becomes less profound when MWCNTs to TEG ratio is bigger than 1. Hence, the 

effect of weight percent on electrical conductivity was investigated by fabricating 

HIVE samples with different weight percent of hybrid fillers.  
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Code name HIVE21000 HIVE41000 HIVE51000 HIVE61000 HIVE7000 HIVE81000 

Electrical 

conductivity 

(S/m) 

1.96E-3 ± 

3.6E-4 

0.073 

±0.013 
0.77 ± 0.22 0.54 ±0.32 3.37±0.93 12.37±2.1 

Resistance 

(Ω) 

1.16E6 ± 

2E5 
30849 ±581 3116 ± 465 5167 ±577 701±188 183±30 

Conductivity 

ratios Cc/Cs 

6.67E-7 ± 

1.2E-7 

2.51E-5 

±4.4E-6 

2.62E-4 ± 

7.6E-5 

1.87E-4 

±1.1E-5 

1.2E-3 ±3.15E-

4 

4.21E-3 

±7.04E-4 

 

Figure 5 shows the electrical conductivity of HIVE samples contained different 

weight percent of hybrid fillers. The values of electrical conductivity resistance and 

Figure 5 Plot of electrical conductivity versus hybrid filler weight percent of HIVE 

Table 9 Electrical conductivity, resistance, conductivity ratios of hybrid filler filled primer samples 
primer system  
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conductivity ratios of HIVE samples are shown in Table 9. With the addition of 

hybrid filler, the electrical conductivity of primer increase significantly. The 

resistance of HIVE samples was lower than 1000 Ω when the hybrid filler weight 

percent was higher than 7 wt%.  The percolation threshold of HIVE system was 

significantly lower than the systems in the reports before. The addition of TEG 

provided superior electrical conductivity than the materials used before. 

 

Code name 
Electrical 

conductivity (S/m) 
Resistance (Ω) 

Conductivity ratios 

Cc/Cs 

HVIE61000 0.2±0.04 11314 ±1047 6.85E-5±1.3E-5 

HVIE61000 + 

salt 
0.29±0.05 7905 ±1072 9.83E-5±2.03E-5 

 

Salt (NaCl) addition can improve the electrical conductivity of the conductive primer 

systems as shown in Table 10. The sample with intermediate electrical conductivity of 

the hybrid filler primer was selected. Ions will be formed when salt dissolve in the 

epoxy primer system to act as electrical conductive island to reduce the tunnelling 

resistance further of the system. The concentration selected was according to the 

study of Song et al [16]. Excessive slat will reduce the electrical conductivity and 

might weaken the performance of the coating. In terms of anti-corrosion properties, 

the addition of salt might accelerate the corrosion process. The ions in the 

environment (electrolyte such as NaCl) need to migrate into the coating and react with 

the metal substrate. In the coating containing salt, the migration of ions from the 

environment to substrate might be easier and the failure of coating might be initiated 

earlier.  

 

Table 10   Electrical conductivity comparison of the samples with and without slat addition 
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3.1.4 The Mechanisms of electrical conductivity 
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Figure 6   Plots of (a) particle size distribution of three different fillers (b) Accumulated volume versus 
particle diameter of three different fillers 
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                              (a)                                                                 (b) 

                               (c) 

The key of achieving high electrical conductivity in composite is to reduce the 

distance between the conductive particles. Increasing the weight percent of the 

conductive fillers is one of the effective methods. However, the cost of the filler and 

the reduction in coating properties are the major drawbacks. Hence, increasing the 

diameter of the filler particles is an alternative way to increase the electrical 

conductivity without increasing the cost and weakening the coating performance. 

Figure 6 show the particle size distribution and particle diameter of PP10, TEG and 

MWCNT. According to the previous result, the hybrid filler system using TEG and 

MWCNT had higher electrical conductivity. Hence, the bigger size particle can 

facilitate the formation of conductive network. Due to the reduced distance between 

the conductive fillers in the system (as shown in Figure 7), the tunnelling resistance of 

the system is reduced significantly. As a result, the percolation threshold is reduced 

significantly and the electrical conductivity of the system is improved remarkably. 

The selection of the filer is vital for the electrical conductivity enhancement.  

Figure 7   Scheme of the filler reinforced coating (a) PP10 (b) PP10 + MWCNT (c) TEG + MWCNT 
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3.2 The anti-corrosion property of the nanocomposite coatings 

3.2.1 Single filler system 

100 101 102 103 104

40

50

60

70

80

90

100

IZ
I(


cm
2 )

Frequency (Hz)

 DP560
 DP580
 DP600
 DP620

 

Figure 8 show the impedance versus frequency for some EPD samples after heat 

treatment. The maximum impedance in Bode plot is a good indication of the coating 

protection against corrosion [17]. In terms of steel substrate, a good protective organic 

coating should have the maximum impedance value above 106 Ωcm2[18].  
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                                                                     (a) 

Figure 8   Bode plot of the samples with EPD coating (after heat treatment) 
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                                                                   (c)  

The EIS results of PPPU trial are shown in Figure 9. The maximum impedance in this 

frequency range decreases with filler weight percent first and then increases with filler 

weight percent but the impedance of the sample with 17 wt% PP10 is lower than that 

with 7 wt% PP10. PU/7 wt% PP10 topcoat has the highest maximum impedance 

while PU/8 wt% has the lowest maximum impedance. Although, most of the samples 

display characteristic of effective barrier film in Nyquist plot, the maximum 

impedances of all the samples are below 106Ω which indicate that they cannot serve 

Figure 9   EIS results of PPPU trial (a) Bode plot (b) Bode phase angle plot (c) Nyquist plot 
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as a good protective coating while maintaining high electrical conductivity. With the 

increase of PP10 loading, the coating structure was damaged but the diffusion 

pathways for the corrosive medium was prolonged. That’s why the maximum 

impedance decreases with filler loading first and then increase.  The appearance of 

second semi-circle in Nyquist plot (Figure 9 (c)) suggests that the barrier effect of the 

film is partially lost and the metal substrate can contact the corrosive medium. All the 

coatings are tested without any long time exposure to corrosive environment. 

Therefore, the heterogeneity and the defects induced during preparation are accounted 

for this phenomenon. The Bode phase angle plot can be used to evaluate the 

degradation stages of a coating.  From Figure 9 (b), PPPU 12500, 14500 and 17500 

are approaching to the phase 2 of degradation where the corrosion starts. PPPU 7500 

and 10500 are in the phase 1 of degradation where water start to penetrate the coating 

layer. PPPU 8500 is in the phase 3 of degradation where severe corrosion occurs [19]. 

Although PPPU 10500 has lower impedance, the lifetime may be longer than PPPU 

12500, 14500 and 17500.  
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Compared to PU topcoat, the primer with same weight percent of PP10 has higher 

maximum impedance and, thus, the anti-corrosion property of primer is better than 

topcoat (Figure 10). All the coatings in EPP series can act as good protective coating 

for steel. The maximum impedance of the composite coating decreases with 

increasing PP10 weight percent. Hence, excessive filler is detrimental to the anti-

Figure 10  EIS results of EPP trials (a) Bode plot (b) Bode phase angle plot (c) Nyquist plot 
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corrosion property. From Figure 10 (b), all the coatings are in the phase 1 of 

degradation and EPP6500 has the best anti-corrosion property and lifetime. One time 

constant is identified in each curve of different samples in the Nyquist plot. The curve 

of EPP 6500 is unusual and the reason is still unknown.  
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EPPPU series is a two-layers coating series where primer was applied on the substrate 

before topcoat. The results show that the maximum impedance of EPPPU is similar to 

PPPU (Figure 11). In theory, two-layer coating should have better anti-corrosion 

property than one-layer coating. Therefore, the quality of the two-layer coating is not 

good enough due to facility limitation. The produced coatings may be heterogeneous 

and contain defects. From the Nyquist, only EPP7500 has two semi-circles which 

indicate the loss of barrier property. The quality of EPP7500 is the worst. From the 

phase angle plot, EPP the quality of EPP12500, 14500 and 17500 seem to be worse 

than the other as they seem to be in the phase 2 of degradation. Their curves are quite 

similar to the curves of coatings exposed to corrosive environment for a period of 

time [20]. The results of the two-layer system are not reliable as the facility to prepare 

the coating is not ideal. 

 

 

Figure 11  EIS results of EPPU trials (a) Bode plot (b) Bode phase angle plot (c) Nyquist plot 
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3.2.2 Hybrid filler system 
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The EIS results of the hybrid filler primer trial are shown in Figure 12. The anti-

corrosion property is better than PPPU series and worse than EPP series. The 

incorporation of hybrid filler actually weakens the anti-corrosion properties due to the 

high electrical conductivity. The maximum impedance increase with filler loading and 

then decrease after the loading is greater than 5 wt%. In this frequency range, only the 

coatings with 4 wt% and 5wt% filler meet the standard of good protective coating. 

From Figure 12 (b), all the coatings exhibit good protective effect except the 2 wt% 

and 7 wt%. The area selected for characterisation may be very heterogeneous where 

corrosive substance can penetrate through the coating easier. The results from Nyquist 

plot suggest that all the coatings have good barrier effect.  

Filler weight 

percent (%) 
Rs(Ω) 

Rs 
Error(%) 

Cc(F) 
Cc Error 
(%) 

Rc(Ω) 
Rc Error 
(%) 

2 2875  26.314  3.89E‐07  21.331  2.70E+05  38.81 

4 64.29  48.354  3.84E‐08  2.7903  1.47E+07  27.323 

5 72.31  57.096  4.67E‐08  4.4497  1.07E+07  38.949 

Figure 12   EIS results of HIVE hybrid filler trials (a) Bode plot (b) Bode phase angle plot (c) 
Nyquist plot 

Table 11   Fit result of hybrid filler series from Randel cell 
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6 75.82  168.93  2.53E‐08  7.6864  5.16E+06  25.54 

7 143.2  25.074  1.74E‐07  8.8187  3.42E+05  19.476 

8 105.4  13.839  1.81E‐07  4.1225  2.47E+06  30.837 

 

The fit results from equivalent circuit are shown in Table 11. The results are used to 

compare the results of electrical conductivity to distinguish the concept of coating 

resistance in electrical conductivity and EIS. Randel cell has lower error percentage 

so the results from that are adopted. However, the two circuits used are not perfect for 

the system. Development of a more suitable circuit is necessary. In the table, Rs 

stands for the resistance of the substrate, Cc is the capacitance of the coating and Rc 

represent the resistance of the coating. Comparing the values of resistance in the 

electrical conductivity and EIS, the values are very different. Therefore, the coating 

resistance in EIS is an indication of coating resistance against ions but not the current 

resistance in the electrical conductivity. The coating resistance from EIS cannot be 

used to represent the electrical conductivity of a coating. 
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Figure 13 EIS results of HIVE hybrid filler trials (a) Bode plot (b) Bode phase angle plot (c) 
Nyquist plot 
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The EIS results of multi-layer coating are shown in Figure 13.  The maximum 

impedance value obtained is similar to the two-layer coating system. However, the 

phase of degradation is different. Due to the existence of porous EPD coating, the 

anti-corrosion property is weakened compared to the system without EPD coating. All 

the coatings are in the phase 2 of degradation and the lifetime is shorter than usual 

coating. In addition, the defects and heterogeneity induced during preparation account 

for the weakened anti-corrosion properties as well.  

Materials  Thickness  
Maximum Impedance 

（Ωcm2） 
Ref 

Zinc‐rich coating  5 µm  105  [21] 

Commercial PU coating  65 µm  1010  [22] 

Different silane coatings  /  108 – 5x108  [23] 

Graphene  
2 layers graphene 

sheet 
6.2x 105  [24] 

Functionalized graphene 
nanosheets/PU 
nanocomposites 

25 µm  105.5 

[25] 
Graphene oxide 
nanosheets/PU 
nanocomposites 

25 µm  104.75 

 
Table 12 shows the impedance values obtained from different coating systems from 

the literature. Compared to the graphene based materials reinforced, the coating had 

better performance with thinner thickness. In addition, the coatings produced also had 

better performance than the CVD produced graphene sheets. However, the fabricated 

coatings were much worse than pure commercial PU coating and silane coatings. Thin 

coating generally has worse corrosion resistance than thick coating but the 

relationship between thickness and the impedance is not clear. The performance of the 

fabricated coatings can be improved by optimising the coating techniques.  

 
 
 

Table 12   The impedance values of different coating systems with similar EIS test conditions 
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4.3 The surface characterisation of the coated surfaces 

                                (a)                                                                       (b) 

                               (c)  

FEGSEM is used to characterize the surface of the coating (Figure 14). From the 

images, coatings with higher weight percent of filler have less polymer coverage on 

the surface. Therefore, the porous nature of the coating surface leads to poor anti-

corrosion capacity. Although polymer may present between the gaps of the fillers, the 

corrosive medium can still penetrate through the coating easier than the coating with 

proper polymer coverage. The presence of high percentage of filler may affect the 

cure of the coating to hinder the polymer chains to react with each other for the 

formation of polymer network. Hence, the cure kinetic of reinforced PU coating needs 

to be investigated to reveal the effect of filler on the cure of coating. 

Figure 14  Example  FEGSEM images of (a) PPPU 6500 (b) PPPU 10500 (c) PPU14500 
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5. Conclusions 

Hybrid filler system has the best electrical conductivity and acceptable anti-corrosion 

capacity. The best filler ratios is TEG:MWCNT=1:1. Multi-layer coating system 

consist of EPD coating, conductive primer and conductive topcoat has superior 

electrical conductivity than single layer primer or topcoat. However, the anti-

corrosion capacity is worse than single layer system due to the limited facility of 

coating preparation. The key to improve electrical conductivity is to reduce the 

distance between the conductive particles. The strategy of using particles with larger 

diameter and high aspect ratios to form conductive network is recommend. The cure 

of the coating may be affected significantly by the fillers. The study of cure kinetic of 

the composite is necessary.  
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