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Abstract 
Tolpygo and Clarke (2000) presented an excellent experimental study on the room 

temperature circular spallation of α-alumina films grown by oxidation on Fe-Cr-Al alloy. 

Their observations are remarkable and thought-provoking and are worthy of mechanical 

interpretation. The present work hypothesizes that pockets of energy concentration (PECs) 

exist due to dynamic and non-uniform plastic relaxation or creep in the film and Fe-Cr-Al 

alloy substrate during cooling. PECs may be the driving energy for room temperature 

spallation failure. Based on this hypothesis, an analytical mechanical model is developed in 

this work to predict the spallation behavior, including the separation nucleation, stable and 

unstable growth, and final spallation and kinking off. The predictions from the developed 

model are compared against experimental results and excellent agreement is observed. The 

work reveals a completely new failure mechanism of thin layer materials. 

Keywords: Alumina film; Energy release rate; Pockets of energy concentration; Residual 

stress; Spallation 
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Nomenclature 

A  amplitude of upward deflection of film bubble 
E  Young’s modulus of film 
G , IG , IIG  total, mode I and mode II ERRs 

IcG , IIcG  film-substrate pure mode I and II interface fracture toughness 

cG  film-substrate mode-dependent interface fracture toughness 

cfG  fracture toughness of film 
h  thickness of film 

rBM , rBeN  crack tip radial bending moment and effective force 
r  radial coordinate of circular film bubble 

BR  radius of circular-edged delamination 
0U  strain energy of film bubble before separation 

aU  ‘bubble energy’; increase in combined strain energy and surface energy due 
to bubble separation 

bU  bending strain energy of film bubble 

iU  in-plane strain energy of film bubble 

sU  surface energy of delaminated surfaces of film bubble 
w  upward deflection of film bubble 
z  out-of-plane coordinate 
α  buckling correction factor (e.g. due to initial imperfection) 
β  kink-off angle 

0ε , 0σ  uniform residual compressive strain and stress in film 
R
rε , R

rσ  averaged radial relaxation strain and stress due to bending deflection 
R
θε , R

θσ  averaged circumferential relaxation strain and stress due to bending 
deflection 

θ  circumferential coordinate of circular film bubble 
ν  Poisson’s ratio of film 
ψ  ratio of film-substrate pure mode II and I interface fracture toughness 

1. Introduction 

Tolpygo and Clarke [1,2] presented an excellent experimental study on the room 

temperature spallation failure of α-alumina films grown by oxidation on Fe-Cr-Al alloy. 

Their observations are remarkable and thought-provoking. Refs. 1 and 2 convincingly 

demonstrate a thin film spallation process with an unknown mechanical mechanism. To help 

readers understanding the present work, a detailed introduction to Refs. 1 and 2 is thought to 

be necessary. In their work, α-Al2O3 films of different thicknesses were formed on the 

surface of Fe-Cr-Al heat-resistant alloy substrates of different thicknesses by oxidizing them 

at 1200°C for different time periods. Then, the film-substrate material systems were cooled to 

room temperature at different cooling rates. Cooling causes an increase of compressive in-
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plane residual stress in the α-Al2O3 films due to thermal expansion mismatch between the 

films and the substrates. Their major observations were as follows: No separation or 

spallation failure occurs during cooling at any rate. For specimens cooled to room 

temperature at rates in the range 5°−200°C min-1, circular interfacial separations develop, 

apparently spontaneously, at a constant compressive residual stress far below the critical 

buckling stress: The separations nucleate, grow in separation distance and propagate radially. 

After a period of slow and stable growth, some of these separations then grow abruptly and 

the oxide spalls off. For specimens cooled at extremely slow cooling rates (≤2°C min-1) and 

at very fast cooling rates (≥500°C min-1), no separation or spallation occurs at any point. 

1.1. Tolpygo and Clarke’s proposed explanations 

Various explanations for the phenomenon were proposed and thoroughly and insightfully 

examined by Tolpygo and Clarke [1,2]. One category of these explanations was the flaw or 

imperfection hypothesis [3,4], which attempted to explain the nucleation and growth of the 

separations. The hypothesized flaw consisted of pre-existing separations, cavities or other 

large defects; or pre-existing inclusions such as Zr-containing oxides; or impurity 

segregations at the oxide-substrate interface due to the slow cooling rates. Each possible type 

of flaw was explored in turn. Optical microscopy studies showed that no discernible 

interfacial separations or spallation existed in any of the specimens when examined 

immediately after cooling to room temperature. Also, when examining the exposed metal 

surface after spallation, scanning electron microscopy studies did not reveal any interfacial 

cavities or voids except for areas near sharp edges at the periphery of the specimens. Some 

craters on the metal surface were formed by Zr-rich oxide particles in the film but they were 

largely similar in size to the film thickness. They therefore could not have provided a flaw 

that was large enough to result in film buckling. Furthermore, these Zr-rich oxide particles 

were found to resist separation propagation, maintaining stable separation and preventing 

spallation. Regarding impurity segregation, some impurities such as sulphur, carbon or 

phosphorous may be expected to segregate at the interface due to the gradual decrease of 

solubility of the metal during slow cooling. Little difference in segregation was found 

between slow and fast cooling rates however. This flaw hypothesis was therefore invalidated. 

In the second hypothesis, the time-dependent growth behavior of the separations was 

explained by stress corrosion due to moisture [5]. To have a convincing invalidation of this 

hypothesis, some slowly-cooled specimens were placed in a sealed container in a purified 
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nitrogen atmosphere with zero humidity. Spallation was still as prevalent as during regular 

exposure in ambient atmosphere [1]. 

Cooling rates affect the separation and spallation behavior, as shown by all the specimens. 

A third hypothesis, therefore, was that metal plastic strain during cooling is the key factor 

governing the spallation as it is directly related to the cooling rates. Carefully designed 

experiments, however, showed that the metal plastic strain during cooling was not sufficient 

to cause spallation of the film [1]. 

Several other hypotheses were also considered in Refs. 1 and 2: Condensation of 

equilibrium thermal vacancies at the interface during cooling, diffusion of hydrogen or 

carbon monoxide from the metal to the film causing disruption to the film at room 

temperature, and metal embrittlement or hardening near the interface. Tolpygo and Clarke 

[1], however, stated that none of these hypotheses is consistent with all the experimental 

results. Readers are strongly recommended to read their work [1,2] for a thorough 

understanding of the above descriptions. A more recent study [6] on the same topic presents 

some contradictory observations. A major one is that impurity segregation at the film metal 

interface is indeed a key factor on the separation and spallation of the film. 

1.2. A new hypothesis 

The present study is triggered by Tolpygo and Clarke’s work [1,2]. It hypothesizes that 

pockets of energy concentration (PECs) in the film-metal material system exist due to 

dynamic and non-uniform plastic relaxation or creep in the film and Fe-Cr-Al alloy substrate 

during cooling. PECs may be the cause of film separation and spallation at constant in-plane 

compressive stress after cooling to room temperature. PECs are formed during cooling and 

are randomly distributed. Their energy depends on cooling rate, film thickness, metal 

thickness, etc. More details about PECs regarding their origin and the resulting bubble energy 

will be explained at appropriate points in the following development. 

In the case of fast cooling, nearly no plastic or creep relaxation due to cooling occurs in 

either the oxide or the metal and the mechanical process is closely thermo-elastic [1]. 

Consequently it is reasonable to expect that very fast cooling results in uniform biaxial in-

plane compressive stress in the film and no interfacial stress except for in areas near to the 

edges of a specimen. In this case, therefore, there are no PECs formed in the film-metal 

material system, even though the film has the largest residual stress. 
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In contrast, nearly complete plastic or creep relaxation will occur in both the film and the 

metal during extremely slow cooling. By ‘complete’ it is meant that plastic relaxation is 

steady and uniform at any temperature during cooling, and that a slower cooling rate would 

produce the same plastic relaxation history with respect to cooling temperature. Consequently 

it is reasonable to expect that extremely slow cooling also results in uniform biaxial in-plane 

compressive stress in the film and no interfacial stress except for in areas near to the edges of 

a specimen. In this case, therefore, there are also no PECs formed in the film-metal material 

system (with the film having the smallest residual stress). 

Now it becomes clear that intermediate cooling rates are unable to produce steady and 

uniform plastic relaxation. The present study makes the hypothesis that the dynamic and non-

uniform plastic relaxation from intermediate cooling rates results in pockets of tensile stress 

and shear stress on the interface and its adjacent material, with the former being dominant 

[1,2], while still producing uniform in-plane residual stress in the film. These pockets of 

stresses result in PECs and these PECs cause interface separation nucleation, growth and 

spallation of the film. It is seen that the energy in a PEC is essentially extra strain energy in 

the film-substrate material system in addition to the strain energy in the film due to the 

uniform biaxial in-plane compressive stress. When the separation process is regarded as the 

continuation of dynamic and non-uniform plastic relaxation, the time dependence of the 

process is apparent. This time dependence and how the PECs are formed are not, however, 

considered in this work. 

The present work focuses on the development of an analytical mechanical model based on 

the PECs hypothesis to predict the spallation behavior, including the separation nucleation, 

stable and unstable growth, and final spallation and kinking off. The analytical development 

is given in Section 2. Theoretical predictions are compared with experimental results [2] in 

Section 3. Conclusions are given in Section 4. 

2. Analytical development 

In this section, an analytical mechanical model will be developed based on the PECs 

hypothesis in order to explain the separation nucleation, growth and spallation behavior of α-

alumina films from the Fe-Cr-Al alloy substrates in Tolpygo and Clarke’s work [1,2]. A brief 

introduction to their experimental procedure is given first to help the development. 

A commercial heat-resistant alloy, Kanthal A-l, with nominal composition Fe-

21.2%Cr5.6%Al (wt.%) was used in the experiments. The alloy was annealed in a vacuum at 
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1100°C for 25 h and cut into square plates (12×12 mm2) with different thicknesses (0.53 mm, 

1.05 mm, 2.00 mm and 2.65 mm). After polishing to a 3-µm finish and cleaning in acetone, 

all the specimens were oxidized at 1200°C in ambient air for times in the range 0.5−100 h to 

give different oxide thicknesses in the range 0.5−8.0 µm. After isothermal oxidation, each 

specimen was cooled to room temperature at a constant rate. Several cooling rates in the 

range 2°–1000°C min-1 were used. The separation nucleation, growth and spallation of the α-

alumina film separations from the Fe-Cr-Al alloy substrate at constant room temperature and 

constant residual stress were monitored using different experimental techniques. Fig. 1 shows 

a general view of a group of specimens cooled at different rates after α-alumina spallation at 

room temperature. The randomly distributed white spots are the spallation sites. The 

thickness of the alloy of the specimens shown in Fig. 1 is 1.05 mm. The oxidation time is 

25 h at 1200°C in ambient air. Six cooling rates are shown. When the cooling rate is below 

2°C min-1 no spallation observed as complete plastic relaxation is achieved at any 

temperature during cooling resulting in no PECs. When the cooling rate is above 500°C min-1 

there is no spallation observed either as the cooling process is purely thermo-elastic resulting 

in no PECs. 

 

Fig. 1. General view of a group of 1.05-mm thick Kanthal samples after 25 h oxidation at 

1200°C cooled to room temperature at the rates indicated. Reprinted with permission from 
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Tolpygo, V.K., Clarke, D.R., 2000. Mater. Sci. Eng. A278, 142–150. Copyright 2000 

Elsevier. 

Fig. 2 shows a sequence of optical images illustrating the nucleation, growth and 

spallation of one typical separation from another specimen where the thickness of the oxide 

scale is about 5.0 µm and the residual stress is 4.3 GPa. Figs. 2a–e show the nucleation and 

stable growth stages which took 22 min. The time values were counted from when the 

specimen just reached room temperature from cooling. In Figs. 2a–d the radius of the nearly 

circular separation is far below the critical value for buckling. In Ref. 2, the separation is 

called an ‘incipient buckle’. Here, it is called a ‘separation bubble’ because its radius is far 

too small to cause buckling, particularly in Figs. 2a–c. The abrupt growth starts after Fig. 2e 

and spallation failure has occurred by Fig. 2f, taking less than 1 min. The following work 

aims to develop an analytical mechanical model to explain some aspects of the above 

observations. 

 

Fig. 2. A sequence of optical images showing the nucleation and growth of a separation 

bubble with time at room temperature leading to sudden spallation after 23 min. The oxide 

thickness is about 5.0 µm and the residual compressive stress in the oxide measure far away 

from the bubble is 4.3 GPa. Reprinted with permission from Tolpygo, V.K., Clarke, D.R., 

2000. Mater. Sci. Eng. A278, 151–161. Copyright 2000 Elsevier. 
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2.1 Nucleation of a separation bubble and bubble energy 

Fig. 3 shows a circular separation bubble of radius BR  with the subscript B representing 

the edge of the bubble. The oxide film has thickness h  and is attached to the alloy substrate 

outside of the separation bubble region. The nucleation of the bubble is caused by stresses on 

the interface and in the neighboring area due to the hypothesized incomplete plastic 

relaxation. The details are unclear and not considered further in present work. Once a 

separation bubble has nucleated, the strain energy of the stresses is freed and becomes the 

bottom surface energy of the bubble, the top surface energy of the alloy substrate underneath 

the bubble, and part of the strain energy in the bubble. 

 

Fig. 3. A circular separation bubble of radius BR . 

In order to calculate the strain energy in the bubble, its shape is assumed to be radially 

sinusoidal and axisymmetric and represented by 
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with w  representing the upward deflection and A  the amplitude or the maximum separation 

of the oxide film from the alloy substrate. A clamped edge condition at BRr =  is assumed 

because the thickness ratio between the oxide film and the alloy substrate is very small. This 

is shown by the data given earlier at the start of this section. It is also because the local 

deformation of the substrate near the interface is insignificant if the Young’s modulus of 

substrate material is greater than a third of the film’s Young’s modulus [7], which applies to 

the present case. Based on linear elastic plate theory, the radial and circumferential bending 

moments are [8] 
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The subscripts r  and θ  represent the polar coordinates in the radial and circumferential 

directions respectively. E  and ν  are the Young’s modulus and Poisson’s ratio respectively of 

the oxide film. Using the bending stresses arising from Eqs. (2) and (3) in conjunction with 

Hooke’s law in polar coordinates allows the bending strain energy to be calculated as [8] 
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with the subscript b  representing bending. The four equations above give 
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where R
rε  is the average elastic radial relaxation strain due to the upward deflection of the 

bubble. Eq. (6) is derived by using Eq. (1) and the conventional von Kármán geometric 

nonlinearity approach under the condition that 1≤hA , as follows: 
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The superscript R  represents relaxation. When the deflection amplitude A  is several times 

the film thickness h , a membrane approach needs to be used. Several studies on the 

delamination of graphene membrane bubbles under pressure loads [9,10] and point loads [11] 

are reported in literature, which use a membrane approach. 

The average relaxation stresses in the oxide film are then easily obtained as 

 R
r

R
r Eεσ =     ,    R

r
R Eενσθ =  (8) 

Measurements of residual stress in some stationary buckles in Ref. 2 show that relaxation 

stress is much larger at the center of buckles than near to the crack tip where it is negligible. 

The in-plane strain energy in the film is now calculated. 
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where 0σ  and 0ε  are the biaxial compressive residual stress and strain respectively in the 

original non-detached film, both of which are positive in compression. The sum of the bottom 

surface energy of the bubble and the surface energy of the alloy substrate underneath the 

bubble is calculated as 
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0
2 ππ == ∫  (10) 

where ( )rGc  is the interface fracture toughness which is position-dependent because the 

fracture mode mixity at the crack tip may vary due to varying loading conditions at crack tip 

during propagation [12–17]. The fracture toughness averaged over the separated surface is 

denoted by cG . It will be shown later that ( ) cc GrG =  is constant, that is, cc GG = . Collecting 

together bU , iU  and sU  gives 
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in which 0U  is the strain energy only before any separation, and aU  is the increase in the 

combined strain energy and surface energy due to separation, with E00 σε =  and 

cGh 00 σϕ = . It can be shown that aU  is always positive and monotonically increases with 

respect to the relaxation strain R
rε  or the bubble amplitude A  when ( ) ( )0

22 12επ<hRB . In 

this work, aU  is called ‘bubble energy’. It comes from the PEC energy formed in the film-

metal material system during cooling. When the PEC energy is able to provide the bubble 

energy aU  for nucleation, nucleation of a separation bubble will occur. It is expected that the 

bubble energy aU  governs the growth behavior of a bubble. Obviously, when the bubble 
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energy disappears, that is, 0=aU , a bubble will stop growing. Details about aU  are given 

during the following development, for bubble nucleation, stable growth, unstable growth, 

spallation and kinking off. 

According to the PEC hypothesis, PEC energy is formed in the film-metal material system 

during cooling due to dynamic and non-uniform plastic relaxation. As the formation of PECs 

is not considered in detail in this work, no mathematical expression for PECs will be derived. 

At particular times in the process of spallation, however, the amounts of PEC energy required 

for nucleation of a separation bubble, for its stable and unstable growth and final spallation 

will be shown. They are closely related to the bubble energy aU . 

2.2. Stable growth of a separation bubble driven by bubble energy 

The separation bubble bends away from the alloy substrate after nucleation, growing in 

height and producing a driving force for radial growth, that is, it produces energy release rate 

(ERR) at the bubble edge. When the ERR exceeds the interface fracture toughness the bubble 

radius grows. The total ERR G  is given by [14,17] 
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where rBM  and rBeN  are the radial bending moment and effective radial force respectively at 

the crack tip. They can be readily calculated as 
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Eq. (16) results from the fact mentioned earlier that measurements of residual stress in Ref. 2 

show approximately zero relaxation stress at the crack tip. It is well known that interface 

fracture toughness is mode mixity-dependent and varies with different partition theories [12–

17]. Extensive experimental tests [12–14] have shown that the partition theory based on Euler 

beam or classical plate theory [15,16] gives very accurate predictions of interface fracture 

toughness for macroscopic mixed-mode fracture while the partition theories based on 

Timoshenko beam theory or first-order shear-deformable plate theory [15,16] and 2D 

elasticity [17–19] give poor predictions. The latest work [20], however, shows that the 
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partition theory based on 2D elasticity [17–19] gives very accurate predictions of interface 

fracture toughness for nano-scale thin-film delamination. Previous studies [21–30] have 

shown that the bimaterial mismatch coefficient (i.e. the oscillation index of the interfacial 

stresses) can have significant effect on mode mixity in 2D elasticity. An analytical partition 

theory has been developed by the first two authors [31–33] to take the bimaterial mismatch 

coefficient into consideration. In Tolpygo and Clarke’s work [1,2], the α-alumina films 

grown by oxidation on Fe-Cr-Al alloy have Young’s modulus GPa 400=E  and Poisson’s 

ratio 25.0=ν . The Fe-Cr-Al alloy has nominal composition 21.2%Cr5.6%Al (wt.%). The 

latest work [34] reports the elastic properties of Fe-Cr-Al alloys with various nominal 

compositions from ab initio calculations. The closest composition in Ref. 34 to that used 

Refs. 1 and 2 is 20%Cr10%Al (at.%) or 19.9%Cr5.2%Al (wt.%) which has Young’s modulus 

GPa 266=E  and Poisson’s ratio 27.0=ν . It is seen that the bimaterial mismatch coefficient 

in the present case is mainly due to Young’s modulus mismatch. The authors’ recent studies 

[31–33] suggest insignificant effect on mode mixity from this weak mismatch. Furthermore, 

in other recent work by the authors on graphene membrane adhesion [20], neglecting the 

bimaterial mismatch coefficient also gives excellent results in comparison to experimental 

measurements. Consequently the present study uses the partition theory based on 2D 

elasticity [17–19] with a zero value of bimaterial mismatch coefficient between the film and 

substrate for simplicity while focusing on the mechanism of α-Al2O3 film spallation. The 

ERR partitions are therefore given by 
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Note that when mismatch coefficient is taken into consideration the two numerical factors in 

Eqs. (17) and (18) will be crack extension size- and mismatch coefficient-dependent [31–33]. 

Many previous studies [12–14,20] have shown that the following linear propagation criterion 

generally agrees very well with experimental results for brittle interfaces 
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where IcIIc GG ψ=  with the ratio ψ  being constant, and IcG  and IIcG  are the pure mode I and 

II critical ERRs. Substituting the partitions in Eqs. (17) and (18) into Eq. (19) gives the 

following fracture toughness. 

 IcIcc GGG λ
ψ

ψ
=

+
=

6227.03773.0
 (20) 

where 

 
ψ

ψλ
6227.03773.0 +

=  (21) 

Obviously, the fracture toughness is constant due to the constant mode mixity. Eqs. (15) and 

(17)–(20) together give the amplitude for crack growth as 
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where cGh 00 σϕ =  and the subscript GR denotes crack growth. Substituting Eq. (22) into 

Eqs. (7) and (8) gives the average relaxation strain and stress as 
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Note that these three quantities, ( )GRhA , ( )GR
R
rε  and ( )GR

R
rσ , are independent of the biaxial 

residual stress 0σ . The bubble energy aU  at crack growth can be obtained by substituting Eq. 

(23) into Eq. (13). 

 ( )























−















+= 136
2
3 2

0
2

2

2
02

h
R

h
R

GRU BB
cBGRa ϕππ

ε
π  (25) 

The first term in Eq. (25) is the sum of the bending strain energy and surface energy while the 

rest is the relaxed in-plane strain energy, which is negligible if BR  is small. The first term is 

therefore regarded as the nucleation energy, that is, ( ) cBNUa GRU 25.1 π=  where BR  is very 

small. It is seen that one third of the nucleation energy is used to bend the separation 

outwards after nucleating the interface separation using two thirds of its energy. When the 
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PEC is able to provide the bubble energy ( )GRaU , it will drive the nucleation and growth of a 

separation bubble. Two scenarios can occur: One scenario is slow and stable growth which 

occurs when BR  is smaller than the critical buckling characteristic length. The other is 

unstable growth when BR  reaches the critical value of the buckling characteristic length. The 

stable bubble then becomes an unstable buckle. The initiation of unstable growth is 

considered next. 

2.3. Initiation of unstable growth by buckling 

During slow and stable growth, the in-plane compressive stress in the bubble R
rσσ −0  

reduces as its radius BR  increases. At a certain point the following condition for the buckling 

of thin circular plates [35] is met: 
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where α  is a correction factor because the buckling occurs at an amplitude A  which can be 

considered an initial imperfection. In the present study, α  is considered an effect of boundary 

conditions. Its range is therefore 220.1652.0 ≤≤α  with the two limits corresponding to 

simply-supported and clamped edge conditions respectively [17,35]. A good approximation 

may be the average of the extreme values, that is, 936.0=α . This value is used in the 

present study. Note that 0σ  is positive in compression. By using Eqs. (24) and (26), the 

initiation of unstable growth, which is assumed to coincide with the buckling condition, is 

found at 
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with the subscript UG denoting the initiation of unstable growth and where 
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Note that the negative sign in front of ( ) 2/121 Ω−α  in Eq. (27) is chosen to meet the physical 

requirement that Eq. (27) gives the buckling solutions ( ) ( ) ( )0
22 12652.0 επ=hRB  for the 

simply-supported edge condition and ( ) ( ) ( )0
22 12220.1 επ=hRB  for the clamped edge 
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condition. There is no unstable growth when 2α<Ω . Expansion of the expression in the 

square bracket in Eq. (27) for 2α>>Ω , leads to 
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Substituting Eq. (29) into Eqs. (22), (23) and (24), and use of Eq. (28) where appropriate, 

results in Eqs. (30), (31) and (32), respectively. 
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The bubble energy at the onset of unstable growth when 2α>>Ω  is obtained by substituting 

Eq. (29) into Eq. (25) and using Eq. (28). 
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2.4. Unstable growth and spallation of the buckle driven by buckling and bubble energy 

Since the bubble energy aU  governs the growth behavior of the separation, the variation 

of bubble energy at growth ( )GRaU  in Eq. (25) is considered. By differentiating ( )GRaU  in Eq. 

(25) with respect to hRB , its maximum is found to occur at 
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with the subscript MU denoting the maximum ( )GRaU . Note that the negative sign in front of 

( )( ) 2/1891 Ω−  in Eq. (34) is chosen to obtain the maximum ( )GRaU . When 89<Ω  there is 

no solution. Expansion of the expression in the square bracket in Eq. (34) for 8/9>>Ω , 

leads to 
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Substituting Eq. (35) into Eqs. (22), (23) and (24), and use of Eq. (28) where appropriate, 

results in Eqs. (36), (37) and (38), respectively. 
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Note that ( )MUBR  in Eq. (35) is approximately equal to ( )UGBR  in Eq. (29) with 22.1=α  for 

a circular buckle with a clamped edge condition. Substituting Eq. (35) into Eq. (25) gives the 

bubble energy when 89>>Ω  as 
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More importantly, ( )GRaU  becomes zero at 
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Note that the negative sign in front of ( )( ) 2/1231 Ω−  in Eq. (40) is chosen to obtain the 

smaller value of hRB  at which the bubble energy becomes zero. When 23<Ω  there is no 

solution. Expansion of the expression in the square bracket in Eq. (40) for 2/3>>Ω , leads 

to 
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Substituting Eq. (41) into Eqs. (22), (23) and (24), and use of Eq. (28) where appropriate, 

results in Eqs. (42), (43) and (44), respectively. 
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At this moment the unstable growth stops as there is no driving energy; however, if the 

kinetic energy due to fast unstable growth of the buckle is large enough to break the film at 

its edge, the buckle spalls. The subscript SP in the equations above denotes spallation. 

A sketch of the variation of ( )GRaU  for 23>>Ω  is now given in Fig. 4. The bubble 

energy ( )GRaU , given by Eq. (25), increases with radial growth up to ( )MUBR , given by Eq. 

(34) and approximately by Eq. (35). This increase comes from the PEC. Because of the 

increasing nature of the bubble energy ( )GRaU  in this region, the growth is expected to be 

generally slow and steady, even in the first range of unstable growth, that is, in the range 

( ) ( )MUBBUGB RRR ≤≤ . Unstable growth starts at ( )UGBR , given by Eq. (27) and 

approximately by Eq. (29). In the first region of unstable growth, the radius grows by a factor 

of about ( ) ( ) 31.15.1 5.0 ≈= αUGBMUB RR  where Eqs. (35) and (29) are used, and the 

amplitude by a factor of about ( ) ( ) ( ) 71.123 2 ≈= αUGMU AA  where Eqs. (36) and (30) are 

used. When the PEC is too weak to provide the bubble energy, the bubble will stop growing, 

even in the first unstable growth range, and then the PEC energy equals the bubble energy

( )GRaU . 

 

Fig. 4. The variation of ( )GRaU  with respect to ( )2/ hRB . 
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The bubble energy ( )GRaU  decreases with radial growth after ( )MUBR  and reduces to zero 

at ( )SPBR , given by Eq. (40) and approximately by Eq. (41). This decreasing nature has two 

meanings. The first is that the bubble is no longer able to store any further bubble energy 

from the PEC. The second is that the bubble energy ( )MUaU , cumulated in the range 

( )MUBB RR ≤≤0 , is being transformed into kinetic energy. This is consistent with the fact that 

the bifurcation-type buckling occurs at around ( )MUBR , resulting in more ‘violent’ growth 

after ( )MUBR . In this second region of unstable growth, that is, in the range 

( ) ( )SPBBMUB RRR ≤≤ , the radius grows by a factor of about ( ) ( ) 41.12 ≈=MUBSPB RR  

where Eqs. (41) and (35) are used, and the amplitude by a factor of about ( ) ( ) 2=MUSP AA  

where Eqs. (42) and (36) are used. It is seen that the cracked area at ( )SPBR  is twice that at 

( )MUBR . Obviously, the bubble will stop growth at ( )SPBR  as the bubble energy becomes 

zero. The minimum kinetic energy can be estimated as ( )MUaU  in Eq. (39) by assuming that 

the PEC boundary ends at ( )MUBR  resulting in no further contribution to the kinetic energy. 

Under this assumption, the maximum PEC energy is given by ( )MUaU . When ( )MUaU  is large 

enough to break the oxide film, then spallation occurs, that is, the interface crack kinks into 

the oxide film. The kink-off angle β  is measured from the interface as shown in Fig. 5. 

 

Fig. 5. The kink-off angle of a spalled oxide film. 

The kink-off angle can be determined using 

 ( ) ( )
( ) cf

SPB
cMUB G

hR
GR

β
π

π
sin

2
4
3 2 =  (45) 



19 

where cfG  is the fracture toughness of the oxide film. Note that the left-hand side of Eq. (45) 

comes from Eq. (39) and the right-hand side is the breaking surface energy of the oxide film 

as shown in Fig.5. The kink-off angle is then obtained from Eq. (45) as follows, after 

substituting ( )MUBR  and ( )SPBR  from Eqs. (35) and (41) respectively: 

 ( ) 
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= 21

03
32arcsin ε
π
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c
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In the next section, predictions from the developed model are compared against 

experimental observations from Refs. 1 and 2. 

3. Experimental comparisons 

The material properties of the oxide film are taken from Refs. 1 and 2 and are as follows: 

The Young’s modulus of the oxide film is GPa 040=E  and the Poisson’s ratio is 25.0=ν . 

The mode I critical ERR of the interface is mN 6.8=IcG  and the critical mode I ERR of the 

oxide film is mN 20=cfG . The ratio 5== IcIIc GGψ  is used, which, based on Ref. 36, is 

considered by the authors to be a representative value. Hence, Eq. (20) gives the value of cG , 

i.e. mN12.3 =cG . 

In the first group of comparisons, Eq. (27) or (29) is used to predict the initial radius of 

unstable growth, and Eq. (40) or (41) is used to predict the size of spallation. These 

predictions are compared with experimental data from Ref. 2. The solid dots in Fig. 6 

represent a series of measurements of the size of individual separations as a function of time 

at room temperature. The time of 0 min corresponds to the moment when the specimen was 

placed under the microscope and its temperature was close to ambient. 
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Fig. 6. Separation bubble radius versus time at room temperature for three different samples: 

(a) μm 9.4=h  and GPa 46.40 =σ . (b) μm 2.6=h  and GPa 45.40 =σ . (c) μm 0.8=h  and 

GPa 31.40 =σ . 

Fig. 6a shows data from four different separation bubbles on a single specimen after 

isothermal oxidation for 25 h at 1200°C and cooling at 20°C min-1. The bubbles were 

successively monitored using optical microscopy. All of the bubbles grew at a constant 

compressive stress of GPa 4.046.40 ±=σ , which was measured in the adherent oxide far 

away from the separations. The whole process includes nucleation, stable growth, unstable 

growth, and final spallation. The nucleation of separation bubbles was not recorded due to the 

difficulty of making timely observations of nucleating bubbles using this monitoring 

technique. Stable growth, however, with a radius far smaller than the critical buckling value, 

was readily observed. At a certain critical radius, given by Eq. (29), which is again far 
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smaller than the critical buckling radius with a clamped edge condition, approximately given 

by Eq. (35), unstable growth abruptly occurs. It is pertinent that all four separations start 

unstable growth at approximately the same radius, and then all eventually spall off also at 

approximately the same radius. 

The two specimens with thicker oxide layers were produced with 50 h and 100 h of 

oxidation and are shown in Figs. 6b and c respectively. The growth behaviors of two 

separation bubbles are shown in Fig. 6b. Again, the two separations start unstable growth at 

approximately the same radius, and then both eventually spall off also at approximately the 

same radius. Fig. 6c shows the growth behavior of one separation bubble. 

The numerical values of the present prediction are also recorded in Table 1. The values of 

Ω  are 9.27, 11.7 and 14.1 for Figs. 6a, b and c respectively, which are much larger than 

876.0936.0 22 ==α  in Eq. (27). Eqs. (27) and (29) therefore predict very similar results for 

the initiation of unstable growth. Also, the Ω  values are much larger than 1.5 as required by 

Eq. (41). Eqs. (40) and (41) therefore predict very similar results for the size of spallation. 

The three horizontal lines in Figs. 6a, b and c represent the predictions from Eqs. (29), (35) 

and (41). It is very impressive to see that the predictions of present mechanical model have 

excellent agreement with the test results, suggesting that the underpinning assumption of zero 

bimaterial mismatch coefficient is a good one. 

Table 1. Comparison of the present mechanical model with test data [2] for the initiation of 

unstable growth, the size of spallation and kinking off. 

 
( ) ( )μm UGBR   ( ) ( )μm SPBR   ( )( )μm tan βh  

Eq. (27) Eq. (29) Test data [2]  Eq. (40) Eq. (41) Test data [2]  Eq. (46) Test data [2] 

Fig. 6a 41.2 40.7 40.0  76.9 75.3 75.0  7.53 9.10 

Fig. 6b 52.0 51.5 47.5  97.0 95.4 97.5  9.10 - 

Fig. 6c 68.1 67.6 67.5  127 125 123  12.0 13.5 

 

To test the validity of Eqs. (45) and (46), values of ( )βtanh  are also recorded in Table 1. 

The test result of 9.10 µm is measured approximately from Fig. 2f and is close to the value of 

7.53 µm given by Eq. (46). Note that the case in Fig. 2f is slightly different from the case in 

Fig. 6a: The residual stress in and the thickness of the α-Al2O3 film in Fig. 2f are 

GPa 3.40 =σ  and μm 5=h , respectively, whereas in Fig. 6a they are GPa 64.40 =σ  and 

μm 9.4=h , respectively. The value 7.53 µm in Table 1 is calculated for the case in Fig. 2f. 
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No test value for Fig. 6b case was found in the studies [1,2]. The test value 13.46 µm for Fig. 

6c is measured approximately from Fig. 7f and is also close to the value of 12.0 µm given by 

Eq. (46). To obtain the approximate test values, the averages of four measured diameters 

taken at 0°, 90°, ±45° are used. Fig. 7 shows another sequence of optical images of the 

nucleation and growth of a separation bubble with time at room temperature leading to 

sudden spallation after 124 min. The oxide thickness is about 8 μm and the residual 

compressive stress measured far away from spalls is 4.3 GPa, which nearly equals 4.31 GPa 

for the case in Fig. 6c. It is worth noting that both predicted values of ( )βtanh are smaller 

than the measured values. One possible reason may be that the PEC boundary slightly 

exceeds ( )MUBR  resulting in further contribution to the kinetic energy. That is, the PEC 

energy is larger than ( )MUaU . Its minimum value can be estimated as ( ) ( )βπ sin2 SPBcf RhG . 

 

Fig. 7. A sequence of optical images showing the nucleation and growth of a separation 

bubble with time at room temperature leading to sudden spallation after 124 min. The oxide 

thickness is 8.0 µm and the residual compressive stress in the oxide measure far away from 

the bubble is 4.3 GPa. Reprinted with permission from Tolpygo, V.K., Clarke, D.R., 2000. 

Mater. Sci. Eng. A278, 151–161. Copyright 2000 Elsevier. 

To further test the capability of Eq. (41) for the prediction of spallation size, more of the 

extensive test data in Ref. 2 is used for a second group of comparisons. A total of 23 

specimens with different substrate thicknesses were oxidized in identical conditions for 25 h 

at 1200°C to produce an oxide thickness of μm 9.4=h  and then cooled at different rates 
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(5°−200°C min-1). The spallation radius ( )SPBR  was measured on 50–60 circular spalls on 

each specimen and the corresponding residual compressive stress was probed in the adherent 

oxide far away from the spalls. All these measurements are gathered together in Fig. 8. The 

spallation radius, plotted as a function of residual compressive stress in the oxide, can indeed 

be described very well by Eq. (41), as shown by the top black solid curve. The middle gray 

dashed curve is from Eq. (35) for maximum bubble energy. The bottom black dashed curve is 

from Eq. (29) for the initiation of unstable growth. 

 

Fig. 8. Bubble growth behavior and spallation radius as a function of residual stress in the 

oxide for the same oxide thickness ( μm 9.4=h ). 

The minimum size at which bubbles were first discerned is indicated by the bottom line of 

the large arrow labelled ‘slow growth’. This line can be regarded as the nucleation stage with 

the nucleation PEC energy equal to cBGR25.1 π , as given by the first term of Eq. (25). It is seen 

that one third of the nucleation PEC energy is used to bend the separation outwards after 

nucleating the interface separation using two thirds of its energy. The hatched area with the 

question marks below the nucleation line corresponds to the range where nucleating bubbles 

could not be clearly resolved. Slow, stable growth occurs above the nucleation line, in the 

region indicated by the large arrow, and is driven solely by bubble energy. If the PEC cannot 

provide sufficient energy for growth, as given by Eq. (25), then the bubble will stop growing 

and becomes a stationary bubble. 

The region between the bottom black dashed curve and the middle gray dashed curve is 

regarded as the first stage unstable growth, which is driven both by the bubble energy and by 

buckling. Although the growth rate is much faster than during stable growth it is still too slow 

to build up significant kinetic energy. The bubble, however, now changes to be a buckle. As 

before, if the PEC cannot provide the sufficient energy for growth, as given by Eq. (25), then 
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the bubble will stop growing and becomes a stationary bubble. The black dotted line in this 

region shows the largest stationary buckles observed. 

The region between the middle gray dashed curve and the top black solid curve is regarded 

as the second stage unstable growth. The bubble energy reaches its maximum value, given by 

Eq. (39), on the middle gray dashed curve. It is seen that the largest stationary buckles are 

always below the maximum bubble energy curve as expected. Above the maximum bubble 

energy curve, the sum of the bubble energy in Eq. (25) and the kinetic energy due to the 

violent growth will remain constant if the PEC boundary ends at ( )MUBR . At the spallation 

radius, given by Eq. (40) or (41), the bubble energy in Eq. (25) becomes zero and further 

crack propagation along the interface is not possible. At this point, if the kinetic energy of the 

propagating bubble, which is estimated to be the maximum bubble energy as given by Eq. 

(39), is not large enough to crack the oxide film, a stationary spall is produced. If, however, 

the kinetic energy is large enough to break the oxide film, that is, Eq. (45) is satisfied, 

spallation or kinking off occurs. 

It is worth noting that Ref. 37 extends the present study to, firstly, consider straight-edged 

spallation driven by PECs; and to, secondly, develop mechanical models for PEC-driven 

spallation based on the classical plate theory partition theory [15,16] and the first-order shear-

deformable plate partition theory [15,16] for both straight-edged and circular-edged 

spallation. 

4. Conclusions 

The present mechanical model, based on the PEC hypothesis, predicts very well several 

aspects of the room temperature failure of α-alumina films grown by oxidation, including the 

initiation of unstable growth, and the size of spallation or kinking off. For a bubble to 

nucleate, the PEC needs to provide energy equal to cBGR25.1 π  as seen from Eq. (25) and the 

explanations immediately below Eq. (25). Eq. (25) and the subsequent explanations show that 

one third of this energy is used to bend the separation outwards to form a bubble after 

nucleating the interface separation using two thirds of its energy. Stable growth of the bubble 

is then driven by the bubble energy. The bubble becomes a buckle at a critical radius of 

035.0 εαπhRB =  from Eq. (29) at which point unstable growth starts, driven both by the 

bubble energy and by buckling. The bubble energy reaches its maximum value at 

025.0 επhRB =  from Eq. (35) with energy equal to cBGR275.0 π  from Eq. (39). The 
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spallation radius is 05.0 επhRB =  from Eq. (41). At this radius, the spallation will kink off 

if the maximum bubble energy, that is, cBGR275.0 π  from Eq. (39), is large enough to break 

the oxide film. 

The present mechanical model reveals a new failure mechanism of thin films under 

compressive residual stress. This failure mechanism might occur in other situations such as in 

thermal barrier coating material systems. Indeed, the first two authors are currently applying 

the model to the spallation of thermal barrier coating systems and the preliminary results are 

encouraging. Moreover, the model has already been extended to telephone cord buckling 

driven by PECs [38,39]. The present model could also be used in conjunction with 

experimental results to determine the material properties of a film-substrate material system, 

such as the Young’s modulus, the fracture toughness of the thin film, and the interface 

fracture toughness. 
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