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Abstract. To support health monitoring and life-long capability man-
agement for self-sustaining manufacturing systems, next generation ma-
chine components are expected to embed sensory capabilities combined
with advanced ICT. The combination of sensory capabilities and the use
of Object-Oriented Bayesian Networks (OOBNSs) supports self-diagnosis
at the component level enabling them to become self-aware and support
self-healing production systems. This paper describes the use of a modu-
lar component-based modelling approach enabled by the use of OOBNs
for health monitoring and root-cause analysis of manufacturing systems
using a welding controller produced by Harms & Wende (HWH) as an
example. The model is integrated into the control software of the welding
controller and deployed as a SelComp using the SelSus Architecture for
diagnosis and predictive maintenance. The SelComp provides diagnosis
and condition monitoring capabilities at the component level while the
SelSus Architecture provides these capabilities at a wider system level.
The results show significant potential of the solution developed.
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1 Introduction

A Bayesian network (BN) [11,1-4] is a powerful and popular model for proba-
bilistic inference. Its graphical nature makes it well-suited for representing com-
plex problems where the interactions between entities represented as variables
are described using conditional probability distributions (CPDs). A Bayesian
network is an efficient knowledge integration tool enabling information from dif-
ferent sources such as mathematical formulas, historical data and domain expert
knowledge to be combined into a single model. As such they have been used in
a wide range of domains for managing uncertainty.

We describe the application of OOBNs for health monitoring and root-cause
analysis of manufacturing systems using a welding controller produced by Harms
& Wende (HWH) as an example. HWH serves tens of thousands of welding



equipments worldwide. Today, three service technicians are permanently avail-
able on phone hotline for solving customer problems. Obviously, one can reduce
the load on this personnel by implementing a root-cause analysis solution at the
customer service center combined with health monitoring at component level.
Several benefits are expected from the successful implementation of such a tool.
The average service technician training time is now six months. By implementing
and using a service analysis solution this training time can be reduced to two
weeks. HWH has about 20 requests per week or about 1000 requests in a year.
HWH expects that by using an analytical software solution the average service
request processing time will be reduced from 1 hour to less than 40 min. This
in turn should result in a reduction of load on each employee, improvement of
service quality by eliminating human errors, and 333 hours of savings annually.

The HWH OOBN model for component-based diagnostic has been encapsu-
lated as a SelComp in the SelSus software architecture to enable system-level
diagnostic capabilities [14]. We describe the integration and present the results
of a performance evaluation of different levels of integration (direct, local net-
work and wider network). There is a fair amount of related work on the use of
OOBNSs for diagnosis of industrial equipment including [8, 15,6, 12].

2 Preliminaries and Notation

A BN [11, 1-4] consists of two main components. The first component is a graph-
ical structure specifying dependence and independence relations between the
random variables of the model and the second component is a set of CPDs
specifying the strengths of the dependence relations. More precisely, a BN is a
pair (G, P), where G = (V,E) is an acyclic, directed graph (DAG) over a set
of random variables X ~ V with directed edges E that represent probabilis-
tic relationships between variables X and P is the set of CPDs. This means
that a BN is a decomposition of a joint probability distributions as follows
P(X) = P(Xy,...,Xp) = [Ix,cx P(Xilpa(X;)). A BN supports the calcula-
tion of the posterior probability P(X;|e) where € is the observed evidence and
X, is any non-observed variable.

An OOBN can been seen as a Bayesian network augmented with network
classes, class instances and an associated notion of interface and private vari-
ables [5,10,3]. A class instance is the instantiation of a network class repre-
senting a sub-network within another network class. An OOBN can be used
to represent a problem domain with repetitive structures more compactly and
supports efficient model reuse as well as distributed knowledge elicitation. The
variables X' (C) of network class C are divided into disjoint subsets of input Z,
output O and hidden/private H variables such that X'(C) = Z U O U H where
the interface variables Z U O are used to link nested class instances.

The OOBN for the HWH welding controller has been developed following a
six steps methodology [8] that has proven to be efficient and effective in prac-
tice. The six steps of the model development cycle are begin, design, implement,
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Fig. 1. Model development cycle [3].

iterated until the model performance requirements are satisfied or until further
improvements are not possible or too costly.

3 HWH Welding Controller

The objective of this work has been to realize functionality that allows fast and
efficient root-cause analysis of failures and health monitoring of a welding system
in the field. Because of the huge amount of components of such a system, e.g.,
welding gun, transformers, cables, cooling systems and welding control including
its sub-components, and their complex interrelationships, root-cause analysis
nowadays is a manual task which consumes a lot of time. Often, the root causes
can only be identified after several iterations including phone conversations with
the customer, logging data analysis or even time-consuming in situ analysis.

Here, we consider the HWH welding controller Genius MFI in combination
with the control software XPegasus. The Genius MFI has two separated parts of
electronics: the power electronic and the cards electronic. The power electronic
provides high power output for performing the welding. The cards electronic is
used to control the power electronic and to connect the control with peripheral
hardware and software components. The welding controller can be parametrized
by the XPegasus PC software. XPegasus also supports documentation and anal-
ysis of welding data. The welding controller and XPegasus are connected via
TCP/IP over Ethernet. Figure 2(a) shows the XPegasus interface.

XPegasus has a component-oriented software architecture including a huge
amount of components, e.g., components for data analysis, quality inspection and
client-server connectivity already exist. The objective is to provide the analytical
software solution both to HWH service personnel as well as to the customers
of HWH. The integration of diagnosis capabilities into the equipment provides
the following benefits: 1) reaction time in case of failures reduced from up to 12
hours to maximum 1 hour (due to different time zones), 2) many problems can be
solved locally without contacting HWH customer service center. This will result
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Fig. 2. The XPegasus start screen and diagnosis capabilities.

in an additional reduction of the load on service personnel, and 3) the embedded
analytical software will support early identification of potential problems/failures
and provide warnings to avoid them. This results in a substantial qualitative
improvement of the equipment itself. Considering all the factors listed above, the
use of OOBNSs is expected to substantially improve Overall Equipment Efficiency
(OEE) and reduce investments.

4 OOBN for HWH Welding Controller

This section describes the development of the component-level diagnosis model
for the welding controller produced by HWH using the method of [8]. The results
of the six steps of the method are described next. The model was developed
during two physical modelling workshops, numerous web meetings and email
exchanges. The process was launched with a physical workshop.

4.1 Begin: Model Choice

The HWH diagnosis model has been developed as an OOBN since it is to be used
for root-cause analysis at the component level as well as to be integrated into
a larger system-wide model for root-cause analysis at a higher level of abstrac-
tion, i.e., shop-floor or even factory level. The model is developed using HUGIN
software [9]°. An OOBN has the advantage of supporting model reuse and can
be extended into a dynamic model to support predictive maintenance.

4.2 Design: Structure

As part of the design step, domain experts from HWH and knowledge engineers
identified possible root causes, mediating variables and a set of possible observ-
ables (e.g., an observation by the operator or a sensor reading). Figure 3 shows
the top level network class that was the output of the Design-step. The OOBN
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reflects root causes, possible observations and whether a problem has been re-
ported or not. The model contains four instance nodes that represent instances
of embedded components (white boxes with rounded corners). Figure 4 shows
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Fig. 3. The top level class of the Welding Controller model.

the network class representing the Power Electronics of the welding controller.
This network class has one instance of the network class representing the param-
eter settings. The Power Electronics class is instantiated in the Electronics class
(not shown) instantiated in the top level class. The OOBN has a total of eight
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Fig. 4. The Power Electronics network class.

network classes and four layers in the class component tree (number of nested
classes). The unfolded model has 24 Boolean root causes, 8 observations, i.e.,
sensor readings and operator input and a total of 48 variables with a total CPD
size of 623. Notice that some root causes have parents in the structure and that
the number of observations is relatively low.

4.3 Implement: Quantification

In order to assess the root cause probabilities, domain experts were asked to
estimate the prior probability of a problem and provide a ranking of the root



causes taking conditional variables into consideration. Fach root cause was as-
signed a prior probability proportional to its ranking. Since each root cause is
represented as a Boolean variable the conditional probability distributions for
the problem defining variables are mainly specified as a logical disjunction of the
parent nodes. In some cases, a small leak probability is added to represent that
some unlikely or unknown failures are not represented in the model or that a
problem is not observed yet even though a root cause is present. Distributions
for sensor readings and operator observations have been assessed by experts.

4.4 Test and Analysis

The model was first evaluated qualitatively by domain experts using a web in-
terface and the XPegasus software. Secondly, it was evaluated quantitatively by
means of a synthetic data set that was produced by random sampling from the
model. For each possible root cause, a set of observations was sampled from the
model (given the root cause being set to a failure state and all other causes set
to non-failure). Next, the sampled observations and a problem being observed
were entered as evidence. The probability of each root cause was retrieved. Ide-
ally, the original root cause would have the highest probability in every case.
This evaluation showed that in six cases the true root cause had the highest
probability while in 16 out of 21 cases the true root cause was between the five
root causes with highest probability.

Due to a low number of sensor readings and operator observations, the model
is not able to distinguish between certain root causes. For instance, the model
contains no evidence variables to distinguish root cause variables Grounding
problems and Incorrectly sized supply as they share one common sensor reading.

4.5 Deploy

The model has been integrated directly into the control software of the welding
controller in order to support diagnosis at the component level as well as deployed
inside the SelSus architecture. This is described in more detail in the next section.
In addition, a special-purpose web interface [7] for the welding controller model
was developed to support the Test-step of the development process®. This has
served as an important tool in the Test and Analysis-step as the domain experts
have been able to interact with the model at their own convenience.

5 The SelSus Architecture

The SelSus architecture is primarily based on the concept of independent smart
automation components that can be integrated in a bottom-up fashion into a
wider automation system [14]. The underlying intention is to enable the providers
of automation components, such as HWH, to offer more encapsulated diagnostic
and monitoring functionality as part of their device offering while enabling faster
integration and reconfiguration of devices into automation systems.
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5.1 The SelComp Concept

The automation components in SelSus are encapsulated using the concept of a
SelComp. The aim is to encapsulate the automation component with its own
control and sensory capabilities including some embedded data processing, diag-
nostic and prognostic capabilities. A SelSus system is an integration of a number
of SelComps with the added system-level functionalities on the SelSus cloud.
This enables diagnostic and prognostic reasoning to be conducted on two lev-
els: locally on the SelComp level where the only issues within the scope of the
SelComp itself are possible to be detected and analysed; and System-level rea-
soning where various SelComps make some or all of their observations available
for system-level reasoning. This enables system-level visibility in capturing and
analysing the state of the system as a whole covering the various influences be-
tween individual SelComps. Figure 5 shows an overview of the generic internal
architecture of the SelComp and how it relates to the system-level functionalities
within SelSus, while Figure 2(b) shows how the diagnosis capabilities offered by
the model at the SelComp level has been made available to the user of XPegasus.
The OOBN approach enables component-based encapsulated modelling at the

SelSus

sor Note

Sensors BHM — Bayesian Knowlsde Model
D50 — Device Self Description

Fig. 5. The SelComp internal architecture concept.

SelComp level, while enabling the individual SelComp models to be integrated
into a wider system-level model that can be used at system level.

5.2 Wider System Level Diagnosis

Following the notions of component-based modelling the aim here is to enable
modular, component-based OOBN models to be constructed on the SelComp
level while accommodating for the possibility of integrating these local models



into a wider system-level model that covers the overall system. The component
models should ideally be self-sufficient and only require information from the
available information to the SelComp.

The objective is to enable independent SelComps to operate normally even
when they are not connected to an overall SelSus system. This can only be true
if the diagnostic and prognostic models along with the reasoning process are en-
tirely self-contained within each individual SelComp and do not depend in their
operation on external resources, either in the form of observations or reasoning
and computation. The system-level models will be a collection of the constituent
component-models. In the context of manufacturing systems, individual compo-
nent models will typically be connected together through the means of process
quality characteristics in order to form system-level diagnostic models.

In the use-case we consider, the SelComp model presented could be linked to
other SelComp models representing other components in an integrated system
in which the HWH welding controller is deployed. This is ongoing work.

5.3 The HWH diagnosis model as a SelSus Cloud Service

In the SelSus architecture, SelComps have the ability to transmit data to and
receive data from the SelSus Cloud. The SelSus Cloud is a collection of Soft-
ware Services from which a SelComp can request (stored) sensor data or it can
communicate with, for instance, another Service that is exposing the HUGIN
functionality. This latter web service can be equipped with the welding con-
troller model, when requested - thus allowing a SelComp to perform diagnosis
and health monitoring on the HWH welding controller. Specifically, this web
service communicates using a REST based API where requests can be bundled
in JSON objects to minimize the communication overhead.

5.4 Experimental Analysis

This section reports on an experimental analysis of the performance of different
levels of integration of the HWH model into the SelSus architecture. The tightest
level of integration has been achieved by integrating the model directly into the
XPegasus software. In addition, the model has been deployed using a web service
inside the SelSus Cloud having the control software and web service running on
the same machine as well as having the control software and web service running
on machines located far apart (more than 1000km). In the experiment, one state
for each possible observation was propagated and this process was repeated 1000
times producing 8000 propagations. Table 1 shows the time performance results
for different configurations. It is clear from the table that direct integration
into the control software using save-to-memory” is by far the most time efficient
solution. Using this approach it is possible to perform thousands of propagations
in the model each second using the test computer, which is a standard PC.

" save-to-memory is an optimisation option in HUGIN software trading time for space.



Table 1. Average time cost of one belief update across three different setups.

Configuration Total time (ms)|Average time (ms)
Direct integration 1,508 0.189
Direct integration (w/save-to-memory) 778 0.097
Localhost deployment 10,263 1.283
Network deployment 382,785 47.848

6 Discussion and Conclusion

The use of Bayesian networks for diagnosis at the component level has several
benefits to HWH. For HWH, in general, this will result in a substantial qualita-
tive improvement of welding equipment and reduction of costs related to service.
A qualitative improvement implies that equipment will become more intelligent,
reliable, stable and predictive and human-friendly. In addition, these new capa-
bilities provide competitive advantages.

For the HWH customer service center, the new software will reduce the load
related to service problem analysis. It will also improve quality of service, reduce
training times for new personnel and reduce requirements to their expertise.

For HWH customers, the usage of embedded analytical software provides
several advantages. The welding equipment will become more intelligent with
self-awareness and self-diagnosis capabilities. Self-awareness helps in easy inte-
gration and configuration into the system while self-diagnosis will help in pre-
dicting and preventing failures or finding solutions in case of problems/failures.
For the customer this means a substantial simplification of equipment service,
improvement of production line efficiency and stability by reducing down-times
and failures. All this results in a significant reduction of costs.

The results of the experimental analysis clearly demonstrate that inference
is highly efficient using the tightest level of integration and that communication
overhead adds significantly to the time cost of the inference process. Even with
the deployment of the web service and control software on different machines
located far apart, the cost of inference should not be problematic in relation to
providing support on root-cause analysis over the phone.

Future work includes development of a system-wide model for diagnosis at
line or even factory level combining the HWH welding controller model with
models for other components on the line or factory level as well as collecting op-
erational data for parameter estimation in batch and considering algorithms for
on-line adjustment of parameters using operational data. Although the modelling
methodology is primarily driven by domain expert knowledge, current work fo-
cuses on enabling the derivation of Bayesian network models for diagnosis from
existing engineering design information such as FMEA data [13].
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