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Abstract 

The impulsive behaviour of the piston in the cylinder liner plays a key role in the Noise, Vibration and 

Harshness (NVH) of internal combustion engines. There have been several studies on the identification 

and quantification of piston impact action under various operation conditions. In the current study, the 

dynamics of the piston secondary motion are initially explored in order to describe the aggressive 

oscillations, energy loss and noise generation. The control of piston secondary motion (and thus, 

impacts) is investigated using a new passive approach based on energy transfer of the highly transient 

oscillations to a nonlinear absorber. The effectiveness of this new method for improving the piston 

impact behaviour is discussed using a preliminary parametric study that leads to the conceptual design 

of a nonlinear energy absorber. 
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Introduction 

Concerns about traffic noise in urban areas have recently increased. Legislative committees globally are developing 

strict regulations [1], forcing automotive manufacturers to develop quieter transportation, since the noise originating 

from the internal combustion engine at low speeds is mainly related to urban driving conditions [2, 3]. Over 33% of the 

engine mechanical losses are dissipated through the piston-cylinder conjunction in the form of friction, vibrations and 

noise [4]. Although vibration and noise account for the smallest contribution of losses through the piston skirt and rings, 

the radiated noise levels are comparable to those from combustion noise. Thus, piston impacts and combustion are the 

main contributors with their cumulative share representing about 80% of the total engine noise output [5].  

The piston impact noise is generated by the impulsive loads due to the secondary motion of the piston (translation and 

rotation) inside the piston-cylinder clearance. These motions are driven by the cylinder pressure fluctuations, which can 

be measured accurately using pressure sensors [6, 7]. Analytical and numerical tools have been developed during the 

past decades to describe the secondary dynamics of the piston. The piston impact problem comprises the piston 

secondary motion dynamics, the lubrication of the contacting surfaces and their structural deformations. The early 

studies concentrated mainly on the dynamics [8, 9]. In more advanced piston models, structural deformation and the 

lubricant’s cushioning effects are described using stiffness and damping elements (‘dry’ models) [10-14]. The 

parameters of these elements are evaluated either experimentally [15, 16] or theoretically [13]. Models combining 

tribology and dynamics take into account jointly the effects of piston dynamics, structural deformability and 

hydrodynamics of the lubricant film (Elasto-hydrodynamic lubrication) [17-19]. Thus, tribodynamics models are largely 

exploited to predict and identify piston-cylinder interactions [20, 21]. The ‘dry models’, however, are very useful for 

extensive parametric studies of the influential factors on the piston secondary motion due to their computational 

efficiency [22, 23] and reasonably good accuracy [24].  

The piston secondary motion is influenced by the engine operating conditions and the geometrical and physical 

characteristics of the piston assembly components. Piston impacts are conventionally controlled through the 

modification of component geometry and position. The most influential factors are: the location of the piston’s centre of 

gravity, piston pin offset, piston-cylinder clearance, piston skirt stiffness and crankshaft offset [23, 25-29]. The 

improvement in NVH performance through those factors can, however, exacerbate friction losses [28, 29]. Thus, a 

trade-off is usually required between friction loses and NVH. Moreover, these modifications (e.g. crankshaft offset and 

clearance size) are only effective in specific engine speed ranges [26].  An alternative control method that is robust with 

engine speed variations should be sought to limit excessive impact excitations more effectively. 
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The concept of Targeted Energy Transfer (TET) has been introduced in dynamic systems relatively recently. This 

phenomenon takes place between a (usually) linear primary system and an essentially nonlinear attachment with 

relatively small mass/inertia (compared to the primary system). The nonlinear device captures part of the unwanted 

vibration energy from the primary system, which is then either dissipated through weak linear damping or transferred 

from lower to higher frequency modes, where the damping factor is higher (figure 1). Early studies focused on linear 

primary systems that are weakly coupled with nonlinear components [30, 31]. These systems are excited by transient 

(impulsive) forcing [33]. In recent studies, external periodic excitation of the primary system has been investigated in 

conjunction with nonlinear energy absorbers [32-35]. The TET concept has also been applied to nonlinear primary 

systems with self-excited instabilities in fluid-structure interactions and stick-slip vibrations [36-39]. Despite the recent 

trend towards the application of nonlinear energy absorbers to highly transient and nonlinear dynamics of rotational 

systems [40-43], their application in automotive powertrains is very novel [44]. In this paper, the TET concept is 

applied to passively control piston secondary motion and reduce the corresponding impacts against the cylinder liner. 

 

The piston dynamics model 

‘Dry’ piston dynamics models are popular for optimization and parametric studies of design variables due to their 

computational efficiency. The structure and lubricant properties are described through stiffness and damping elements 

(figure 2). Hertz’s theory [45] is a straightforward approach to estimate the stiffness (through compliance) of contacting 

bodies [14]. The parameters of interest in Hertzian contacts are: the size of the contact area, the pressure developed and 

the deflection of the contacting bodies. The load (𝑊𝑊) and deflection (𝛿𝛿) for circular contact deformation are related as 

follows: 

 

𝑊𝑊 = 4
3
𝐸𝐸√𝑅𝑅𝛿𝛿3/2 = 𝑘𝑘𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝛿𝛿3/2 (1) 

 

𝐸𝐸, 𝑅𝑅 and 𝑘𝑘𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 are the reduced modulus of elasticity, reduced radius of counter-formal contact and stiffness coefficient 

of the contact, respectively. There are two sources of energy dissipation at the piston-cylinder conjunction: (i) structural 

damping and (ii) lubricant damping. The cylinder liner is made of Aluminium in the single-cylinder four-stroke Honda 

CRF 450 engine that will be the subject of this study. The damping ratio of Aluminium varies between 0.0001 and 0.01 
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with geometry, acceleration and excitation frequency [46, 47]. For six- and four-cylinder diesel engines the structural 

damping ratio reportedly varies between 0.01 and 0.0378 [10, 13]. Since the material, size and geometry of these 

engines are different from the studied one in this work, an indicative structural damping ratio of 0.01 has been selected 

for the current investigation. The damping effect of the lubricant is neglected for computational efficiency [22]. Thus, 

the contact load is fully described by taking into account both stiffness and damping terms: 

 

𝑊𝑊 = 𝑘𝑘𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝛿𝛿3/2 + 𝑐𝑐𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻�̇�𝛿 (2) 

 

The accuracy of the ‘dry’ piston impact model should be investigated prior to running extensive simulations that will 

determine the design of the nonlinear absorber. The real contact between piston and cylinder undergoes elasto-

hydrodynamic regime of lubrication (EHL). The ‘dry’ impact model differs from the real piston impact conditions due 

to the following reasons: (a) In the conformal contact of the real system, deformations take place over the whole piston 

skirt area (the deformations are localised at the piston corners in the Hertz contact model) and (b) the damping effect of 

the oil film is neglected and dry contact conditions are assumed. Thus, in the ‘dry’ model, the piston skirt experiences 

larger deformations during the combustion stroke. In addition, due to the lack of lubricant’s effect the piston can move 

freely inside the clearance. This motion is more restricted in the real system due to the presence of lubricant. 

Nevertheless, Offner [24] compared the more realistic EHL contact models against the ‘dry’ contact model for piston’s 

secondary motion. They reported that the predicted piston secondary motion varies from extremely good to reasonably 

good during the transition from the EHL model to the ‘basic’ dry contact model. Thus, the trade-off between the 

accuracy and computational efficiency is deemed as acceptable [24]. 

 

The equations of piston secondary motion 

The following equations of motion are widely exploited in the literature with small differences in the notation and 

coordinate systems: 
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�
𝑚𝑚𝑝𝑝𝑝𝑝𝑝𝑝 �1− 𝑏𝑏

𝐿𝐿
� + 𝑚𝑚𝑝𝑝𝑝𝑝𝑝𝑝 �1 − 𝑎𝑎

𝐿𝐿
� 𝑚𝑚𝑝𝑝𝑝𝑝𝑝𝑝

𝑏𝑏
𝐿𝐿

+ 𝑚𝑚𝑝𝑝𝑝𝑝𝑝𝑝
𝑎𝑎
𝐿𝐿

𝐼𝐼𝑝𝑝𝑝𝑝𝑝𝑝
𝐿𝐿

+ 𝑚𝑚𝑝𝑝𝑝𝑝𝑝𝑝(𝑎𝑎 − 𝑏𝑏) �1 − 𝑎𝑎
𝐿𝐿
� − 𝐼𝐼𝑝𝑝𝑝𝑝𝑝𝑝

𝐿𝐿
+ 𝑚𝑚𝑝𝑝𝑝𝑝𝑝𝑝(𝑎𝑎 − 𝑏𝑏) 𝑏𝑏

𝐿𝐿

� ��̈�𝑒𝐻𝐻�̈�𝑒𝑏𝑏
� = �

𝑊𝑊 ∓ 𝐹𝐹𝑓𝑓 tan𝜙𝜙 − 𝐹𝐹𝐻𝐻
𝑀𝑀𝑊𝑊 + 𝑀𝑀𝑓𝑓 + 𝑀𝑀𝑝𝑝

� (3) 

 

𝑚𝑚𝑝𝑝𝑝𝑝𝑝𝑝, 𝑚𝑚𝑝𝑝𝑝𝑝𝑝𝑝 and 𝐼𝐼𝑝𝑝𝑝𝑝𝑝𝑝 are masses of the piston and pin, as well as the inertia of the piston about its centre of rotation. The 

coordinate system for these equations is depicted in figure 3. The displacements at the top and bottom of the piston skirt 

are depicted by eccentricities (𝑒𝑒𝐻𝐻 and 𝑒𝑒𝑏𝑏). Other geometric parameters are defined in the same figure. The piston side 

force (𝐹𝐹𝐻𝐻) is determined by: 

 

𝐹𝐹𝐻𝐻 = �−𝑚𝑚𝑝𝑝𝑝𝑝𝑝𝑝�̈�𝑥 − 𝑚𝑚𝑝𝑝𝑝𝑝𝑝𝑝�̈�𝑥 + 𝐹𝐹𝐺𝐺 ∓ 𝐹𝐹𝑓𝑓� tan𝜙𝜙 (4) 

 

The lubricant viscous friction (𝐹𝐹𝑓𝑓) and its generated moment (𝑀𝑀𝑓𝑓) are neglected as their influence on the impact force is 

less than 3% [48]. 𝑀𝑀𝑊𝑊 is the moment due to the contact load (𝑊𝑊) about the piston pin. 𝑀𝑀𝑝𝑝 describes the moment due to 

combustion and piston inertia forces (offsets) with respect to the piston pin centre of rotation. This parameter is trivial 

as offsets equal zero for the examined engine. For detailed description of the equations of motion the reader may refer 

to [20, 21]. 

The results of the piston model are validated against the work of Offner [24] for ‘dry’ contact conditions (figure 4). It 

should be noted that the operating conditions and engine characteristics are different in those models. Moreover, Offner 

[24] employs FEM to extract the stiffness properties of the contacting bodies. One should also note that Offner [24] has 

reported the gap size (𝐶𝐶𝐻𝐻 and 𝐶𝐶𝑏𝑏 at the TS and ATS sides) whereas the piston dynamics model in this study uses the 

cylinder’s axis as the reference for the piston displacement (eccentricities 𝑒𝑒𝐻𝐻 and 𝑒𝑒𝑏𝑏). Thus, only qualitative comparison 

of the results is possible. Offner’s model overestimates the gap sizes at the bottom land towards the bottom dead centres, 

since this model does not generate any balancing force in this free-motion period [24]. In other parts of the engine cycle, 

good conformity is observed between the events in both models. In both models, the piston stays at the thrust side 

during combustion stroke due to the large side force. The piston is moving more inside the clearance during the exhaust 

and intake strokes, since the side forces are smaller in the absence of significant cylinder pressure. Six side-to-side 

piston translations are present in both models, related to piston impacts. The (crank) angular positions of these 

translations inside the engine cycle conform well in both models. In addition, the eccentricity displacements are in the 
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proximity of the clearance size (±18 𝜇𝜇𝑚𝑚 for the proposed piston model). The mentioned features verify that the piston 

model is compatible with the physics of the problem. 
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Nonlinear energy absorber design considerations 

The nonlinear energy absorber comprises low inertia/mass and an element of essential nonlinear stiffness and weak, 

linear damping. The nonlinearity facilitates the interaction with the primary system between different structural modes 

that are either closely located or well-separated. These nonlinear modes are excited due to internal resonances, which 

enable the absorber to engage with the primary system. Provided the input energy to the absorber is localised to a 

specific frequency range, the nonlinear absorber initiates an internal resonance with the main system. Once the 

dynamics is established, energy is transferred from the primary system to the nonlinear absorber in an irreversible 

fashion. The obtained energy dissipates in the absorber through the damping element. The above mechanism is known 

as targeted energy transfer (TET) [30]. 

In order to apply the TET concept to a piston system, the proposed nonlinear absorber design should be robust to system 

uncertainties, initial conditions and external excitations. In the piston assembly, the excitation frequency is expressed in 

terms of the engine firing orders. Combustion excitations are related to half engine orders (in four-stroke engines) and 

mechanical excitations (piston impact, bearings etc.) appear at multiples of the engine orders [49]. The piston secondary 

motion also contains these dominant frequencies in its spectra (figure 5). The inertial forces are dominant at 50 Hz (1st 

engine order at 3000 rpm engine speed). The spectral amplitude of the rotational motion is one order of magnitude 

greater than that of the translational motion at the first engine order. This behaviour suggests that an absorber with 

rotational motion might effectively remove the excess impact energy. 

A pendulum mechanism (illustrated in figure 6) is proposed to rotate about the piston pin, reacting to piston rotation 

through a torsional spring with cubic nonlinearity and a weak torsional linear damper. The main assumptions employed 

in this design are:  

1. The pendulum has a lumped mass (𝑚𝑚𝐻𝐻) located at its free end 

2. The masses of the link, spring and damper are negligible 

3. Both piston and pendulum are aligned with the cylinder axis at the equilibrium position 

4. There is no friction or clearance between the pendulum and either the piston or the piston pin 

The pendulum design parameters for the purpose of this study are the following: the spring constant of stiffness (𝑘𝑘𝐻𝐻), 

damping constant (𝑐𝑐𝐻𝐻), mass (𝑚𝑚𝐻𝐻) and length (𝐿𝐿𝐻𝐻). These parameters influence the absorber’s angular oscillations (𝛾𝛾).  

It has to be noted that although a frictionless conjunction between the pendulum and the piston components cannot be 

fully achieved, this assumption is not far from reality since lubrication can reduce friction on this contact. The shear 
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action of the lubricant can be readily exploited as an internal source of damping for the nonlinear absorber. On the other 

hand, the design of a nonlinear torsional spring element requires a separate study that will investigate the relevant 

practicalities in depth. Nevertheless, a few designs are patented for nonlinear torsional springs [50] and could be 

tailored for engine applications. The stiffness linearity is expected to influence the absorber’s performance negatively, 

since it will prevent the communication between the primary system and the absorber under nonlinear resonance 

capture.  

 

Piston dynamics with the nonlinear absorber 

The piston and nonlinear absorber reaction forces and moments are presented in the corresponding free body diagrams 

(figure 7). The reaction forces at the pin location are 𝐹𝐹𝐻𝐻,𝐻𝐻 and 𝐹𝐹𝐻𝐻,𝑥𝑥 and the reaction moment of the absorber’s spring and 

damper are depicted by 𝑀𝑀𝐻𝐻. The piston motion is coupled with the pendulum absorber through these forces and moment. 

The contact forces are located at the four corners of the piston skirt (𝐹𝐹𝐻𝐻,𝐴𝐴 and 𝐹𝐹𝐻𝐻,𝐶𝐶  at the thrust side and 𝐹𝐹𝐻𝐻,𝐵𝐵 and 𝐹𝐹𝐻𝐻,𝐷𝐷 at 

the anti-thrust side). These forces are evaluated using equation (2). The other forces, moments and geometrical 

parameters are the same as in equations (3) and (4). The kinematics of the pendulum are shown in figure 8 and the 

relation with piston kinematics is described through: 

 

𝑥𝑥𝐻𝐻 = 𝑥𝑥 + 𝐿𝐿𝐻𝐻 cos 𝛾𝛾 

�̈�𝑥𝐻𝐻 = �̈�𝑥 − 𝐿𝐿𝐻𝐻�̈�𝛾 sin 𝛾𝛾 − 𝐿𝐿𝐻𝐻�̇�𝛾2 cos 𝛾𝛾 

𝑧𝑧𝐻𝐻 = 𝑧𝑧 − 𝐿𝐿𝐻𝐻 sin 𝛾𝛾 

�̈�𝑧𝐻𝐻 = �̈�𝑧 − 𝐿𝐿𝐻𝐻�̈�𝛾 cos 𝛾𝛾 + 𝐿𝐿𝐻𝐻�̇�𝛾2 sin 𝛾𝛾 

(5) 

 

The above kinematic relations are exploited in the derivation of the equations of motion. Three sets of equations 

describe the system dynamics: 

 

𝑴𝑴3×3 �
�̈�𝑒𝐻𝐻
�̈�𝑒𝑏𝑏
�̈�𝛾
� = �

𝐹𝐹
𝑀𝑀1
𝑀𝑀2

� (6) 
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The elements of the inertia (𝑴𝑴3×3) and force matrices are provided below: 

𝑚𝑚11 = 𝑚𝑚𝑝𝑝𝑝𝑝𝑝𝑝 �1 −
𝑏𝑏
𝐿𝐿
� + �𝑚𝑚𝑝𝑝𝑝𝑝𝑝𝑝 + 𝑚𝑚𝐻𝐻� �1 −

𝑎𝑎
𝐿𝐿
� 

𝑚𝑚12 = 𝑚𝑚𝑝𝑝𝑝𝑝𝑝𝑝
𝑏𝑏
𝐿𝐿

+ �𝑚𝑚𝑝𝑝𝑝𝑝𝑝𝑝 + 𝑚𝑚𝐻𝐻�
𝑎𝑎
𝐿𝐿

 

𝑚𝑚13 = −𝑚𝑚𝐻𝐻𝐿𝐿𝐻𝐻(cos 𝛾𝛾 + sin 𝛾𝛾 tan𝜙𝜙) 

𝑚𝑚21 =
𝐼𝐼𝑝𝑝𝑝𝑝𝑝𝑝
𝐿𝐿

+ 𝑚𝑚𝑝𝑝𝑝𝑝𝑝𝑝(𝑎𝑎 − 𝑏𝑏) �1 −
𝑎𝑎
𝐿𝐿
� 

𝑚𝑚22 = −
𝐼𝐼𝑝𝑝𝑝𝑝𝑝𝑝
𝐿𝐿

+ 𝑚𝑚𝑝𝑝𝑝𝑝𝑝𝑝(𝑎𝑎 − 𝑏𝑏) �1 −
𝑎𝑎
𝐿𝐿
� 

𝑚𝑚23 = 0 

𝑚𝑚31 = −𝑚𝑚𝐻𝐻𝐿𝐿𝐻𝐻 �1 −
𝑎𝑎
𝐿𝐿
� cos 𝛾𝛾 

𝑚𝑚32 = −𝑚𝑚𝐻𝐻𝐿𝐿𝐻𝐻
𝑎𝑎
𝐿𝐿

cos 𝛾𝛾 

𝑚𝑚33 = 𝑚𝑚𝐻𝐻𝐿𝐿𝐻𝐻2 

(7) 

 

𝐹𝐹 = �−𝐹𝐹𝐺𝐺 + �𝑚𝑚𝑝𝑝𝑝𝑝𝑝𝑝 + 𝑚𝑚𝑝𝑝𝑝𝑝𝑝𝑝 + 𝑚𝑚𝐻𝐻��̈�𝑥� tan𝜙𝜙 − (𝑚𝑚𝐻𝐻𝐿𝐿𝐻𝐻�̇�𝛾2 cos 𝛾𝛾 + 𝑚𝑚𝐻𝐻𝑔𝑔) tan𝜙𝜙 −𝑚𝑚𝐻𝐻𝐿𝐿𝐻𝐻�̇�𝛾2 sin 𝛾𝛾 + �𝐹𝐹𝐻𝐻,𝑝𝑝 

𝑀𝑀1 = 𝑀𝑀𝐻𝐻 + 𝑀𝑀𝐻𝐻 + 𝑀𝑀𝑓𝑓 + 𝑀𝑀𝑝𝑝 

𝑀𝑀2 = −𝑀𝑀𝐻𝐻 − 𝑚𝑚𝐻𝐻𝐿𝐿𝐻𝐻𝑔𝑔 sin 𝛾𝛾 + 𝑚𝑚𝐻𝐻𝐿𝐿𝐻𝐻�̈�𝑥 sin 𝛾𝛾 

(8) 

 

The pendulum mass is commonly expressed as a percentage of the mass ratio (the absorber mass over the mass of the 

primary system, which is the total mass of the piston and pin in this case). 𝐹𝐹𝐻𝐻,𝑝𝑝 represents the Hertzian contact forces at 

the four piston corners as described earlier (𝑖𝑖 = 𝐴𝐴,𝐵𝐵,𝐶𝐶 and 𝐷𝐷). 𝑀𝑀𝐻𝐻 is the overall moment about the piston pin due to 

these contact forces. The pendulum moment (𝑀𝑀𝐻𝐻) is described as: 

 

𝑀𝑀𝐻𝐻 = 𝑘𝑘𝐻𝐻(𝛾𝛾 − 𝛽𝛽)3 + 𝑐𝑐𝐻𝐻(�̇�𝛾 − �̇�𝛽) (9) 
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𝛽𝛽 is the piston rotation about its pin and it can be defined in terms of piston eccentricities (𝑒𝑒𝐻𝐻 and 𝑒𝑒𝑏𝑏) [19]. Newmark 

integration and predictor-corrector techniques are exploited to numerically solve equations (6). 

The effectiveness of the nonlinear absorber (in the 3 degree of freedom piston – absorber system, 3dof) in mitigating 

piston impacts is explored in comparison with the primary 2 degree-of-freedom (2dof) piston system (nonlinear 

absorber not present) using the following piston impact criteria: (i) piston impact severity (eccentricity accelerations), 

(ii) number of impacts and (iii) transferred energy to the cylinder liner. The first two criteria represent the impact 

behaviour at the source; whereas, the last criterion indicates the effect of impact on the structure. The percentages of 

variations in these criteria are evaluated as: 

 

%Δ𝑉𝑉 = 𝑉𝑉2𝑑𝑑𝑑𝑑𝑑𝑑−𝑉𝑉3𝑑𝑑𝑑𝑑𝑑𝑑
𝑉𝑉2𝑑𝑑𝑑𝑑𝑑𝑑

×100 (10) 

 

𝑉𝑉 can be replaced by the variables of each criterion (e.g. eccentricity acceleration �̈�𝑒𝐻𝐻 for the severity criterion at the 

piston top land). Positive variations signify improvement and negative values indicate exacerbation in that criterion. The 

transferred energy to the cylinder liner is calculated over a complete engine cycle for both the thrust and anti-thrust 

sides of the structure as follows (𝑡𝑡 and 𝑏𝑏 indicate top and bottom of the piston skirt and 𝑊𝑊 is calculated from equation 

(2) : 

 

𝐸𝐸𝐸𝐸 = ∮𝑊𝑊𝐻𝐻𝑑𝑑𝛿𝛿𝐻𝐻 + ∮𝑊𝑊𝑏𝑏𝑑𝑑𝛿𝛿𝑏𝑏 (11) 

 

The simulation time step is invariable, equal to 5 𝜇𝜇𝜇𝜇. This low value was chosen after trial simulations because of the 

fast nature of the examined vibro-impact problem. The convergence criterion is 1%, implemented on the accelerations 

(�̈�𝑒𝐻𝐻, �̈�𝑒𝑏𝑏 and �̈�𝛾), which are the fastest system variables. The kinematics of the piston and the absorber are evaluated using 

Newmark’s integration method [51] for dynamic systems. This method is also known as the average acceleration 

method [52].  
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Ranges of values (due to commercial confidentiality) of the system parameters used in the simulations are provided in 

the table below. The ranges of the parametric studies are described in the results section. 

 

Table 1. Ranges of values of the system parameters utilised during simulations 

Parameter Value Unit 

𝑚𝑚𝑝𝑝𝑝𝑝𝑝𝑝 + 𝑚𝑚𝑝𝑝𝑝𝑝𝑝𝑝 0.25 – 0.4 𝐾𝐾𝑔𝑔 

𝑚𝑚𝐻𝐻 0.125 (𝑚𝑚𝑝𝑝𝑝𝑝𝑝𝑝 + 𝑚𝑚𝑝𝑝𝑝𝑝𝑝𝑝) 𝐾𝐾𝑔𝑔 

𝐼𝐼𝑝𝑝𝑝𝑝𝑝𝑝 1.5×10−4 − 3×10−4 𝐾𝐾𝑔𝑔.𝑚𝑚2  

𝑎𝑎 0.015 – 0.03 𝑚𝑚 

𝑏𝑏 0.008 - 0.02 𝑚𝑚 

𝐿𝐿 0.03 – 0.05 𝑚𝑚 

𝐿𝐿𝐻𝐻 0.04 – 0.06 𝑚𝑚 

𝑘𝑘𝐻𝐻 60 – 80 𝐺𝐺𝐺𝐺/𝑚𝑚1.5 

𝜁𝜁𝐻𝐻  0.005 – 0.02 -- 

 

Results and discussion 

The conventional methods for mitigating piston impacts are usually effective at specific engine speed ranges. The TET 

concept is proposed as an alternative that can perform robustly across the full speed range. The energy content of 

impacts generally increases with engine speed. Moreover, speed fluctuations due to cylinder pressure variations can 

influence the impact characteristics. For this purpose, engine speed fluctuations are measured at three different engine 

speeds from a test-rig with fired engine conditions (figure 9). The other engine speed conditions are interpolated using a 

Lagrange interpolator. Measurements are carried out using a Honda CRF 450R single cylinder, 4-stroke motorbike SI 

engine. The engine is resisted by an Oswald 250 kW transient dynamometer and is controlled to the desired speeds by 

the installed Ricardo Software. The crank position is detected through an optical reader, which records 360 pulses in 

each complete crank rotation and detects a single TDC pulse. The crank speed is calculated using crank angle and time 

data. The output signals are input to a LabVIEW programme and post-processed for the simulations. Detailed 

description of the experimental setup is given in the previous works of the authors [20, 21]. The in-cylinder pressure, 

engine speed and crank angle time histories are measured in the Honda CRF450 engine. The in-cylinder pressure is 
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exploited to evaluate the combustion force. The engine speed is utilised in the calculation of piston kinematics in its 

primary direction. The crank angle information is used to synchronise the measured and calculated data. These 

parameters are the essential model inputs and they are used to generate the simulation results. 

The mean engine speed increases between 3000 - 4200 rpm in 200 rpm steps. Initially, the damping coefficient and 

pendulum length are held constant (0.01 Nms/rad and 0.05 m). The pendulum has 12.5% mass ratio. The stiffness 

coefficient of the nonlinear absorber varies between 10 and 110 (𝐺𝐺𝑚𝑚/𝑟𝑟𝑎𝑎𝑑𝑑3). The percentage of variation in impact 

severity criterion is illustrated in the contour maps of figure 10. These variations are calculated using equation (10). The 

eccentricity accelerations are generally improved at both the top and bottom of the piston skirt. The robustness of the 

absorber with respect to its damping coefficient and engine speed variations is investigated in figure 11. The stiffness 

constant is set to 40 (𝐺𝐺𝑚𝑚/𝑟𝑟𝑎𝑎𝑑𝑑3) for this study whereas the damping coefficient varies between 0 and 0.045 (𝐺𝐺𝑚𝑚𝜇𝜇/𝑟𝑟𝑎𝑎𝑑𝑑). 

The eccentricity accelerations (impact severity) are improved by up to 20% at the top of the piston skirt. Energy 

dissipation effectively takes place for damping coefficient values between 0.01 and 0.015 (𝐺𝐺𝑚𝑚𝜇𝜇/𝑟𝑟𝑎𝑎𝑑𝑑 ). Since the 

absorber performance shows robustness with engine speed in both scenarios, a single speed suffices for the study of the 

absorber’s influence on the piston impact criteria. 

For the parametric study that follows (aiming to identify the best performing absorber characteristics) the engine speed 

is set to 3500 rpm since the absorber has exhibited robust behaviour with respect to engine speed. The mass ratio and 

pendulum length are held constant (12.5% and 0.05 m, respectively). The absorber is tuned to piston excitations through 

the variation of its stiffness coefficient between 10 and 110 𝐺𝐺𝑚𝑚/𝑟𝑟𝑎𝑎𝑑𝑑3. Since energy dissipation is as important as 

tuning, the damping coefficient is varied between 0 and 0.045 𝐺𝐺𝑚𝑚𝜇𝜇/𝑟𝑟𝑎𝑎𝑑𝑑 . The different piston impact criteria are 

illustrated through contour maps in figures 12 to 14.  

The impact severity criterion is the most significant factor in assessing the likely improvement in piston impact noise 

levels, since it captures the eccentricity accelerations for the severe impact events of the engine cycle (including 

combustion). These accelerations noticeably improve (up to 20%) as damping coefficient approaches 0.01 𝐺𝐺𝑚𝑚𝜇𝜇/𝑟𝑟𝑎𝑎𝑑𝑑 

(figure 12). This trend reverses as damping coefficient increases to values greater than 0.02 𝐺𝐺𝑚𝑚𝜇𝜇/𝑟𝑟𝑎𝑎𝑑𝑑, indicating that 

the nonlinear energy absorber operates more effectively with low damping. The number of impacts criterion comes 

secondary to impact severity in terms of importance, since more impacts with lower severity are preferable to fewer 

impacts with higher severity. The number of impact events generally reduces up to 25% at the top eccentricity for 

damping coefficient values between 0.01 and 0.02 𝐺𝐺𝑚𝑚𝜇𝜇/𝑟𝑟𝑎𝑎𝑑𝑑 (figure 13). At the bottom eccentricity, the observed 25% 

exacerbation in the number of events reduces to 0% as the damping coefficient increases from 0.01 to 0.02 𝐺𝐺𝑚𝑚𝜇𝜇/𝑟𝑟𝑎𝑎𝑑𝑑. 
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Although impact severity largely improves for damping 0.01 𝐺𝐺𝑚𝑚𝜇𝜇/𝑟𝑟𝑎𝑎𝑑𝑑, the overall number of impacts is invariant. 25% 

improvement in the number of impacts at the top eccentricity cancels out with 25% exacerbation at the bottom 

eccentricity for this damping condition. The impact severity improves to a smaller extent for damping 0.02 𝐺𝐺𝑚𝑚𝜇𝜇/𝑟𝑟𝑎𝑎𝑑𝑑 

and stiffness values greater than 90 𝐺𝐺𝑚𝑚/𝑟𝑟𝑎𝑎𝑑𝑑3. For these stiffness and damping values, the number of impacts also 

improves up to 25%. 

The third criterion indicates the overall transferred energy to the cylinder liner during an engine cycle (figure 14). This 

ensures that the deployment of the absorber also reduces the amount of energy transferred to the cylinder. The energy 

transfer criterion excessively exacerbates in a small area for zero damping and low stiffness conditions. This area 

though is not influential in the design of the absorber. The energy transfer variations are not large in most part of the 

figure since they are calculated over the entire engine cycle and impact events only occupy a small fraction of the cycle. 

For a damping coefficient value of 0.01 𝐺𝐺𝑚𝑚𝜇𝜇/𝑟𝑟𝑎𝑎𝑑𝑑, two regions of stiffness coefficient satisfy the reduction in energy 

transfer criterion (stiffness values about 65 𝐺𝐺𝑚𝑚/𝑟𝑟𝑎𝑎𝑑𝑑3  and values greater than 90 𝐺𝐺𝑚𝑚/𝑟𝑟𝑎𝑎𝑑𝑑3). The energy transfer 

criterion returns slightly worse results for stiffness values greater than 90 𝐺𝐺𝑚𝑚/𝑟𝑟𝑎𝑎𝑑𝑑3  and 0.02 𝐺𝐺𝑚𝑚𝜇𝜇/𝑟𝑟𝑎𝑎𝑑𝑑  damping 

coefficient. The proposed nonlinear absorber successfully mitigates the impact severity, whilst the overall transferred 

energy through the contact and the number of impacts are invariant (figures 12 to 14). There is potential to improve the 

number of impacts through the optimization of the absorber design whilst there is potential for a trade-off between 

impact severity and impact number criterion.  

Based on the above simulation results an indicative pendulum absorber design was selected for detailed performance 

analysis. The stiffness and damping coefficients were taken as 65 𝐺𝐺𝑚𝑚/𝑟𝑟𝑎𝑎𝑑𝑑3 and 0.01 𝐺𝐺𝑚𝑚𝜇𝜇/𝑟𝑟𝑎𝑎𝑑𝑑 for this design. Figure 

15 illustrates the hysteresis loop of the pendulum oscillations. The stiffness moment takes values up to 12 times higher 

than the damping moment, exhibiting the action of the absorber. Figure 16 compares the eccentricity accelerations at the 

top and bottom of the piston skirt (�̈�𝑒𝐻𝐻 and �̈�𝑒𝑏𝑏) for the 2dof and 3dof systems. The graphs are presented for three engine 

cycles to show the stability of the simulation results. The acceleration (impact severity) is largely mitigated at the 

bottom eccentricity in the presence of the pendulum (3dof). The minimum acceleration is noticeably reduced at the top 

eccentricity, whilst the maximum acceleration improves to a smaller extent.  

The number of impacts can be identified using the time histories of the eccentricity displacements (𝑒𝑒𝐻𝐻 and 𝑒𝑒𝑏𝑏 in figure 

17). The pendulum eliminates two impacts at the top eccentricity during each engine cycle (labels A and B), whilst two 

impacts appear at the bottom eccentricity during the compression stroke (e.g. labels C and D during 540 to 720° crank 
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angle). Although the total number of impacts has not changed, the impulsive nature of the impacts has improved 

through the mitigation of eccentricity accelerations.  

The time histories of the piston secondary motions (translation 𝑒𝑒𝑝𝑝 and rotation 𝛽𝛽) and pendulum angular oscillations (𝛾𝛾) 

are presented in figure 18. The rotation of piston has increased during the intake stroke (e.g. 360 to 540° crank angle), 

mitigating the piston’s translation. The piston rotational displacement is also slightly mitigated during the combustion 

stroke (about 14° crank angle). The piston moves to the centre of the clearance during the compression mid-stroke (-90° 

crank angle). The impact is then related to pure rotation of the piston in this instance. The pendulum absorber completes 

one oscillation every engine cycle. Its oscillation amplitude is naturally restricted to the physical boundaries of the 

cylinder liner. Thus, the pendulum mass does not impinge against the cylinder liner. The frequency spectra of the above 

mentioned displacements explain the communication between the pendulum and piston secondary motions (figure 19). 

In the absence of the nonlinear absorber (figure 5), the piston translation and rotation are dominant at the first and 

second engine orders. In the presence of the pendulum, the spectral amplitude of piston translation is still dominant at 

the first and second engine orders (figure 19). However, the difference between the amplitudes at the first and second 

engine orders (58 and 116 Hz) and the half and 1.5 engine orders (29 and 87 Hz) decreases remarkably. In the case of 

piston rotation, the spectral amplitudes generally increase and the half and first engine orders become equally dominant. 

The piston rotation is the primary drive for pendulum oscillations since its spectral amplitudes are one order of 

magnitude greater than piston translation and the pendulum’s FFT content coincides with the dominant frequencies in 

piston rotation. 

Conventionally, the piston-skirt impact noise (slapping) is controlled by modifying parameters affecting piston’s 

secondary motion, such as the clearance size, piston skirt profile, piston skirt stiffness, piston pin offset and the 

crankshaft offset [53]. Although improvements on piston noise can be achieved using these methods, other 

characteristics of the system’s performance can be negatively affected, such as friction loss and blow-by [53]. For 

instance, smaller clearance size improves the impact noise behaviour in spite of the increased friction loss [28, 29]. 

Nakayama [26] proves that the effectiveness of the crankshaft offset reduces at high engine speeds. The nonlinear 

absorber’s performance is, however, robust with engine speed variation. Thus, the proposed nonlinear absorber has a 

potential in controlling piston’s secondary motion. 

 

Conclusions 
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Piston secondary motion is the main cause of impact noise in internal combustion engines. Conventional control 

methods to mitigate this issue are effective only in certain ranges of the engine operating conditions. The aim of this 

paper is to present a study based on the TET concept that has the potential to lead to improved impulsive behaviour of 

the piston against the cylinder liner as a more robust passive control tool for the transient nonlinear system under 

examination. The following conclusions are made through this research: 

• The piston rotation is the most influential parameter for piston impact severity. Absorber designs should initially 

target piston rotation. 

• The crankshaft offset, piston-pin offset and clearance size are the three main conventional methods to control 

piston impacts. Even though modifying crankshaft offset seems to be the best approach, its implementation is 

expensive and its effectiveness decays as the engine speed increases. The examined TET concept is robust to 

engine speed variation and it can strongly influence the piston’s secondary motion. This robustness is maintained 

across a broad range of pendulum (nonlinear) stiffness and damping coefficients. 

• The proposed nonlinear absorber successfully mitigates the impact severity, whilst the overall transferred energy 

through the contact and the number of impacts are rather invariant during the entire engine cycle. For the 

examined design (stiffness-damping combination), the damping element produces moments of more than one 

order of magnitude less than those of the absorber’s stiffness action. This ratio signifies that the damping element 

is sufficiently weak for the selected TET design.  

• It is shown that there is potential to simultaneously improve the number of impacts provided the absorber design is 

optimised and a trade-off is acceptable in impact severity. An optimization study, considering use of more than 

one nonlinear absorber, is proposed for future work.     
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Fig.1. The generic mechanism of passive TET through nonlinear energy sink (NES) [43] 

 

 

Fig.2. Structure/lubricant property arrangements for the piston dynamics model 

 

 

Fig.3. Piston assembly and its geometric parameters 
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Fig. 4. Piston model validated against a ‘dry’ contact model by Offner [24]: (a) top and (b) bottom lands of the piston 

skirt (eccentricity displacements 𝑒𝑒𝐻𝐻 and 𝑒𝑒𝑏𝑏 (with respect to the cylinder centreline), anti-thrust side clearances 𝐶𝐶𝐻𝐻,𝐴𝐴𝐴𝐴𝐴𝐴 

and 𝐶𝐶𝑏𝑏,𝐴𝐴𝐴𝐴𝐴𝐴 (Offner [24]) and thrust-side clearances 𝐶𝐶𝐻𝐻,𝐴𝐴𝐴𝐴 and 𝐶𝐶𝑏𝑏,𝐴𝐴𝐴𝐴 (Offner [24])). 

 

 

Fig.5. FFT spectra of the piston secondary motions: translation (𝑒𝑒𝑝𝑝) and rotation about the piston pin (𝛽𝛽). 
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Fig.6. Single pendulum nonlinear energy absorber coupled with the piston assembly 

 

 

     Fig.7. Free body diagrams of the piston and pin, including the absorber reactions 

 

 

Fig.8. Free body diagram of the pendulum absorber (with left diagram showing external excitations and right diagram 

depicting the inertial forces) 
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Fig.9. Engine speed variations during one engine cycle for different engine speeds 

 

 

Fig.10. Percentage of variation in eccentricity acceleration amplitudes (impact severity) with absorber stiffness coefficient 

and engine speed 
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Fig.11. Percentage of variation of eccentricity acceleration amplitudes (impact severity) with absorber damping coefficient 

and engine speed 

 

Fig.12. Percentage of variation of eccentricity acceleration amplitudes (impact severity) with absorber damping and stiffness 

coefficients 
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Fig.13. Percentage of variation of impact number with absorber damping and stiffness coefficients 

 

 

Fig.14. Percentage of variation of energy transfer with absorber damping and stiffness coefficients 



Journal of Vibration and Acoustics 

27 
VIB-16-1462 - Theodossiades 

 

Fig.15. Pendulum absorber hysteresis loop 

 

 

Fig.16. Eccentricity accelerations at the top and bottom of the piston skirt 
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Fig.17. Eccentricity displacements at the top and bottom of the piston skirt 
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Fig.18. piston secondary motions (translation and rotation) and angular oscillations of pendulum 

 

Fig.19. Frequency spectrum of the piston secondary motions and pendulum angular oscillations for 3500rpm engine speed 
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Table 1. Ranges of values of the system parameters utilised during simulations 

Parameter Value Unit 

𝑚𝑚𝑝𝑝𝑝𝑝𝑝𝑝 + 𝑚𝑚𝑝𝑝𝑝𝑝𝑝𝑝 0.25 – 0.4 𝐾𝐾𝑔𝑔 

𝑚𝑚𝐻𝐻 0.125 (𝑚𝑚𝑝𝑝𝑝𝑝𝑝𝑝 + 𝑚𝑚𝑝𝑝𝑝𝑝𝑝𝑝) 𝐾𝐾𝑔𝑔 

𝐼𝐼𝑝𝑝𝑝𝑝𝑝𝑝 1.5×10−4 − 3×10−4 𝐾𝐾𝑔𝑔.𝑚𝑚2  

𝑎𝑎 0.015 – 0.03 𝑚𝑚 

𝑏𝑏 0.008 - 0.02 𝑚𝑚 

𝐿𝐿 0.03 – 0.05 𝑚𝑚 

𝐿𝐿𝐻𝐻 0.04 – 0.06 𝑚𝑚 

𝑘𝑘𝐻𝐻 60 – 80 𝐺𝐺𝐺𝐺/𝑚𝑚1.5 

𝜁𝜁𝐻𝐻  0.005 – 0.02 -- 

 

 


