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Abstract This paper presents a constructive learning approach for developing sensor-
motor mapping in autonomous systems. The system’s adaptation to environment
changes is discussed and three methods are proposed to deal with long term and
short term changes. The proposed constructive learning allows autonomous sys-
tems to develop network topology and adjust network parameters. The approach
is supported by findings from psychology and neuroscience especially during
infants cognitive development at early stages. A growing radial basis function
network is introduced as a computational substrate for sensory-motor mapping
learning. Experiments are conducted on a robot eye/hand coordination testbed
and results show the incremental development of sensory-motor mapping and its
adaptation to changes such as in tool-use.
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1. Introduction
In many situations such as home services for elderly and disabled people,

artificial autonomous systems (e.g. robots) need to work for various tasks in an
unstructured environment, system designers cannot anticipate every situation
and program the system to cope with them. This is different from the tradi-
tional industrial robots which mostly work in structured environments and are
programmed each time for a specific task. Autonomy, self-learning and orga-
nizing, and adapting to environment changes are crucial for these artificial sys-
tems to successfully fulfil various challenging tasks. Traditional controllers for
intelligent systems are designed by hand, and they do not have such flexibility
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and adaptivity. General cognitivist approach for cognition is based on symbolic
information processing and representation, and does not need to be embodied
and physically interact with the environment. Most cognitivist-based artificial
cognitive systems rely on the experience from human designers.

Human beings and animals face similar problems during their development
of sensor-motor coordination, however we can tackle these problems with-
out too much effort. During human cognitive development, especially at the
early stages, each individual undergoes changes both physically and men-
tally through interaction with environments. These cognitive developments
are usually staged, exhibited as behavioural changes and supported by neuron
growth and shrinking in the brain. Two kinds of developments in the brain sup-
port the sensory-motor coordination: quantitative adjustments and qualitative
growth [Shultz, 2006]. Quantitative adjustments refer to the adjustments of the
synapse connection weights in the network and qualitative growth refers to the
changes of the topology of the network. Inspired by developmental psychol-
ogy especially Piaget’s sensory-motor development theory of infants [Piaget,
1952], developmental robotics focuses on mechanisms, algorithms and archi-
tectures for robots to incrementally and automatically build their skills through
interaction with their environment [Weng et al., 2001]. The key features of de-
velopmental robotics share similar mechanisms with human cognitive develop-
ment which include learning through sensory-motor interaction; scaffolding by
constraints; staged, incremental and self-organizing learning; intrinsic motiva-
tion driven exploration and active learning; neural plasticity, task transfer and
adaptation. In this paper, we examine robot sensory-motor coordination devel-
opment process at early stages through a constructive learning algorithm. Con-
structive learning which is inspired by psychological constructivism, allows
both quantitative adjustments and qualitative network growth to support the
developmental learning process. Most static neural networks need to predefine
the network structure and learning can only affect the connection weights, and
they are not consistent with developmental psychology. Constructive learning
is supported by recent neuroscience findings of synaptogenesis and neuroge-
nesis occurring under pressures to learn [Quartz and Sejnowski, 1997, Shultz
et al., 2007]. In this paper, a self-growing radial basis function network (RBF)
is introduced as the computational substrate, and a constructive learning al-
gorithm is utilized to build the sensory-motor coordination development. We
investigate the plasticity of the network in terms of self-growing in network
topology (growing and shrinking) and adjustments of the parameters of each
neuron: neuron position, the size of receptive field of each neuron, and con-
nection weights. The networks adaptation to systems changes is further inves-
tigated and demonstrated by eye/hand coordination test scenario in tool-use.
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2. Sensory-motor mapping development via constructive
learning

In order to support the development of sensor-motor coordination, a self-
growing RBF network is introduced due to its biological plausibility. There
exists very strong evidence that humans use basis functions to perform sen-
sorimotor transformations [Pouget and Snyder, 2000], Poggio proposed that
the brain uses modules as basis components for several of its information pro-
cessing subsystems and these modules can be realized by generalized RBF
networks [Poggio and Girosi, 1990, Poggio, 1990].

There are three layers in the RBF network: input layer, hidden layer and
output layer. The hidden layer consists of radial basis function units (neurons),
the size of receptive field of each neuron varies and the overlaps between fields
are different. Each neuron has its own centre and coverage. The output is the
linear combination of the hidden neurons.

A RBF network is expressed as:

f(x) = a0 +
N∑

k=1

akφk(x) (1.1)

φk(x) = exp(− 1
σ2

k

‖x− µk‖2) (1.2)

where f(x) = (f1(x), f2(x), · · · , fNo(x))T is the vector of system outputs,
No is the number of outputs and X is the system input. ak is the weight
vector from the hidden unit φk(x) to the output, N is the number of radial
basis function units, and µk and σk are the kth hidden unit’s center and width,
respectively.

Why constructive learning?
According to Shultz [Shultz, 2006, Shultz et al., 2007], in addition to that

constructive learning is supported by biological and psychological findings,
there are several advantages of constructive learning over static learning: first,
constructive-network algorithms learn fast (in polynomial time) compared with
static learning (exponential time), and static learning maybe never solve some
problems as the designer of a static network must first find a suitable net-
work topology. Second, constructive learning may find optimal solutions to the
bias/variance tradeoff by reducing bias via incrementally adding hidden units
to expand the network and the hypothesis space, and by reducing variance via
adjusting connection weights to approach the correct hypothesis. Third, static
learning cannot learn a particular hypothesis if it has not been correctly rep-
resented, a network may be too weak to learn or too powerful to generalize.
Constructive learning avoids this problem because its network growth enables
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it to represent a hypothesis that could not be represented previously with lim-
ited network power.

Topological development of the sensory-motor mapping
network

During the development of sensory-motor mapping network, two mecha-
nisms exist: topological changes of the mapping network and network parame-
ter adjustments. The qualitative growth of the sensory-motor mapping network
depends on the novelty of the sensory-motor information which the system ob-
tained during its interaction with the environment in development, the growth
is incremental and self-organizing. The sensory-motor mapping network starts
with no hidden units, and with each development step, i.e. after the system ob-
serves the consequence of an action, the network grows or shrinks when neces-
sary or adjusts the network parameters accordingly. The network growth crite-
ria are based on the novelty of the observations, which are: whether the current
network prediction error for the current learning observation is bigger than a
threshold, and whether the node to be added is far enough from the existing
nodes in the network: ‖e(t)‖ = ‖y(t)− f(x(t))‖ > e1, ‖x(t)− µr(t)‖ > e3.
In order to ensure smooth growth of the network the prediction error is checked

within a sliding window:

√
t∑

j=t−(m−1)

‖e(j)‖2
m > e2, where, (x(t),y(t)) is the

learning data at tth step, and µr(t) is the centre vector of the nearest node
to the current input x(t). m is the length of the observation window. If
the above three conditions are met, then a new node is inserted into the net-
work with the following parameters: aN+1 = e(t), µN+1 = x(t), σN+1 =
k ‖x(t)− µr(t)‖, where, k is the overlap factor between hidden units.

The above network growth strategy does not include any network pruning,
which means the network size will become large, some of the hidden nodes
may not contribute much to the outputs and the network may become over-
fit. In order to overcome this problem, we use a pruning strategy as in [Lu
et al., 1998], over a period of learning steps, to remove those hidden units with
insignificant contribution to the network outputs.

Let onj be the jth output component of the nth hidden neuron, onj =

anj exp(−‖x(t)−µn‖2
σ2

n
), rnj = onj

max(o1j ,o2j ,··· ,oNj)

If rnj < δ for M consecutive learning steps, then the nth node is removed.
δ is a threshold.
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Parameter adjustments of the sensory-motor mapping
network

There are two types of parameters in the network, the first type of parame-
ter is the connection weights; the second is parameters of each neuron in the
network: the position and the size of receptive field of each neuron. A sim-
plified node-decoupled EKF (ND-EKF) algorithm was proposed to update the
parameters of each node independently in order to speed up the process. The
parameters of the network are grouped into No + N components. The first No

groups are the weights, wk = [a0k, a1k, · · · , aNk]T , k = 1, 2, · · · , No (aij is
the weight from ith hidden node to jth output); and the rest N groups are the
parameters of hidden units’ parameters: wk = [µT

k , σk]T , k = 1, 2, · · · , N .
The superscript T stands for transpose of a matrix.

So for kth parameter group at tth learning step, ND-EKF is given by:

wk(t) = wk(t− 1) + Kk(t)ek(t) (1.3)

where

ek(t) =
{

yk(t)− fk(x(t)) k = 0, 1, 2, · · · , No

y(t)− f(x(t)) k = No + 1, · · · , No + N
(1.4)

and Kk(t) is the kalman gain, yk(t) is the kth component of y(t) in training
data (x(t),y(t)), Bk(t) is the submatrix of derivatives of network outputs with
respect to the kth group’s parameters at tth learning step. Rk(t) is the variance
of the measurement noise, and is set to be diag(λ) (λ is a constant) in this
paper. q is a scalar that determines the allowed random step in the direction of
the gradient vector.

In our algorithm, an extended Kalman filter is used to adjust the systems’s
parameters. There may exist a similar mechanism in our brain. Recent re-
search findings has found evidences that Kalman filtering occurs in visual in-
formation processing [Rao and Ballard, 1997, Rao and Ballard, 1999], motor
coordination control [Todorov and Jordan, 2002], and spatial learning and lo-
calization in the hippocampus [Bousquet et al., 1998, Szirtes et al., 2005]. In
hippocampus studies, a Kalman filtering framework has been mapped to the
entorhinal-hippocampal loop in a biologically plausible way [Bousquet et al.,
1998, Szirtes et al., 2005]. According to the mapping, region CA1 in the hip-
pocampus holds the system reconstruction error signal, and the internal repre-
sentation is maintained by Entorhinal Cortex (EC) V-VI. The output of CA1
corrects the internal representation, which in turn corrects the reconstruction
of the input at EC layers II-III. O’Keefe also provided a biologically plausi-
ble mechanism by which matrix inversions might be performed by the CA1
layer through an iterated update scheme and in conjunction with the subicu-
lum [O’Keefe, 1989]. In addition, the matrix inversion lemma has been widely
used in computational neuroscience [Huys et al., 2007].
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3. Adaptation of sensory-motor mapping
Two kinds of changes in our daily life may require the learned sensory-

motor mapping to update: short term changes and long term changes. For the
short term, humans may just reuse learned knowledge and quickly adjust some
parameters to adapt to the environment changes. But for the longer term, after
an adult is trained in a special environment or for a special tasks for a long time,
they may grow new neurons to gain new skills, and to enhance the already
acquired knowledge. Examples of these two kinds of changes can be found
during human development, the kinematics of limbs and bodily structures are
not fixed during human growth but may change, either slowly over long pe-
riods during growth and bodily maturation, or rapidly such as when we use
tools to extend the reach or function of our manipulation abilities. It has been
discovered that infants learn and update sensorimotor mappings by associating
spontaneous motor actions and their sensory consequences [Piaget, 1952]. It
takes a relatively long time to build up the mapping skills, which involves neu-
ron growth processes in the brain to support the sensorimotor transformation.
After an adult has gained the basic skills, they can quickly adapt to different sit-
uations, for example, an adult can quickly adapt to the use of a pointer to point
to a seen target. This indicates that after rapid structural changes we do not
learn new sensorimotor skills from scratch, rather we reuse the existing knowl-
edge and simply (and quickly) adjust some parameters. Maguire at al [Maguire
et al., 2000] studied the structural changes in the hippocampi of licensed Lon-
don tax drivers. They found that taxi drivers had a significantly greater volume
in the posterior hippocampus, whereas control subjects showed greater volume
in the anterior hippocampus. Maguire’s study suggests that the human brain
grows or shrinks to reflect the cognitive demands of the environment, even for
adults.

In autonomous systems, some parameters may gradually change after a
long time use, the systems need to adapt to these changes automatically. Au-
tonomous systems have additional situations where structures may change sud-
denly, these may be unintentional, for example when damage occurs through
collisions, or by design when a new tool is fitted to the arm end-effector. For
these reasons it is important for autonomous systems in unstructured environ-
ments to have the ability to quickly adjust the existing mapping network pa-
rameters so as to automatically re-gain the eye/hand coordination skills. We
note that humans can handle this problem very well. Recent neurophysiolog-
ical, psychological and neuropsychological research provides strong evidence
that temporal, parietal and frontal areas within the left cerebral hemisphere
in humans and animals are involved and change during activities where the
hand has been extended physically, such as when using tools [Imamizu et al.,
2000, Johnson-Frey, 2004, Maravita and Iriki, 2004, Hihara et al., 2006, Hi-
hara et al., 2003]. Japanese macaque monkeys were trained to use a rake to pull
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food closer, which was originally placed beyond the reach of their hands [Hi-
hara et al., 2006, Hihara et al., 2003]. The researchers found that, in monkeys
trained in tool-use, a group of bimodal neurons in the anterior bank of the
intraparietal sulcus, which respond both to somatosensory and visual stimuli
related to the hand, dynamically altered their visual receptive field properties
(the region where a neuron responds to certain visual stimuli) during training
of the tool-use.

In this paper, we develop approaches of adapting to environments, and more
specifically, different robot limb sizes in our experiments, were investigated
and compared. All these adaptation skills are usually not available in commer-
cial calibration-based eye/hand mapping systems.

In our plastic RBF network for robotic eye/hand mapping, the knowledge
learned for the mapping is stored in the network in terms of the number of
neurons, their positions and sizes of receptive fields, and the node weights. In
order to quickly adapt to structural changes of the robotic system, this knowl-
edge needs to be reused in some way rather than setting up the network again
from empty. In this paper, we considered three methods for such adaptation,
all of them reuse the learned knowledge by adjusting the learned network:

1 Full adjustment of the learned network after a structural change. This in-
cludes network topological changes by adding new hidden nodes or remove
existing ones if necessary, and adjusting the following parameters: the cen-
tres and widths of the existing nodes, and the weights from the hidden nodes
to the outputs.

2 Adjusting the weights of the learned network, removing the insignificant
hidden units, but keeping the rest of the hidden units unchanged.

3 Only adjusting the weights, and keeping the hidden unit structure of the
learned network completely unchanged.

4. Experimental studies
Experimental system

In this paper, the robot eye/hand coordination is used as a testbed to demon-
strate the process of constructive learning and adaptation of the sensory-motor
mapping network to the changes. The experimental robot system has two ma-
nipulator arms and a motorized pan/tilt head carrying a color CCD camera
as shown in Figure 1.1. Each arm can move within 6 degrees of freedom.
The whole system is controlled by a PC running XP which is responsible for
controlling the two manipulator arms, any tools, the pan/tilt head, and also
processing images from the CCD camera and other sensory information. The
control program is written in C++.
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Figure 1.1. Experimental system for developmental coordination learning

In this paper only one of the robot arms was used. In the experiments we
commanded the robot arm to move randomly at a fixed height above the table
by driving joint 2 and joint 3 of the robot arm. After each movement, if the
hand was in the current field of view of the camera, the eye system moved
the camera to centre on the end of the robot finger, and then the pan/tilt head
position (p, t) and current arm joint values of the two joints used (j2, j3) were
obtained to form a training set for the system; otherwise, if the hand tip is out of
the view of the camera, this trial was ignored because the eye could not locate
the arm end before setting up the mapping between pan/tilt and robot arm.
After each trial, the obtained data (p, t, j2, j3) was used to train the mapping
network, and this data was used only once. In order to simplify the image
processing task of finding the end of the robot finger we marked the finger end
with a blue cover. The position of the blue marker could be slid up and down
the finger to effectively alter the length of the finger.

Constructive learning and adaptation in tool-use
To illustrate the network topological growth and parameter adjustments in

constructive learning, Figure 1.2 gives the structures of the hidden units at the
100th learning step and the 1597th learning step in eye/hand mapping. The
results shows that at the beginning, the system used large neurons to quickly
cover the whole space, and later on gradually built the details with smaller neu-
rons when necessary, this let the system achieve more accuracy. This neuron
growing process from coarse to fine using different neuron coverages is sim-
ilar to infant development where the decrease in the size of neural receptive
fields in the cortical areas relates to object recognition ability [Westermann
and Mareschal, 2004]. Figure 1.2 also demonstrates the changes of position
and size of receptive field of each neuron. It should be noted that some neu-
rons are removed in the learning process due to their small contribution to the
sensory-motor mapping network.
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(a) Structure of hidden units at the 100th
learning step
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Figure 1.2. Distribution of the hidden units and their coverage in eye/hand mapping by RBF
with SDEKF. The background points are the input learning points in the pan and tilt space of
the camera head, and the circles are the hidden units of the eye/hand mapping network

Our next experiment was to test the network’s adaptability to sudden changes
in the motor-sensory relationship due to structural changes. We chose changes
in finger length as a scenario to test this adaptability. Using a variety of tools
with different sizes is necessary for a robot system to conduct different tasks,
and the eye/hand mapping network’s ability to quickly adapt to this change
is crucial for the robot to re-gain its eye/hand coordination skills. We have
tested three approaches to reusing and adjusting the learned eye/hand mapping
network in order to re-gain coordination skills. As a test, at the 1598th trial
(a purely arbitrary point) the finger length was changed in size from 27.5cm
long to 20.5cm long and we investigated the adaptation of the system to such
a sudden change. Figure 1.3(a) shows the output error when all the parameters
of the learned network are adjusted, including adding possible nodes, moving
node centres, adjusting widths of each node, and updating the weights. Fig-
ure 1.3(b) and Figure 1.3(c) show the results of only adjusting the weights
and keeping the parameters of the hidden units unchanged, but Figure 1.3(b)
used a pruning procedure as described in section 2.0 to remove the insignifi-
cant hidden units, while Figure 1.3(c) kept the hidden unit structure completely
unchanged. From the results, we can see that all three methods quickly adapt
to the sudden change in finger size. The method of adjusting the full network
parameters achieved the best result. Although the other two methods did not
change the parameters of the hidden units of the learned network, they ob-
tained reasonable small errors. It is important to note that, the third method,
which completely reused the original hidden unit structure in the mapping net-
work and only adjusted weights, achieved a quite similar result to the second
method with pruning. This may be similar to the approach that adults adopt
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to handle tool changes. We can quickly adapt to structural changes with little
effort, but during such short time-scales we cannot regenerate receptive fields
in our brain, and so may only reuse the knowledge already learned and quickly
adjust the weights of the existing neurons. But if we are trained to use this tool
for a long time, we may improve our operation skills as we might grow new
neurons to support the changes as in Figure 1.3(a).
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work, with pruning
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work, no pruning

Figure 1.3. Adapting to structural change by reusing the learned network in different ways.

Now considering network size, as shown in Figure 1.4, the first method with
full updating of all network parameters required by far the largest network,
48 nodes; while the second method removed three hidden units, reducing the
network to 16 nodes; the third method kept the original network size, 19 nodes.
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We have also studied the staged development in sensory-motor mapping
learning process [Lee et al., 2007]. The system constructs sensory-motor
schemas in terms of interlinked topological mappings of sensory-motor events,
and demonstrates that the constructive learning moves to next stage if stable
behaviour patterns emerges.

5. Conclusions
Constructive learning has advantages over static learning in sensory-motor

mapping development for autonomous systems. It supports both topological
network growth and parameter adjustments, which is supported by findings in
psychology and neuroscience. It also has the advantage of adaptation to sys-
tem changes such as in tool-use. A growing radial basis function network by
constructive learning constructs the computational substrate for such sensory-
motor mapping development. It forms a platform to examine the relation-
ship between behaviour development and the growth of internal sensory-motor
mapping network; the staged and developmental learning process through var-
ious constraints in motors and sensors; and active behaviour learning driven by
intrinsic motivation. The experimental results on robot eye/hand coordination
demonstrate the incremental growth of the mapping network and the system’s
adaptation to environmental changes.
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