
Solubilization of phenols by multimolecular aggregates formed by low molecular 

weight hyperbranched polyglycidol 

 

Andres F. Olea1, Betsabe Acevedo2, Luis Ossandon2, David Worrall3 

1Instituto de Ciencias Químicas Aplicadas, Universidad Autonoma de Chile, Santiago, 
Chile 

2Universidad Andrés Bello, Viña del Mar, Chile 

3Department of Chemistry, Loughborough University, Leicestershire LE11 3TU, UK 

 

Abstract 

Hyperbranched polymers have been proposed as potential carriers or host compartments 

for controlled drug delivery. In this work the solubilization of alkylphenols into aggregates 

formed by hyperbranched polyglycidol HPG and its ester derivative has been studied. 

HPG17 was synthesized by ring-opening polymerization of glycidol, and then the ester 

HPG4-RBr13 has been obtained by reaction of hPG17 with 2-bromo isobutyryl bromide. The 

critical aggregate concentration CAC and micropolarity of aggregates were determined by 

using pyrene as fluorescence probe. CAC values obtained are 2.5 mM and 0.25 mM, for 

HPG17 and HPG4-RBr13, respectively. Our results indicate that the hydrophobic effect is 

larger for HPG4-RBr13, and that their aggregates are more hydrophobic, than for HPG17. In 

addition, their sizes and sizes distribution were determined by DLS. 

The partition of phenols between the micellar and aqueous phase was studied by using the 

pseudo-phase model, and the results show that the partition coefficients increases with 

increasing length of the side alkyl chain, and are larger for HPG4-RBr13 micelles than for 

HPG17 micelles. 
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1. Introduction 

Hyperbranched polymers (HBP) have received much attention due to their relative ease of 

synthesis and narrow dispersity [1-4]. The potential use of HBPs in many applications is 

related to their unique properties, i.e. HBPs are branched polymers with dendritic globular 

structure and a large number of terminal functional groups. The branching structure of these 

polymers determine many of their properties, such as viscosity, glass transition 

temperature, and crystallization behavior [5].  These structures with a hydrophobic core and 

hydrophilic shell linked by covalent bonds resemble a micellar architecture. As each 

macromolecule constitutes a single “micelle”, there is no critical micelle concentration 

(CMC), and these systems are referred as unimolecular micelles. Thus, bioactive molecules 

can be incorporated into their compact and globular structures by simple physical 

entrapment or by chemical attachment to the terminal functional groups. In this way, a 

number of active molecules can be conjugated to each unimolecular micelle reaching a high 

local concentration. These properties have prompted an increasing number of investigations 

to develop novel HBP for different kinds of applications [6-10].  

However, recently it has been shown that amphiphilic HBPs can self-assemble into a 

diversity of supramolecular structures [11-14]. This is an unexpected and interesting result 

as it is in contrast to the view of HBP as unimolecular entities. The number of 

morphologies and structures of assemble HBPs and their unique properties have converted 

them in promising systems for biomedical applications [15-17]. Self-assembling HBPs are 

formed by hydrophobic (hydrophilic) dendritic core and hydrophilic (hydrophobic) arms. A 

multimolecular aggregate mechanism driven by intermolecular interaction between 

hydrophobic arms has been proposed to explain the formation of large aggregates over 100 

nm [18,19].  



Hyperbranched polyglycidol HPG is biocompatible polyether with a hydrophilic core and a 

number of terminal hydroxyl groups. Conjugation of hydrophobic molecules to the terminal 

groups changes the arms’ hydrophobicity and large multimolecular aggregates (MMA) with 

different shapes can be formed. Formation of large aggregates at a critical aggregate 

concentration CAC has been reported for HPG in which the terminal hydroxyl groups have 

been modified by long alkyl chains [20], adamantyl group [21], or amphiphilic chains 

forming core-multishell structures [19,22,23]. Despite in many applications the 

encapsulation ability of MMA is a determinant factor; to the best of our knowledge the 

thermodynamic parameters that control this process have not been studied.  

For many applications the incorporation of guest molecules into MMA is a determinant 

factor; however, to the best of our knowledge the thermodynamic parameters that control 

this process have not been studied. In this work, the formation of MMA by a low molecular 

weight HPG and its ester derivative has been studied. The CAC has been determined by 

fluorescence probing methods, and the distribution constants between the aqueous phase 

and the pseudo-micellar phase have been measured for a series of alkylphenols. These 

molecules have been used as model compounds in studies of solubilization of organic 

molecules into micelles formed by normal surfactants and amphiphilic polymers [24-26]. 

The thermodynamic parameters obtained are the distribution constants and standard free 

energy of transfer. Thus, our results can be compared to those obtained with other micellar 

systems in order to understand the solubilization process and to assess the ability of HPG 

aggregates to solubilize hydrophobic molecules.  

2. Materials and Methods 

2.1 Materials 



Glycidol (Aldrich), 1,1,1-tris(hydroximethyl)propane TMP (Fluka), 2-bromoisobutyryl 

bromide (Merck), PMDETA (Aldrich) and p-alkylphenols (Aldrich) were used as received.  

Polymerizations were carried out following the methodology reported in the literature 

[1,27,28]. A typical polymerization reaction of glycidol was conducted as follows. Initially 

TMP was added with mechanical agitation under argon atmosphere into a two-neck round-

bottom flask, followed by potassium methylate solution in methanol (20%). The mixture 

was stirred for several minutes, after which excess methanol was removed by distillation. 

The temperature was raised to 95 ºC and 25 mL of glycidol slowly added over a period of 

12 h using a syringe pump. The product was dissolved in methanol and neutralized by 

passing through a cation-exchange column. The polymer was precipitated from methanol 

solution using excess acetone and dried at 80 ºC in vacuum. 

Esterification of the hydroxyl groups of HPG was accomplished in pyridine as solvent [28]. 

The acyl bromide, 2-bromoisobutyryl bromide, was added dropwise at 50 °C. The initial 

yellow color disappeared and pyridinium bromide precipitated. Pyridine was removed by 

azeotropic distillation with toluene. The residue was dried with MgSO4 and a pale yellow 

viscous liquid was obtained.  

1H and 13C NMR spectra were recorded in CD3OD on a Bruker Avance 400 spectrometer 

operating at 400.1 and 100.6 MHz, respectively (Figures 1-2, Supplementary Material). 

MALDI-TOF mass spectra were performed with a Microflex mass spectrometer (Bruker 

Daltonics). 

2.2 Dynamic light scattering 

The size and size distributions of polymeric micelles were determined by dynamic light 

scattering (DLS). Aqueous solutions of polymers (1mg/mL) in the absence and presence of 

p-alkylphenols (10 mM) were prepared with deionized water from an ultrapure water 



system (EasyPure II, Barnstead), filtered, and thermostatted at 25°C for 10 m. DLS 

measurements were performed using a Zetasizer Nano ZS (Malvern Instruments, Malvern, 

UK) at a scattering angle of 175° to the incident beam provided by a He–Ne laser (633 nm, 

4 mW). The resulting data were analyzed using the manufacturer’s software (DTS v. 4.2, 

Malvern Instruments Ltd., Malvern, UK). The hydrodynamic diameter and dispersity index 

(PDI) are expressed as the average of at least three measurements. 

2.3 Fluorescence probing  

Samples for fluorescence measurements were prepared by adding a concentrated solution 

of pyrene in acetonitrile to aqueous solutions of polymers. Steady-state fluorescence spectra 

of pyrene were recorded utilizing a Horiba Jobin Yvon Fluoromax 4 fluorometer by exciting 

at 337 nm. All emission spectra were corrected for detector response using a correction 

curve supplied by the instrument manufacturer. The ratio I1/I3 corresponds to the ratio of 

intensities of peak one (λ = 372 nm) to peak three (λ = 384 nm), whereas the ratio IM/IE 

corresponds to the ratio of intensities of the monomer band to the excimer band (λ = 450 

nm). 

2.4 Measurement of distribution coefficients 

In the pseudo-phase model the solubilization process is represented by the equilibrium 

     W M MS     +  P         S→←      (1) 

 For which the equilibrium constant Ks is given by 
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where [S]W and [S]M denote molar concentration of substrate in aqueous and in the 

polymeric pseudo-phase, respectively; [P]M is the concentration of polymer chains forming 



the hydrophobic aggregates. On a mole fraction basis the partition coefficient can be 

expressed by 

W

M
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where XM and XW are the mole fraction of substrate in the micellar and aqueous phases, 

respectively. In diluted solutions, both quantities are related by 

    KX = 55.5 KS                             (4) 

The distribution coefficients (KS) were obtained by ultrafiltration using an Amicon 202 cell 

with a PM5 membrane, which has a MW cut-off of 5,000. Aqueous solutions of PG and 

PG-Br (10mM and 0.28 mM, respectively) containing different concentrations of p-

alkylphenols were filtered, and the absorbances of the filtrate were measured at 275 nm. 

The molar concentrations of phenols were obtained from a calibration curve. The values of 

KS were obtained from the initial slope of a plot of [SM] against [SW].  

 
3. Results and Discussion 
 
3.1 Synthesis of hyperbranched polymers 

Hyperbranched polyglycidol was obtained by anionic ring opening polymerization of 

glycidol and using a multibranched initiator.  Partially deprotonated TMP was used as the 

initiator and the anionic polymerization was carried out with slow monomer addition. The 

polymer was characterized by FT-IR, 1H NMR, 13C NMR and MALDI-TOF. The degree of 

branching (DB) was determined by measuring the intensity of 13C NMR signals, according 

to the procedure described by Sunder et al. [1] The DB value calculated for HPG is 0.41 

that is slightly lower than the value expected for this polymerization. HPG was 

subsequently esterified with 2-bromoisobutyril bromide to get a more hydrophobic 



polymer, HPG-RBr (see Scheme 1). The fraction of –OH groups that were esterified was 

determined by FT-IR (Figure 3, Supplementary Material). The conversion degree is 78% 

which is similar to values previously reported [28]. 
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SCHEME 1. Esterification of HPG with 2-bromoisobutyryl bromide 

 

The molecular weights of HPG and HPG-RBr were determined by MALDI-TOF mass 

spectrometry and the results are given in table 1.  

Table 1. Molecular weights of HPG and HPG-Br determined by MALDI-TOF 

Polymer   Mn Mw Mw/Mn 

HPG17 1260 1500 1.19 

HPG4-RBr13 3210 3640 1.13 

 

The results indicate that HPG was obtained with a very narrow dispersity and that 

esterification with 2-bromoisobutyril bromide brings about an increase of the molecular 

weight with no change in dispersity. In addition, by comparing the values of Mn for HPG 



and HPG-RBr, and considering that for each –OH group that reacts the molecular weight 

increases by 150 g/mol, it can be concluded that 13 out of 17 –OH groups were esterified. 

This corresponds to 78% of conversion and it is consistent with the degree of conversion 

determined by FT-IR.  

Therefore, two hyperbranched polymers with different numbers of –OH groups have been 

synthesized, i.e. HPG17 and HPG4-RBr13.  

3.2 Characterization of polymer aggregates 

Hyperbranched polyglycidol is a highly flexible polymer that in aqueous solution adopts a 

globular form with a core-shell structure. Thus, it is expected that HPG17 and HPG4-RBr13 

form unimolecular micelles at low concentration, and probably multimolecular aggregates 

at higher polymer concentration. The aggregation of unimolecular micelles to form 

multimolecular aggregates has been demonstrated for hyperbranched star copolymers [18]. 

The formation of multimolecular aggregates can be evidenced by detection of the critical 

aggregate concentration (CAC), i.e. the polymer concentration at which aggregates are 

formed. The CAC and micro polarity of the aggregates formed by HPG17 and HPG4-RBr13 

were determined by using pyrene as a fluorescent probe. It is well established that the 

fluorescence of pyrene changes dramatically with the polarity of the medium, and the ratio 

I1/I3 of the intensities of the bands that appear at 372 nm (I1) and 390 nm (I3) has been used 

to monitor conformational transitions in polyelectrolytes containing carboxylic groups in 

the side chain, and self-aggregation of amphiphilic copolymers [29-32]. To determine the 

CAC the ratio I1/I3 was measured as a function of both HPG17 and HPG4-RBr13 

concentrations. A plot of this ratio against polymer concentration is shown in Fig. 1.  



Figure 1. Plot of ratio I1/I3 against the logarithm of the polymer concentration: HPG17 (■); 

HPG4-RBr13 (▲) 

 

At low concentrations of both polymers the values of I1/I3 are lower than the value 

measured in aqueous solution. These results confirm that HPG polymers form unimolecular 

micelles providing a microenvironment for pyrene even at the lowest concentration used. 

The polarity of this environment is quite similar to water due mainly to the flexibility of the 

dendritic polymer which allows easy entry to water molecules. This flexibility might be due 

to the low degree of branching and the presence of ether bonds in the dendritic structure. 

With increasing polymer concentration the value of I1/I3 decreases steeply, until a constant 

value is reached. This breaking point is associated with the critical aggregate concentration, 



whereas the limiting values of I1/I3 represent the polarity sensed by pyrene in the 

hydrophobic sites provided by polymer aggregates. CAC values obtained from Fig. 1 are 

2.5 mM and 0.25 mM for HPG17 and HPG4-RBr13, respectively. These CAC are much 

higher than those measured for branched poly(ethylene imine) functionalized with long 

alkyl chains and monomethyl poly(ethylene glycol) mPEG [33]. For the latter, the CAC 

values are in the range 10-7 to 10-5 M, which suggest a high stability of the multimolecular 

aggregates. This effect was attributed to the interaction between long aliphatic chains [33]. 

The same explanation has been given for the aggregation of HPG derivatized with C18 alkyl 

chains and mPEG [34], even though in this case no CAC could be determined by 

solubilization methods because the aggregate collapse with the addition of solute 

molecules. Thus, the main driven force for aggregation of these HPG might be the 

hydrophobic interaction of ether chains or 2-bromoisobutyrate groups. In addition, the 

formation of hydrogen bonds could make an important contribution for aggregation of 

unimolecular micelles of HPG17. On the other hand, the limiting values of I1/I3 are 1.50 and 

1.30 for HPG17 and HPG4-RBr13, respectively. These results indicate that HPG4-RBr13 

multimolecular aggregates are more stable and more hydrophobic than those formed by 

HPG17. These effects arise from a reduced number of –OH groups, forming the outer 

corona, and the presence of 2-bromoisobutyrate groups in the hydrophobic dendritic core.  

It has been shown that in polymer micelles having a core-shell structure, non-polar 

molecules are distributed between the core and the inner corona [35,36]. The distribution of 

pyrene has been demonstrated by quenching of pyrene fluorescence by nitromethane, a 

water-soluble molecule [36]. Results indicate that pyrene located in the corona is more 

exposed to water, and therefore is more efficiently quenched by nitromethane relative to 

that localized in the core. As consequence of this preferential quenching the plots of I0/I 



against quencher concentration are not linear, as would be predicted by the Stern Volmer 

equation, and show a downward curvature. In Fig. 2 are presented Stern-Volmer plots for 

the quenching of pyrene (1.0 µM) in aqueous solutions of hyperbranched polymers at 

concentrations above the CAC, i.e. 1.0 x 10-2 and 2.8 x 10-4 M for HPG17 and HPG4-RBr13, 

respectively. These results indicate that pyrene is clearly distributed between two different 

environments, one of them being more difficult access by water soluble quenchers. 

 

Figure 2. Quenching of pyrene fluorescence by nitromethane in aqueous solution of HPG17 

(■) and HPG4-RBr13 (▲). [Pyrene] = 1 µM; [PG17] = 10 mM; [PG4-RBr13] = 0.28 mM. 

 

The fraction of pyrene that is more exposed to water can be determined using equation 5: 



0
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      (5) 

where KSV is the Stern-Volmer constant,  f is the fraction pyrene more accessible to water, 

and [Q] is the nitromethane concentration [37]. Plots of the results according to Eqn. 5 are 

linear for both polymers and the fraction f was obtained from the intercept (Fig. 3). 

 

Figure 3. Modified Stern Volmer plot for quenching of pyrene fluorescence by 

nitromethane in HPG17 (■), and HPG4-RBr13 (▲) micelles 

 

The values of f are 0.64 and 0.40 for HPG17 and HPG4-RBr13 aggregates, respectively. This 

means that most of the pyrene solubilized by aggregates formed by HPG17 is easily 

quenched by nitromethane, whereas in HPG4-RBr13 aggregates around 60% of the pyrene 



molecules are inaccessible to nitromethane. These results are consistent with the measured 

values of the ratio I1/I3, which suggest that the HPG17 aggregates are more accessible to 

water molecules. The lower accessibility of nitromethane to the HPG4-RBr13 aggregates 

may be attributed to a reduced flexibility of HPG chains due to the higher hydrophobic 

effect acting on the esterified chains.  

The sizes and sizes distribution of aggregates were determined by DLS. The results shown 

in Fig. 4 indicate that at concentration below the CAC HPG17 form structures with 

hydrodynamic diameters of 3.5 and 22 nm, whereas above the CAC the diameters change 

to 30 and 130 nm. For HPG4-RBr13 two multimolecular aggregates with hydrodynamic 

diameters of 40 and 180 nm can be observed. Interestingly, in Fig. 5 it can be seen that the 

addition of p-alkylphenols to HPG17 aggregates induces changes in the size distribution, i.e. 

the distribution is shifted to slightly larger sizes and the smaller aggregates disappear. This 

result is completely opposite to the behavior reported for HPG-C18-PEG copolymers where 

solubilization of pyrene molecules induces a transition from multimolecular aggregates to 

unimolecular micelles [34]. On the other hand, for polymer micelles formed by linear block 

copolymers it has been found that solubilization of phenols and other additives induce 

micellar growth [38-40]. 



 

Figure 4. Hydrodynamic volumes of aggregates formed by: (A) HPG17 (0.7 mM); (B) 

HPG17 (10 mM); (C) HPG4-RBr13 (0.28 mM). DLS measurements were made at 25 °C. 



 

Figure 5. Hydrodynamic volumes of aggregates formed by HPG17 (10 mM) in absence (A) 

and presence of p-cresol (B), p-ethylphenol (C), p-butylphenol (D). DLS measurements 

were made at 25 °C. [Phenols] = 10 mM. 

 

3.3 Distribution of p-alkylphenols between aqueous phase and polymer aggregates 

The partition of phenols between the polymer and aqueous phase were determined for 

HPG17 and HPG4-RBr13 by using the pseudo-phase model. The distribution coefficients 

were obtained from the initial slope of the plots shown in Fig. 6 according to Eq. 2.   



 
 
Figure 6. Measurements of distribution coefficients of p-alkylphenols between aqueous and 

polymer pseudo-phases, KS values are obtained from the initial slope. (■) p-ethyl phenol, 

(●) p-propyl phenol, (▼) p-butylphenol, at [PG17] = 10 mM; (▲) p-propylphenol, (♦) p-

butylphenol at [HPG4-RBr13] = 0.28 mM 

 
The partition coefficient in a mole fraction basis KX is related to KS through Eq. 4, and all 

calculated values are summarized in Table 2. The results show that the partition coefficients 

increases with increasing length of the side alkyl chain, and are larger for HPG4-RBr13 

aggregates than for HPG17 aggregates. This behavior is in line with what has been reported 

for distribution of phenols in normal micelles, unimolecular and interpolymer micelles [24-

26,41].  



Table 2. Partition coefficients and standard free energies of transfer of p-alkylphenols 

between aqueous phase and polymer phases 

 HPG17 HPG4-RBr13 

p-Alkylphenol KS KX, x 104 Δµt
0, kJ mol-1 KS KX, x 104 Δµt

0, kJ mol-1
 

p-cresol 60 0.3 −19.97    

p-ethylphenol 420 2.3 −24.90 1160 6.4 −27.40 

p-propylphenol 900 5.0 −26.80 2610 14.5 −27.45 

p-butylphenol 4865 27.0 −31.00 16750 93.0 −34.00 

 

The relationship between the partition coefficient KX and the standard free energy of 

transfer from the aqueous phase to the pseudo-micellar phase is given by 

XWMt KRT ln000 −=−=∆ µµµ      (6) 

It has been shown that Δµ0
t
 can be separated in additive contributions from different 

constituent groups of the transferred substrate [24,42] 

000
CCArt n µµµ ∆+∆=∆       (7) 

where Δµ0
Ar denotes the contribution of the parent aromatic group, Δµ0

C is the incremental 

free energy per methylene group, and nC is the number of these groups attached to the 

parent group. Similar linear free energy relationships have been found in studies of partition 

of solutes between aqueous phase and organic solvents, micelles, and polymer micelles 

[24,25,42-44]. Plots of the values of Δµt
0 against the number of carbon atoms in the alkyl 

group are almost linear for both polymer aggregates (Fig. 7). 



 

Figure 7. Standard free energy of transfer of p-alkyl phenols from water to polymer 

aggregates (Δµ0
t), as a function of the number of carbon atoms on the alkyl chain. HPG17 

(■) and HPG4-RBr13 (▲). 

 

The slopes are similar and the incremental free energy per methylene group, Δµ0
C, is −3.50 

and −3.30 kJ mol-1 for HPG17 and HPG4-RBr13, respectively, and agree well with that 

determined for transfer of methylene group from water to heptane (−3.27 kJ mol-1). These 

results suggest that alkyl chains have similar locations in both aggregates. On the other 

hand, the free energies of transfer of the phenol moiety from water into polymer aggregates, 

Δµ0
Ph, obtained from the intercept are −16.9 and −20.4 kJ mol-1 for HPG17 and HPG4-

RBr13, respectively. The values of Δµ0
Ph are larger than those of Δµ0

C, which indicate that 



the location of p-alkylphenols in the aggregates formed by dendritic polymers is mainly 

determined by the transfer of the phenol moiety to the hydrophobic core. Interestingly, the 

value of Δµ0
Ph measured for HPG is much lower than those measured in other polymer and 

SDS micelles [25,40]. This indicates that phenols in PG17 aggregates are located in a more 

polar environment than that provided by normal micelles. This conclusion is in line with 

fluorescence probing results indicating that water molecules enter freely into the HPG17 

aggregate core.  

4. Conclusions 

A low molecular hyperbranched polyglycidol and its ester derivative were synthesized and 

characterized following standard procedures. The results indicate that a HPG with 17 units 

and a branching degree of 0.41 was obtained. The esterification of HPG17 gives HPG4-

RBr13, i.e. an ester with 78% of the hydroxyl groups converted into RBr.  These two HPG 

have different polarity and therefore it is expected that their aggregation behavior should be 

also different. The formation of multimolecular aggregates was monitored by fluorescence 

probing using pyrene as probe, and the measured CAC values are 2.5 mM and 0.25 mM for 

HPG17 and HPG4-RBr13, respectively. The size and size distribution of the formed 

aggregates were determined by DLS. At low concentrations of HPG aggregates of 3.5 nm 

and 22 nm were observed, whereas at concentrations above the CAC larger aggregates are 

observed for both HPG. In the whole range of concentrations these aggregates are able to 

solubilize pyrene. Above the CAC the solubilization of p-alkylphenols shifts the size 

distribution to larger sizes and induces the disappearance of the smaller aggregates.  

The partition coefficients of p-alkylphenols and the standard free energy of transfer from 

the aqueous phase to the pseudo-micellar phase were determined for both polymers at 

concentrations well above the CAC. The results show that KX increases with increasing 



length of the side alkyl chain, and are larger for HPG4-RBr13 micelles than for HPG17 

micelles. The free energy values are negative and can be separated in contributions from 

the phenol constitutive groups. The location into the aggregate and amount of transfer is 

determined mainly by the phenolic ring. 
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	For which the equilibrium constant Ks is given by

